WorldWideScience

Sample records for average power optical

  1. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  2. Specification of optical components for a high average-power laser environment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  3. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  4. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  5. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  6. High-average-power diode-pumped Yb: YAG lasers

    International Nuclear Information System (INIS)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  7. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  8. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  9. A Front End for Multipetawatt Lasers Based on a High-Energy, High-Average-Power Optical Parametric Chirped-Pulse Amplifier

    International Nuclear Information System (INIS)

    Bagnoud, V.

    2004-01-01

    We report on a high-energy, high-average-power optical parametric chirped-pulse amplifier developed as the front end for the OMEGA EP laser. The amplifier provides a gain larger than 109 in two stages leading to a total energy of 400 mJ with a pump-to-signal conversion efficiency higher than 25%

  10. High Average Power Fiber Laser for Satellite Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Very high average power lasers with high electrical-top-optical (E-O) efficiency, which also support pulse position modulation (PPM) formats in the MHz-data rate...

  11. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    Science.gov (United States)

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  12. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  13. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  14. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    International Nuclear Information System (INIS)

    Eimerl, D.

    1985-01-01

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology

  15. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  16. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  17. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  18. Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network.

    Science.gov (United States)

    Zhou, Ji; Qiao, Yaojun

    2015-09-01

    In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).

  19. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  20. High average power Q-switched 1314 nm two-crystal Nd:YLF laser

    CSIR Research Space (South Africa)

    Botha, RC

    2015-02-01

    Full Text Available . 40, No. 4 / OPTICS LETTERS High average power Q-switched 1314 nm two-crystal Nd:YLF laser R. C. Botha,1,2,* W. Koen,3 M. J. D. Esser,3,4 C. Bollig,3,5 W. L. Combrinck,1,6 H. M. von Bergmann,2 and H. J. Strauss3 1HartRAO, P.O. Box 443...

  1. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  2. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    Science.gov (United States)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient

  3. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  4. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  5. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  6. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    Science.gov (United States)

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  7. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  8. Infrared optical properties of a coal-fired power plant plume

    International Nuclear Information System (INIS)

    Stearns, L.P.; Pueschel, R.F.

    1983-01-01

    Infrared measurements in the 8--14-μm spectral region were made of two coal-fired power plant plumes and area haze in the Four Corners region of New Mexico from 1 to 7 Nov. 1980. The layer tranmittance, optical depth, and volume extinction coefficient derived from measurements on four nonconsecutive days show the effects of the plumes on the IR optical properties of the atmosphere. The average contribution of the plume alone to the IR extinction coefficient was 74% at the Four Corners plant; the background haze contributed 7--11%. More efficient particulate emission control at the San Juan power plant reduced the average contribution of its plume to 57% of the extinction coefficient. The haze contributed an average of 16%. The results show an increase with time of the haze bulk extinction coefficient during a persistent anticyclonic synoptic situation. Extinction coefficients of the haze showed a linearity with particulate loading, which led to estimates of IR volume extinctions of the free troposphre from aerosol measurements

  9. Power inverter with optical isolation

    Science.gov (United States)

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  10. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  11. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    Science.gov (United States)

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  12. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses....

  13. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  14. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  15. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    Science.gov (United States)

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  16. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Carmen Vázquez

    2018-02-01

    Full Text Available We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  17. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud

    2013-01-01

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 polystyrene bead, the laser pulse-bead...... interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  18. Development of high average power industrial Nd:YAG laser with peak power of 10 kW class

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Soo Sung; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-03-01

    We developed and commercialized an industrial pulsed Nd:YAG laser with peak power of 10 kW class for fine cutting and drilling applications. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum peak power and average power of our laser were 10 kW and 250 W, respectively. Moreover, the laser pulse width could be controlled from 0.5 msec to 20 msec continuously. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to accellerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation in design and assembly by company researchers from the early stage. Three Nd:YAG lasers have been assembled and will be tested in industrial manufacturing process to prove the capability of developed Nd:YAG laser with potential users. (Author)

  19. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  20. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    Science.gov (United States)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  1. Minimal average consumption downlink base station power control strategy

    OpenAIRE

    Holtkamp H.; Auer G.; Haas H.

    2011-01-01

    We consider single cell multi-user OFDMA downlink resource allocation on a flat-fading channel such that average supply power is minimized while fulfilling a set of target rates. Available degrees of freedom are transmission power and duration. This paper extends our previous work on power optimal resource allocation in the mobile downlink by detailing the optimal power control strategy investigation and extracting fundamental characteristics of power optimal operation in cellular downlink. W...

  2. Comparison of power pulses from homogeneous and time-average-equivalent models

    International Nuclear Information System (INIS)

    De, T.K.; Rouben, B.

    1995-01-01

    The time-average-equivalent model is an 'instantaneous' core model designed to reproduce the same three dimensional power distribution as that generated by a time-average model. However it has been found that the time-average-equivalent model gives a full-core static void reactivity about 8% smaller than the time-average or homogeneous models. To investigate the consequences of this difference in static void reactivity in time dependent calculations, simulations of the power pulse following a hypothetical large-loss-of-coolant accident were performed with a homogeneous model and compared with the power pulse from the time-average-equivalent model. The results show that there is a much smaller difference in peak dynamic reactivity than in static void reactivity between the two models. This is attributed to the fact that voiding is not complete, but also to the retardation effect of the delayed-neutron precursors on the dynamic flux shape. The difference in peak reactivity between the models is 0.06 milli-k. The power pulses are essentially the same in the two models, because the delayed-neutron fraction in the time-average-equivalent model is lower than in the homogeneous model, which compensates for the lower void reactivity in the time-average-equivalent model. (author). 1 ref., 5 tabs., 9 figs

  3. Using Bayes Model Averaging for Wind Power Forecasts

    Science.gov (United States)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  4. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  5. Average electronegativity, electronic polarizability and optical basicity of lanthanide oxides for different coordination numbers

    International Nuclear Information System (INIS)

    Zhao Xinyu; Wang Xiaoli; Lin Hai; Wang Zhiqiang

    2008-01-01

    On the basis of new electronegativity values, electronic polarizability and optical basicity of lanthanide oxides are calculated from the concept of average electronegativity given by Asokamani and Manjula. The estimated values are in close agreement with our previous conclusion. Particularly, we attempt to obtain new data of electronic polarizability and optical basicity of lanthanide sesquioxides for different coordination numbers (6-12). The present investigation suggests that both electronic polarizability and optical basicity increase gradually with increasing coordination number. We also looked for another double peak effect, that is, electronic polarizability and optical basicity of trivalent lanthanide oxides show a gradual decrease and then an abrupt increase at the Europia and Ytterbia. Furthermore, close correlations are investigated among average electronegativity, optical basicity, electronic polarizability and coordination number in this paper

  6. A diode-pumped continuous-wave Nd:YAG laser with an average output power of 1 kW

    International Nuclear Information System (INIS)

    Lee, Sung Man; Cha, Byung Heon; Kim, Cheol Jung

    2004-01-01

    A diode-pumped Nd:YAG laser with an average output power of 1 kW is developed for industrial applications, such as metal cutting, precision welding, etc. To develop such a diode-pumped high power solid-state laser, a series of laser modules have been used in general with and without thermal birefringence compensation. For example, Akiyama et al. used three laser modules to obtain a output power of 5.4 kW CW.1 In the side-pumped Nd:YAG laser, which is a commonly used pump scheme to obtain high output power, the crystal rod has a short thermal focal length at a high input pump power, and the short thermal focal length in turn leads to beam distortion within a laser resonator. Therefore, to achieve a high output power with good stability, isotropic beam profile, and high optical efficiency, the detailed analysis of the resonator stability condition depending on both mirror distances and a crystal separation is essential

  7. Analysis of compound parabolic concentrators and aperture averaging to mitigate fading on free-space optical links

    Science.gov (United States)

    Wasiczko, Linda M.; Smolyaninov, Igor I.; Davis, Christopher C.

    2004-01-01

    Free space optics (FSO) is one solution to the bandwidth bottleneck resulting from increased demand for broadband access. It is well known that atmospheric turbulence distorts the wavefront of a laser beam propagating through the atmosphere. This research investigates methods of reducing the effects of intensity scintillation and beam wander on the performance of free space optical communication systems, by characterizing system enhancement using either aperture averaging techniques or nonimaging optics. Compound Parabolic Concentrators, nonimaging optics made famous by Winston and Welford, are inexpensive elements that may be easily integrated into intensity modulation-direct detection receivers to reduce fading caused by beam wander and spot breakup in the focal plane. Aperture averaging provides a methodology to show the improvement of a given receiver aperture diameter in averaging out the optical scintillations over the received wavefront.

  8. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, Kristine L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from the EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.

  9. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    Zhou G Tong

    2007-01-01

    Full Text Available Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM and code-division multiple access (CDMA, have high peak-to-average power ratios (PARs. A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs, but also leads to low transmission power efficiency. Selected mapping (SLM and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  10. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  11. High average power linear induction accelerator development

    International Nuclear Information System (INIS)

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  12. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  13. Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry

    Czech Academy of Sciences Publication Activity Database

    Divoký, Martin; Smrž, Martin; Chyla, Michal; Sikocinski, Pawel; Severová, Patricie; Novák, Ondřej; Huynh, Jaroslav; Nagisetty, Siva S.; Miura, Taisuke; Pilař, Jan; Slezák, Jiří; Sawicka, Magdalena; Jambunathan, Venkatesan; Vanda, Jan; Endo, Akira; Lucianetti, Antonio; Rostohar, Danijela; Mason, P.D.; Phillips, P.J.; Ertel, K.; Banerjee, S.; Hernandez-Gomez, C.; Collier, J.L.; Mocek, Tomáš

    2014-01-01

    Roč. 2, SI (2014), s. 1-10 ISSN 2095-4719 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : DPSSL * Yb3C:YAG * thin-disk * multi-slab * pulsed high average power laser Subject RIV: BH - Optics, Masers, Lasers

  14. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    Science.gov (United States)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  15. National survey provides average power quality profiles for different customer groups

    International Nuclear Information System (INIS)

    Hughes, B.; Chan, J.

    1996-01-01

    A three year survey, beginning in 1991, was conducted by the Canadian Electrical Association to study the levels of power quality that exist in Canada, and to determine ways to increase utility expertise in making power quality measurements. Twenty-two utilities across Canada were involved, with a total of 550 sites being monitored, including residential and commercial customers. Power disturbances, power outages and power quality were recorded for each site. To create a group average power quality plot, the transient disturbance activity for each site was normalized to a per channel, per month basis and then divided into a grid. Results showed that the average power quality provided by Canadian utilities was very good. Almost all the electrical disturbance within a customer premises were created and stayed within those premises. Disturbances were generally beyond utility control. Utilities could, however, reduce the amount of time the steady-state voltage exceeds the CSA normal voltage upper limit. 5 figs

  16. Efficiency limits of laser power converters for optical power transfer applications

    International Nuclear Information System (INIS)

    Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M

    2013-01-01

    We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)

  17. Efficiency limits of laser power converters for optical power transfer applications

    Science.gov (United States)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  18. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  19. Gingin High Optical Power Test Facility

    International Nuclear Information System (INIS)

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  20. Power Transmission by Optical Fibers for Component Inherent Communication

    Directory of Open Access Journals (Sweden)

    Michael Dumke

    2010-02-01

    Full Text Available The use of optical fibers for power transmission has been investigated intensely. An optically powered device combined with optical data transfer offers several advantages compared to systems using electrical connections. Optical transmission systems consist of a light source, a transmission medium and a light receiver. The overall system performance depends on the efficiency of opto-electronic converter devices, temperature and illumination dependent losses, attenuation of the transmission medium and coupling between transmitter and fiber. This paper will summarize the state of the art for optically powered systems and will discuss reasons for negative influences on efficiency. Furthermore, an outlook on power transmission by the use of a new technology for creating polymer optical fibers (POF via micro dispensing will be given. This technology is capable to decrease coupling losses by direct contacting of opto-electronic devices.

  1. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Kravtsenyuk Olga V

    2007-01-01

    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a gain in spatial resolution can be obtained.

  2. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Vladimir V. Lyubimov

    2007-01-01

    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a 27% gain in spatial resolution can be obtained.

  3. Database of average-power damage thresholds at 1064 nm

    International Nuclear Information System (INIS)

    Rainer, F.; Hildum, E.A.; Milam, D.

    1987-01-01

    We have completed a database of average-power, laser-induced, damage thresholds at 1064 nm on a variety of materials. Measurements were made with a newly constructed laser to provide design input for moderate and high average-power laser projects. The measurements were conducted with 16-ns pulses at pulse-repetition frequencies ranging from 6 to 120 Hz. Samples were typically irradiated for time ranging from a fraction of a second up to 5 minutes (36,000 shots). We tested seven categories of samples which included antireflective coatings, high reflectors, polarizers, single and multiple layers of the same material, bare and overcoated metal surfaces, bare polished surfaces, and bulk materials. The measured damage threshold ranged from 2 for some metals to > 46 J/cm 2 for a bare polished glass substrate. 4 refs., 7 figs., 1 tab

  4. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  5. The mercury laser system - An average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction

    Energy Technology Data Exchange (ETDEWEB)

    Bibeau, C.; Bayramian, A.; Armstrong, P.; Ault, E.; Beach, R.; Benapfl, M.; Campbell, R.; Dawson, J.; Ebbers, C.; Freitas, B.; Kent, R.; Liao, Z.; Ladran, T.; Menapace, J.; Molander, B.; Moses, E.; Oberhelman, S.; Payne, S.; Peterson, N.; Schaffers, K.; Stolz, C.; Sutton, S.; Tassano, J.; Telford, S.; Utterback, E. [Lawrence Livermore National Lab., Livermore, CA (United States); Randles, M. [Northrop Grumman Space Technologies, Charlotte, NC (United States); Chain, B.; Fei, Y. [Crystal Photonics, Sanford, Fl (United States)

    2006-06-15

    We report on the operation of the Mercury laser with fourteen 4*6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2*10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 {mu}m. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB crystal was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz. (authors)

  6. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    Science.gov (United States)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  7. Orientation-averaged optical properties of natural aerosol aggregates

    International Nuclear Information System (INIS)

    Zhang Xiaolin; Huang Yinbo; Rao Ruizhong

    2012-01-01

    Orientation-averaged optical properties of natural aerosol aggregates were analyzed by using discrete dipole approximation (DDA) for the effective radius in the range of 0.01 to 2 μm with the corresponding size parameter from 0.1 to 23 for the wavelength of 0.55 μm. Effects of the composition and morphology on the optical properties were also investigated. The composition show small influence on the extinction-efficiency factor in Mie scattering region, scattering- and backscattering-efficiency factors. The extinction-efficiency factor with the size parameter from 9 to 23 and asymmetry factor with the size parameter below 2.3 are almost independent of the natural aerosol composition. The extinction-, absorption, scattering-, and backscattering-efficiency factors with the size parameter below 0.7 are irrespective of the aggregate morphology. The intrinsic symmetry and discontinuity of the normal direction of the particle surface have obvious effects on the scattering properties for the size parameter above 4.6. Furthermore, the scattering phase functions of natural aerosol aggregates are enhanced at the backscattering direction (opposition effect) for large size parameters in the range of Mie scattering. (authors)

  8. Half-Watt average power femtosecond source spanning 3-8 µm based on subharmonic generation in GaAs

    Science.gov (United States)

    Smolski, Viktor; Vasilyev, Sergey; Moskalev, Igor; Mirov, Mike; Ru, Qitian; Muraviev, Andrey; Schunemann, Peter; Mirov, Sergey; Gapontsev, Valentin; Vodopyanov, Konstantin

    2018-06-01

    Frequency combs with a wide instantaneous spectral span covering the 3-20 µm molecular fingerprint region are highly desirable for broadband and high-resolution frequency comb spectroscopy, trace molecular detection, and remote sensing. We demonstrate a novel approach for generating high-average-power middle-infrared (MIR) output suitable for producing frequency combs with an instantaneous spectral coverage close to 1.5 octaves. Our method is based on utilizing a highly-efficient and compact Kerr-lens mode-locked Cr2+:ZnS laser operating at 2.35-µm central wavelength with 6-W average power, 77-fs pulse duration, and high 0.9-GHz repetition rate; to pump a degenerate (subharmonic) optical parametric oscillator (OPO) based on a quasi-phase-matched GaAs crystal. Such subharmonic OPO is a nearly ideal frequency converter capable of extending the benefits of frequency combs based on well-established mode-locked pump lasers to the MIR region through rigorous, phase- and frequency-locked down conversion. We report a 0.5-W output in the form of an ultra-broadband spectrum spanning 3-8 µm measured at 50-dB level.

  9. Optical fiber powered pressure sensor

    International Nuclear Information System (INIS)

    Schweizer, P.; Neveux, L.; Ostrowsky, D.B.

    1987-01-01

    In the system described, a pressure sensor and its associated electronics are optically powered by a 20 mw laser and a photovoltaic cell via an optical fiber. The sensor is periodically interrogated and sends the measures obtained back to the central unit using an LED and a second fiber. The results obtained as well as the expected evolution will be described

  10. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  11. Recent developments in high average power driver technology

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J.

    1979-01-01

    Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kV and 700 kV range are reported. A 250 kV, 1.5 kA/cm 2 , 30 ns electron beam diode has operated stably for 1.6 x 10 5 pulses

  12. Optical engineering for high power laser applications

    International Nuclear Information System (INIS)

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  13. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  14. Visualization of Radial Peripapillary Capillaries Using Optical Coherence Tomography Angiography: The Effect of Image Averaging.

    Directory of Open Access Journals (Sweden)

    Shelley Mo

    Full Text Available To assess the effect of image registration and averaging on the visualization and quantification of the radial peripapillary capillary (RPC network on optical coherence tomography angiography (OCTA.Twenty-two healthy controls were imaged with a commercial OCTA system (AngioVue, Optovue, Inc.. Ten 10x10° scans of the optic disc were obtained, and the most superficial layer (50-μm slab extending from the inner limiting membrane was extracted for analysis. Rigid registration was achieved using ImageJ, and averaging of each 2 to 10 frames was performed in five ~2x2° regions of interest (ROI located 1° from the optic disc margin. The ROI were automatically skeletonized. Signal-to-noise ratio (SNR, number of endpoints and mean capillary length from the skeleton, capillary density, and mean intercapillary distance (ICD were measured for the reference and each averaged ROI. Repeated measures analysis of variance was used to assess statistical significance. Three patients with primary open angle glaucoma were also imaged to compare RPC density to controls.Qualitatively, vessels appeared smoother and closer to histologic descriptions with increasing number of averaged frames. Quantitatively, number of endpoints decreased by 51%, and SNR, mean capillary length, capillary density, and ICD increased by 44%, 91%, 11%, and 4.5% from single frame to 10-frame averaged, respectively. The 10-frame averaged images from the glaucomatous eyes revealed decreased density correlating to visual field defects and retinal nerve fiber layer thinning.OCTA image registration and averaging is a viable and accessible method to enhance the visualization of RPCs, with significant improvements in image quality and RPC quantitative parameters. With this technique, we will be able to non-invasively and reliably study RPC involvement in diseases such as glaucoma.

  15. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  16. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  17. ACIGA's high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, L [School of Physics, University of Western Australia, Perth (Australia); Aoun, M [Computer and Information Science, Edith Cowan University, Perth (Australia); Barriga, P [School of Physics, University of Western Australia, Perth (Australia)] [and others

    2004-03-07

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with {approx}10{sup 6} W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.

  18. Jell-O Optics: Edibly Exploring Snell's Law and Optical Power

    Science.gov (United States)

    Hendryx, Jennifer; Reynolds, Mathias

    2012-03-01

    This presentation details a laboratory exercise and/or demonstration of refraction with an inexpensive, simple set-up: a pan of Jell-O, protractors, and laser pointers. This activity is presented from the perspective of an optical sciences graduate student who has spent the school year team-teaching high school math and physics (through Academic Decathlon). The goal is to present some of the fundamentals of optics with an enjoyable and affordable approach. The concepts include Snell's law, index of refraction, and optical power/focal length as they relate to the curvature of a lens.

  19. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    Science.gov (United States)

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  20. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  1. Research on high power intra-channel crosstalk attack in optical networks

    Science.gov (United States)

    Ren, Shuai; Zhang, Yinfa; Wang, Jingyu; Zhang, Jumei; Rao, Xuejun; Fang, Yuanyuan

    2017-02-01

    The mechanism of high power intra-channel crosstalk attack is analyzed theoretically and the conclusion that power of attack signal and crosstalk coefficient of optical switch are the main factors for which high power intra-channel have destructive effect on quality of legitimate signals is drawn. Effects of high power intra-channel crosstalk attack on quality of legitimate signals and its capability of attack propagation are investigated quantitatively by building the simulation system in VPI software. The results show that legitimate signals through the first and the second stage optical switch are affected by attack and legitimate signal through the third stage optical switch is almost unaffected by attack when power of original attack signal (OAS) is above 20dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB at optical cross connect 1 (OXC1). High power intra-channel crosstalk attack has a certain capability of attack propagation. Attack capability of OAS can be propagated to OXC3 when power of OAS is 27dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB. We also find that the secondary attack signal (SAS) does not have capability of attack propagation.

  2. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-08-01

    Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.

  3. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  4. Data acquisition remote node powered over the communications optical fiber

    International Nuclear Information System (INIS)

    Batista, Antonio J.N.; Sousa, Jorge; Gonçalves, Bruno

    2015-01-01

    Large nuclear fusion reactors, like ITER, will have harsh electromagnetic environments nearby the machine. Foreseeing the necessity for special data acquisition remote nodes, on difficult access locations and as close as possible to the experimental devices, motivated the system design. The architecture is based on the power-over-fiber technology recent advancements and respective implementation aim is to attain a proof of concept for the fusion technology field and others, e.g., high energy physics, industry, etc. The design intends the replacement of traditional copper cables and power supplies, vulnerable to electromagnetic interference, by the communications optical fiber of the data acquisition remote node. Optical fibers provide galvanic isolation, immunity to noisy electromagnetic environments and simultaneously can supply power to the remote node electronics. System architecture uses a laser power converter (array of photovoltaic cells) to convert the laser light, from the optical fiber, into electricity. The generated electrical power is enough for powering the remote node electronics and optoelectronics, such as an ADC, a low power FPGA and an optical transmitter. The laser power converter is also used as the communications receiver and from which the acquisition clock is recovered, providing synchronism between remote data acquisition nodes. Descriptions of the system architecture, tested implementations and future improvements are presented.

  5. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  6. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  7. High Average Power UV Free Electron Laser Experiments At JLAB

    International Nuclear Information System (INIS)

    Douglas, David; Benson, Stephen; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle; Tennant, Christopher; Williams, Gwyn

    2012-01-01

    Having produced 14 kW of average power at ∼2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  8. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  9. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data set represents a series of annual average grids (2001-2010) of fine particulate matter...

  10. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data sets represent a series of annual average grids (2001-2010) of fine particulate matter...

  11. A CMOS Low-Power Optical Front-End for 5 Gbps Applications

    Science.gov (United States)

    Zohoori, Soorena; Dolatshahi, Mehdi

    2018-01-01

    In this paper, a new low-power optical receiver front-end is proposed in 90 nm CMOS technology for 5 Gb/s AApplications. However, to improve the gain-bandwidth trade-off, the proposed Trans-Impedance Amplifier (TIA) uses an active modified inverter-based topology followed by a common-source amplifier, which uses active inductive peaking technique to enhance the frequency bandwidth in an increased gain level for a reasonable power consumption value. The proposed TIA is analyzed and simulated in HSPICE using 90 nm CMOS technology parameters. Simulation results show a 53.5dBΩ trans-impedance gain, 3.5 GHz frequency bandwidth, 16.8pA/√Hz input referred noise, and 1.28 mW of power consumption at 1V supply voltage. The Optical receiver is completed using three stages of differential limiting amplifiers (LAs), which provide 27 dB voltage gain while consume 3.1 mW of power. Finally, the whole optical receiver front-end consumes only 5.6 mW of power at 1 V supply and amplifies the input signal by 80 dB, while providing 3.7 GHz of frequency bandwidth. Finally, the simulation results indicate that the proposed optical receiver is a proper candidate to be used in a low-power 5 Gbps optical communication system.

