WorldWideScience

Sample records for average fuel enrichment

  1. Contemporary and prospective fuel cycles for WWER-440 based on new assemblies with higher uranium capacity and higher average fuel enrichment

    International Nuclear Information System (INIS)

    Gagarinskiy, A.A.; Saprykin, V.V.

    2009-01-01

    RRC 'Kurchatov Institute' has performed an extensive cycle of calculations intended to validate the opportunities of improving different fuel cycles for WWER-440 reactors. Works were performed to upgrade and improve WWER-440 fuel cycles on the basis of second-generation fuel assemblies allowing core thermal power to be uprated to 107 108 % of its nominal value (1375 MW), while maintaining the same fuel operation lifetime. Currently intensive work is underway to develop fuel cycles based on second-generation assemblies with higher fuel capacity and average fuel enrichment per assembly increased up to 4.87 % of U-235. Fuel capacity of second-generation assemblies was increased by means of eliminated central apertures of fuel pellets, and pellet diameter extended due to reduced fuel cladding thickness. This paper intends to summarize the results of works performed in the field of WWER-440 fuel cycle modernization, and to present yet unemployed opportunities and prospects of further improvement of WWER-440 neutronic and operating parameters by means of additional optimization of fuel assembly designs and fuel element arrangements applied. (Authors)

  2. Thermal breeder fuel enrichment zoning

    International Nuclear Information System (INIS)

    Capossela, H.J.; Dwyer, J.R.; Luce, R.G.; McCoy, D.F.; Merriman, F.C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect. 1 figure

  3. Guide for the estimation of the α and β coefficients in the Average enrichment equation as burnt function by fuel type

    International Nuclear Information System (INIS)

    Montes T, J.L.; Cortes C, C.C.

    1992-08-01

    The objective of the report is to determine manually or by means of a calculation sheet, the coefficients α and β of the average enrichment equation as function of the fuel burnt (B) using the Lineal Reactivity Pattern, with information generated by the RECORD code of the FMS package. (Author)

  4. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  5. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  6. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  7. Results of physics start-up tests of Mochovce and Bohunice units with 2-nd generation Gd fuel (average enrichment 4.87 %)

    International Nuclear Information System (INIS)

    Polakovic, F.

    2015-01-01

    There are presented main features of the fuel and the list of experimental neutron-physical characteristics measured during physics start-up tests.All together there were carried out 14 physics start-ups at Bohunice and Mochovce Units with the new type of fuel. Differences between theoretical and experimental neutron-physical characteristics were statistically processed and compared with the tests acceptance criteria. There are summarized results of reactor physics start-ups with 2-nd generation Gd fuel usage [ru

  8. Comments on applications of reduced enrichment fuels

    International Nuclear Information System (INIS)

    Winkler, M.H.

    1983-01-01

    Full text: I will briefly describe the experience gained using different fuels in the SAPHIR reactor in Switzerland. The SAPHIR has been operating since 1957 and was the first swimming pool reactor built outside of the United States, which was originally known as the Geneva Conference Reactor. The first core was loaded with 20 percent enriched high density UO 2 fuel with a density of about 2.5 grams per cc, fabricated in 1955 by Oak Ridge National Laboratory. After a few years of operation at a power level of one MW, more than one batch of the elements released small amounts of fission products mainly Xe and Kr. When these releases were discovered, high enriched fuel was becoming available so that the fuel fabricators began to produce the lower density high enriched fuels. During this transition from fabrication of low to high enriched fuels no one could foresee that the stone age of nuclear fuel fabrication would come back again. Therefore, we did not investigate the reasons for the fission product release from the high density low enriched UO 2 fuel. The second fuel type used in the SAPHIR was the 90 percent enriched low density U 3 O 8 fuel fabricated by NUKEM. This high enriched fuel has performed satisfactorily over the years. Since 1968, the core has been using improved 23 plate fuel elements with a loading of 280 grams of uranium. The reactor power has been recently increased to five MW. An additional increase in the power level to 10 MW is planned at the end of next year so that heavier loaded elements will be needed. In order to follow the recommendations of the INFCE working group 8C and in cooperation with the reduced enrichment program, we intend to initially reduce the fuel enrichment to 45 percent. Last year we ordered five fuel elements with a loading of 320 grams 235 U/element and 45 percent enrichment for full power tests. Unfortunately, the delivery of the necessary enriched fuel uranium has been delayed and it is not available at this time. If

  9. Low-enriched fuel particle performance review

    International Nuclear Information System (INIS)

    Homan, F.; Nabielek, H.; Yang, L.