  12. Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Yu, Chia-Wei

    2018-02-05

    This study aims to develop a new optical design method of soft multifocal contact lens (CLs) to obtain uniform optical power in large center-distance zone with optimized Non-Uniform Rational B-spline (NURBS). For the anterior surface profiles of CLs, the NURBS design curves are optimized to match given optical power distributions. Then, the NURBS in the center-distance zones are fitted in the corresponding spherical/aspheric curves for both data points and their centers of curvature to achieve the uniform power. Four cases of soft CLs have been manufactured by casting in shell molds by injection molding and then measured to verify the design specifications. Results of power profiles of these CLs are concord with the given clinical requirements of uniform powers in larger center-distance zone. The developed optical design method has been verified for multifocal CLs design and can be further applied for production of soft multifocal CLs.

  13. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  14. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  15. Depscor-95 Agile Optical Phased Arrays for Microspacecraft

    National Research Council Canada - National Science Library

    Fork, Richard

    1999-01-01

    ... average power beams with little or no mechanical movement are especially interesting. Recent advances in semiconductor and optical fiber lasers suggest lightweight compact optical phased arrays suitable for microspacecraft are feasible...

  16. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  17. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1993-01-01

    The authors have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (Intense Microwave, Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT), and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA, 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. The authors summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  18. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Zhao Jun; Ma Lianying; Yi Aiping; Liu Jingru

    2011-01-01

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  19. The calculation of average error probability in a digital fibre optical communication system

    Science.gov (United States)

    Rugemalira, R. A. M.

    1980-03-01

    This paper deals with the problem of determining the average error probability in a digital fibre optical communication system, in the presence of message dependent inhomogeneous non-stationary shot noise, additive Gaussian noise and intersymbol interference. A zero-forcing equalization receiver filter is considered. Three techniques for error rate evaluation are compared. The Chernoff bound and the Gram-Charlier series expansion methods are compared to the characteristic function technique. The latter predicts a higher receiver sensitivity

  20. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  1. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  2. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  3. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine.

    Science.gov (United States)

    Sampaio, Luis Rafael L; Borges, Lucas T N; Silva, Joyse M F; de Andrade, Francisca Roselin O; Barbosa, Talita M; Oliveira, Tatiana Q; Macedo, Danielle; Lima, Ricardo F; Dantas, Leonardo P; Patrocinio, Manoel Cláudio A; do Vale, Otoni C; Vasconcelos, Silvânia M M

    2018-02-01

    The use of ketamine (Ket) as a pharmacological model of schizophrenia is an important tool for understanding the main mechanisms of glutamatergic regulated neural oscillations. Thus, the aim of the current study was to evaluate Ket-induced changes in the average spectral power using the hippocampal quantitative electroencephalography (QEEG). To this end, male Wistar rats were submitted to a stereotactic surgery for the implantation of an electrode in the right hippocampus. After three days, the animals were divided into four groups that were treated for 10 consecutive days with Ket (10, 50, or 100 mg/kg). Brainwaves were captured on the 1st or 10th day, respectively, to acute or repeated treatments. The administration of Ket (10, 50, or 100 mg/kg), compared with controls, induced changes in the hippocampal average spectral power of delta, theta, alpha, gamma low or high waves, after acute or repeated treatments. Therefore, based on the alterations in the average spectral power of hippocampal waves induced by Ket, our findings might provide a basis for the use of hippocampal QEEG in animal models of schizophrenia. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  4. Myopia Glasses and Optical Power Estimation: An Easy Experiment

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2015-01-01

    Human eye optics is a common high school physics topic and students usually show a great interest during our presentation of this theme. In this article, we present an easy way to estimate a diverging lens' optical power from a simple experiment involving myopia eyeglasses and a smartphone flashlight.

  5. Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization

    International Nuclear Information System (INIS)

    Pal, Vishwa; Ghosh, R; Prasad, Awadhesh

    2011-01-01

    We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.

  6. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  7. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    International Nuclear Information System (INIS)

    Neau, E.L.

    1994-01-01

    Short-pulse accelerator technology developed during the early 1960's through the late 1980's is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm 2 . Similar high average power technology is being used at ≤ 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100's of cm 2

  8. A novel Generalized State-Space Averaging (GSSA) model for advanced aircraft electric power systems

    International Nuclear Information System (INIS)

    Ebrahimi, Hadi; El-Kishky, Hassan

    2015-01-01

    Highlights: • A study model is developed for aircraft electric power systems. • A novel GSSA model is developed for the interconnected power grid. • The system’s dynamics are characterized under various conditions. • The averaged results are compared and verified with the actual model. • The obtained measured values are validated with available aircraft standards. - Abstract: The growing complexity of Advanced Aircraft Electric Power Systems (AAEPS) has made conventional state-space averaging models inadequate for systems analysis and characterization. This paper presents a novel Generalized State-Space Averaging (GSSA) model for the system analysis, control and characterization of AAEPS. The primary objective of this paper is to introduce a mathematically elegant and computationally simple model to copy the AAEPS behavior at the critical nodes of the electric grid. Also, to reduce some or all of the drawbacks (complexity, cost, simulation time…, etc) associated with sensor-based monitoring and computer aided design software simulations popularly used for AAEPS characterization. It is shown in this paper that the GSSA approach overcomes the limitations of the conventional state-space averaging method, which fails to predict the behavior of AC signals in a circuit analysis. Unlike conventional averaging method, the GSSA model presented in this paper includes both DC and AC components. This would capture the key dynamic and steady-state characteristics of the aircraft electric systems. The developed model is then examined for the aircraft system’s visualization and accuracy of computation under different loading scenarios. Through several case studies, the applicability and effectiveness of the GSSA method is verified by comparing to the actual real-time simulation model obtained from Powersim 9 (PSIM9) software environment. The simulations results represent voltage, current and load power at the major nodes of the AAEPS. It has been demonstrated that

  9. Mixed-mode distribution systems for high average power electron cyclotron heating

    International Nuclear Information System (INIS)

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.

    1984-01-01

    The ELMO Bumpy Torus-Scale (EBT-S) experiment consists of 24 simple magnetic mirrors joined end-to-end to form a torus of closed magnetic field lines. In this paper, we first describe an 80% efficient mixed-mode unpolarized heating system which couples 28-GHz microwave power to the midplane of the 24 EBT-S cavities. The system consists of two radiused bends feeding a quasi-optical mixed-mode toroidal distribution manifold. Balancing power to the 24 cavities is determined by detailed computer ray tracing. A second 28-GHz electron cyclotron heating (ECH) system using a polarized grid high field launcher is described. The launcher penetrates the fundamental ECH resonant surface without a vacuum window with no observable breakdown up to 1 kW/cm 2 (source limited) with 24 kW delivered to the plasma. This system uses the same mixed-mode output as the first system but polarizes the launched power by using a grid of WR42 apertures. The efficiency of this system is 32%, but can be improved by feeding multiple launchers from a separate distribution manifold

  10. Efficient processing of CFRP with a picosecond laser with up to 1.4 kW average power

    Science.gov (United States)

    Onuseit, V.; Freitag, C.; Wiedenmann, M.; Weber, R.; Negel, J.-P.; Löscher, A.; Abdou Ahmed, M.; Graf, T.

    2015-03-01

    Laser processing of carbon fiber reinforce plastic (CFRP) is a very promising method to solve a lot of the challenges for large-volume production of lightweight constructions in automotive and airplane industries. However, the laser process is actual limited by two main issues. First the quality might be reduced due to thermal damage and second the high process energy needed for sublimation of the carbon fibers requires laser sources with high average power for productive processing. To achieve thermal damage of the CFRP of less than 10μm intensities above 108 W/cm² are needed. To reach these high intensities in the processing area ultra-short pulse laser systems are favored. Unfortunately the average power of commercially available laser systems is up to now in the range of several tens to a few hundred Watt. To sublimate the carbon fibers a large volume specific enthalpy of 85 J/mm³ is necessary. This means for example that cutting of 2 mm thick material with a kerf width of 0.2 mm with industry-typical 100 mm/sec requires several kilowatts of average power. At the IFSW a thin-disk multipass amplifier yielding a maximum average output power of 1100 W (300 kHz, 8 ps, 3.7 mJ) allowed for the first time to process CFRP at this average power and pulse energy level with picosecond pulse duration. With this unique laser system cutting of CFRP with a thickness of 2 mm an effective average cutting speed of 150 mm/sec with a thermal damage below 10μm was demonstrated.

  11. Application condition of optical communication technique in the nuclear power plants

    International Nuclear Information System (INIS)

    Sakurai, Jun

    1999-01-01

    As the optical communication technique can process rapidly a lot of information and exclude perfectly error action due to noise, it is adopted gradually to commercial and company communications (containing operational managements in large scale facilities) in worldwide scale in stead of conventional communication technique (containing operational controls and measurements). In application to the nuclear power plants, as forming not only change in properties but also deterioration due to radiation damage in many cases of exposure to various types of radiations such as neutron, gamma-ray, and so forth in difference with conventional using environment, its using range is limited at present. In future, development of optical fibers or elements with excellent high temperature and radiation resistances usable stably at reactor core for a long time is essential. The regular application of the optical communication technique at the nuclear power plants begins just now, which is an expected field for future large development. And, for the old nuclear power plant in present operation, substitution to the optical communication technique in accompany with replace of appliances at periodical inspections will also be conducted. Its response is already required rapidly in the Tokyo Electric Power Co., Ltd.. (G.K.)

  12. Application of Bayesian model averaging to measurements of the primordial power spectrum

    International Nuclear Information System (INIS)

    Parkinson, David; Liddle, Andrew R.

    2010-01-01

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940 s s is specified at a pivot scale 0.015 Mpc -1 . For the tensors model averaging can tighten the credible upper limit, depending on prior assumptions.

  13. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  14. Specification and testing of optics for LIS system

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Gantayet, L.M.

    2005-01-01

    Optical component specification for the high average power lasers and laser beam transport system used in the laser isotope separation demonstration facility must address demanding system performance requirements. In a typical demonstration facility a few thousand of commercial and custom optical components are required. The optical system is expected to perform at a high level of optical efficiency and reliability. Evaluation and testing of optical components used in LIS plant is critical for qualification of suppliers and assurance of performance in the actual process. The stringent specifications require specialized test equipment and techniques, which are not routine. Careful planning with the optics manufacturer, detailed quality assurance plan, comprehensive procedures for testing and evaluation, and a plan for corrective action are required. The specifications are given on material characteristics, surface quality and flatness, reflectance or transmittance and high average power laser damage. Our approach to specifying, testing the performance characteristics and assuring quality of optical components required for the technology demonstration of laser based isotopic clean-up of 233 U project is presented. (author)

  15. Optical power calibrator based on a stabilized green He-Ne laser and a cryogenic absolute radiometer

    International Nuclear Information System (INIS)

    Varpula, T.; Seppa, H.; Saari, J.M.

    1989-01-01

    This paper describes an optical power calibrator whose overall calibration uncertainty is less than 10 -4 for an optical power of 0.13 mW. The laser light source of the system operates at a wavelength of 543.5 nm, being close to the wavelength at which the candela is defined, 555 nm. A stable optical power is achieved by stabilizing the intensity and the frequency of a green He-Ne laser. The optical power is detected by a cryogenic absolute radiometer based on the principle of electrical substitution radiometry. It can be employed to measure optical power up to 0.5 mW in the visible and near infrared region

  16. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  17. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges.

    Science.gov (United States)

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-12-10

    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

  18. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  19. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  20. Helmholtz solitons in power-law optical materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  1. Development of linear proton accelerators with the high average beam power

    CERN Document Server

    Bomko, V A; Egorov, A M

    2001-01-01

    Review of the current situation in the development of powerful linear proton accelerators carried out in many countries is given. The purpose of their creation is solving problems of safe and efficient nuclear energetics on a basis of the accelerator-reactor complex. In this case a proton beam with the energy up to 1 GeV, the average current of 30 mA is required. At the same time there is a needed in more powerful beams,for example, for production of tritium and transmutation of nuclear waste products. The creation of accelerators of such a power will be followed by the construction of linear accelerators of 1 GeV but with a more moderate beam current. They are intended for investigation of many aspects of neutron physics and neutron engineering. Problems in the creation of efficient constructions for the basic and auxiliary equipment, the reliability of the systems, and minimization of the beam losses in the process of acceleration will be solved.

  2. Cloud-based design of high average power traveling wave linacs

    Science.gov (United States)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  3. Generation and Applications of High Average Power Mid-IR Supercontinuum in Chalcogenide Fibers

    OpenAIRE

    Petersen, Christian Rosenberg

    2016-01-01

    Mid-infrared supercontinuum with up to 54.8 mW average power, and maximum bandwidth of 1.77-8.66 μm is demonstrated as a result of pumping tapered chalcogenide photonic crystal fibers with a MHz parametric source at 4 μm

  4. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.

    2010-01-01

    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising......-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also...

  5. Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors

    Science.gov (United States)

    González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.

    2017-04-01

    Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.

  6. Invited Article: Visualisation of extreme value events in optical communications

    Science.gov (United States)

    Derevyanko, Stanislav; Redyuk, Alexey; Vergeles, Sergey; Turitsyn, Sergei

    2018-06-01

    Fluctuations of a temporal signal propagating along long-haul transoceanic scale fiber links can be visualised in the spatio-temporal domain drawing visual analogy with ocean waves. Substantial overlapping of information symbols or use of multi-frequency signals leads to strong statistical deviations of local peak power from an average signal power level. We consider long-haul optical communication systems from this unusual angle, treating them as physical systems with a huge number of random statistical events, including extreme value fluctuations that potentially might affect the quality of data transmission. We apply the well-established concepts of adaptive wavefront shaping used in imaging through turbid medium to detect the detrimental phase modulated sequences in optical communications that can cause extreme power outages (rare optical waves of ultra-high amplitude) during propagation down the ultra-long fiber line. We illustrate the concept by a theoretical analysis of rare events of high-intensity fluctuations—optical freak waves, taking as an example an increasingly popular optical frequency division multiplexing data format where the problem of high peak to average power ratio is the most acute. We also show how such short living extreme value spikes in the optical data streams are affected by nonlinearity and demonstrate the negative impact of such events on the system performance.

  7. Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-03-01

    In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated.

  8. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  9. Optical study of solar tower power plants

    International Nuclear Information System (INIS)

    Eddhibi, F; Amara, M Ben; Balghouthi, M; Guizani, A

    2015-01-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature

  10. UV Written 2x8 Optical Power Splitter for FTTH Applications

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2006-01-01

    Silica based integrated optical 2x8 power splitters are reported for the first time using UV-writing waveguide fabrication technology. High performance, compactness and low production costs make these components well suited for deployment in FTTH networks.......Silica based integrated optical 2x8 power splitters are reported for the first time using UV-writing waveguide fabrication technology. High performance, compactness and low production costs make these components well suited for deployment in FTTH networks....

  11. A high-power narrow-linewidth optical parametric oscillator based on PPMgLN

    International Nuclear Information System (INIS)

    Peng, Y F; Wei, X B; Xie, G; Gao, J R; Li, D M; Wang, W M

    2013-01-01

    A high-power and narrow-linewidth tunable optical parametric oscillator based on PPMgLN is presented. The phase matching type e → e + e is used to avoid the walk-off effect and utilize the maximum nonlinear coefficient d 33 (27.4 pm V −1 ) of the PPMgLN crystal (5 mol% MgO doped). When the pump power of the 1064 nm laser is 50 W and the temperature of the PPMgLN crystal is 100 °C, average output power of 15.8 W is obtained with a slope efficiency of 40.6%. The 1.655 μm signal and 2.98 μm idler output powers are 9.5 W and 6.3 W, respectively. The linewidth of the 1.655 μm signal laser is 1.00 nm before compression and 0.05 nm after compression. The compression ratio is 20. The linewidth of the 2.98 μm idler laser is within 0.30–0.63 nm based on theoretical analysis of the linewidth of the 1064 nm pump laser and 1.655 μm signal laser. The output wavelength can be tuned from 1.6 to 1.8 μm and from 3.1 to 2.7 μm by changing the temperature of the 31.2 μm PPMgLN crystal from 30 to 200 °C. (paper)

  12. Angle-averaged effective proton-carbon analyzing powers at intermediate energies

    International Nuclear Information System (INIS)

    Amir-Ahmadi, H.R.; Berg, A.M. van den; Hunyadi, M.; Kalantar-Nayestanaki, N.; Kis, M.; Mahjour-Shafiei, M.; Messchendorp, J.G.; Woertche, H.J.

    2006-01-01

    The angle-averaged effective analyzing powers, A-bar c , for proton-carbon inclusive scattering were measured as a function of the kinetic energy of protons in a double scattering experiment. The measurements were performed in the kinetic energy range of 44.8-136.5MeV at the center of 1-5cm thick graphite analyzers using a polarized proton beam on a CH 2 film or liquid hydrogen serving as target for the primary scattering. These data can be used for measuring the polarization of protons emerging from other reactions such as H(d-bar ,p-bar )d

  13. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  14. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  15. A Mitigation Technique of High-Power MAI in the Multimedia Optical CDMA System with the Optical Power Selector

    Science.gov (United States)

    Ohba, Kohki; Miyazawa, Takaya; Sasase, Iwao

    In this paper, we propose a mitigation system of high-level multiple access interference (MAI) for multimedia optical Code-Division Multiple-Access (CDMA) systems using the optical power selector (OPS). The proposed system can eliminate high-intensity MAI at the receiver for low-priority users. Moreover, the proposed system can reduce by half the required number of code sequences compared to the conventional scheme. As a result, the proposed system can increase the number of weights at the same code-length and, thus, obtain higher code spreading gain. We analyze performances of the proposed system and show that both high-priority users and low-priority users achieve lower bit error rates in comparison to the conventional scheme.

  16. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  17. Optically powered and interrogated rotary position sensor for aircraft engine control applications

    Science.gov (United States)

    Spillman, W. B.; Crowne, D. H.; Woodward, D. W.

    A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.

  18. Optical fiber cable for transmission of high power laser energy over great distances

    Science.gov (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  19. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  20. Power-efficient method for IM-DD optical transmission of multiple OFDM signals.

    Science.gov (United States)

    Effenberger, Frank; Liu, Xiang

    2015-05-18

    We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.

  1. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  2. A novel power and offset allocation method for spatial multiplexing MIMO Systems in optical wireless channels

    KAUST Repository

    Park, Kihong

    2011-12-01

    We consider optical wireless communication which can be utilized for illumination and communication by relying on lighting devices. Due to the limited bandwidth of optical sources, it is challenging to achieve high data rate in optical wireless systems. In order to obtain a multiplexing gain and high spectral efficiency, we design an optical multi-input multi-output (MIMO) system utilizing a singular value decomposition-based spatial multiplexing and adaptive modulation. We note that the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels. In this paper, we generalize the result of power allocation method in [1] for arbitrary number of transmit and receive antennas in optical wireless MIMO systems. Based on three constraints, namely, the nonnegativity, the aggregate optical power, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size for maximum sum rate. From some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency than the method that allocates the optical power equally for each data stream. © 2011 IEEE.

  3. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    Science.gov (United States)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  4. Contribution of soft lenses of various powers to the optics of a piggy-back system on regular corneas.

    Science.gov (United States)

    Michaud, Langis; Brazeau, Daniel; Corbeil, Marie-Eve; Forcier, Pierre; Bernard, Pierre-Jean

    2013-12-01

    This study aims to report on the measured in vivo contribution of soft lenses of various powers to the optics of a piggyback system (PBS). This prospective, non-dispensing clinical study was conducted on regular wearers of contact lenses who showed regular corneal profiles. Subjects were masked to the products used. The study involved the use of a spherical soft lens of three different powers in a PBS, used as a carrier for a rigid gas permeable lens. Baseline data were collected and soft lenses were then fitted on both eyes of each subject. Both lenses were assessed for position and movement. Over-refraction was obtained. Soft lens power contribution to the optics (SLPC) of a PBS system was estimated by computing initial ametropia, lacrymal lens, rigid lens powers and over-refraction. A set of data on one eye was kept, for each subject, for statistical analysis. Thirty subjects (12 males, 18 females), aged 24.4 (±4.5) years, were enrolled. The use of plus powered soft lenses enhanced initial RGP lens centration. Once optimal fit was achieved, all lenses showed normal movement. SLPC represented 21.3% of the initial soft lens power when using a -6.00 carrier, and 20.6% for a +6.00. A +0.50 did not contribute to any power induced in the system. These results are generally in accordance with theoretical model developed in the past. On average, except for the low-powered carrier, the use of a spherical soft lens provided 20.9% of its marked power. To achieve better results, the use of a plus-powered carrier is recommended. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  5. Developing a Methodology for Elaborating a Pulsed Optical Safety Area for High Power Laser Diodes

    National Research Council Canada - National Science Library

    Yankov, Plamen

    2006-01-01

    The laser diodes are efficient sources of optical radiation. The maximum optical peak power depends on the pulse duration of the driving current pulse - reducing the pulse duration the safety peak power is increased...

  6. Influence of sputtering power on the optical properties of ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    K, Aijo John; M, Deepak, E-mail: manju.thankamoni@gmail.com; T, Manju, E-mail: manju.thankamoni@gmail.com [Department of Physics, Sree Sankara College, Kalady P. O., Ernakulam Dist., Kerala (India); Kumar, Vineetha V. [Dept. of Physics, K. E. College, Mannanam, Kottayam Dist., Kerala (India)

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  7. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE)

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Slezák, Jiří; Sikocinski, Pawel; Divoký, Martin; Sawicka, Magdalena; Bonora, Stefano; Lucianetti, Antonio; Mocek, Tomáš; Jelínková, H.

    2014-01-01

    Roč. 53, č. 15 (2014), 3255-3261 ISSN 1559-128X R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : adaptive optics * multislab * amplifier * wavefront Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.784, year: 2014

  8. Optical power equalization for upstream traffic with injection-locked Fabry-Perot lasers in TDM-PON

    Science.gov (United States)

    Huang, Ting-Tsan; Sheu, Lih-Gen; Chi, Sien

    2010-10-01

    An optical power equalization of upstream traffic in time-division-multiplexed passive optical network (TDM-PON) based on injection-locked Fabry-Perot lasers has been experimentally investigated. The upstream transmitters with stable spectrum are achieved by using an external injection light source in the optical line terminal (OLT). The different upstream powers can be equalized by injection locking a Fabry-Perot laser diode (FP-LD) biased below threshold current in OLT. The dynamic upstream power range from - 8.5 to - 19.5 db m is reduced to a 1.6 dB maximal power variation, when the uplink signal is directly modulated at 1.25 Gb/s.

  9. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  10. Fiber optic pressure sensors for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.

    1995-01-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services

  11. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  12. Critical power for self-focusing of optical beam in absorbing media

    Science.gov (United States)

    Qi, Pengfei; Zhang, Lin; Lin, Lie; Zhang, Nan; Wang, Yan; Liu, Weiwei

    2018-04-01

    Self-focusing effects are of central importance for most nonlinear optical effects. The critical power for self-focusing is commonly investigated theoretically without considering a material’s absorption. Although this is practicable for various materials, investigating the critical power for self-focusing in media with non-negligible absorption is also necessary, because this is the situation usually met in practice. In this paper, the simple analytical expressions describing the relationships among incident power, absorption coefficient and focal position are provided by a simple physical model based on the Fermat principle. Expressions for the absorption dependent critical power are also derived; these can play important roles in experimental and applied research on self-focusing-related nonlinear optical phenomena in absorbing media. Numerical results, based on the nonlinear wave equation—and which can predict experimental results perfectly—are also presented, and agree quantitatively with the analytical results proposed in this paper.

  13. Quantifying uncertainty contributions for fibre optic power meter calibrations

    CSIR Research Space (South Africa)

    Nel, M

    2009-09-01

    Full Text Available Contributions For Fibre Optic Power Meter Calibrations Speaker / Author: M. Nel* Co-author: B. Theron** *National Metrology Institute of South Africa Private Bag X34, Lynnwood Ridge, Pretoria, 0040, South Africa e-mail: MNel@nmisa.org Phone: 012 841...-tight” situation discussed above should therefore not be interpreted as gross “looseness” of the connection. It is possible that the connector-tightening effect contains a small contribution accounted for as part of the overall repeatability of the optical...

  14. High-average-power UV generation at 266 and 355 nm in β-BaB/sub 2/O/sub 4/

    International Nuclear Information System (INIS)

    Liu, K.C.; Rhoades, M.

    1987-01-01

    UV light has been generated previously by harmonic conversion from Nd:YAG lasers using the nonlinear crystals KD*P and ADP. Most of the previous studies have employed lasers with high peak power due to the low-harmonic-conversion efficiency of these crystals and also low average power due to the phase mismatch caused by temperature detuning resulting from UV absorption. A new nonlinear crystal β-BaB/sub 2/O/sub 4/ has recently been reported which provides for the possibility of overcoming the aforementioned problems. The authors utilized β-BaB/sub 2/O/sub 4/ to frequency triple and frequency quadruple a high-repetition-rate cw-pumped Nd:YAG laser and achieved up to 1-W average power with Gaussian spatial distribution at 266 and 355 nm. β-BaB/sub 2/O/sub 4/ has demonstrated its advantages for high-average-power UV generation. Its major drawback is a low-angular-acceptance bandwidth which requires a high-quality fundamental pump beam

  15. Possible power source found for fiber optic lasers

    International Nuclear Information System (INIS)

    Krupa, Tyler J.

    2000-01-01

    Scientists at the US Department of Energy's Sandia National Laboratory are researching ways to use a new semiconductor alloy, indium gallium arsenide nitride (InGaAsN), as as photovoltaic power source for lasers in fiber optics and space communication satellites. The efficiency of electricity-generating solar cells utilizing InGaAsN is predicted to be 40%-nearly twice the efficiency rate of a standard silicon solar cell. The use of InGaAsN in solar cells is a potential power source for satellites and other space systems. (AIP) (c)

  16. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  17. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  18. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  19. Cooperative AF Relaying in Spectrum-Sharing Systems: Performance Analysis under Average Interference Power Constraints and Nakagami-m Fading

    KAUST Repository

    Xia, Minghua; Aissa, Sonia

    2012-01-01

    the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical

  20. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    Science.gov (United States)

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  1. Spatial models for probabilistic prediction of wind power with application to annual-average and high temporal resolution data

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Pinson, Pierre; Clemmensen, Line Katrine Harder

    2017-01-01

    average wind power generation, and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial correlation is captured by a latent Gaussian field. We explore how such models can be handled...... with stochastic partial differential approximations of Matérn Gaussian fields together with Integrated Nested Laplace Approximations. We demonstrate the proposed methods on wind farm data from Western Denmark, and compare the results to those obtained with standard geostatistical methods. The results show...

  2. Very fast, high peak-power, planar triode amplifiers for driving optical gates

    International Nuclear Information System (INIS)

    Howland, M.M.; Davis, S.J.; Gagnon, W.L.

    1979-01-01

    Recent extensions of the peak power capabilities of planar triodes have made possible the latter's use as very fast pulse amplifiers, to drive optical gates within high-power Nd:glass laser chains. These pulse amplifiers switch voltages in the 20 kV range with rise times of a few nanoseconds, into crystal optical gates that are essentially capacitive loads. This paper describes a simplified procedure for designing these pulse amplifiers. It further outlines the use of bridged-T constant resistance networks to transform load capacitance into pure resistance, independent of frequency

  3. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  4. Experience with the lathe cut Bausch & Lomb Soflens: Part II--Power and optics study.

    Science.gov (United States)

    Weissman, B A; Levinson, A

    1978-04-01

    Ten familiar spin cast and ten lathe cut Bausch & Lomb SOFLENS contact lenses were measured as to their power on a lensometer and on an eye. Both quality of the optics and quantitative measurements were considered. Lens flexure and the presence of a fluid lens between the posterior surface of the contact lens and the anterior cornea is indicated for both lenses to explain differences between power of the lens in air and on the eye. The spin cast lens design appears to create a quantitatively larger fluid lens, and one which will add positive optical power to the lens/eye system. Either from this and/or additional factors, the lathe cut lens appears to give improved optical performance both in air and on the eye.

  5. Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides

    Science.gov (United States)

    Katz, Oded; Malka, Dror

    2017-07-01

    In this paper, we demonstrate a compact silicon on insulator (SOI) 1 × 4 optical power splitter using seven horizontal slotted waveguides. Aluminum nitride (AIN) surrounded by silicon (Si) was used to confine the optical field in the slot region. All of the power analysis has been done in transverse magnetic (TM) polarization mode and a compact optical power splitter as short as 14.5 μm was demonstrated. The splitter was designed by using full vectorial beam propagation method (FV-BPM) simulations. Numerical investigations show that this device can work across the whole C-band (1530-1565 nm) with excess loss better than 0.23 dB.

  6. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong

    2011-07-01

    Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless communication system is challenging due to the limited bandwidth of the optical sources. In this paper, we design the singular value decomposition (SVD)- based multiplexing multiple-input multiple-output (MIMO) system to support two data streams in optical wireless channels. Noting that the conventional allocation method in radio frequency (RF) MIMO channels cannot be applied directly to the optical intensity channels, we propose a novel method to allocate the optical power, the offset value and the modulation size for maximum sum rate under the constraints of the nonnegativity of the modulated signals, the aggregate optical power and the bit error rate (BER) requirement. The simulation results show that the proposed allocation method gives the better performance than the method to allocate the optical power equally for each data stream. © 2011 IEEE.

  7. FIBER OPTICAL MICRO-DETECTORS FOR OXYGEN SENSING IN POWER PLANTS

    International Nuclear Information System (INIS)

    Baker, Gregory L.; Ghosh, Ruby N.; Osborn, D.J. III

    2004-01-01

    A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the 3 O 2 quenching of the red emission from hexanuclear molybdenum chloride clusters. High temperature measurements of the emission of clusters in sol gel films show that the luminescence intensity from the films follow a 1/T relationship from room temperature to 150 C, and then declines at a slower rate at higher temperatures. The large number of photons available at 230 C is consistent with simple low cost optics for fiber optic probes based on the emission from clusters in sol gel films

  8. Link Power Budget and Traffict QoS Performance Analysis of Gygabit Passive Optical Network

    Science.gov (United States)

    Ubaidillah, A.; Alfita, R.; Toyyibah

    2018-01-01

    Data service of telecommunication network is needed widely in the world; therefore extra wide bandwidth must be provided. For this case, PT. Telekomunikasi Tbk. applies GPON (Gigabit Passive Optical Network) as optical fibre based on telecommunication network system. GPON is a point to a multipoint technology of FTTx (Fiber to The x) that transmits information signals to the subscriber over optical fibre. In GPON trunking system, from OLT (Optical Line Terminal), the network is split to many ONT (Optical Network Terminal) of the subscribers, so it causes path loss and attenuation. In this research, the GPON performance is measured from the link power budget system and the Quality of Service (QoS) of the traffic. And the observation result shows that the link power budget system of this GPON is in good condition. The link power budget values from the mathematical calculation and direct measurement are satisfy the ITU-T G984 Class B standard, that the power level must be between -8 dBm to -27 dBm. While from the traffic performance, the observation result shows that the network resource utility of the subscribers of the observed area is not optimum. The mean of subscriber utility rate is 27.985 bps for upstream and 79.687 bps for downstream. While maximally, It should be 60.800 bps for upstream and 486.400 bps for downstream.

  9. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    Science.gov (United States)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  10. Peak-to-average power ratio reduction in interleaved OFDMA systems

    KAUST Repository

    Al-Shuhail, Shamael; Ali, Anum; Al-Naffouri, Tareq Y.

    2015-01-01

    Orthogonal frequency division multiple access (OFDMA) systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and to keep up with the capacity/rate demands. One of these impairments is high peak-to-average power ratio (PAPR) and clipping is the simplest peak reduction scheme. However, in general, when multiple users are subjected to clipping, frequency domain clipping distortions spread over the spectrum of all users. This results in compromised performance and hence clipping distortions need to be mitigated at the receiver. Mitigating these distortions in multiuser case is not simple and requires complex clipping mitigation procedures at the receiver. However, it was observed that interleaved OFDMA presents a special structure that results in only self-inflicted clipping distortions (i.e., the distortions of a particular user do not interfere with other users). In this work, we prove analytically that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a compressed sensing system that utilizes the sparsity of the clipping distortions and recovers it on each user. We provide numerical results that validate our analysis and show promising performance for the proposed clipping recovery scheme.

  11. Peak-to-average power ratio reduction in interleaved OFDMA systems

    KAUST Repository

    Al-Shuhail, Shamael

    2015-12-07

    Orthogonal frequency division multiple access (OFDMA) systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and to keep up with the capacity/rate demands. One of these impairments is high peak-to-average power ratio (PAPR) and clipping is the simplest peak reduction scheme. However, in general, when multiple users are subjected to clipping, frequency domain clipping distortions spread over the spectrum of all users. This results in compromised performance and hence clipping distortions need to be mitigated at the receiver. Mitigating these distortions in multiuser case is not simple and requires complex clipping mitigation procedures at the receiver. However, it was observed that interleaved OFDMA presents a special structure that results in only self-inflicted clipping distortions (i.e., the distortions of a particular user do not interfere with other users). In this work, we prove analytically that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a compressed sensing system that utilizes the sparsity of the clipping distortions and recovers it on each user. We provide numerical results that validate our analysis and show promising performance for the proposed clipping recovery scheme.

  12. High-power electro-optic switch technology based on novel transparent ceramic

    International Nuclear Information System (INIS)

    Zhang Xue-Jiao; Ye Qing; Qu Rong-Hui; Cai Hai-wen

    2016-01-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. (paper)

  13. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs

    Science.gov (United States)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Knigge, S.; Crump, P.

    2018-03-01

    Broad area lasers with novel extreme double asymmetric structure (EDAS) vertical designs featuring increased optical confinement in the quantum well, Γ, are shown to have improved temperature stability without compromising series resistance, internal efficiency or losses. Specifically, we present here vertical design considerations for the improved continuous wave (CW) performance of devices operating at 940 nm, based on systematically increasing Γ from 0.26% to 1.1%, and discuss the impact on power saturation mechanisms. The results indicate that key power saturation mechanisms at high temperatures originate in high threshold carrier densities, which arise in the quantum well at low Γ. The characteristic temperatures, T 0 and T 1, are determined under short pulse conditions and are used to clarify the thermal contribution to power limiting mechanisms. Although increased Γ reduces thermal power saturation, it is accompanied by increased optical absorption losses in the active region, which has a significant impact on the differential external quantum efficiency, {η }{{diff}}. To quantify the impact of internal optical losses contributed by the quantum well, a resonator length-dependent simulation of {η }{{diff}} is performed and compared to the experiment, which also allows the estimation of experimental values for the light absorption cross sections of electrons and holes inside the quantum well. Overall, the analysis enables vertical designs to be developed, for devices with maximized power conversion efficiency at high CW optical power and high temperatures, in a trade-off between absorption in the well and power saturation. The best balance to date is achieved in devices using EDAS designs with {{Γ }}=0.54 % , which deliver efficiencies of 50% at 14 W optical output power at an elevated junction temperature of 105 °C.

  14. Wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    International Nuclear Information System (INIS)

    Haugstad, B.S.; Eshleman, V.R.

    1979-01-01

    Two recent adjacently published papers on the average effects of turbulence in radio and optical occultation studies of planetary atmospheres appear to disagree on the question of wavelength dependence. It is demonstrated here that in deriving a necessary condition for the applicability of their method. Hubbard and Jokipii neglect a factor which is proportional to the square of the ratio of the atmospheric or local Fresnel zone radius and the inner scale of turbulence. They also fail to establish sufficient conditions, thereby omitting as a further factor the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total descrepancy, which numerically is typically within several orders of magnitude of 10 11 for radio and 10 7 for optical occultations, means that their results correspond to geometrical optics and not to wave optics as claimed. Thus their results are inherently inapplicable in a discussion of the wavelength dependence of any parameter, such as the bias in the average refraction angle treated by Eshleman and Haugstad. We note that for power spectra characterized by the (--p) exponent of the turbulence wavenumber, the average turbulence-induced bias in refraction angles depends on the radiation wavelength as lambda/sup( p/--4)/2, or as lambda/sup en-dash1/6/ for Kolmogorov turbulence. Other features of the Hubbard-Jokipii analysis are also discussed

  15. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  16. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  17. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  18. Fast and low power Michelson interferometer thermo-optical switch on SOI.

    Science.gov (United States)

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L

    2008-09-29

    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  19. A laser optical torquemeter for measuring the mechanical power furnished by a chirale turbine

    Science.gov (United States)

    Bonfanti, Marco; La Rosa, Guido; Lo Savio, Fabio

    2005-02-01

    The design of the present laser optical torquemeter arose from the need to measure the mechanical power furnished by a prototype of chirale turbine, which exploits the lift force produced in the rotor, due to the "Magnus effect." The particular optical reading system allows the device to determine both the torque and the mechanical power. The torque value is obtained through the reading of the torsional angle. From this value, together with that of the transmission shaft angular speed measured by the same torquemeter, the mechanical power of the turbine is calculated. The optical system output signals are acquired, processed and elaborated by a virtual logic circuit, simulated by means of a suitable home-made software in LabVIEW environment. The torquemeter has been tested operating with the prototype of turbine in a wind tunnel.

  20. Research on DC-RF superconducting photocathode injector for high average power FELs

    International Nuclear Information System (INIS)

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  1. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  2. A novel optical transmission link with DHT-based constant envelope optical OFDM signal

    Science.gov (United States)

    Ma, Jianxin; Liang, Hao

    2013-07-01

    In this paper, we have proposed a novel optical OFDM transmission link that takes advantages of discrete Hartley Transform (DHT) and constant envelope (CE) modulation, obtaining DHT-based constant envelope optical OFDM. The numerical results show that this design achieves better performance when compared with conventional O-OFDM in terms of bit error rate (BER) and peak-to-average power ratio (PAPR). The impact of phase modulation index (PMI) on both PAPR and noise tolerance is investigated. Since the scheme has simplified design, it is believed to be a cost-effective in the practical implement.

  3. Design of an Optical System for High Power CO2 Laser Cutting

    DEFF Research Database (Denmark)

    de Lange, D.F.; Meijer, J.; Nielsen, Jakob Skov

    2003-01-01

    The results of a design study for the optical system for cutting with high power CO2 lasers (6 kW and up) will be presented. As transparent materials cannot be used for these power levels, mirrors have been applied. A coaxial cutting gas supply has been designed with a laser beam entrance into th...... independent of the entering beam angle or position. manufacturing tolerances have been compensated in a one time adjustment during the assembly of the optical system. Preliminary cutting results in 13 mm thick steel in a shipyard application show a signinficant improvement in the cutting performance....

  4. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  5. The measurement of power losses at high magnetic field densities or at small cross-section of test specimen using the averaging

    CERN Document Server

    Gorican, V; Hamler, A; Nakata, T

    2000-01-01

    It is difficult to achieve sufficient accuracy of power loss measurement at high magnetic field densities where the magnetic field strength gets more and more distorted, or in cases where the influence of noise increases (small specimen cross section). The influence of averaging on the accuracy of power loss measurement was studied on the cast amorphous magnetic material Metglas 2605-TCA. The results show that the accuracy of power loss measurements can be improved by using the averaging of data acquisition points.

  6. Dynamics of optical matter creation and annihilation in colloidal liquids controlled by laser trapping power.

    Science.gov (United States)

    Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A

    2008-11-15

    We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.

  7. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  8. A Hybrid Islanding Detection Technique Using Average Rate of Voltage Change and Real Power Shift

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    The mainly used islanding detection techniques may be classified as active and passive techniques. Passive techniques don't perturb the system but they have larger nondetection znes, whereas active techniques have smaller nondetection zones but they perturb the system. In this paper, a new hybrid...... technique is proposed to solve this problem. An average rate of voltage change (passive technique) has been used to initiate a real power shift (active technique), which changes the eal power of distributed generation (DG), when the passive technique cannot have a clear discrimination between islanding...

  9. Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli; Jin, Jie [Tianjin University, School of Electronic Information Engineering, Tianjin (China); Cheng, Jui-Ching, E-mail: juiching@ntut.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lee, Jyh-Wei [Ming Chi University of Technology, College of Materials Engineering, New Taipei City, Taiwan (China); Wu, Kuo-Hong [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lin, Kuo-Cheng; Tsai, Jung-Ruey [Asia University, Department of Photonics and Communication Engineering, Taichung, Taiwan (China); Liu, Kou-Chen, E-mail: jacobliu@mail.cgu.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China)

    2014-11-03

    Zirconia films are deposited by reactive high power impulse magnetron sputtering (HiPIMS) technology on glass and indium-tin-oxide (ITO)/glass substrates. Preparation, microstructure and optical characteristics of the films have been studied. During deposition, the influence of the target power and duty cycle on the peak current–voltage and power density has been observed in oxide mode. Transparent thin films under different oxygen proportions are obtained on the two substrates. Atomic force microscopy measurements showed that the surface roughness of the films was lower by reactive HiPIMS than DC sputtering for all oxygen contents. The transmission and reflectance properties of differently grown zirconia films were also investigated using an ultraviolet–visible spectrophotometer. The optical transmittance of films grown on glass substrates by HiPIMS reached maximum values above 90%, which exceeded that by DC sputtering. The band edge near 5.86 eV shifted to a lower wavelength for zirconia films prepared with oxygen flow rates lower than 4.5 sccm. For the films prepared on ITO/glass substrates, the transmittance and the band gap of zirconia films were limited by ITO films; a maximum average transmittance of 84% was obtained at 4.5 sccm O{sub 2} and the energy band gap was in the range of 3.7–3.8 eV for oxygen flow rates ranging from 3.5 to 5.0 sccm. Finally, the electrical properties of zirconia films have also been discussed. - Highlights: • Zirconia films are deposited by reactive high power impulse magnetron sputtering. • Low roughness films are obtained. • Films show a high transmittance (> 90%). • Films prepared on glass have a band gap of 5.9 eV.

  10. Nonimaging optical designs for maximum-power-density remote irradiation.

    Science.gov (United States)

    Feuermann, D; Gordon, J M; Ries, H

    1998-04-01

    Designs for flexible, high-power-density, remote irradiation systems are presented. Applications include industrial infrared heating such as in semiconductor processing, alternatives to laser light for certain medical procedures, and general remote high-brightness lighting. The high power densities in herent to the small active radiating regions of conventional metal-halide, halogen, xenon, microwave-sulfur, and related lamps can be restored with nonimaging concentrators with little loss of power. These high fluxlevels can then be transported at high transmissivity with light channels such as optical fibers or lightpipes, and reshaped into luminaires that can deliver prescribed angular and spatial flux distributions onto desired targets. Details for nominally two- and three-dimensional systems are developed, along with estimates ofoptical performance.

  11. Experimental demonstration of squeezed-state quantum averaging

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Madsen, Lars Skovgaard; Sabuncu, Metin

    2010-01-01

    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The averaged variances are prepared probabilistically by means of linear optical interference and measurement-induced conditioning. We verify that the implemented...

  12. Optical power limiting in ensembles of colloidal Ag{sub 2}S quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, O V; Smirnov, M S; Perepelitsa, A S; Shatskikh, T S [Voronezh State University, Voronezh (Russian Federation); Shapiro, B I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2015-12-31

    The effect of power limiting for optical radiation at a wavelength of 660 nm with a pulse duration of 10 ms and operation threshold of 2.2 – 3.1 mJ cm{sup -2} is observed in ensembles of colloidal Ag{sub 2}S quantum dots (QDs). Using the z-scanning method in an open-aperture scheme it is found that the power is limited mainly due to reverse saturable absorption caused by two-photon optical transitions that involve energy levels of Ag{sub 2}S photoluminescence centres, related to structural impurity defects in colloidal Ag{sub 2}S QDs. At the same time, the z-scanning in a closed-aperture scheme demonstrates the formation of a thermal dynamic lens. (nonlinear optical phenomena)

  13. Strips of hourly power options. Approximate hedging using average-based forward contracts

    International Nuclear Information System (INIS)

    Lindell, Andreas; Raab, Mikael

    2009-01-01

    We study approximate hedging strategies for a contingent claim consisting of a strip of independent hourly power options. The payoff of the contingent claim is a sum of the contributing hourly payoffs. As there is no forward market for specific hours, the fundamental problem is to find a reasonable hedge using exchange-traded forward contracts, e.g. average-based monthly contracts. The main result is a simple dynamic hedging strategy that reduces a significant part of the variance. The idea is to decompose the contingent claim into mathematically tractable components and to use empirical estimations to derive hedging deltas. Two benefits of the method are that the technique easily extends to more complex power derivatives and that only a few parameters need to be estimated. The hedging strategy based on the decomposition technique is compared with dynamic delta hedging strategies based on local minimum variance hedging, using a correlated traded asset. (author)

  14. Packaging of high-power bars for optical pumping and direct applications

    Science.gov (United States)

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  15. All-optical header recognizer for optical packet switched networks : exploiting nonlinear gain and index dynamics in semiconductor optical amplifiers for low power operation and photonic integration device

    NARCIS (Netherlands)

    Calabretta, N.; Dorren, H.J.S.

    2009-01-01

    The increase of the internet traffic leads to future optical networks requiring tens of Tb/s of capacity. Current electronic circuit switches are limited by the scalability of the electronic switching fabrics, power consumption and dissipation in the opto- electronic conversion. All-optical packet

  16. Research and investigation of a communication chain on optical fiber with a Fabry-Perot power diode for the automotive industry

    Science.gov (United States)

    Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina

    2016-12-01

    The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.

  17. High-power electro-optic switch technology based on novel transparent ceramic

    Science.gov (United States)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  18. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong

    2013-04-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  19. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  20. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    Science.gov (United States)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  1. Passive (self-powered) fiber-optic sensors

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Falter, D.D.; Todd, R.A.; Simpson, M.L.; Mihalczo, J.T.

    1992-01-01

    ORNL is developing new group of fiber-optic sensors for characterizing physical aspects such as ambient temperature. These sensors exploit the inherent property of thermographic materials that the lifetime and/or intensity of the emitted fluorescence decreases with increasing temperature. Unlike current fluorescent temperature sensors that use a light source for excitation, these sensors are totally passive (self-powered) and use either an embedded or external radiation source. A proof-of-principle temperature sensor was developed, based on this concept, using a well-known thermographic material, magnesium fluorogermanate. Experimental results showed that the radiation-induced fluorescence resulted in an intensity change but no significant decay rate change with increasing temperature

  2. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  3. High speed low power optical detection of sub-wavelength scatterer

    NARCIS (Netherlands)

    Roy, S.; Bouwens, M.A.J.; Wei, L.; Pereira, S.F.; Urbach, H.P.; Walle, P. van der

    2015-01-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique,

  4. An automated thermoelectric power apparatus using electro-optic relays

    International Nuclear Information System (INIS)

    Chakravarti, A.; Ranganathan, R.