    1978-08-01

    The available data on low-enriched (LEU) fuel particles were reviewed under the United States-Federal Republic of Germany Agreement. The most influential factors controlling the irradiation performance of LEU fuel particles were found to be plutonium transport, fission product transport, fuel particle mechanical performance and fuel particle chemical performande. (orig.) [de

  10. Low-enriched fuel particle performance review

    International Nuclear Information System (INIS)

    Homan, F.; Nabielek, H.; Yang, L.

    1978-08-01

    The available data on low-enriched uranium (LEU) fuel particles were reviewed under the United States-Federal Republic of Germany Agreement. The most influential factors controlling the irradiation performance of LEU fuel particles were found to be plutonium transport, fission product transport, fuel particle mechanical performance, and fuel particle chemical performance

  11. Nuclear fuel management via fuel quality factor averaging

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1978-01-01

    The numerical procedure of prime number averaging is applied to the fuel quality factor distribution of once and twice-burned fuel in order to evolve a fuel management scheme. The resulting fuel shuffling arrangement produces a near optimal flat power profile both under beginning-of-life and end-of-life conditions. The procedure is easily applied requiring only the solution of linear algebraic equations. (author)

  12. Analysis of a PHWR slightly enriched fuel

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1994-01-01

    It is widely known that the use of slightly enriched uranium in PHWR reactors presents economic advantages derived from the fact that less uranium is required for producing the same amount of energy. Several studies related with the use of this alternative in Atucha I NPP have been performed. The fuel assembly geometry considered up to now has been almost identical to the natural uranium one. In this work a modification consisting in the use of annular pellets in the outer ring of the cluster is analyzed. This design produces several performance benefits. The redistribution of the power in the fuel improves the maximum to average bundle power ratio. The improvement achieved depends on the void volume in the pellets which at the same time represents a certain burnup decrease. These parameters (power ratios and burnup loss) are quantified for the Atucha I and Embalse NPPs. This design improves the fuel behaviour with respect to the burnup extension derived from the slight enrichment. It is also interesting in case an overall power increase is considered. (author). 16 refs, 8 figs, 1 tab

  13. PWR fuel of high enrichment with erbia and enriched gadolinia

    International Nuclear Information System (INIS)

    Bejmer, Klaes-Håkan; Malm, Christian

    2011-01-01

    Today standard PWR fuel is licensed for operation up to 65-70 MWd/kgU, which in most cases corresponds to an enrichment of more than 5 w/o "2"3"5U. Due to criticality safety reason of storage and transportation, only fuel up to 5 w/o "2"3"5U enrichment is so far used. New fuel storage installations and transportation casks are necessary investments before the reactivity level of the fresh fuel can be significantly increased. These investments and corresponding licensing work takes time, and in the meantime a solution that requires burnable poisons in all pellets of the fresh high-enriched fuel might be used. By using very small amounts of burnable absorber in every pellet the initial reactivity can be reduced to today's levels. This study presents core calculations with fuel assemblies enriched to almost 6 w/o "2"3"5U mixed with a small amount of erbia. Some of the assemblies also contain gadolinia. The results are compared to a reference case containing assemblies with 4.95 w/o "2"3"5U without erbia, utilizing only gadolinia as burnable poison. The comparison shows that the number of fresh fuel assemblies can be reduced by 21% (which increases the batch burnup by 24%) by utilizing the erbia fuel concept. However, increased cost of uranium due to higher enrichment is not fully compensated for by the cost gain due to the reduction of the number assemblies. Hence, the fuel cycle cost becomes slightly higher for the high enrichment erbia case than for the reference case. (author)

  14. The low-enrichment fuel development program

    International Nuclear Information System (INIS)

    Stahl, D.