    1992-01-01

    We report the design and construction of a thermoelectric power apparatus using home-made electro-optic relays with Z-80A microprocessor for automatic data acquisition and control. The advantages of such relays made out of LED-LDR combinations for the measurement of ΔE and ΔT are discussed in details. (author). 7 refs., 5 figs

  5. Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard.

    Science.gov (United States)

    Kaswin, Godefroy; Rousseau, Antoine; Mgarrech, Mohamed; Barreau, Emmanuel; Labetoulle, Marc

    2014-04-01

    To evaluate the agreement in axial length (AL), keratometry (K), anterior chamber depth (ACD) measurements; intraocular lens (IOL) power calculations; and predictability using a new partial coherence interferometry (PCI) optical biometer (AL-Scan) and a reference (gold standard) PCI optical biometer (IOLMaster 500). Service d'Ophtalmologie, Hopital Bicêtre, APHP Université, Paris, France. Evaluation of a diagnostic device. One eye of consecutive patients scheduled for cataract surgery was measured. Biometry was performed with the new biometer and the reference biometer. Comparisons were performed for AL, average K at 2.4 mm, ACD, IOL power calculations with the Haigis and SRK/T formulas, and postoperative predictability of the devices. A P value less than 0.05 was statistically significant. The study enrolled 50 patients (mean age 72.6 years±4.2 SEM). There was a good correlation between biometers for AL, K, and ACD measurements (r=0.999, r=0.933, and r=0.701, respectively) and between IOL power calculation with the Haigis formula (r=0.972) and the SRK/T formula (r=0.981). The mean absolute error (MAE) in IOL power prediction was 0.42±0.08 diopter (D) with the new biometer and 0.44±0.08 D with the reference biometer. The MAE was 0.20 D with the Haigis formula and 0.19 with the SRK/T formula (P=.36). The new PCI biometer provided valid measurements compared with the current gold standard, indicating that the new device can be used for IOL power calculations for routine cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. High powered pulsed plasma enhanced deposition of thin film semiconductor and optical materials

    International Nuclear Information System (INIS)

    Llewellyn, I.P.; Sheach, K.J.A.; Heinecke, R.A.

    1993-01-01

    A glow discharge deposition technique is described which allows the deposition of a large range of high quality materials without the requirement for substrate heating. The method is differentiated from conventional plasma deposition techniques in that a much higher degree of dissociation is achieved in the gases prior to deposition, such that thermally activated surface reactions are no longer required in order to produce a dense film. The necessary discharge intensity (>300Wcm -3 ) is achieved using a high power radio frequency generator which is pulsed at a low duty cycle (1%) to keep the average energy of the discharge low (100W), in order to avoid the discharge heating the substrate. In addition, by varying the gas composition between discharge pulses, layered structures of materials can be produced, with a disordered interface about 8 A thick. Various uses of the technique in semiconductor and optical filter production are described, and the properties of films deposited using these technique are presented. (orig.)

  7. Precision optical systems for the control and measurement of electric power

    International Nuclear Information System (INIS)

    MacKellar, R.

    2000-01-01

    Development od three optical systems for use in the measurement of electric power -- the optical current transducer (NXCT), the optical voltage transducer (NCVT) and the optical voltage and current transducer (NXVCT) -- are discussed. Market for these systems is estimated at $ 600 million and growing, based on the aging infrastructure, the effects of deregulation and application in other market areas. Some competing products by other developers are also described, along with some discussion of the economic advantages to NxtPhase customers in terms of lower acquisition and installation cost, accuracy, and bandwidth. The importance of strategic partnerships and the strengths that strategic partners bring to a enterprise (domain knowledge, access, site for installation, investment capital, critical feedback) are reviewed. Preliminary results of field trials of NxtPhase's NXVCT are also discussed

  8. High power VCSELs for miniature optical sensors

    Science.gov (United States)

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  9. Power Efficient Service Differentiation Based on Traffic-Aware Survivable Elastic Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Dittmann, Lars

    2014-01-01

    This study assesses the feasible energy savings whendefining different service classes based on protection schemesincore optical networks.Wepropose a dedicated energy savingstrategy for each of the service classes in order to minimize theoverall power consumption of the network.Four Classes of Se...... while for the proposed approach the difference in power consumption is almost negligible.Moreover, incase of the proposed approach,silver serviceclass can benefit for superior quality of service compared to the gold service class, due to the grooming mechanism.......This study assesses the feasible energy savings whendefining different service classes based on protection schemesincore optical networks.Wepropose a dedicated energy savingstrategy for each of the service classes in order to minimize theoverall power consumption of the network.Four Classes...... the sleep-mode capability of the opto-electronic devices as well as the elastic data-rateadaptation based on symbol-rate and modulation-format re-configurations. The results show that in the baseline approach the power consumption is strongly dependent on the ratio between the different service classes...

  10. Active photonic sensor communication cable for field application of optical data and power transmission

    Science.gov (United States)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  11. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  12. The matter power spectrum from the Ly alpha forest : an optical depth estimate

    NARCIS (Netherlands)

    Zaroubi, S; Nusser, A; Haehnelt, M; Kim, TS; Viel, M.

    2006-01-01

    We measure the matter power spectrum from 31 Ly alpha spectra spanning the redshift range of 1.6-3.6. The optical depth, tau, for Ly alpha absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by

  13. Low-Power Architecture for an Optical Life Gas Analyzer

    Science.gov (United States)

    Pilgrim, Jeffrey; Vakhtin, Andrei

    2012-01-01

    Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.

  14. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    Science.gov (United States)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  15. Liquid lens with double tunable surfaces for large power tunability and improved optical performance

    International Nuclear Information System (INIS)

    Li, Lei; Wang, Qiong-Hua; Jiang, Wei

    2011-01-01

    In this paper we propose a liquid lens with two tunable interfaces formed by two kinds of immiscible liquids. The proposed liquid lens uses liquid pressure to change the shape of the interfaces. It can provide a large tunable range of optical power and improved optical performance. By applying suitable liquids the gravity effect can also be negligible. To prove the principles, a liquid lens with 7 mm aperture was fabricated. The optical performance indicates that the proposed liquid lens can provide a large tunable range of both positive and negative powers even using liquids with small differences in refractive indices. The resolution is better than 50 lp mm −1 under white light environment. The spherical aberration and coma are also largely reduced. The proposed liquid lens can also provide the optical designer with the freedom to choose the combination of liquids to reduce or even correct aberrations

  16. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  17. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    Science.gov (United States)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  18. Initial operation of a high-power quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Fliflet, A.W.; Hargreaves, T.A.; Manheimer, W.M.; Fischer, R.P.; Barsanti, M.L.

    1990-01-01

    Results from the initial operating of a high-power quasi-optical gyrotron based on the 90-kV 50-A Varian VUW-8144 electron gun are reported. The output power and efficiency have been measured for a resonator mirror separation of 19.4 cm with a magnetic field of 4.95 T, corresponding to resonator output coupling of 1.9%, and for a resonator mirror separation of 21.4 cm with a magnetic field of 4.7 T, corresponding to a resonator output coupling of 3.1%. Operation was multimoded with 3--6 modes excited in the range of 125--130 GHz for the 4.95-T magnetic field. A peak efficiency of 15% at an output power of 161 kW was obtained for a gun voltage of 93 kV and a current of 12 A. A peak-output power of 364 kW at an efficiency of 10% was obtained at a voltage of 95.6 kV and 37.5 A

  19. Comparison of two optical biometers in intraocular lens power calculation

    Directory of Open Access Journals (Sweden)

    Sheng Hui

    2014-01-01

    Full Text Available Aims: To compare the consistency and accuracy in ocular biometric measurements and intraocular lens (IOL power calculations using the new optical low-coherence reflectometry and partial coherence interferometry. Subjects and Methods: The clinical data of 122 eyes of 72 cataract patients were analyzed retrospectively. All patients were measured with a new optical low-coherence reflectometry system, using the LENSTAR LS 900 (Haag Streit AG/ALLEGRO BioGraph biometer (Wavelight., AG, and partial coherence interferometry (IOLMaster V.5.4 [Carl Zeiss., Meditec, AG] before phacoemulsification and IOL implantation. Repeated measurements, as recommended by the manufacturers, were performed by the same examiner with both devices. Using the parameters of axial length (AL, corneal refractive power (K1 and K2, and anterior chamber depth (ACD, power calculations for AcrySof SA60AT IOL were compared between the two devices using five formulas. The target was emmetropia. Statistical analysis was performed using Statistical Package for the Social Sciences software (SPSS 13.0 with t-test as well as linear regression. A P value < 0.05 was considered to be statistically significant. Results: The mean age of 72 cataract patients was 64.6 years ± 13.4 [standard deviation]. Of the biometry parameters, K1, K2 and [K1 + K2]/2 values were significantly different between the two devices (mean difference, K1: −0.05 ± 0.21 D; K2: −0.12 ± 0.20 D; [K1 + K2]/2: −0.08 ± 0.14 D. P <0.05. There was no statistically significant difference in AL and ACD between the two devices. The correlations of AL, K1, K2, and ACD between the two devices were high. The mean differences in IOL power calculations using the five formulas were not statistically significant between the two devices. Conclusions: New optical low-coherence reflectometry provides measurements that correlate well to those of partial coherence interferometry, thus it is a precise device that can be used for the

  20. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    OpenAIRE

    Bahubali K. Shiragapur; Uday Wali

    2016-01-01

    In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR) quantity. The Golay Code (24, 12), Reed-Muller code (16, 11), Hamming code (7, 4) and Hybrid technique (Combination of Signal Scrambling and Signal Distortion) proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conve...

  1. The use of induction linacs with nonlinear magnetic drive as high average power accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1985-01-01

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiences approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here. (orig.)

  2. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  3. Optical power of VCSELs stabilized to 35 ppm/°C without a TEC

    Science.gov (United States)

    Downing, John

    2015-03-01

    This paper reports a method and system comprising a light source, an electronic method, and a calibration procedure for stabilizing the optical power of vertical-cavity surface-emitting lasers (VCSELs) and laser diodes (LDs) without the use thermoelectric coolers (TECs). The system eliminates the needs for custom interference coatings, polarization adjustments, and the exact alignment required by the optical method reported in 2013 [1]. It can precisely compensate for the effects of temperature and wavelength drift on photodiode responsivity as well as changes in VCSEL beam quality and polarization angle over a 50°C temperature range. Data obtained from light sources built with single-mode polarization-locked VCSELs demonstrate that 30 ppm/°C stability can be readily obtained. The system has advantages over TECstabilized laser modules that include: 1) 90% lower relative RMS optical power and temperature sensitivity, 2) a five-fold enhancement of wall-plug efficiency, 3) less component testing and sorting, 4) lower manufacturing costs, and 5) automated calibration in batches at time of manufacture is practical. The system is ideally suited for battery-powered environmental and in-home medical monitoring applications.

  4. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Science.gov (United States)

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  5. Combined peak-to-average power ratio reduction and physical layer security enhancement in optical orthogonal frequency division multiplexing visible-light communication systems

    Science.gov (United States)

    Wang, Zhongpeng; Chen, Shoufa

    2016-07-01

    A physical encryption scheme for discrete Hartley transform (DHT) precoded orthogonal frequency division multiplexing (OFDM) visible-light communication (VLC) systems using frequency domain chaos scrambling is proposed. In the scheme, the chaos scrambling, which is generated by a modified logistic mapping, is utilized to enhance the physical layer of security, and the DHT precoding is employed to reduce of OFDM signal for OFDM-based VLC. The influence of chaos scrambling on peak-to-average power ratio (PAPR) and bit error rate (BER) of systems is studied. The experimental simulation results prove the efficiency of the proposed encryption method for DHT-precoded, OFDM-based VLC systems. Furthermore, the influence of the proposed encryption to the PAPR and BER of systems is evaluated. The experimental results show that the proposed security scheme can protect the DHT-precoded, OFDM-based VLC from eavesdroppers, while keeping the good BER performance of DHT-precoded systems. The BER performance of the encrypted and DHT-precoded system is almost the same as that of the conventional DHT-precoded system without encryption.

  6. Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser

    Science.gov (United States)

    Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.

  7. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Average System Cost... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY FOR SALES FROM UTILITIES TO BONNEVILLE POWER ADMINISTRATION UNDER NORTHWEST POWER...

  8. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  9. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts

    Science.gov (United States)

    Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer

    2017-06-01

    In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal

  11. Ultralow power all-optical switch

    DEFF Research Database (Denmark)

    Nguyen, H.; Grange, T.; Reznychenko, B.

    2017-01-01

    Optical logic down to the single photon level holds the promise of data processing with a better energy efficiency than electronic devices [1]. In addition, preservation of quantum coherence in such logical components could lead to optical quantum logical gates [2--4]. Optical logic requires......-level systems coupled to light via a tailored photonic environment [8--13]. However optical logic requires two-mode non-linearities [14, 15]. Here we take advantage of the large coupling efficiency and the broadband operation of a photonic wire containing a semiconductor quantum dot (QD) [16] to implement...... an all-optical logical component, wherein as few as 10 photons per QD lifetime in one mode control the reflectivity of another, spectrally distinct, mode. Whether classical or quantum, optical communication has proven to be the best choice for long distance information distribution. All-optical data...

  12. Development of the power control system for semiconductor lasers

    International Nuclear Information System (INIS)

    Kim, Kwang Suk; Kim, Cheol Jung

    1997-12-01

    For the first year plan of this program, we developed the power control system for semiconductor lasers. We applied the high-current switching mode techniques to fabricating a power control system. Then, we investigated the direct side pumping techniques with GaA1As diode laser bars to laser crystal without pumping optics. We obtained 0.5W average output power from this DPSSL. (author). 54 refs., 3 tabs., 18 figs

  13. Average stopping powers and the use of non-analyte spiking for the determination of phosphorus and sodium by PIPPS

    International Nuclear Information System (INIS)

    Olivier, C.; Morland, H.J.

    1991-01-01

    By using particle induced prompt photon spectrometry, PIPPS, the ratios of the average stopping powers in samples and standards can be used to determine elemental compositions. Since the average stopping powers in the samples are in general unknown, this procedure poses a problem. It has been shown that by spiking the sample with a known amount of a compound with known stopping power and containing a non-analyte element, appropriate stopping powers in the samples can be determined by measuring the prompt gamma-ray yields induced in the spike. Using 5-MeV protons and lithium compounds as non-analyte spikes, sodium and phosphorus were determined in ivory, while sodium was determined in geological samples. For the stopping power determinations in the samples the 429-keV 7 Li n(1,0) and 478-keV 7 Li (1,0) gamma rays were measured, while for phosphorus and sodium determinations the high yield 1,266-keV 31 P (1,0), 440-keV 23 Na (1,0), 1,634-keV, Na 23 α(1,0) and 1,637-keV 23 Na (2,1) gamma rays were used. The method was tested by analyzing the standard reference materials SRM 91, 120c and 694

  14. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  15. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  16. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  17. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  18. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  19. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  20. Low-loss ultracompact optical power splitter using a multistep structure.

    Science.gov (United States)

    Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad

    2010-04-01

    We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.

  1. Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements

    Science.gov (United States)

    Williams, P. A.; Hadler, J. A.; Cromer, C.; West, J.; Li, X.; Lehman, J. H.

    2018-06-01

    A primary-standard flowing-water optical power meter for measuring multi-kilowatt laser emission has been built and operated. The design and operational details of this primary standard are described, and a full uncertainty analysis is provided covering the measurement range from 1–10 kW with an expanded uncertainty of 1.2%. Validating measurements at 5 kW and 10 kW show agreement with other measurement techniques to within the measurement uncertainty. This work of the U.S. Government is not subject to U.S. copyright.

  2. Analog electro-optical readout of SiPMs for compact, low power ToF PET/MRI

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F; Levin, Craig S

    2014-01-01

    The aim of this work is to demonstrate time of flight (ToF) performance from analog electro-optical transmission of SiPM-based PET detector signals. In electro-optical readout schemes, scintillation signals are converted to near-infrared light by a laser diode and transmitted out of the MRI bore with fiber-optics [], greatly reducing the PET system's footprint, power consumption, and mutual interference with the MRI.

  3. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Energy Technology Data Exchange (ETDEWEB)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu [Wuhan National Lab for Optoelectronics, Department of Optoelectronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao Zhiyong [State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074 (China); Deng Zhuanhua, E-mail: hezhou@wri.com.cn, E-mail: weilee@mail.hust.edu.cn [School of Computer Science and Technology, Hubei University of Economics, Wuhan 430205 (China)

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  4. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    International Nuclear Information System (INIS)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu; Tao Zhiyong; Deng Zhuanhua

    2011-01-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  5. Autoregressive moving average fitting for real standard deviation in Monte Carlo power distribution calculation

    International Nuclear Information System (INIS)

    Ueki, Taro

    2010-01-01

    The noise propagation of tallies in the Monte Carlo power method can be represented by the autoregressive moving average process of orders p and p-1 (ARMA(p,p-1)], where p is an integer larger than or equal to two. The formula of the autocorrelation of ARMA(p,q), p≥q+1, indicates that ARMA(3,2) fitting is equivalent to lumping the eigenmodes of fluctuation propagation in three modes such as the slow, intermediate and fast attenuation modes. Therefore, ARMA(3,2) fitting was applied to the real standard deviation estimation of fuel assemblies at particular heights. The numerical results show that straightforward ARMA(3,2) fitting is promising but a stability issue must be resolved toward the incorporation in the distributed version of production Monte Carlo codes. The same numerical results reveal that the average performance of ARMA(3,2) fitting is equivalent to that of the batch method in MCNP with a batch size larger than one hundred and smaller than two hundred cycles for a 1100 MWe pressurized water reactor. The bias correction of low lag autocovariances in MVP/GMVP is demonstrated to have the potential of improving the average performance of ARMA(3,2) fitting. (author)

  6. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    Science.gov (United States)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  7. Design of a gigawatt space solar power satellite using optical concentrator system

    Science.gov (United States)

    Dessanti, B.; Komerath, N.; Shah, S.

    A 1-gigawatt space solar power satellite using a large array of individually pointable optical elements is identified as the key mass element of a large scale space solar power architecture using the Space Power Grid concept. The proposed satellite design enables a significant increase in specific power. Placed in sun-synchronous dynamic orbits near 2000km altitude, these satellites can maintain the constant solar view requirement of GEO-based architectures, while greatly reducing the beaming distance required, decreasing the required antenna size and in turn the overall system mass. The satellite uses an array of individually pointable optical elements (which we call a Mirasol Concentrator Array) to concentrate solar energy to an intensified feed target that feeds into the main heater of the spacecraft, similar conceptually to heliostat arrays. The spacecraft then utilizes Brayton cycle conversion to take advantage of non-linear power level scaling in order to generate high specific power values. Using phase array antennas, the power is then beamed at a millimeter wave frequency of 220GHz down to Earth. The design of the Mirasol concentrator system will be described and a detailed mass estimation of the system is developed. The technical challenges of pointing the elements and maintaining constant solar view is investigated. An end-to-end efficiency analysis is performed. Subsystem designs for the spacecraft are outlined. A detailed mass budget is refined to reflect reductions in uncertainty of the spacecraft mass, particularly in the Mirasol system. One of the key mass drivers of the spacecraft is the active thermal control system. The design of a lightweight thermal control system utilizing graphene sheets is also detailed.

  8. The impact of external optical feedback on the degradation behavior of high-power diode lasers

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...... unaffected, severe impact is observed to the cladding layers and the waveguide. Consequently hardening of diode lasers for operation under external optical feedback must necessarily involve claddings and waveguide, into which the quantum well is embedded.......The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...

  9. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    Science.gov (United States)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  10. Optical performance effects of the misalignment of nonimaging optics solar collectors

    Science.gov (United States)

    Ferry, Jonathan; Ricketts, Melissa; Winston, Roland

    2017-09-01

    The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.

  11. Optical Coherence Tomography–Based Corneal Power Measurement and Intraocular Lens Power Calculation Following Laser Vision Correction (An American Ophthalmological Society Thesis)

    Science.gov (United States)

    Huang, David; Tang, Maolong; Wang, Li; Zhang, Xinbo; Armour, Rebecca L.; Gattey, Devin M.; Lombardi, Lorinna H.; Koch, Douglas D.

    2013-01-01

    Purpose: To use optical coherence tomography (OCT) to measure corneal power and improve the selection of intraocular lens (IOL) power in cataract surgeries after laser vision correction. Methods: Patients with previous myopic laser vision corrections were enrolled in this prospective study from two eye centers. Corneal thickness and power were measured by Fourier-domain OCT. Axial length, anterior chamber depth, and automated keratometry were measured by a partial coherence interferometer. An OCT-based IOL formula was developed. The mean absolute error of the OCT-based formula in predicting postoperative refraction was compared to two regression-based IOL formulae for eyes with previous laser vision correction. Results: Forty-six eyes of 46 patients all had uncomplicated cataract surgery with monofocal IOL implantation. The mean arithmetic prediction error of postoperative refraction was 0.05 ± 0.65 diopter (D) for the OCT formula, 0.14 ± 0.83 D for the Haigis-L formula, and 0.24 ± 0.82 D for the no-history Shammas-PL formula. The mean absolute error was 0.50 D for OCT compared to a mean absolute error of 0.67 D for Haigis-L and 0.67 D for Shammas-PL. The adjusted mean absolute error (average prediction error removed) was 0.49 D for OCT, 0.65 D for Haigis-L (P=.031), and 0.62 D for Shammas-PL (P=.044). For OCT, 61% of the eyes were within 0.5 D of prediction error, whereas 46% were within 0.5 D for both Haigis-L and Shammas-PL (P=.034). Conclusions: The predictive accuracy of OCT-based IOL power calculation was better than Haigis-L and Shammas-PL formulas in eyes after laser vision correction. PMID:24167323

  12. Cooperative AF Relaying in Spectrum-Sharing Systems: Performance Analysis under Average Interference Power Constraints and Nakagami-m Fading

    KAUST Repository

    Xia, Minghua

    2012-06-01

    Since the electromagnetic spectrum resource becomes more and more scarce, improving spectral efficiency is extremely important for the sustainable development of wireless communication systems and services. Integrating cooperative relaying techniques into spectrum-sharing cognitive radio systems sheds new light on higher spectral efficiency. In this paper, we analyze the end-to-end performance of cooperative amplify-and-forward (AF) relaying in spectrum-sharing systems. In order to achieve the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical tractability, the desired channels from secondary source to relay and from relay to secondary destination are assumed to be subject to Rayleigh fading). Also, both partial and opportunistic relay-selection strategies are exploited to further enhance system performance. Based on the exact distribution functions of the end-to-end signal-to-noise ratio (SNR) obtained herein, the outage probability, average symbol error probability, diversity order, and ergodic capacity of the system under study are analytically investigated. Our results show that system performance is dominated by the resource constraints and it improves slowly with increasing average SNR. Furthermore, larger Nakagami-m fading parameter on interference channels deteriorates system performance slightly. On the other hand, when interference power constraints are stringent, opportunistic relay selection can be exploited to improve system performance significantly. All analytical results are corroborated by simulation results and they are shown to be efficient tools for exact evaluation of system performance.

  13. How to assess good candidate molecules for self-activated optical power limiting

    Science.gov (United States)

    Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar

    2018-03-01

    Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.

  14. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  15. Application of quasi-optical approach to construct RF power supply for TeV linear colliders

    International Nuclear Information System (INIS)

    Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.