    1993-01-01

    In the 1950s and 1960s, low-power research reactors were built around the world utilized MTR-type fuel elements containing 20% enriched uranium. However, the demand for higher specific power created a need for greater uranium-235 concentrations. Early difficulties in increasing uranium content led to the substitution of highly enriched uranium in place of the 20% enriched fuel previously utilized. The highly enriched material also yielded other benefits including longer core residence time, higher specific reactivity, and somewhat lower cost. Highly enriched material then became readily available and was used for high-power reactors as well as in low-power reactors where 20% enriched material would have sufficed. The trend toward higher and higher specific power also led to the development of the dispersion-type fuels which utilized highly enriched uranium at a concentration of about 40 wt%. In the 1970's, however, concerns were raised about the proliferation resistance of fuels and fuel cycles. As a consequence, the U.S. Department of State has recently prohibited the foreign shipment of highly enriched material, except where prior contractual obligation or special merit exists. This will impact on the availability and utilization of highly enriched uranium for research and test reactor fuel. It has also stimulated development programs on fuels with higher uranium content which would allow the use of uranium of lower enrichment. The purpose of this report is to briefly describe the overall fuel-development program which is coordinated by Argonne National Laboratory for the Department of Energy, and to indicate the current and potential uranium loadings. Other reports will address the individual fuel-development activities in greater detail

  15. Optimal pin enrichment distributions in nuclear reactor fuel bundles

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1976-01-01

    A methodology has been developed to determine the fuel pin enrichment distribution that yields the best approximation to a prescribed power distribution in nuclear reactor fuel bundles. The problem is formulated as an optimization problem in which the optimal pin enrichments minimize the sum of squared deviations between the actual and prescribed fuel pin powers. A constant average enrichment constraint is imposed to ensure that a suitable value of reactivity is present in the bundle. When constraints are added that limit the fuel pins to a few enrichment types, one must determine not only the optimal values of the enrichment types but also the optimal distribution of the enrichment types amongst the pins. A matrix of boolean variables is used to describe the assignment of enrichment types to the pins. This nonlinear mixed integer programming problem may be rigorously solved with either exhaustive enumeration or branch and bound methods using a modification of the algorithm from the continuous problem as a suboptimization. Unfortunately these methods are extremely cumbersome and computationally overwhelming. Solutions which require only a moderate computational effort are obtained by assuming that the fuel pin enrichments in this problem are ordered as in the solution to the continuous problem. Under this assumption search schemes using either exhaustive enumeration or branch and bound become computationally attractive. An adaptation of the Hooke--Jeeves pattern search technique is shown to be especially efficient

  16. Slightly enriched uranium fuel for a PHWR

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1997-01-01

    An improved fuel element design for a PHWR using slightly enriched uranium fuel is presented. It maintains the general geometric disposition of the currently used in the argentine NPP's reactors, replacing the outer ring of rods by rods containing annular pellets. Power density reduction is achieved with modest burnup losses and the void volume in the pellets can be used to balance these two opposite effects. The results show that with this new design, the fuel can be operated at higher powers without violating thermohydraulic limits and this means an improvement in fuel management flexibility, particularly in the transition from natural uranium to slightly enriched uranium cycle. (author)

  17. Enrichment measurement in TRIGA type fuels

    International Nuclear Information System (INIS)

    Aguilar H, F.; Mazon R, R.

    2001-05-01

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  18. Reducing enrichment of fuel for research reactors

    International Nuclear Information System (INIS)

    Kanda, Keiji; Matsuura, Shojiro.