    1995-01-01

    An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))

  16. Influence of corneal power on circumpapillary retinal nerve fiber layer and optic nerve head measurements by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    2017-09-01

    Full Text Available AIM: To evaluate the influence of corneal power on circumpapillary retinal nerve fiber layer (cpRNFL and optic nerve head (ONH measurements by spectral-domain optical coherence tomography (SD-OCT. METHODS: Twenty-five eyes of 25 healthy participants (mean age 23.6±3.6y were imaged by SD-OCT using horizontal raster scans. Disposable soft contact lenses of different powers (from −11 to +5 diopters including 0 diopter were worn to induce 2-diopter changes in corneal power. Differences in the cpRNFL and ONH measurements per diopter of change in corneal power were analyzed. RESULTS: As corneal power increased by 1 diopter, total and quadrant cpRNFL thicknesses, except for the nasal sector, decreased by −0.19 to −0.32 μm (P<0.01. Furthermore, the disc, cup, and rim areas decreased by −0.017, −0.007, and −0.015 mm2, respectively (P<0.001; the cup and rim volumes decreased by −0.0013 and −0.006 mm3, respectively (P<0.01; and the vertical and horizontal disc diameters decreased by −0.006 and −0.007 mm, respectively (P<0.001. CONCLUSION: For more precise OCT imaging, the ocular magnification should be corrected by considering both the axial length and corneal power. However, the effect of corneal power changes on cpRNFL thickness and ONH topography are small when compare with those of the axial length.

  17. Sleep-time sizing and scheduling in green passive optical networks

    KAUST Repository

    Elrasad, Amr

    2012-08-01

    Next-generation passive optical network (PON) has been widely considered as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue for its operations. In this paper, we present a novel sleep time sizing and scheduling framework that satisfies power efficient bandwidth allocation in PONs. We consider the downstream links from an optical line terminal (OLT) to an optical network unit (ONU). The ONU has two classes of traffic, control and data. Control traffic are delay intolerant with higher priority than the data traffic. Closed form model for average ONU sleeping time and end-to-end data traffic delay are presented and evaluated. Our framework decouples the dependency between ONU sleeping time and the QoS of the traffic.

  18. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  19. MEMS acceleration sensor with remote optical readout for continuous power generator monitoring

    Directory of Open Access Journals (Sweden)

    Tormen Maurizio

    2015-01-01

    Full Text Available Miniaturized accelerometers with remote optical readout are required devices for the continuous monitoring of vibrations inside power generators. In turbo and hydro generators, end-winding vibrations are present during operation causing in the long term undesirable out-of-service repairs. Continuous monitoring of these vibrations is therefore mandatory. The high electromagnetic fields in the generators impose the use of devices immune to electromagnetic interferences. In this paper a MEMS based accelerometer with remote optical readout is presented. Advantages of the proposed device are the use of a differential optical signal to reject the common mode signal and noise, the reduced number of steps for the MEMS chip fabrication and for the system assembly, and the reduced package volume.

  20. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    Science.gov (United States)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  1. Research on applicability of optical and digital technologies to nuclear power stations

    International Nuclear Information System (INIS)

    Emoto, Motonori

    1990-01-01

    Recently, the development of electronic technology represented by optical multiple transmission technology and digital technology is remarkable, and it is expected that this tendency advances further hereafter. The improvement of the reliability, operational performance and maintainability of nuclear power stations by applying these most advanced technologies to them has been desired. In this research, it was found that by the application of optical multiple transmission and digital technology to nuclear power stations, their operation by a small number of operators, the automation of work management and so on can be realized. Besides, it was found that as the major technologies of hereafter, the advance of artificial intelligence technology, rapid and large capacity information processing, the network of the computers of different types and others is necessary. Further, if these technologies are completed, the clarification of the requirement when those are actually applied to nuclear power stations is necessary, and it was found also that as the matters to be considered at that time, the extent of improvement of reliability, the reduction of risk at the time of the troubles of equipment and other fundamental matters must be clarified hereafter. (K.I.)

  2. Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW

    CERN Document Server

    Kazarezov, Ivan; Balakin, Vladimir E; Bryazgin, Alex; Bulatov, Alexandre; Glazkov, Ivan; Kokin, Evgeny; Krainov, Gennady; Kuznetsov, Gennady I; Molokoedov, Andrey; Tuvik, Alfred

    2005-01-01

    The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water-alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.

  3. Realization of fiber optic displacement sensors

    Science.gov (United States)

    Guzowski, Bartlomiej; Lakomski, Mateusz

    2018-03-01

    Fiber optic sensors are very promising because of their inherent advantages such as very small size, hard environment tolerance and impact of electromagnetic fields. In this paper three different types of Intensity Fiber Optic Displacement Sensors (I-FODS) are presented. Three configurations of I-FODS were realized in two varieties. In the first one, the cleaved multimode optical fibers (MMF) were used to collect reflected light, while in the second variety the MMF ended with ball lenses were chosen. To ensure an accurate alignment of optical fibers in the sensor head the MTP C9730 optical fiber ferrules were used. In this paper the influence of distribution of transmitting and detecting optical fibers on sensitivity and linear range of operation of developed I-FODS were investigated. We have shown, that I-FODS with ball lenses receive average 10.5% more reflected power in comparison to the cleaved optical fibers and they increase linearity range of I-FODS by 33%. In this paper, an analysis of each type of the realized sensor and detailed discussion are given.

  4. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  5. Yanqing solar field: Dynamic optical model and operational safety analysis

    International Nuclear Information System (INIS)

    Zhao, Dongming; Wang, Zhifeng; Xu, Ershu; Zhu, Lingzhi; Lei, Dongqiang; Xu, Li; Yuan, Guofeng

    2017-01-01

    Highlights: • A dynamic optical model of the Yanqing solar field was built. • Tracking angle characteristics were studied with different SCA layouts and time. • The average energy flux was simulated across four clear days. • Influences of defocus angles for energy flux were analyzed. - Abstract: A dynamic optical model was established for the Yanqing solar field at the parabolic trough solar thermal power plant and a simulation was conducted on four separate days of clear weather (March 3rd, June 2nd, September 25th, December 17th). The solar collector assembly (SCA) was comprised of a North-South and East-West layout. The model consisted of the following modules: DNI, SCA operational, and SCA optical. The tracking angle characteristics were analyzed and the results showed that the East-West layout of the tracking system was the most viable. The average energy flux was simulated for a given time period and different SCA layouts, yielding an average flux of 6 kW/m 2 , which was then used as the design and operational standards of the Yanqing parabolic trough plant. The mass flow of North-South layout was relatively stable. The influences of the defocus angles on both the average energy flux and the circumferential flux distribution were also studied. The results provided a theoretical basis for the following components: solar field design, mass flow control of the heat transfer fluid, design and operation of the tracking system, operational safety of SCAs, and power production prediction in the Yanqing 1 MW parabolic trough plant.

  6. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  7. Ultrafast, ultrahigh-peak power Ti:sapphire laser system

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Koichi; Aoyama, Makoto; Matsuoka, Shinichi; Akahane, Yutaka; Kase, Teiji; Nakano, Fumihiko; Sagisaka, Akito [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2001-01-01

    We review progress in the generation of multiterawatt optical pulses in the 10-fs range. We describe a design, performance and characterization of a Ti:sapphire laser system based on chirped-pulse amplification, which has produced a peak power in excess of 100-TW with sub-20-fs pulse durations and an average power of 19-W at a 10-Hz repetition rate. We also discuss extension of this system to the petawatt power level and potential applications in the relativistic, ultrahigh intensity regimes. (author)

  8. Power requirements reducing of FBG based all-optical switching

    Science.gov (United States)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  9. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  10. Laser power meters as an X-ray power diagnostic for LCLS-II.

    Science.gov (United States)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  11. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  12. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  13. Physical-chemical purification of power metal optics for increasing its service life

    Science.gov (United States)

    Filin, S. A.; Rogalin, V. E.; Kaplunov, I. A.; Zingerman, K. M.

    2017-12-01

    In order to increase the resource of power metal optics, the features of the choice of solvents for its physical and chemical cleaning are investigated. During cleaning, on the contaminated surface there remain visually observed white film of alkali and alkaline earth metal salts, insoluble by this class of solvents, and iridescent bands from the interaction of hydrocarbons with metal, and this degrades optical properties and reduces the life of mirrors. It is demonstrated that, with the use of solvents, it is necessary to inhibit the interaction of hydrocarbons with mirrors by the stabilization of solvents or by selection of cleaning regimes.

  14. Strong doping of the n-optical confinement layer for increasing output power of high- power pulsed laser diodes in the eye safe wavelength range

    Science.gov (United States)

    Ryvkin, Boris S.; Avrutin, Eugene A.; Kostamovaara, Juha T.

    2017-12-01

    An analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption (TPA), as well as the direct TPA effect. The resulting losses are compared with those in an identical structure with a weakly doped waveguide, and shown to be substantially lower, resulting in a significant improvement in the output power and efficiency in the structure with a strongly doped waveguide.

  15. Systematic approach to peak-to-average power ratio in OFDM

    Science.gov (United States)

    Schurgers, Curt

    2001-11-01

    OFDM multicarrier systems support high data rate wireless transmission using orthogonal frequency channels, and require no extensive equalization, yet offer excellent immunity against fading and inter-symbol interference. The major drawback of these systems is the large Peak-to-Average power Ratio (PAR) of the transmit signal, which renders a straightforward implementation very costly and inefficient. Existing approaches that attack this PAR issue are abundant, but no systematic framework or comparison between them exist to date. They sometimes even differ in the problem definition itself and consequently in the basic approach to follow. In this work, we provide a systematic approach that resolves this ambiguity and spans the existing PAR solutions. The basis of our framework is the observation that efficient system implementations require a reduced signal dynamic range. This range reduction can be modeled as a hard limiting, also referred to as clipping, where the extra distortion has to be considered as part of the total noise tradeoff. We illustrate that the different PAR solutions manipulate this tradeoff in alternative ways in order to improve the performance. Furthermore, we discuss and compare a broad range of such techniques and organize them into three classes: block coding, clip effect transformation and probabilistic.

  16. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  17. Analysis and Design of Adaptive OCDMA Passive Optical Networks

    Science.gov (United States)

    Hadi, Mohammad; Pakravan, Mohammad Reza

    2017-07-01

    OCDMA systems can support multiple classes of service by differentiating code parameters, power level and diversity order. In this paper, we analyze BER performance of a multi-class 1D/2D OCDMA system and propose a new approximation method that can be used to generate accurate estimation of system BER using a simple mathematical form. The proposed approximation provides insight into proper system level analysis, system level design and sensitivity of system performance to the factors such as code parameters, power level and diversity order. Considering code design, code cardinality and system performance constraints, two design problems are defined and their optimal solutions are provided. We then propose an adaptive OCDMA-PON that adaptively shares unused resources of inactive users among active ones to improve upstream system performance. Using the approximated BER expression and defined design problems, two adaptive code allocation algorithms for the adaptive OCDMA-PON are presented and their performances are evaluated by simulation. Simulation results show that the adaptive code allocation algorithms can increase average transmission rate or decrease average optical power consumption of ONUs for dynamic traffic patterns. According to the simulation results, for an adaptive OCDMA-PON with BER value of 1e-7 and user activity probability of 0.5, transmission rate (optical power consumption) can be increased (decreased) by a factor of 2.25 (0.27) compared to fixed code assignment.

  18. New generation all-silica based optical elements for high power laser systems

    Science.gov (United States)

    Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.

    2017-08-01

    Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.

  19. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  20. High Power Q-Switched Dual-End-Pumped Ho:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ming, Duan; Ying-Jie, Shen; Tong-Yu, Dai; Bao-Quan, Yao; Wang Yue-Zhu, E-mail: xmduan@hit.edu.cn [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    We report the high power acousto-optically Q-switched operation of a dual-end-pumped Ho:YAG laser at room temperature. For the Q-swithched mode, a maximum pulse energy of 2.4 mJ and a minimum pulse width of 23 ns at the repetition rate of 10 kHz are achieved, resulting in a peak power of 104.3 kW. The beam quality factor of M{sup 2} {approx} 1.5, which is demonstrated by a knife-edge method. In addition, the Ho:YAG laser is employed as a pumping source of ZGP optical parametric oscillator, and its total average output power is 13.2 W at 3.9 {mu}m and 4.4 {mu}m with a slope efficiency of 68.4%.

  1. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  2. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    International Nuclear Information System (INIS)

    Buldu, J M; Trull, J; Torrent, M C; GarcIa-Ojalvo, J; Mirasso, Claudio R

    2002-01-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  3. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Buldu, J M [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Trull, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Torrent, M C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); GarcIa-Ojalvo, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Mirasso, Claudio R [Departament de FIsica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain)

    2002-02-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  4. Absorption of optical power in an S-20 photocathode

    CERN Document Server

    Harmer, S W

    2003-01-01

    By considering a monochromatic plane wave obliquely incident upon a planar layer of S-20 photocathode material, deposited upon a non-absorbing glass substrate, the distribution of optical power absorbed within the layer can be resolved. This is important to the question of photocathode efficiency, as the absorbed light excites photoelectrons within the photocathode which then may pass from the photocathode into the vacuum of the photomultiplier tube and be collected and multiplied. The calculation uses the measured complex permittivity of an extended red S-20 photocathode in the wavelength range, 375-900 nm. The results show that thin film effects are important within the photocathode, as they give rise to interesting power absorption profiles. This information is invaluable in predicting optimum photocathode thickness for wavelength selective applications. Electromagnetic waves that are obliquely incident upon the photocathode are also considered in both transverse electric and transverse magnetic polarizati...

  5. Power electronic supply system with the wind turbine dedicated for average power receivers

    Science.gov (United States)

    Widerski, Tomasz; Skrzypek, Adam

    2018-05-01

    This article presents the original project of the AC-DC-AC converter dedicated to low power wind turbines. Such a set can be a good solution for powering isolated objects that do not have access to the power grid, for example isolated houses, mountain lodges or forester's lodges, where they can replace expensive diesel engine generators. An additional source of energy in the form of a mini-wind farm is also a good alternative to yachts, marinas and tent sites, which are characterized by relatively low power consumption. This article presents a designed low power wind converter that is dedicated to these applications. The main design idea of the authors was to create a device that converts the very wide range input voltage directly to a stable 230VAC output voltage without the battery buffer. Authors focused on maximum safety of using and service. The converter contains the thermal protection, short-circuit protection and overvoltage protection. The components have been selected in such a way as to ensure that the device functions as efficiently as possible.

  6. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  7. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  8. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  9. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Science.gov (United States)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  10. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  11. Low-cost RAU with Optical Power Supply Used in a Hybrid RoF IEEE 802.11 Network

    Science.gov (United States)

    Kowalczyk, M.; Siuzdak, J.

    2014-09-01

    The paper presents design and implementation of a low-cost RAU (Remote Antenna Unit) device. It was designed to work in a hybrid Wi-Fi/optical network based on the IEEE 802.11b/g standard. An unique feature of the device is the possibility of optical power supply.

  12. Fast optical shutters for Nova, a high power fusion laser

    International Nuclear Information System (INIS)

    Bradley, L.P.; Gagnon, W.L.; Carder, B.M.

    1977-01-01

    Preliminary design and performance test results for fast optical shutters intended for use in the Nova high power fusion laser system are briefly described. Both an opening shutter to protect the pellet target from amplified spontaneous emission (ASE), and a closing shutter to protect the laser from light reflected back from the target are discussed. Faraday rotators, synchronized by a 400 Hz oscillator, provide an opening shutter mechanism with an opening time of approximately 10 μs. A plasma closing shutter, employing electrical sublimation of a foil, provide a shutter closing time of 70 ns +- 20 ns. Energy for foil sublimation is provided by discharge of a 42 J capacitor bank. Implementation of these shutter techniques in the Nova system is anticipated to improve laser output power and efficiency

  13. Study on on-machine defects measuring system on high power laser optical elements

    Science.gov (United States)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  14. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power

    International Nuclear Information System (INIS)

    Huang Huan; Zhang Lei; Wang Yang; Han Xiaodong; Wu Yiqun; Zhang Ze; Gan Fuxi

    2011-01-01

    Research highlights: → We study the optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization. → The optical and dielectric constants, absorption coefficient of Si 15 Sb 85 change regularly with the increasing laser power. → The optical band gaps of Si 15 Sb 85 irradiated upon different power lasers were calculated. → HRTEM images of the samples were observed and the changes of optical and dielectric constants are determined by crystalline structures changes of the films. - Abstract: The optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.

  15. Modern reflective optics for material processing with high power CO/sub 2/-laser beams

    International Nuclear Information System (INIS)

    Juptner, W.P.O.; Sepold, G.; Rothe, R.R.

    1986-01-01

    The state of the art in diamond turning of parabolic mirrors allows to manufacture high quality surfaces at a reasonable low price. In this paper a report is given on mirror optics and systems which were developed with the following aims: Small losses of laser power in the system with a high efficiency of the laser beam processing system; Long lifetime of the mirrors under material processing conditions; High Standard of the optical quality; Flexibility for different applications. The requested qualities are guaranteed by the whole construction of the optics and the system. The theoretical works, the state of the art of the development and the future aspects of these laser working head systems are reported

  16. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P; Sudhakar, Y N; SelvaKumar, M

    2014-01-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He–Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of β eff , n 2 and χ (3) were found to be of the order of 10 −2  cm W −1 , 10 -5  esu and 10 −7  esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications. (paper)

  17. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    Science.gov (United States)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  18. 7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications

    International Nuclear Information System (INIS)

    Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel

    2005-09-01

    In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing

  19. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  20. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  1. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Leily S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-02

    The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphide (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).

  2. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  3. Reflective Optical Chopper Used in NIST High-Power Laser Measurements

    Directory of Open Access Journals (Sweden)

    Cromer, Chris

    2008-11-01

    Full Text Available For the past ten years, NIST has used high-reflectivity, optical choppers as beamsplitters and attenuators when calibrating the absolute responsivity and response linearity of detectors used with high-power CW lasers. The chopper-based technique has several advantages over the use of wedge-shaped transparent materials (usually crystals often used as beam splitters in this type of measurement system. We describe the design, operation and calibration of these choppers. A comparison between choppers and transparent wedge beampslitters is also discussed.

  4. Frequency-doubled green picosecond laser based on K3B6O10Br nonlinear optical crystal

    Science.gov (United States)

    Meng, Luping; Zhang, Ling; Hou, Zhanyu; Wang, Lirong; Xu, Hui; Shi, Meng; Wang, Lingwu; Yang, Yingying; Qi, Yaoyao; He, Chaojian; Yu, Haijuan; Lin, Xuechun; Su, Fufang; Xia, Mingjun; Li, Rukang

    2018-05-01

    We report a frequency-doubled green picosecond (ps) laser based on K3B6O10Br (KBB) nonlinear optical crystal with cutting angle of θ = 34.7° and φ = 30°. Through intracavity frequency doubling using a type I phase-matched KBB crystal with dimensions of 4 mm × 4 mm × 13.2 mm, the average output power of 185.00 mW green ps laser was obtained with a repetition rate of 80 MHz and pulse width of 25.0 ps. In addition, we present external frequency doubling using KBB crystal. The average output power of 3.00 W green ps laser was generated with a repetition rate of 10 kHz and pulse width of 38.1 ps, which corresponds to a pulse energy of 0.30 mJ and a peak power 7.89 MW, respectively. The experimental results show that KBB crystal is a promising nonlinear optical material.

  5. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    Science.gov (United States)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  6. Passive quantum error correction of linear optics networks through error averaging

    Science.gov (United States)

    Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.

    2018-02-01

    We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.

  7. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    Directory of Open Access Journals (Sweden)

    Menxi Xie

    2017-06-01

    Full Text Available High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL uses a multiplier as phase detector(PD. As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF applied in-loop of pPLL. The signal characteristic of phase error is dissussed in detail. A predictive rule is adopted to compensate the delay induced by MAF, thus achieving fast dynamic response. In the case of frequency deviate from nomimal, estimated frequency is fed back to adjust the filter window length of MAF and buffer size of predictive rule. Simulation and experimental results show that proposed PLL achieves good performance under adverse grid conditions.

  8. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Scott, Evan, E-mail: emeyersc@uwaterloo.ca; Dot, Audrey [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Ahmad, Raja; Li, Lizhu; Rochette, Martin [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montréal, Québec H3A 2A7 (Canada); Jennewein, Thomas [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Quantum Information Science Program, Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8 (Canada)

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  9. Performance of highly connected photonic switching lossless metro-access optical networks

    Science.gov (United States)

    Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge

    2018-03-01

    The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.

  10. Low-power colorless all-optical 2R regeneration of 25 Gb/s NRZ signals using a standard DFB laser

    DEFF Research Database (Denmark)

    Huybrechts, Koen; Peucheret, Christophe; Seoane, Jorge

    2010-01-01

    We demonstrate the first all-optical 2R regeneration of 25 Gbit/s NRZ data based on hysteresis in a DFB laser. The scheme results in BER improvement, exhibits low power consumption and is effective after fiber transmission.......We demonstrate the first all-optical 2R regeneration of 25 Gbit/s NRZ data based on hysteresis in a DFB laser. The scheme results in BER improvement, exhibits low power consumption and is effective after fiber transmission....

  11. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant

  12. Power feeding to terminal devices in optical subscriber network; Hikari fuaiba tsushin ni okeru tanmatsu kiki eno kyuden

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, M

    1998-09-01

    This paper outlines present state of the feeding system in the light access system in consideration of backup in case of home power failure. In the optical communication, equipment with bilateral conversion function for light and electricity has to be installed both on communication service side and home side. Outline of the light access system and equipment requiring backup are shown. The following items are explained: main types of the light access system, such as FTTC (fiber to the curb), FTTP (fiber to the pole), FTTH (fiber to the home) and HFC (hybrid fiber coax), and the feeding system; problems on feeding system for the light access system. Key elements of ONU (optical network unit) for FTTH and construction of the ONU power source are illustrated. The ONU power source is composed of a backup power supply unit and main body supply unit. Backup power is indispensable to the ONU and analog telephones: output is supplied by the backup batteries in power failure. For miniaturization of the backup power source, power supply circuits and backup batteries have to be miniaturized simultaneously. History of miniaturization is explained on the experimental models. 6 refs., 7 figs., 1 tab.

  13. Low-cost fused taper polymer optical fiber (LFT-POF) splitters for environmental and home-networking solution

    Science.gov (United States)

    Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina

    2017-08-01

    In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.

  14. Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers

    Science.gov (United States)

    Bou Sanayeh, Marwan

    2017-05-01

    The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.

  15. A Low-Power CMOS Trans-Impedance Amplifier for 2.5 Gb/S Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Mojgan Mohseni

    2013-01-01

    Full Text Available This Paper presents a new Trans-impedance amplifier for optical receiver circuits. The amplifier is based on parallel (R-C feedback topology which is optimized for power consumption and uses shunt-peaking technique to enhance the frequency bandwidth of the amplifier. However, the circuit is designed and simulated using 0.18µm CMOS technology parameters. As simulation results show, the amplifier has a gain of 67.5dBΩ, bandwidth of 3GHz while consumes only 12.16 mW power which shows a very good performance for using in a 2.5Gb/S (SONET OC-48 optical communication system. Finally, as the simulated Eye-Diagram shows, the circuit has a very good performance for a 2.5Gb/S system for a 10µA input current.

  16. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications

    Science.gov (United States)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis

    2017-10-01

    Many scientific lasers and increasingly industrial laser systems operate in manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  17. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  18. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  19. Coupled optic-thermodynamic analysis of a novel wireless power transfer system using concentrated sunlight for space applications

    International Nuclear Information System (INIS)

    Zhong, Ming-Liang; Li, Yun-Ze; Mao, Yu-Feng; Liang, Yi-Hao; Liu, Jia

    2017-01-01

    Highlights: • A novel space wireless power transfer system is proposed. • Concentrated sunlight is used as the medium to avoid multiple conversions. • Fresnel lens and optical fiber bundle make the system compact and space-qualified. • Coupled optic-thermodynamic model is developed to analyze link efficiencies. • End-to-end efficiency achieved is as twice as that of microwave or laser system. - Abstract: The energy generation and supply for in-orbit spacecraft have become an urgent problem concerning efficient and economical utilization of spacecraft formation flying. To fill the gap between the requirement of inter-spacecraft energy transfer and the development of wireless power transfer, this paper presents a novel wireless power transfer system whose transmission medium is concentrated sunlight. The system concentrates sunlight using a Fresnel lens, and changes the direction of concentrated sunlight beam with optical fibers. The light energy is converted to thermal form by a heat collector, and then it is utilized to generate electricity by a Stirling engine integrated with linear alternator. Equipments employed on fractionated spacecraft shall be supported by this electric energy. A coupled optic-thermodynamic model was developed to analyze system link efficiencies. This system offers characteristics such as high flexibility, relatively low cost for launch and maintenance, and most importantly, high end-to-end efficiency. Simulation results show that the geometric concentration ratio and the temperature ratio of expansion and compression spaces are two key parameters of this system. Output power of 234.3 W was achieved on the distance of 100 m, and the end-to-end efficiency of the system was above 20%.

  20. Development of an optical resonator with high-efficient output coupler for the JAERI far-infrared free-electron laser

    International Nuclear Information System (INIS)

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Sawamura, Masaru; Kikuzawa, Nobuhiro; Shizuma, Toshiyuki; Minehara, Eisuke

    2001-01-01

    An optical resonator with a high-efficient output coupler was developed for the JAERI far-infrared free-electron laser. The optical resonator is symmetrical near-concentric geometry with an insertable scraper output coupler. As a result of the development of the optical resonator, the JAERI-FEL has been successfully, lased with averaged power over 1 kW. Performance of the optical resonator with the output coupler was evaluated at optical wavelength of 22 μm by using an optical mode calculation code. The output coupling and diffractive loss with a dominant eigen-mode of the resonator were calculated using an iterative computation called Fox-Li procedure. An efficiency factor of the optical resonator was introduced for the evaluation of the optical resonator performance. The efficiency factor was derived by the amount of the output coupling and diffractive loss of the optical resonator. It was found that the optical resonator with the insertable scraper coupler was the most suitable to a high-power and high-efficient far-infrared free-electron laser. (author)

  1. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    Directory of Open Access Journals (Sweden)

    David Sánchez Montero

    2012-05-01

    Full Text Available A low-cost intensity-based polymer optical fiber (POF sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S., and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S.

  2. An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    International Nuclear Information System (INIS)

    Pu Hongbin; Cao Lin; Ren Jie; Chen Zhiming; Nan Yagong

    2010-01-01

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 μm and 0.7 μm are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively. (semiconductor devices)

  3. An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    Energy Technology Data Exchange (ETDEWEB)

    Pu Hongbin; Cao Lin; Ren Jie; Chen Zhiming; Nan Yagong, E-mail: puhongbin@xaut.edu.c [Xi' an University of Technology, Xi' an 710048 (China)

    2010-04-15

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 {mu}m and 0.7 {mu}m are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively. (semiconductor devices)

  4. The optical smoothing for high power laser chain. Fundamental concepts and analytical modeling, computerized simulations, experiments on smoothing by multimode optical fiber

    International Nuclear Information System (INIS)

    Videau, Laurent

    1998-01-01

    Laser-plasma interaction experiments require a focal spot whose spatial width is imposed and whose energy distribution is uniform. Optical smoothing techniques have been developed for high power laser chains in order to reach the required uniformity level. We present theoretical principles for optical smoothing and we develop a statistical approach which allows a precise study of smoothing techniques. This study deals with the contrast of the time-integrated pattern and with the hot spot motion and their life time. We give more details about the technique of Smoothing by Optical Fiber (SOF). A broadband pulse is injected into a multimode optical fiber. At the output of the fiber, the spatial modes, correlated to a propagation angle in the core of the fiber, are statistically independent and produce a speckle pattern. The speckles move because of the temporal incoherence and the time-integrated pattern is smoothed. The smoothing is characterized by the spectral correlation width defined as the width of the spectral correlation function. We show a smoothing difference between the fiber image plane and the convergence one which is the Fourier plane. Furthermore, we analyze the mode coupling into the core of the fiber which allows an explanation of experimental results compared to theoretical ones. A second study presents experimental results of Smoothing by Optical Fiber on a high power laser chain. In fact, SOF implies amplitude modulations in spatial and temporal domains which induce nonlinear effects. We show that the amplification efficiency decreases and we compare experimental results with an analytic model which takes into account spatial and temporal incoherencies. Finally, we propose a different setup using the cascading effect which creates spatially and/or temporally incoherent pulses. (author) [fr

  5. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  6. Structure property relationship of a new nonlinear optical organic crystal: 1-(3,4-Dimethoxyphenyl-3-(3-fluorophenylprop-2-en-1-one for optical power limiting applications

    Directory of Open Access Journals (Sweden)

    S. Raghavendra

    Full Text Available A new organic potential nonlinear optical (NLO material 1-(3,4-dimethoxyphenyl-3-(3-fluorophenylprop-2-en-1-one (DMP3FP is crystallized in acetone. The single crystal X-ray diffraction data shows that material crystallizes into centro-symmetric orthorhombic space group Pbca with a = 15.6552(6 Å, b = 8.5571(3 Å, c = 20.7697(7 Å. The functional groups in DMP3FP molecule are identified by Fourier Transfer Infrared (FTIR spectra. The thermal stability and melting point are determined using thermo gravimetric analysis/differential thermal analysis (TGA/DTA. Using UV Visible spectral studies direct band gap energy of the crystal is determined to be 3.19 eV. The nonlinear absorption coefficient and optical power limiting of the crystal was studied using Z-scan technique. The crystal exhibits a self-focusing effect at a wavelength of 532 nm showing optical limiting and reverse saturable absorption by having excited state absorption coefficient greater than ground state absorption coefficient. Keywords: Nonlinear, Optical power limiting, Z-scan, Self-focusing

  7. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    Directory of Open Access Journals (Sweden)

    Bahubali K. Shiragapur

    2016-03-01

    Full Text Available In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR quantity. The Golay Code (24, 12, Reed-Muller code (16, 11, Hamming code (7, 4 and Hybrid technique (Combination of Signal Scrambling and Signal Distortion proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conventional and Modified Selective mapping techniques. The simulation results are validated through statistical properties, for proposed technique’s autocorrelation value is maximum shows reduction in PAPR. The symbol preference is the key idea to reduce PAPR based on Hamming distance. The simulation results are discussed in detail, in this article.

  8. Verification Results of Safety-grade Optical Modem for Core Protection Calculator (CPC) in Korea Standard Nuclear Power Plant (KSNP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jangyeol; Son, Kwangseop; Lee, Youngjun; Cheon, Sewoo; Cha, Kyoungho; Lee, Jangsoo; Kwon, Keechoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    We confirmed that the coverage criteria for a safety-grade optical modem of a Core Protection Calculator is satisfactory using a traceability analysis matrix between high-level requirements and lower-level system test case data set. This paper describes the test environment, test components and items, a traceability analysis, and system tests as a result of system verification and validation based on Software Requirement Specifications (SRS) for a safety-grade optical modem of a Core Protection Calculator (CPC) in a Korea Standard Nuclear Power Plant (KSNP), and Software Design Specifications (SDS) for a safety-grade optical modem of a CPC in a KSNP. All tests were performed according to the test plan and test procedures. Functional testing, performance testing, event testing, and scenario based testing for a safety-grade optical modem of a Core Protection Calculator in a Korea Standard Nuclear Power Plant as a thirty-party verifier were successfully performed.

  9. Optical switching properties of VO2 films driven by using WDM-aligned lasers

    International Nuclear Information System (INIS)

    Tsai, K.Y.; Wu, F.-H.; Shieh, H.-P.D.; Chin, T.-S.

    2006-01-01

    Vanadium dioxide (VO 2 ) film had been demonstrated a high speed IR shutter driven by total optical modulation. However, it usually required a higher power heating laser of high power and precise optical systems to cover the probe beam on the sample with a heating beam of larger area. A new optical system, simply composed of wavelength division multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO 2 thin film on it, was easily assembled to utilize VO 2 film as an IR shutter, implying the possibility to highly miniaturize the VO 2 -based optical shutter. A permanent low-transmittance (PLT) region forms on the film within the probe beam, resulting in a decrease in average power of the probe beam. Another ring-type switching area (switching ring) forms around the PLT region, resulting in the transmittance switching of the probe beam synchronously with the heating signal. VO 2 films can be switched with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens

  10. Applied optics and optical design

    CERN Document Server

    Conrady, Alexander Eugen

    1957-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  11. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  12. A review of potential uses for fiber optic sensors in nuclear power plants, with attendant benefits in plant safety and operational efficiency

    International Nuclear Information System (INIS)

    Holcomb, D.E.; Antonescu, C.

    1994-01-01

    Fiber optic-based sensing has a wide range of potential applications in nuclear power plants, and a fiber optic analog presently exists for virtually every conventional nuclear power plant sensing system. Fiber optic-based sensors are likely to eventually supplant many conventional sensors because of their inherent advantages-reduced mass, reduced size, ruggedness to vibration and shock, physical flexibility, high sensitivity, electrical isolation, extreme resistance to electromagnetic interference, high temperature resistance, reduced calibration requirements, passive operation, and high radiation resistance. In addition, fiber optic-based sensors exist which are capable of measuring parameters important to safety and performance which cannot be conventionally measured (high electromagnetic field, in-core, and distributed measurements). However, fiber optic sensors remain at too low a level of development for immediate application in safety-critical systems. Moreover, fiber optic sensors have different failure modes and mechanisms than conventional sensors; hence, considerable regulatory research will be necessary to establish the technical basis for the use of fiber optic sensors in safety-critical systems

  13. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    Science.gov (United States)

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  14. Calculation of inelastic mean free path and stopping power for electrons in solids from an optical-data model

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Mayol, R.; Salvat, F.; Liljequist, D.

    1992-11-01

    The numerical calculation of electron inelastic mean free path and stopping power from an optical-data model recently proposed by Fernandez-Varea et al. is described in detail. Explicit expressions for the one-electron total cross sections of the two-modes model of the free-electron gas and the δ-oscillator are derived. The inelastic mean free path and the stopping power are obtained as integrals of these one-electron total cross sections weighted by the optical as integrals of these one-electron total cross sections weighted by the optical oscillator strength. The integrals can be easily evaluated, with a selected accuracy, by using the FORTRAN 77 subroutine GABQ described here, which implements a 20-points Gauss adaptive bipartition quadrature method. Source listings of FORTRAN 77 subroutines to compute the one-electron total cross sections are also given

  15. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  16. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  17. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  18. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  19. Optical cycle power meter

    DEFF Research Database (Denmark)

    2014-01-01

    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured t...

  20. Metro-access integrated network based on optical OFDMA with dynamic sub-carrier allocation and power distribution.

    Science.gov (United States)

    Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian

    2013-01-28

    We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

  1. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...

  2. Optical bistability of optical fiber ring doped by Erbium and quantum dots

    International Nuclear Information System (INIS)

    Safari, S.; Tofighi, S.; Bahrampour, A.; Sajad, B.; Shahshahani, F.

    2012-01-01

    In this paper, theoretical analysis of the steady state behavior of the optical bistability in an optical fiber ring doped by Erbium and quantum dots is presented. The up and down switching power is calculated and the dependence of the switching power on different fiber ring parameters is investigated. The switching power for this type of optical bistability device is obtained much lower than the fiber ring which its half length is doped by Erbium ion.

  3. Sound spectrum of a pulsating optical discharge

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, G N; Smirnov, A L; Tishchenko, V N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Dmitriev, A K; Miroshnichenko, I B [Novosibirsk State Technical University (Russian Federation)

    2016-02-28

    A spectrum of sound of an optical discharge generated by a repetitively pulsed (RP) laser radiation has been investigated. The parameters of laser radiation are determined at which the spectrum of sound may contains either many lines, or the main line at the pulse repetition rate and several weaker overtones, or a single line. The spectrum of sound produced by trains of RP radiation comprises the line (and overtones) at the repetition rate of train sequences and the line at the repetition rate of pulses in trains. A CO{sub 2} laser with the pulse repetition rate of f ≈ 3 – 180 kHz and the average power of up to 2 W was used in the experiments. (optical discharges)

  4. High-power ultrashort fiber laser for solar cells micromachining

    Science.gov (United States)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  5. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  6. Low power laser driver design in 28nm CMOS for on-chip and chip-to-chip optical interconnect

    Science.gov (United States)

    Belfiore, Guido; Szilagyi, Laszlo; Henker, Ronny; Ellinger, Frank

    2015-09-01

    This paper discusses the challenges and the trade-offs in the design of laser drivers for very-short distance optical communications. A prototype integrated circuit is designed and fabricated in 28 nm super-low-power CMOS technology. The power consumption of the transmitter is 17.2 mW excluding the VCSEL that in our test has a DC power consumption of 10 mW. The active area of the driver is only 0.0045 mm2. The driver can achieve an error-free (BER < 10 -12) electrical data-rate of 25 Gbit/s using a pseudo random bit sequence of 27 -1. When the driver is connected to the VCSEL module an open optical eye is reported at 15 Gbit/s. In the tested bias point the VCSEL module has a measured bandwidth of 10.7 GHz.

  7. Application of nuclear pumped laser to an optical self-powered neutron detector

    Science.gov (United States)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  8. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  9. High Power Mid-Infrared Generation with a Quasi-Phase Matched GaAs Guided-wave Optical Parametric Oscillator

    National Research Council Canada - National Science Library

    Harris, J

    2000-01-01

    ...-power coherent mid-infrared sources. Considerable effort has been devoted over the past decade to the development of mid-IR coherent sources based on nonlinear optical frequency conversion, e.g...

  10. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  11. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    Science.gov (United States)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  12. Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE

    Czech Academy of Sciences Publication Activity Database

    Smrž, Martin; Novák, Ondřej; Mužík, Jiří; Turčičová, Hana; Chyla, Michal; Nagisetty, Siva S.; Vyvlečka, Michal; Roškot, Lukáš; Miura, Taisuke; Černohorská, Jitka; Sikocinski, Pawel; Chen, Liyuan; Huynh, Jaroslav; Severová, Patricie; Pranovich, Alina; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 7, č. 10 (2017), s. 1-12, č. článku 1016. ISSN 2076-3417 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S; GA MŠk LM2015086; GA TA ČR(CZ) TG02010056 EU Projects: European Commission(XE) 739573 Grant - others:OP VVV - HiLASE-CoE(XE) CZ.02.1.01/0.0/0.0/15_006/0000674 Institutional support: RVO:68378271 Keywords : diode-pumped solid- state lasers (DPSSL) * high average power lasers * higher harmonic generation * Yb:YAG * mid-infrared radiation * thin-disk laser * picosecond pulses Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.679, year: 2016

  13. Optical Coherence Tomography in Optic Nerve Hypoplasia: Correlation With Optic Disc Diameter, Nerve Fiber Layer Thickness, and Visual Function.

    Science.gov (United States)

    Kelly, John P; Baran, Francine; Phillips, James O; Weiss, Avery H

    2017-12-15

    The correlation between optic disc diameters (DDs) with average retinal nerve fiber layer thickness (RNFLT) and visual function in children with optic nerve hypoplasia (ONH) having nystagmus is unknown. Data were obtained from a retrospective review of 28 children (mean age: 9.4 years; ±5.1). Optic DD was defined as the maximal horizontal opening of Bruch membrane with spectral optical coherence tomography combined with a confocal laser ophthalmoscope. Average RNFLT was obtained from circumpapillary b-scans. RNFLT was also remeasured at eccentricities that were proportionate with DD to rule out potential sampling artifacts. Visual function was assessed by visual acuity at last follow-up and by visual evoked potentials (VEP) in 11 patients. The eye with the larger DD, which had better visual acuity, was analyzed to exclude potential effects of amblyopia. DD was correlated with average RNFLT (r = 0.61), visual acuity (r = 0.32), and VEPs (r = 0.66). The relationship between RNFLT and DD was as follows: average RNFLT (μm) = 0.074 * DD (μm) - 18.8. RNFLT also correlated with the ratio of horizontal optic DD to macula-disc-margin distance (DD:DM; r = 0.59). RNFLT measured at eccentricities proportionate with DD showed progressive decrease in thickness only for DDs <1,100 μm. All patients with DD <1,000 μm had subnormal visual acuity, whereas those with DD <1,200 μm had subnormal VEPs. DD correlates with average RNFLT and with visual function in children with ONH. Using OCT imaging, DD can be obtained in children with nystagmus and provides objective information.

  14. Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading.

    Science.gov (United States)

    Liu, Xian

    2010-02-10

    This paper shows that optical signal transmission over intersatellite links with swaying transmitters can be described as an equivalent fading model. In this model, the instantaneous signal-to-noise ratio is stochastic and follows the reciprocal Pareto distribution. With this model, we show that the transmitter power can be minimized, subject to a specified outage probability, by appropriately adjusting some system parameters, such as the transmitter gain.

  15. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  16. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    Science.gov (United States)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  17. Optical trapping of nanoparticles with significantly reduced laser powers by using counter-propagating beams (Presentation Recording)

    Science.gov (United States)

    Zhao, Chenglong; LeBrun, Thomas W.

    2015-08-01

    Gold nanoparticles (GNP) have wide applications ranging from nanoscale heating to cancer therapy and biological sensing. Optical trapping of GNPs as small as 18 nm has been successfully achieved with laser power as high as 855 mW, but such high powers can damage trapped particles (particularly biological systems) as well heat the fluid, thereby destabilizing the trap. In this article, we show that counter propagating beams (CPB) can successfully trap GNP with laser powers reduced by a factor of 50 compared to that with a single beam. The trapping position of a GNP inside a counter-propagating trap can be easily modulated by either changing the relative power or position of the two beams. Furthermore, we find that under our conditions while a single-beam most stably traps a single particle, the counter-propagating beam can more easily trap multiple particles. This (CPB) trap is compatible with the feedback control system we recently demonstrated to increase the trapping lifetimes of nanoparticles by more than an order of magnitude. Thus, we believe that the future development of advanced trapping techniques combining counter-propagating traps together with control systems should significantly extend the capabilities of optical manipulation of nanoparticles for prototyping and testing 3D nanodevices and bio-sensing.

  18. Average spreading and beam quality evolution of Gaussian array beams propagating through oceanic turbulence

    International Nuclear Information System (INIS)

    Zhi, Dong; Chen, Yizhu; Tao, Rumao; Ma, Yanxing; Zhou, Pu; Si, Lei

    2015-01-01

    The propagation properties of a radial Gaussian beam array through oceanic turbulence are studied analytically. The analytical expressions for the average intensity and the beam quality (power-in-the-bucket (PIB) and M 2 -factor) of a radial beam array in a turbulent ocean are derived based on an account of statistical optics methods, the extended Huygens-Fresnel principle, and the second order moments of the Wigner distribution function. The influences of w, ε, and χ T on the average intensity are investigated. The array divergence increases and the laser beam spreads as the salinity-induced dominant, ε decreased, and χ T increased. Further, the analytical expression of PIB and the M 2 -factor in the target plane is obtained. The changes of PIB and the M 2 -factor with three oceanic turbulence parameters indicate that the stronger turbulence with a larger w, smaller ε, and larger χ T results in the value of PIB decreasing, the value of the M 2 -factor increasing, and the beam quality degrading. (letter)

  19. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    International Nuclear Information System (INIS)

    Hanto, D; Ula, R K

    2017-01-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor. (paper)

  20. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    Science.gov (United States)

    Hanto, D.; Ula, R. K.

    2017-05-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor.

  1. Powering FITL for Deutsche Telekom

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W. [T-Nova Deutsche Telekom Innovationsgesellschaft mbH Technologiezentrum (Germany)

    2000-07-01

    Deutsche Telekom introduced the project OPAL (optical access line) 8 years ago. The development of new applications for FITL (FTTH, FTTB, FTTC) leads to new challenges for power systems. For the establishment of an optical fibre infrastructure at the subscriber line level a wide variety of possible optical fibre network topologies can be imagined. Different powering architectures must be developed including remote or local powering. This paper presents results and performances of the powering configurations to feed the optical network units (ONU) and remote OLT. Compared to conventional powering the centralised powering with remote feeding supply was implemented to power the ONU in the field economically. (orig.)

  2. Optical near-fields & nearfield optics

    OpenAIRE

    Meixner, Alfred J; Leiderer, Paul

    2014-01-01

    Optical methods provide exceedingly powerful tools in science and technology for measuring, analyzing and manipulating, from optical microscopy and spectroscopy to the characterization of ultrafast processes by femtosecond pulses and the modification of materials by intense laser radiation. However, when it comes to applications in the nanometer-regime, the conventional optical techniques suffer from the resolution limit – formulated by Ernst Abbe one and a half centuries ago – that light can...

  3. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas

    International Nuclear Information System (INIS)

    Grosenick, Dirk; Wabnitz, Heidrun; Moesta, K Thomas; Mucke, Joerg; Schlag, Peter M; Rinneberg, Herbert

    2005-01-01

    Within a clinical trial on scanning time-domain optical mammography reported on in a companion publication (part I), craniocaudal and mediolateral projection optical mammograms were recorded from 154 patients, suspected of having breast cancer. Here we report on in vivo optical properties of the subset of 87 histologically validated carcinomas which were visible in optical mammograms recorded at two or three near-infrared wavelengths. Tumour absorption and reduced scattering coefficients were derived from distributions of times of flight of photons recorded at the tumour site employing the model of diffraction of photon density waves by a spherical inhomogeneity, located in an otherwise homogeneous tissue slab. Effective tumour radii, taken from pathology, and tumour location along the compression direction, deduced from off-axis optical scans of the tumour region, were included in the analysis as prior knowledge, if available. On average, tumour absorption coefficients exceeded those of surrounding healthy breast tissue by a factor of about 2.5 (670 nm), whereas tumour reduced scattering coefficients were larger by about 20% (670 nm). From absorption coefficients at 670 nm and 785 nm total haemoglobin concentration and blood oxygen saturation were deduced for tumours and surrounding healthy breast tissue. Apart from a few outliers total haemoglobin concentration was observed to be systematically larger in tumours compared to healthy breast tissue. In contrast, blood oxygen saturation was found to be a poor discriminator for tumours and healthy breast tissue; both median values of blood oxygen saturation are the same within their statistical uncertainties. However, the ratio of total haemoglobin concentration over blood oxygen saturation further improves discrimination between tumours and healthy breast tissue. For 29 tumours detected in optical mammograms recorded at three wavelengths (670 nm, 785 nm, 843 nm or 884 nm), scatter power was derived from transport

  4. Optical pulsations in the Large Magellanic Cloud remnant 0540-69.3

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.

    1985-01-01

    The X-ray pulsar PSR0540-693 was discovered in the Large Magellanic Cloud (LMC) supernova remnant, 0540-69.3, as a pulse, with repetition period approx. 50 ms, in Einstein Observatory data. Previous workers had noted that this remnant resembles the Crab Nebula because of the X-ray power law spectrum and suggested that the nebular emission was synchrotron radiation powered by a central pulsar. After the announcement of X-ray pulsed emission, other workers measured the broad optical band properties of the nebula and found evidence for synchrotron emission; and reported that the 4.5-arc s continuum emission remnant has only a tenth of the luminosity of the Crab Nebula. The authors have now detected pulsed optical emission for the X-ray pulsar, having a time-averaged magnitude of approx. 22.7. (author)

  5. Aperture Averaging of Scintillation for Space-to-Ground Optical Communication Applications.

    Science.gov (United States)

    1983-08-15

    SCINTILLATION FOR SPACE-TO-GROUND OPTICAL COMUNICATION APPLICATIONS ........................ 5 REFERENCES...theoretical investigations necessary for the evaluation and applica- tion of scientific advances to now military space systems. Versatility and flexibility...systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that con

  6. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, C., E-mail: chadlia.el.manaa@gmail.com [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Lejeune, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Kouki, F. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Durand-Drouhin, O. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Bouchriha, H. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); and others

    2014-06-02

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method.