    1980-01-01

    In research reactors, highly enriched uranium (HEU) is used as fuel for their purposes of operation. However, the United States strongly required in 1977 that these HEU should be replaced by low enrichment uranium (LEU) of 20% or less, or even in unavoidable cases, it should be replaced by medium enrichment uranium (MEU). INFCE (International Nuclear Fuel Cycle Evaluation) which started its activity just at that time decided to discuss this problem in the research reactor group of No. 8 sectional committee. Japan has been able to forward the work, taking a leading part in the international opinion because she has taken the countermeasures quickly. INFCE investigated the problem along the lines of policy that the possibility of reducing the degree of enrichment should be limited to the degree in which the core structures and equipments of research reactors will be modified as little as possible, and the change of fuel element geometry will be done within the permissible thermohydrodynamic capacity, and concluded that it might be possible in near future to reduce the degree of enrichment to about 45% MEU, while the reduction to 20% LEU might require considerable research, development and verification. On the other hand, the joint researches by Kyoto University and ANL (Argonne National Laboratory) and by Japan Atomic Energy Research Institute and ANL are being continued. IAEA has edited the guidebook (IAEA-TECDOC-233) for reducing the degree of enrichment for developing countries. (Wakatsuki, Y.)

  19. Analysis of the performance of fuel cells PWR with a single enrichment and radial distribution of enrichments

    International Nuclear Information System (INIS)

    Vargas, S.; Gonzalez, J. A.; Alonso, G.; Del Valle, E.; Xolocostli M, J. V.

    2008-01-01

    One of the main challenges in the design of fuel assemblies is the efficient use of uranium achieving burnt homogeneous of the fuel rods as well as the burnt maximum possible of the same ones to the unload. In the case of the assemblies type PWR has been decided actually for fuel assemblies with a single radial enrichment. The present work has like effect to show the because of this decision, reason why a comparison of the neutronic performance of two fuel cells takes place with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The results shown in the present study of the behavior of the neutron flow as well as the power distribution through of assembly sustain the because of a single radial enrichment. (Author)

  20. Experience with a fuel rod enrichment scanner

    International Nuclear Information System (INIS)

    Kubik, R.N.; Pettus, W.G.

    1975-01-01

    This enrichment scanner views all fuel rods produced at B and W's Commercial Nuclear Fuel Plant. The scanner design is derived from the PAPAS System reported by R. A. Forster, H. D. Menlove, and their associates at Los Alamos. The spatial resolution of the system and smoothing of the data are discussed in detail. The cost-effectiveness of multi-detector versus single detector scanners of this general design is also discussed

  1. Axial blanket enrichment optimization of the NPP Krsko fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2001-01-01

    In this paper optimal axial blanket enrichment of the NPP Krsko fuel is investigated. Since the optimization is dictated by economic categories that can significantly vary in time, two step approach is applied. In the first step simple relationship between the equivalent change in enrichment of axial blankets and central fuel region is established. The relationship is afterwards processed with economic criteria and constraints to obtain optimal axial blanket enrichment. In the analysis realistic NPP Krsko conditions are considered. Except for the fuel enrichment all other fuel characteristics are the same as in the fuel used in the few most recent cycles. A typical reload cycle after the plant power uprate is examined. Analysis has shown that the current blanket enrichment is close to the optimal. Blanket enrichment reduction results in an approximately 100 000 US$ savings per fuel cycle.(author)

  2. Development of long-life low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.J.; West, G.B.

    1978-01-01

    With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on non-proliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U. S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of this year, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  3. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  4. Development of quality assurance methods for low enriched fuel assemblies

    International Nuclear Information System (INIS)

    Woolstenhulme, N.E.; Moore, G.A.; Perez, D.M.; Wachs, D.M.

    2010-01-01

    As the Reduced Enrichment for Research and Test Reactors (RERTR) fuel development program has furthered the technology of low enriched uranium fuels, much effort has been expended to specify requirements, perform appropriate inspections, and to qualify experimental fuel plates and assemblies for irradiation. A great deal of consideration has been given to generate examinations and criteria that are both applicable to the unique fuel types being developed and consistent with industry practices for inspecting plate-type reactor fuel. Recent developments in quality assurance (QA) methodologies have given a heightened confidence in satisfactory fuel plate performance. At the same time, recommendations are given to further develop a system suitable for the testing and acceptance of production fuel elements containing low enriched uranium fuels. (author)