  7. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    International Nuclear Information System (INIS)

    Manaa, C.; Lejeune, M.; Kouki, F.; Durand-Drouhin, O.; Bouchriha, H.

    2014-01-01

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method

  8. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  9. Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells Turbine.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Willits, Steven M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fontaine, Arnold A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This Technical Report presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequency-domain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, the sizing of the power electronics, and number of turbines. Also included in this Technical Report are further details on how rotor thrust and torque are estimated, along with further details on the type of variable frequency drive selected.

  10. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  11. Relationship Between Selected Strength and Power Assessments to Peak and Average Velocity of the Drive Block in Offensive Line Play.

    Science.gov (United States)

    Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G

    2016-08-01

    Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended.

  12. Application of nanostructural materials in electro optical measuring sets of big powers based on usage of optical effects

    Science.gov (United States)

    Salihov, Aidar I.; Tljavlin, Anfar Z.; Kusimov, Salavat M.

    2005-06-01

    Optically transparent nanostructural materials show to themselves a heightened interest owing to display in them the new physic mechanical properties. Variation of structure of the materials received by methods of intensive plastic deformation, results in variation of many fundamental parameters. Among them special interest was caused with variations of fundamental magnetic characteristics. One of them is the magnetization of saturation, which is usually structurally tolerant, but reflects changes in an atomic-crystal structure of solids. Even in the first probing of the transparent nanostructures, received by intensive deformation by torsion of samples, was found that the magnetization of saturation was revealed at room temperature in comparison with coarse-grained samples. High-power measuring devices are based on Faraday effect, representing itself rotation of a plane of polarization of linearly polarized light in optical active substances under action of a magnetic field. Application of nanostructural materials in the optical insulator, which is the main part of the measuring device, allows improving the measuring characteristics of instruments qualitatively. Brought losses in Faraday cell make 0,35 -0,89 dB instead of 0,7 - I,2 dB, and value of the backward losses makes not less than 62 dB instead of 55 dB. Undoubtedly, improvement of the given parameters allows making the measuring operations with the greater accuracy, reducing both absolute, and relative errors.

  13. Low power consumption 4-channel variable optical attenuator array based on planar lightwave circuit technique

    International Nuclear Information System (INIS)

    Ren Mei-Zhen; Zhang Jia-Shun; An Jun-Ming; Wang Yue; Wang Liang-Liang; Li Jian-Guang; Wu Yuan-Da; Yin XiaoJie; Hu Xiong-Wei

    2017-01-01

    The power consumption of a variable optical attenuator (VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner, the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment. (paper)

  14. Low power excitation of gyrotron-type modes in cylindrical waveguide using quasi-optical techniques

    International Nuclear Information System (INIS)

    Alexandrov, N.L.; Whaley, D.R.; Tran, M.Q.; Denisov, D.R.

    1995-03-01

    Experimental results of low power excitation of a 118 GHz TE 22,6 rotating mode are presented. A rectangular mode is converted to a TE 22,6 circular waveguide using quasi-optical techniques. A good conversion efficiency is measured and the experimentally observed field intensity profiles show the percentage of unwanted modes to be small. (author) 10 figs., 10 refs

  15. The JLab high power ERL light source

    International Nuclear Information System (INIS)

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  16. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  17. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  18. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  19. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.

    1989-01-01

    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  20. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    International Nuclear Information System (INIS)

    Meier, W; Bibeau, C

    2005-01-01

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of ∼2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies

  1. Optical Characterization of the SPT-3G Camera

    Science.gov (United States)

    Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

  2. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  3. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.

    Science.gov (United States)

    Olsen, Thomas

    2007-02-01

    This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p ultrasound, respectively (p power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.

  4. Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality

    Science.gov (United States)

    Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.

    2017-11-01

    We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.

  5. Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

    International Nuclear Information System (INIS)

    Sangirov Jamshid; Ukaegbu Ikechi Augustine; Lee Tae-Woo; Park Hyo-Hoon; Sangirov Gulomjon

    2013-01-01

    A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal–oxide–semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm 2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes. (semiconductor integrated circuits)

  6. Diophantine Optics

    Science.gov (United States)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  7. Optical and structural characterization of self-organized stacked GaN/AlN quantum dots

    International Nuclear Information System (INIS)

    Salviati, G; Rossi, F; Armani, N; Grillo, V; Martinez, O; Vinattieri, A; Damilano, B; Matsuse, A; Grandjean, N

    2004-01-01

    Self-organized GaN/AlN stacked quantum dots (QDs) have been studied by means of cathodoluminescence (CL), near field scanning optical microscopy (NSOM), photoluminescence, μ-Raman, and transmission electron microscopy. Assignment of the optical emissions was made on the basis of the structural parameters, power-dependent optical studies and depth-resolved CL. Power-dependent studies allowed us to distinguish between quantum confined and buffer emissions. On increasing the power injection conditions, a QD-size-dependent blue shift due to the screening of the internal electric fields was found together with a trend to saturation observed in the high injection limit. The possible evidence of excited states has also been shown by power-dependent photoluminescence and CL. Different blue shifts in specimens with different numbers of stacked layers suggested possible different residual strain values as confirmed by μ-Raman studies. Depth-resolved CL investigations performed at constant power injection per unit volume allowed us to distinguish between QD layers with different nominal GaN coverages and a linear dependence of peak energy versus GaN monolayer number has also been found. Adding 1 ML of GaN resulted in an average shift of about 150 meV. The existence of QDs with different size distributions along the growth axis was also found. The observations were confirmed by NSOM spectroscopy

  8. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  9. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    International Nuclear Information System (INIS)

    Johnson, Michael D.

    2016-01-01

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  10. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  11. Optical Multidimensional Switching for Data Center Networks

    OpenAIRE

    Kamchevska, Valerija; Galili, Michael; Oxenløwe, Leif Katsuo; Berger, Michael Stübert

    2017-01-01

    Optical switches are known for the ability to provide high bandwidth connectivity at a relatively low power consumption and low latency. Several recent demonstrations on optical data center architectures confirm the potential for introducing all-optical switching within the data center, thus avoiding power hungry optical-electrical-optical conversions at each node. This Ph.D. thesis focuses precisely on the application of optical technologies in data center networks where optics is not only u...

  12. Optical Amplification at 1525 nm in BaYF5: 20% Yb3+, 2% Er3+ Nanocrystals Doped SU-8 Polymer Waveguide

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2014-01-01

    Full Text Available We demonstrated optical amplification in BaYF5: 20% Yb3+, 2% Er3+ (BYF nanocrystals doped polymer waveguide. BYF nanocrystals with an average size of ∼13 nm were synthesized by a high-boiling solvent process. Intense 1.53 μm fluorescence was obtained in the nanocrystals under excitation at 980 nm. An optical polymer waveguide was fabricated by using BYF nanocrystals doped SU-8 polymer as the core material. A relative optical gain of ∼10.4 dB at 1525 nm was achieved in a 1.1 cm long waveguide for an input signal power of ∼0.09 mW and a pump power of ∼212 mW.

  13. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    Science.gov (United States)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  14. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  15. Observer design for DC/DC power converters with bilinear averaged model

    NARCIS (Netherlands)

    Spinu, V.; Dam, M.C.A.; Lazar, M.

    2012-01-01

    Increased demand for high bandwidth and high efficiency made full state-feedback control solutions very attractive to power-electronics community. However, full state measurement is economically prohibitive for a large range of applications. Moreover, state measurements in switching power converters

  16. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  17. Vehicle power supply cable with optical jacket monitoring and arcing interference detection; Bordnetzkabel mit optischer Mantelueberwachung und Stoerlichtbogendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Matthias [Fachhochschule Nordhausen (Germany). Lehrstuhl fuer Industrieelektronik; Kloss, Christina [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Polymere/Elastomere und Lichtwellenleiter; Lustermann, Birgit [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Lichtwellenleiter und Simulation optischer Systeme

    2012-10-15

    In vehicles with electrical drive, vehicle power supplies are used with high-voltage level, as well as with several voltage levels. In order to minimise any hazards through arcing faults associated with this, constructive and material-technical measures are necessary. Nordhausen Technical College presents a patented, opticalelectrical combination conductor - the main constituent of an innovative vehicle power supply cable with optical jacket monitoring and arcing interference detection. (orig.)

  18. Mathematical Modeling of Optical Radiation Emission as a Function of Welding Power during Gas Shielded Metal Arc Welding.

    Science.gov (United States)

    Bauer, Stefan; Janßen, Marco; Schmitz, Martin; Ott, Günter

    2017-11-01

    Arc welding is accompanied by intense optical radiation emission that can be detrimental not only for the welder himself but also for people working nearby or for passersby. Technological progress advances continuously in the field of joining, so an up-to-date radiation database is necessary. Additionally, many literature irradiance data have been measured for a few welding currents or for parts of the optical spectral region only. Within this paper, a comprehensive study of contemporary metal active gas, metal inert gas, and cold metal transfer welding is presented covering optical radiation emission from 200 up to 2,700 nm by means of (spectro-) radiometric measurements. The investigated welding currents range from 70 to 350 A, reflecting values usually applied in industry. Based upon these new irradiance data, three mathematical models were derived in order to describe optical radiation emission as a function of welding power. The linear, exponential, and sigmoidal emission models depend on the process variant (standard or pulsed) as well as on the welding material (mild and stainless steel, aluminum). In conjunction with the corresponding exposure limit values for incoherent optical radiation maximum permissible exposure durations were calculated as a function of welding power. Typical times are shorter than 1 s for the ultraviolet spectral region and range from 1 to 10 s for visible radiation. For the infrared regime, exposure durations are of the order of minutes to hours. Finally, a validation of the metal active gas emission models was carried out with manual arc welding.

  19. Illusion induced overlapped optics.

    Science.gov (United States)

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  20. 2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser

    Science.gov (United States)

    Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian

    2018-05-01

    We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.

  1. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Directory of Open Access Journals (Sweden)

    Paulius Palevicius

    2014-01-01

    Full Text Available Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  2. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  3. Applicability of time-averaged holography for micro-electro-mechanical system performing non-linear oscillations.

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-21

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  4. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  5. Stochastic Growth Theory of Spatially-Averaged Distributions of Langmuir Fields in Earth's Foreshock

    Science.gov (United States)

    Boshuizen, Christopher R.; Cairns, Iver H.; Robinson, P. A.

    2001-01-01

    Langmuir-like waves in the foreshock of Earth are characteristically bursty and irregular, and are the subject of a number of recent studies. Averaged over the foreshock, it is observed that the probability distribution is power-law P(bar)(log E) in the wave field E with the bar denoting this averaging over position, In this paper it is shown that stochastic growth theory (SGT) can explain a power-law spatially-averaged distributions P(bar)(log E), when the observed power-law variations of the mean and standard deviation of log E with position are combined with the log normal statistics predicted by SGT at each location.

  6. A fast optics and orbit correction program

    International Nuclear Information System (INIS)

    Bowling, B.; Kewisch, J.; Kloeppel, P.; Rossmanith, R.

    1990-08-01

    CEBAF is a large recirculating linear accelerator with approximately 1600 magnet power supplies in the beam transport system. The average beam power can be as great as 800 kW, concentrated into a spot of area less than 0.01 mm 2 . Control of the transport is therefore quite critical, to avoid missteering the beam. To prevent dangerous beam losses and to prepare optics changes, the control programs must read the magnet power supplies and calculate the optics in a virtually real-time manner. A program named OLE (On-Line Envelope) has been developed at CEBAF to give a graphical display of the calculated machine β function or, equivalently, the beam envelope. The time interval necessary to execute the program is somewhat less than one second, short enough that the operator can use it for setting up his lattice. Emphasis in the design was placed on speed of program execution at the expense of generality of application. As a result, the accelerator operator will be able to alter the magnetic field in any element in the machine, calculate the β functions in both planes at the entrance and exit of each magnet, and display graphs of the functions, all within one second. The time that is required is short enough that the process approximates fairly well real-time operation

  7. Increase in average foveal thickness after internal limiting membrane peeling

    Directory of Open Access Journals (Sweden)

    Kumagai K

    2017-04-01

    Full Text Available Kazuyuki Kumagai,1 Mariko Furukawa,1 Tetsuyuki Suetsugu,1 Nobuchika Ogino2 1Department of Ophthalmology, Kami-iida Daiichi General Hospital, 2Department of Ophthalmology, Nishigaki Eye Clinic, Aichi, Japan Purpose: To report the findings in three cases in which the average foveal thickness was increased after a thin epiretinal membrane (ERM was removed by vitrectomy with internal limiting membrane (ILM peeling.Methods: The foveal contour was normal preoperatively in all eyes. All cases underwent successful phacovitrectomy with ILM peeling for a thin ERM. The optical coherence tomography (OCT images were examined before and after the surgery. The changes in the average foveal (1 mm thickness and the foveal areas within 500 µm from the foveal center were measured. The postoperative changes in the inner and outer retinal areas determined from the cross-sectional OCT images were analyzed.Results: The average foveal thickness and the inner and outer foveal areas increased significantly after the surgery in each of the three cases. The percentage increase in the average foveal thickness relative to the baseline thickness was 26% in Case 1, 29% in Case 2, and 31% in Case 3. The percentage increase in the foveal inner retinal area was 71% in Case 1, 113% in Case 2, and 110% in Case 3, and the percentage increase in foveal outer retinal area was 8% in Case 1, 13% in Case 2, and 18% in Case 3.Conclusion: The increase in the average foveal thickness and the inner and outer foveal areas suggests that a centripetal movement of the inner and outer retinal layers toward the foveal center probably occurred due to the ILM peeling. Keywords: internal limiting membrane, optical coherence tomography, average foveal thickness, epiretinal membrane, vitrectomy

  8. A portable wireless data collection system by using optical power supply and photo-communication

    International Nuclear Information System (INIS)

    Nakajima, Toshiro; Shikai, Masahiro; Ikeda, Ikuo; Tochio, Atsushi

    1999-01-01

    For aiming at effective application to annual change management of patrolling inspection data and so forth, a portable wireless measuring and data collection device measurable to vibration, temperature and so forth automatically and for short time under patrolling of inspectors and collectable on sensor signals at many places, to collect field data as electronized data. This device was comprised of a sensor head to mount on an object apparatus to transmit sensor signals and a sensor terminal brought by an inspector and with functions to receive and memory a signal from the sensor head. It had a characteristics capable of wireless data collection using optical power supply and photo-communication where all of power supply to sensor head and transmission and receiving of data were conducted optically. As a result, some characteristics could be realized such as perfect realization of wireless data collection and reduction of maintenance burden without its need on installation of source, signal wire, and so forth, possibility to collect data for short time from distant place, and possibility to conduct high order treatment due to obtaining native waveform signal but no conventional numerical data, and possibility of development on apparatus diagnosis such as detection of abnormal sign and others. (G.K.)

  9. Broadly tunable, beta-barium-borate-based, pulsed optical parametric oscillators and their potential applications in medicine

    Science.gov (United States)

    Sobey, Mark S.; Clark, Jim; Johnson, Bertram C.

    1995-05-01

    With the recent availability of Beta Barium Borate (BBO) crystals in useful sizes at acceptable market prices, the promise of Optical Parametric Oscillators (OPOs) becoming practical tunable systems is finally being realized. Wavelength coverage from such systems extends from 420 nm to over 2400 nm when pumped in the UV. For medical applications their usage will be limited in the near term to low repetition rates (suitable for selective absorption applications in medicine such as colored tattoo removal or treating vascular lesions. For such high energy devices peak powers necessitate the use of articulating arms for beam delivery. For high repetition rate systems, energy outputs will be in the range of 100 to 500 (mu) J at kHz frequencies (up to 1 W average power). Peak powers are low enough that fiber optic delivery is possible. These systems may find selective absorption applications in ophthalmology.

  10. Optical pulsar in the Large Magellanic Cloud remnant 0540-69.3

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.

    1984-01-01

    We have detected pulsed optical emission from the Large Magellanic Cloud (LMC) X-ray pulsar PSR 0540-693 (Seward et al. 1984). The pulsed emission has a time averaged magnitude of approximately 22.7. The X-ray pulsar was discovered in the LMC remnant, 0540-69.3 as a pulse repetition period of approx. 50 milliseconds (ms) in Einstein Obsrvatory data (Seward et al. 1984). Earlier, Clark et al. (1982) had noted that this remnant resembles the Crab Nebula because of the X-ray power law spectrum, and suggested that the nebular emission was synchrotron radiation powered by a central pulsar. After the announcement of X-ray pulsed emission, Chanan et al. (1984) measured the broad optical band properties of the nebula and found evidence for synchrotron emission. They reported that the 4.5 arc second continuum emission remnant has only a tenth the luminosity of the Crab Nebula. We have recorded broad-band optical time-series data at 1 ms intervals with the 4-m and 1.5-m Cerro Tololo telescopes and have found strong pulsations, employing the usual Fourier transform methods. A summary of the observations, including magnitudes, barycentric frequencies and times of arrival is given

  11. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  12. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    Science.gov (United States)

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  13. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode.

    Science.gov (United States)

    Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun

    2017-06-10

    In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.

  14. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  15. Effects of network node consolidation in optical access and aggregation networks on costs and power consumption

    Science.gov (United States)

    Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas

    2010-01-01

    The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.

  16. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  17. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  18. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    International Nuclear Information System (INIS)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar; Chakravarthy, D.P.; Dixit, Kavita

    2011-01-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  19. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  20. All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast

    NARCIS (Netherlands)

    Yan, N.; Jung, H.D.; Tafur Monroy, I.; Waardt, de H.; Koonen, A.M.J.

    2007-01-01

    WDM wavelength multicast is demonstrated by all-optical multi-wavelength conversion at 10 Gb/s using a commercial SOA-MZI. We report for the first time simultaneous one-to-four conversion with negative power penalty of 1.84 dB.

  1. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  2. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  3. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A E; Potapov, V T [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Fryazino, Moscow region (Russian Federation); Gorshkov, B G [OOO ' Petrofaiber' , Russia, Tula region, Novomoskovsk (Russian Federation)

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  4. Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Rasmussen, Jesper Kiel; Povlsen, Jørn Hedegaard

    1995-01-01

    A 1-by-64 multimode interference power splitter in SiO2 has been designed for use in fiber-optics communication systems. The splitter exhibits a minimum loss of 0.5 db and a uniformity of 1.7 dB at a wavelength of 1.55 μm. The polarization sensitivity is below 0.14 dB, the reflection level below...... -55 dB, and the optical bandwidth 30 nm. The fabrication tolerances are ±0.1 mm on the length and ±3.5 μm on the width of the multimode section of the splitter. In comparison with a branching-type splitter it is found that the designed device is approximately 30% shorter than the branching-type device...

  5. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  6. Design of a sector bowtie nano-rectenna for optical power and infrared detection

    Science.gov (United States)

    Wang, Kai; Hu, Haifeng; Lu, Shan; Guo, Lingju; He, Tao

    2015-10-01

    We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiO x -Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5-30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

  7. Advanced optical diagnostics for a coal-fired MHD retrofit of an existing power station

    International Nuclear Information System (INIS)

    Shepard, W.S.; Cook, R.L.

    1990-01-01

    The retrofit concept involves integrating a magnetohydrodynamic (MHD) power generation facility with an existing commercial steam power plant. The MHD power train will be 250 MW t and represents a 5:1 scale-up of existing developmental, proof-of-concept (POC) facilities. The program provides a cost effective way to demonstrate the effectiveness, reliability, and operability of the technology and a basis for future commercialization. An aspect of the program must be to accumulate information on component performance and scale-up relations to enable a smooth transition to commercial plant designs. Special state-of-the-art optical diagnostic instrumentation systems are required for this modern energy conversion technology. In-situ measurements with such systems provide a clearer understanding of the processes involved in the ash/seed-laden MHD gas stream, fundamental scale-up data, performance monitors, and a basis for improved control strategies and control instruments. The types of instrumentation, the measurement locations and frequency, and the benefits for the retrofit program are discussed

  8. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  9. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Science.gov (United States)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  10. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  11. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  12. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  13. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  14. Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1977-01-01

    The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed

  15. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  16. Simple and versatile long range swept source for optical coherence tomography applications

    International Nuclear Information System (INIS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G; Vanholsbeeck, Frédérique

    2015-01-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman–Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples. (paper)

  17. Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm

    Science.gov (United States)

    Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.

    2018-06-01

    We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

  18. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  19. Optical bleaching of bismuth implanted silica glass: A threshold effect

    International Nuclear Information System (INIS)

    Park, S.Y.; Magruder, R.H. III; Weeks, R.A.

    1992-01-01

    The near surface regions of high purity silica glass discs, Spectrosil A, were modified by implantation with bismuth ions at 160 key and room temperature. The glasses implanted with a nominal dose of 6x10 16 Bi/cm 2 at ∼5 μA/cm 2 were subsequently bleached with a 5.0 eV KrF pulsed excimer laser. The laser had an average pulse duration of ∼20 ns and repetition rate of 10 Hz. It was found that the bleaching was dependent upon the power density of the laser for a constant total integrated energy. Ion backscattering and optical absorption measurements were made before and after laser irradiation. Large changes in optical density and depth distribution of the implanted ions were observed at power densities of ≥45 mJ/cm 2 -pulse. Onset of threshold for bleaching of silica glass implanted with 6x10 16 Bi/cm 2 at 160 key and at room temperature is between 30 and 45 mJ/cm 2 -pulse

  20. Optical study on the dependence of breast tissue composition and structure on subject anamnesis

    Science.gov (United States)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo

    2015-07-01

    Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 200 subjects to estimate their average breast tissue composition in terms of oxy- and deoxy-hemoglobin, water, lipid and collagen, and structural information, as provided by scattering parameters (amplitude and power). Significant (and often marked) dependence of tissue composition and structure on age, menopausal status, body mass index, and use of oral contraceptives was demonstrated.

  1. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  2. Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Xu Liang; Lin Qing-Feng; Zhong Xin; Han Hai-Nian; Wei Zhi-Yi

    2013-01-01

    We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624–672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech 2 pulse profile. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. A high average power beam dump for an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianghong, E-mail: xl66@cornell.edu [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States); Bazarov, Ivan; Dunham, Bruce M.; Kostroun, Vaclav O.; Li, Yulin; Smolenski, Karl W. [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    The electron beam dump for Cornell University's Energy Recovery Linac (ERL) prototype injector was designed and manufactured to absorb 600 kW of electron beam power at beam energies between 5 and 15 MeV. It is constructed from an aluminum alloy using a cylindrical/conical geometry, with water cooling channels between an inner vacuum chamber and an outer jacket. The electron beam is defocused and its centroid is rastered around the axis of the dump to dilute the power density. A flexible joint connects the inner body and the outer jacket to minimize thermal stress. A quadrant detector at the entrance to the dump monitors the electron beam position and rastering. Electron scattering calculations, thermal and thermomechanical stress analysis, and radiation calculations are presented.