  5. Qualification status of LEU [low enriched uranium] fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.

    1987-01-01

    Sufficient data has been obtained from tests of high-density, low-enriched fuels for research and test reactors to declare them qualified for use. These fuels include UZrH x (TRIGA fuel) and UO 2 (SPERT fuel) for rod-type reactors and UAl x , U 3 O 8 , U 3 Si 2 , and U 3 Si dispersed in aluminium for plate-type reactors. Except for U 3 Si, the allowable fission density for LEU applications is limited only by the available 235 U. Several reactors are now using these fuels, and additional conversions are in progress. The basic performance characteristics and limits, if any, of the qualified low-enriched (and medium-enriched) fuels are discussed. Continuing and planned work to qualify additional fuels is also discussed. (Author)

  6. Conversion of research reactors to low-enrichment uranium fuels

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1983-01-01

    There are at present approximately 350 research reactors in 52 countries ranging in power from less than 1 watt to 100 Megawatt and over. In the 1970's, many people became concerned about the possibility that some fuels and fuel cycles could provide an easy route to the acquisition of nuclear weapons. Since enrichment to less than 20% is internationally recognized as a fully adequate barrier to weapons usability, certain Member States have moved to minimize the international trade in highly enriched uranium and have established programmes to develop the technical means to help convert research reactors to the use of low-enrichment fuels with minimum penalties. This could involve modifications in the design of the reactor and development of new fuels. As a result of these programmes, it is expected that most research reactors can be converted to the use of low-enriched fuel

  7. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AUTOMOTIVE FUEL ECONOMY REPORTS § 537.9 Determination of fuel...

  8. RERTR program progress in qualifying reduced-enrichment fuels

    International Nuclear Information System (INIS)

    Snelgrove, James L.

    1983-01-01

    In order to provide the technical means for reducing the enrichment of uranium used to fuel research and test reactors, the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program has been engaged in the development and testing of higher-uranium-density fuels than had been used previously. This fuel development effort included work to increase the density of fuels which were being used at the time the Program began and work on a fuel with the potential for much higher density. The ultimate goal of the fuel development and testing phase of the Program is to 'qualify' the fuel for use. A fuel is considered qualified when a sufficient data base for the fuel exists that it can be approved by regulating bodies for use in reactors. To convert a core to the use of reduced-enrichment fuel it is necessary to show that the core will behave properly during normal and off-normal operating conditions and to show that the fuel will behave properly to a reasonable margin beyond the conditions expected during normal operation. It is this latter area that this paper will address. The main characteristics to be considered in evaluating the performance of a fuel are its swelling, its blister-threshold temperature, and its metallurgical appearance. Data for the qualification of the reduced-enrichment fuels being developed by the RERTR Program are obtained from examination of miniature fuel plates (miniplates) which successfully pass the irradiation screening tests and from examinations of full-sized fuel elements. This paper will summarize the miniplate data reported in other papers presented during this meeting and will give the status of full-sized element irradiations. Finally, the current status of qualification of the various fuel types will be discussed and some projections of the future will be given

  9. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  10. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  11. Feasibility of Low Enriched Uranium Fuel for Space Nuclear Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The purpose of this initial study is to create a baseline with which to perform further analysis and to build a solid understanding of the neutronic characteristics of a solid core for the nuclear thermal rocket. Once consistency with work done at Idaho National Laboratory (INL) is established, this paper will provide a study of other fuel types, such as low and medium-enriched uranium fuels. This paper will examine how the implementation of each fuel type affects the multiplication factor of the reactor, and will then explore different possibilities for alterations needed to accommodate their successful usage. The reactor core analysis was done using the MCNP5 code. While this study has not shown that the SNRE can be easily retrofitted for low-enriched U fuel, it has made a detailed study of the SNRE, and identified the difficulties of the implementation of low-enriched fuels in small nuclear rockets. These difficulties are the need for additional moderation and fuel mass in order to achieve a critical mass. Neither of these is insurmountable. Future work includes finding the best method by which to increase the internal moderation of the reactor balanced with appropriate sizing to prevent neutron leakage. Both of these are currently being studied. This paper will present a study of the Small Nuclear Rocket Engine (SNRE) and the feasibility of using low enriched Uranium (LEU) instead of the traditional high enriched Uranium (HEU) fuels.