  4. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  5. Differential Amplitude Pulse-Position Modulation for Indoor Wireless Optical Communications

    Directory of Open Access Journals (Sweden)

    Sethakaset Ubolthip

    2005-01-01

    Full Text Available We propose a novel differential amplitude pulse-position modulation (DAPPM for indoor optical wireless communications. DAPPM yields advantages over PPM, DPPM, and DH-PIM in terms of bandwidth requirements, capacity, and peak-to-average power ratio (PAPR. The performance of a DAPPM system with an unequalized receiver is examined over nondispersive and dispersive channels. DAPPM can provide better bandwidth and/or power efficiency than PAM, PPM, DPPM, and DH-PIM depending on the number of amplitude levels and the maximum length of a symbol. We also show that, given the same maximum length, DAPPM has better bandwidth efficiency but requires about and more power than PPM and DPPM, respectively, at high bit rates over a dispersive channel. Conversely, DAPPM requires less power than DH-PIM . When the number of bits per symbol is the same, PAM requires more power, and DH-PIM less power, than DAPPM. Finally, it is shown that the performance of DAPPM can be improved with MLSD, chip-rate DFE, and multichip-rate DFE.

  6. Optical computing.

    Science.gov (United States)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  7. Laser Cutting of CFRP with a Fibre Guided High Power Nanosecond Laser Source - Influence of the Optical Fibre Diameter on Quality and Efficiency

    Science.gov (United States)

    Bluemel, S.; Bastick, S.; Staehr, R.; Jaeschke, P.; Suttmann, O.; Overmeyer, L.

    For the development of a robot based laser cutting process of automotive 3D parts consisting of carbon fibre reinforced plastics (CFRP), investigations with a newly developed fibre guided nanosecond pulsed laser with an average power of PL = 1.5 kW were conducted. In order to investigate the best combination of quality and process time 2 different optical fibres were used, with diameters of df = 400 μm and df = 600 μm. The main differences between the two setups are the resulting focal diameter and the maximum available pulse energy up to EP = 80 mJ. In a first instance, a comparable investigation was performed with both fibres for a constant pulse overlap. For each fibre the minimum required line energy was investigated and cuts were performed, distributed over the complete parameter range of the laser source. The influences of the fibre diameter on the quality and efficiency of the cutting process are summarized and discussed.

  8. An all-silicon passive optical diode.

    Science.gov (United States)

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  9. Yb-doped phosphate double-cladding optical fiber for high-power laser applications

    Science.gov (United States)

    Mura, E.; Scarpignato, G. C.; Lousteau, J.; Boetti, N. G.; Abrate, S.; Milanese, D.

    2013-02-01

    A Yb-doped phosphate glass double cladding optical fiber was prepared using a custom designed glass composition (P2O5 - Al2O3 - Li2O - B2O3 - BaO - PbO - La2O3) for high-power amplifier and laser applications. The preform drawing method was followed, with the preform being fabricated using the rotational casting technique. This technique, previously developed for tellurite, fluoride or chalcogenide glass preforms is reported for the first time using rare earth doped phosphate glasses. The main challenge was to design an adequate numerical aperture between first and second cladding while maintaining similar thermo-mechanical properties in view of the fiber drawing process. The preform used for the fiber drawing was produced by rod-in-tube technique at a rotation speed of 3000 rpm. The rotational casting technique allowed the manufacturing of an optical fiber featuring high quality interfaces between core and internal cladding and between the internal and external cladding, respectively. Loss attenuation was measured using the cut-back method and lasing was demonstrated at 1022 nm by core pumping with a fiber pigtailed laser diode at the wavelength of 976 nm.

  10. Survivability Research of Power Optical Transmission Network based on Complex Network%基于复杂网络的电力光传输网生存性研究

    Institute of Scientific and Technical Information of China (English)

    夏正云; 孙娜; 施建强; 黄明明

    2017-01-01

    电力光传输网是服务于电力系统的通信专网,其生存性高低对电力系统安全、稳定运行至关重要.首先,基于复杂网络理论给出网络生存性的定义;其次,从最短路径选择和基于平均距离的拓扑优化两个方面作为研究切入点研究网络生存性,最短路径的选择可以有效减少网络拥塞发生的概率,基于平均距离的拓扑优化可以减小网络均距,提高网络的传输效率;最后,结合A市电力光传输网东北环实例,从最短路径选择和拓扑优化两方面分析整个东北环网的生存能力.这对保障电网系统安全可靠运行、降低大规模电网事故的发生具有十分重要的意义.%Power optical transmission network is a communication private network serving electric power system. Its survivability is crucial to the security and stability of power system. First of all, the definition of network survivability is given based on complex network theory. Secondly, the network survivability is studied from two aspects: the shortest path selection and the topology optimization based on the average distance. The selection of the shortest path can effectively reduce the probability of network congestion. Topology optimization based on average distance can reduce the average distance of the network and improve the transmission efficiency. Finally, combining with the northeast ring of A city power transmission network, the survivability of the whole northeast ring network is analyzed from two aspects of the shortest path selection and topology optimization. This is of great significance to ensure the safe and reliable operation of power grid system and reduce the occurrence of large-scale power grid accidents.

  11. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  12. Research on spectrum broadening covering visible light of a fiber femtosecond optical frequency comb for absolute frequency measurement

    Science.gov (United States)

    Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo

    2018-03-01

    As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.

  13. Stable, high power, high efficiency picosecond ultraviolet generation at 355 nm in K3B6O10 Br crystal

    Science.gov (United States)

    Hou, Z. Y.; Wang, L. R.; Xia, M. J.; Yan, D. X.; Zhang, Q. L.; Zhang, L.; Liu, L. J.; Xu, D. G.; Zhang, D. X.; Wang, X. Y.; Li, R. K.; Chen, C. T.

    2018-06-01

    We demonstrate a high efficiency and high power picosecond ultraviolet source at 355 nm with stable output by sum frequency generation from a Nd:YAG laser using a type-I critically phase matched K3B6O10 Br crystal as nonlinear optical material. Conversion efficiency as high as 30.8% was achieved using a 25 ps laser at 1064 nm operated at 10 Hz. Similar work is done by using a 35 W 10 ps laser at 1064 nm as the pump source with a repetition rate of 80 MHz, and the highest average output power obtained was up to 5.3 W. In addition, the power stability of the 355 nm output power measurement shows that the standard deviation fluctuations of the average power are ±0.69% and ±0.91% at 3.0 W and 3.5 W, respectively.

  14. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  15. Issues arising with the application of optical fiber transmission in class 1E systems in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Antonescu, C.

    1993-01-01

    The application of fiber optic links and networks in safety-critical systems in the next generation of nuclear power plants, as well as in some digital upgrades in present-day plants, will mean that these links must be highly reliable and able to withstand the effect of environmental stressors present at the installation location. This paper discusses the failure modes and age-related mechanisms of fiber optic transmission components and identifies environmental stressors that could adversely affect their reliability over the long term. Some of the standards that could be used in their qualification for safety-critical applications are also discussed briefly

  16. Temporal probabilistic shaping for mitigation of nonlinearities in optical fiber systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Larsen, Knud J.; Forchhammer, Søren

    2017-01-01

    In this paper, finite state machine sources (FSMSs) are used to shape quadrature amplitude modulation (QAM) for nonlinear transmission in optical fiber communication systems. The previous optimization algorithm for FSMSs is extended to cover an average power constraint, thus enabling temporal...... optimization with multiamplitude constellations output, such as QAM. The optimized source results in increased received SNR and, thereby, increased achievable information rates (AIR)s under memoryless assumption. The AIR is increased even further when taking the channel and transmitter memory into account via...

  17. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  18. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Eiichi, E-mail: kuramochi.eiichi@lab.ntt.co.jp; Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Notomi, Masaya [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Takeda, Koji; Matsuo, Shinji [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Sato, Tomonari [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  19. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  20. Widely tunable dispersive wave generation and soliton self-frequency shift in a tellurite microstructured optical fiber pumped near the zero dispersion wavelength

    International Nuclear Information System (INIS)

    Zhang, Lei; Tuan, Tong-Hoang; Liu, Lai; Gao, Wei-Qing; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-01-01

    Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM). (paper)

  1. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  2. 18 CFR 301.5 - Changes in Average System Cost methodology.

    Science.gov (United States)

    2010-04-01

    ... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE... customers, or from three-quarters of Bonneville's direct-service industrial customers may initiate a...

  3. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    Science.gov (United States)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  4. Energy stability in a high average power FEL

    International Nuclear Information System (INIS)

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples

  5. High-power optical coatings for a mega-joule class ICF laser

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; Thomas, I.M.; Campbell, J.H.; Rainer, F.

    1992-11-01

    As a consequence of advancements in Inertial Confinement Fusion research, LLNL is developing plans for a new 1.5 to 2 mega-joule solid-state Nd:glass laser designed to achieve fusion ignition. The new design is possible in part due to advances in optical coatings suitable for high power laser systems. High damage threshold mirrors and polarizers are comprised of electron beam deposited dielectric multilayers. Subthreshold illumination, or laser conditioning, of the multilayer coatings results in an increase in the damage thresholds by factors of 2 to 3 at 1.06μm, thus meeting the fluence requirements of the advanced architecture. For anti-reflective coatings, protective organic coatings for non-linear crystals and phase plates for beam smoothing, sol-gel films provide high damage thresholds coatings at low cost

  6. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.

    Science.gov (United States)

    Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph

    2018-07-02

    Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik

    2017-11-13

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity of implementation caused by the beam-selection scheme and without a considerable performance loss. To characterize the performance of our scheme, we statistically analyze the operation characteristics under conventional detection conditions (i.e., heterodyne detection and intensity modulation/direct detection techniques) with log-normal turbulence while taking into consideration the impact of pointing error. More specifically, we derive exact closed-form expressions for the outage probability, the average bit error rate, and the average spectral efficiency while adopting an adaptive modulation. Some selected results show that TMOS increases the average spectral efficiency while maintaining a minimum average bit error rate requirement.

  8. Low-SNR Capacity of Parallel IM-DD Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas

    2016-11-29

    The capacity of parallel intensity-modulation and direct-detection (IM-DD) optical wireless channels with total average intensity and per-channel peak intensity constraints is studied. The optimal intensity allocation at low signal-to-noise ratio (SNR) is derived, leading to the capacity-achieving onoff keying (OOK) distribution. Interestingly, while activating the strongest channel is optimal if (i) the peak intensity is fixed, this is not the case if (ii) the peak intensity is proportional to the average intensity. The minimum average optical intensity per bit is also studied, and is characterized for case (i) where it is achievable at low SNR. However, in case (ii), the average optical intensity per bit grows indefinitely as SNR decreases, indicating that lower optical intensity per bit can be achieved at moderate SNR than at low SNR.

  9. Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    Directory of Open Access Journals (Sweden)

    Lopez J.

    2013-11-01

    Full Text Available Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps.

  10. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  11. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors will describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They will also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  12. Optical performance monitoring in high-speed optical fiber communication systems

    Science.gov (United States)

    Yu, Changyuan; Yang, Jing; Hu, Junhao; Zhang, Banghong

    2011-11-01

    Optical performance monitoring (OPM) becomes an attractive topic as the rapid growth of data rate in optical communication networks. It provides improved operation of the high capacity optical transmission systems. Among the various impairments, chromatic dispersion (CD) is one of major factors limiting the transmission distance in high-speed communication systems. Polarization-mode dispersion (PMD) also becomes a degrading effect in the system with data rate larger than 40 Gbit/s. In this paper, we summarize several CD and PMD monitoring methods based on RF spectrum analysis and delay-tap sampling. By using a narrow band fiber Bragg grating (FBG) notch filter, centered at 10 GHz away from the optical carrier, 10-GHz RF power can be used as a CD-insensitive PMD monitoring signal. By taking the 10-GHz RF power ratio of non-filtered and filtered signal, PMD-insensitive CD monitoring can be achieved. If the FBG notch filter is placed at optical carrier, the RF clock power ratio between non-filtered and filtered signal is also a PMDinsensitive CD monitoring parameter, which has larger RF power dynamic range and better measurement resolution. Both simulation and experiment results show that the proposed methods are efficient on measuring CD and PMD values in 57-Gbit/s D8PSK systems. Delay-tap sampling is another efficient method of measuring residual CD. Amplitude ratio of asynchronous delay-tap sampling plot decreases with CD monotonously, and the amplitude ratio can be obtained by using low bandwidth balanced receiver. The simulated results show that our method is efficient on residual CD measurement in 50-Gbit/s 50% RZ DQPSK systems with a 12-GHz balanced receiver. Since no modification on the transmitter or receiver is required, the proposed scheme is simple and cost effective.

  13. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    Science.gov (United States)

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  14. Optimal optical communication terminal structure for maximizing the link budget

    Science.gov (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  15. Statistics on exponential averaging of periodograms

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, T.T.J.M. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering

    1994-11-01

    The algorithm of exponential averaging applied to subsequent periodograms of a stochastic process is used to estimate the power spectral density (PSD). For an independent process, assuming the periodogram estimates to be distributed according to a {chi}{sup 2} distribution with 2 degrees of freedom, the probability density function (PDF) of the PSD estimate is derived. A closed expression is obtained for the moments of the distribution. Surprisingly, the proof of this expression features some new insights into the partitions and Eulers infinite product. For large values of the time constant of the averaging process, examination of the cumulant generating function shows that the PDF approximates the Gaussian distribution. Although restrictions for the statistics are seemingly tight, simulation of a real process indicates a wider applicability of the theory. (orig.).

  16. Statistics on exponential averaging of periodograms

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Ciftcioglu, Oe.

    1994-11-01

    The algorithm of exponential averaging applied to subsequent periodograms of a stochastic process is used to estimate the power spectral density (PSD). For an independent process, assuming the periodogram estimates to be distributed according to a χ 2 distribution with 2 degrees of freedom, the probability density function (PDF) of the PSD estimate is derived. A closed expression is obtained for the moments of the distribution. Surprisingly, the proof of this expression features some new insights into the partitions and Eulers infinite product. For large values of the time constant of the averaging process, examination of the cumulant generating function shows that the PDF approximates the Gaussian distribution. Although restrictions for the statistics are seemingly tight, simulation of a real process indicates a wider applicability of the theory. (orig.)

  17. Optical design and performance of F-Theta lenses for high-power and high-precision applications

    Science.gov (United States)

    Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.

    2015-09-01

    F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.

  18. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  19. Lateral dispersion coefficients as functions of averaging time

    International Nuclear Information System (INIS)

    Sheih, C.M.

    1980-01-01

    Plume dispersion coefficients are discussed in terms of single-particle and relative diffusion, and are investigated as functions of averaging time. To demonstrate the effects of averaging time on the relative importance of various dispersion processes, and observed lateral wind velocity spectrum is used to compute the lateral dispersion coefficients of total, single-particle and relative diffusion for various averaging times and plume travel times. The results indicate that for a 1 h averaging time the dispersion coefficient of a plume can be approximated by single-particle diffusion alone for travel times <250 s and by relative diffusion for longer travel times. Furthermore, it is shown that the power-law formula suggested by Turner for relating pollutant concentrations for other averaging times to the corresponding 15 min average is applicable to the present example only when the averaging time is less than 200 s and the tral time smaller than about 300 s. Since the turbulence spectrum used in the analysis is an observed one, it is hoped that the results could represent many conditions encountered in the atmosphere. However, as the results depend on the form of turbulence spectrum, the calculations are not for deriving a set of specific criteria but for demonstrating the need in discriminating various processes in studies of plume dispersion

  20. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    Science.gov (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  1. Chromatic-free spatially resolved optical emission spectroscopy diagnostics for microplasma

    International Nuclear Information System (INIS)

    Zhu Liguo; Chen Wencong; Zhu Ximing; Pu Yikang; Li Zeren

    2009-01-01

    A chromatic-free spatially resolved diagnostic system for microplasma measurement is proposed and demonstrated, which consists of an optical chromatic-free microscope mirror system, an electron multiplying charge coupled device (EMCCD), and bandpass filters. The diagnostic system free of chromatic aberrations with a spatial resolution of about 6 μm is achieved. The factors that limit the resolution of this diagnostic system have been analyzed, which are optical diffraction, the pixel size of the EMCCD, and the thickness of the microplasma. In this paper, the optimal condition for achieving a maximum resolution power has been analyzed. With this diagnostic system, we revealed the spatial nonuniformity of a microwave atmospheric-pressure argon microplasma. Furthermore, the spatial distribution of the time-averaged effective electron temperature has been estimated from the intensity distributions of 750.4 and 415.8 nm emissions.

  2. Bi-centenary of successes of Fourier theorem: its power and limitations in optical system designs

    Science.gov (United States)

    Roychoudhuri, Chandrasekhar

    2007-09-01

    We celebrate the two hundred years of successful use of the Fourier theorem in optics. However, there is a great enigma associated with the Fourier transform integral. It is one of the most pervasively productive and useful tool of physics and optics because its foundation is based on the superposition of harmonic functions and yet we have never declared it as a principle of physics for valid reasons. And, yet there are a good number of situations where we pretend it to be equivalent to the superposition principle of physics, creating epistemological problems of enormous magnitude. The purpose of the paper is to elucidate the problems while underscoring the successes and the elegance of the Fourier theorem, which are not explicitly discussed in the literature. We will make our point by taking six major engineering fields of optics and show in each case why it works and under what restricted conditions by bringing in the relevant physics principles. The fields are (i) optical signal processing, (ii) Fourier transform spectrometry, (iii) classical spectrometry of pulsed light, (iv) coherence theory, (v) laser mode locking and (vi) pulse broadening. We underscore that mathematical Fourier frequencies, not being physical frequencies, cannot generate real physical effects on our detectors. Appreciation of this fundamental issue will open up ways to be innovative in many new optical instrument designs. We underscore the importance of always validating our design platforms based on valid physics principles (actual processes undergoing in nature) captured by an appropriate hypothesis based on diverse observations. This paper is a comprehensive view of the power and limitations of Fourier Transform by summarizing a series of SPIE conference papers presented during 2003-2007.

  3. Improving the surface metrology accuracy of optical profilers by using multiple measurements

    Science.gov (United States)

    Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan

    2016-10-01

    The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.

  4. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique...

  5. TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback

    International Nuclear Information System (INIS)

    Heil, T.; Uchida, A.; Davis, P.; Aida, T.

    2003-01-01

    We present a comprehensive experimental characterization of the dynamics of semiconductor lasers subject to polarization-rotated optical feedback. We find oscillatory instabilities appearing for large feedback levels and disappearing at large injection currents, which we classify in contrast to the well-known conventional optical-feedback-induced dynamics. In addition, we compare our experiments to theoretical results of a single-mode model assuming incoherence of the optical feedback, and we identify differences concerning the average power of the laser. Hence, we develop an alternative model accounting for both polarizations, where the emission of the dominant TE mode is injected with delay into the TM mode of the laser. Numerical simulations using this model show good qualitative agreement with our experimental results, correctly reproducing the parameter dependences of the dynamics. Finally, we discuss the application of polarization-rotated-feedback induced instabilities in chaotic carrier communication systems

  6. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Large Core Three Branch Polymer Power Splitters

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2015-12-01

    Full Text Available We report about three branch large core polymer power splitters optimized for connecting standard plastic optical fibers. A new point of the design is insertion of a rectangle-shaped spacing between the input and the central part of the splitter, which will ensure more even distribution of the output optical power. The splitters were designed by beam propagation method using BeamPROP software. Acrylic-based polymers were used as optical waveguides being poured into the Y-grooves realized by computer numerical controlled engraving on poly(methyl methacrylate substrate. Measurement of the optical insertion losses proved that the insertion optical loss could be lowered to 2.1 dB at 650 nm and optical power coupling ratio could reach 31.8% : 37.3% : 30.9%.

  8. THE JET POWER AND EMISSION-LINE CORRELATIONS OF RADIO-LOUD OPTICALLY SELECTED QUASARS

    International Nuclear Information System (INIS)

    Punsly, Brian; Zhang Shaohua

    2011-01-01

    In this Letter, the properties of the extended radio emission form Sloan Digital Sky Survey Data Release 7 quasars with 0.4 20-30 kpc). The frequency of quasars with FR II level extended radio emission is ∼2.3% and >0.4% of quasars have FR I level extended radio emission. The lower limit simply reflects the flux density limit of the survey. The distribution of the long-term time-averaged jet powers of these quasars, Q-bar , has a broad peak ∼3 x 10 44 erg s -1 that turns over below 10 44 erg s -1 and sources above 10 45 erg s -1 are extremely rare. It is found that the correlation between the bolometric (total thermal) luminosity of the accretion flow, L bol , and Q-bar is not strong. The correlation of Q-bar with narrow line luminosity is stronger than the correlation with broad line luminosity and the continuum luminosity. It is therefore concluded that previous interpretations of correlations of Q-bar with narrow line strengths in radio galaxies as a direct correlation of jet power and accretion power have been overstated. It is explained why this interpretation mistakenly overlooks the sizeable fraction of sources with weak accretion luminosity and powerful jets discovered by Ogle et al.

  9. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  10. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    Science.gov (United States)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  11. Radiation effects in optical components

    International Nuclear Information System (INIS)

    Friebele, E.J.

    1987-01-01

    This report discusses components of high performance optical devices may be exposed to high energy radiation environments during their lifetime. The effect of these adverse environments depends upon a large number of parameters associated with the radiation (nature, energy, dose, dose rate, etc.) or the system (temperature, optical performance requirements, optical wavelength, optical power, path length, etc.), as well as the intrinsic susceptibility of the optical component itself to degradation

  12. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  13. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  14. Improving sensitivity in micro-free flow electrophoresis using signal averaging

    Science.gov (United States)

    Turgeon, Ryan T.; Bowser, Michael T.

    2009-01-01

    Microfluidic free-flow electrophoresis (μFFE) is a separation technique that separates continuous streams of analytes as they travel through an electric field in a planar flow channel. The continuous nature of the μFFE separation suggests that approaches more commonly applied in spectroscopy and imaging may be effective in improving sensitivity. The current paper describes the S/N improvements that can be achieved by simply averaging multiple images of a μFFE separation; 20–24-fold improvements in S/N were observed by averaging the signal from 500 images recorded for over 2 min. Up to an 80-fold improvement in S/N was observed by averaging 6500 images. Detection limits as low as 14 pM were achieved for fluorescein, which is impressive considering the non-ideal optical set-up used in these experiments. The limitation to this signal averaging approach was the stability of the μFFE separation. At separation times longer than 20 min bubbles began to form at the electrodes, which disrupted the flow profile through the device, giving rise to erratic peak positions. PMID:19319908

  15. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Haugstad, B.S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements

  16. ONU Power Saving Scheme for EPON System

    Science.gov (United States)

    Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  17. Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates

    Science.gov (United States)

    Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz

    2017-10-01

    In this paper, a triangular two-dimensional photonic crystal (PhC) of As2Se3-chalcogenide rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of As2Se3-chalcogenide instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.

  18. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  19. Glaucoma diagnosis by mapping macula with Fourier domain optical coherence tomography

    Science.gov (United States)

    Tan, Ou; Lu, Ake; Chopra, Vik; Varma, Rohit; Hiroshi, Ishikawa; Schuman, Joel; Huang, David

    2008-03-01

    A new image segmentation method was developed to detect macular retinal sub-layers boundary on newly-developed Fourier-Domain Optical Coherence Tomography (FD-OCT) with macular grid scan pattern. The segmentation results were used to create thickness map of macular ganglion cell complex (GCC), which contains the ganglion cell dendrites, cell bodies and axons. Overall average and several pattern analysis parameters were defined on the GCC thickness map and compared for the diagnosis of glaucoma. Intraclass correlation (ICC) is used to compare the reproducibility of the parameters. Area under receiving operative characteristic curve (AROC) was calculated to compare the diagnostic power. The result is also compared to the output of clinical time-domain OCT (TD-OCT). We found that GCC based parameters had good repeatability and comparable diagnostic power with circumpapillary nerve fiber layer (cpNFL) thickness. Parameters based on pattern analysis can increase the diagnostic power of GCC macular mapping.

  20. Transceiver optics for interplanetary communications

    Science.gov (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.