  12. A simplified treatment of radial enrichment distributions of LWR fuel assemblies in criticality calculations

    International Nuclear Information System (INIS)

    Hennebach, M.; Schnorrenberg, N.

    2008-01-01

    Criticality safety assessments are usually performed for fuel assembly models that are as generic as possible to encompass small modifications in geometry that have no impact on criticality. Dealing with different radial enrichment distributions for a fuel assembly type, which is especially important for BWR fuel, poses more of a challenge, since this characteristic is rather obviously influencing the neutronic behaviour of the system. Nevertheless, the large variability of enrichment distributions makes it very desirable and even necessary to treat them in a generalized way, both to keep the criticality safety assessment from becoming too unwieldy and to avoid having to extend it every time a new variation comes up. To be viable, such a generic treatment has to be demonstrably covering, i.e. lead to a higher effective neutron multiplication factor k eff than any of the radial enrichment distributions it represents. Averaging the enrichment evenly over the fuel rods of the assembly is a general and simple approach, and under reactor conditions, it is also a covering assumption: the graded distribution is introduced to achieve a linear power distribution, therefore reducing the enrichment of the better moderated rods at the edge of the assembly. With an even distribution of the average enrichment over all rods, these wellmoderated rods will cause increased fission rates at the assembly edges and a rise in k eff . Since the moderator conditions in a spent nuclear fuel cask differ strongly from a reactor even when considering optimal moderation, the proof that a uniform enrichment distribution is a covering assumption compared with detailed enrichment distributions has to be cask-specific. In this report, a method for making that proof is presented along with results for fuel assemblies from BWR reactors. All results are from three-dimensional Monte Carlo calculations with the SCALE 5.1 code package [1], using a 44-group neutron crosssection library based on ENDF

  13. Refueling the RPI reactor facility with low-enrichment fuel

    International Nuclear Information System (INIS)

    Harris, D.R.; Rodriguez-Vera, F.; Wicks, F.E.

    1985-01-01

    The RPI Critical Facility has operated since 1963 with a core of thin, highly enriched fuel plates in twenty-five fuel assembly boxes. A program is underway to refuel the reactor with 4.81 w/o enriched SPERT (F-1) fuel rods. Use of these fuel rods will upgrade the capabilities of the reactor and will eliminate a security risk. Adequate quantities of SPERT (F-1) fuel rods are available, and their use will result in a great cost saving relative to manufacturing new low-enrichment fuel plates. The SPERT fuel rods are 19 inches longer than are the present fuel plates, so a modified core support structure is required. It is planned to support and position the SPERT fuel pins by upper and lower lattice plates, thus avoiding the considerable cost of new fuel assembly boxes. The lattice plates will be secured to the existing top and bottom plates. The design permits the fabrication and use of other lattice plates for critical experiment research programs in support of long-lived full development for power reactors. (author)

  14. From high enriched to low enriched uranium fuel in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L. [Nuclear Materials Science Institute, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-07-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% {sup 235}U), low-density UAlx research reactor fuel with high-density, low enriched (<20% {sup 235}U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U{sub 3}Si{sub 2} dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U{sub 3}Si{sub 2} (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  15. From high enriched to low enriched uranium fuel in research reactors

    International Nuclear Information System (INIS)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L.

    2010-01-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% 235 U), low-density UAlx research reactor fuel with high-density, low enriched ( 235 U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U 3 Si 2 dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U 3 Si 2 (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  16. A nondestructive testing device for determining 235U enrichment in power reactor fuel elements

    International Nuclear Information System (INIS)

    Liu Lanhua; Liu Nangai

    1990-07-01

    The development and application of a nondestructive testing device are presented, which is used for determining the 235 U enrichment in the mixed fuel of fuel elements with UO 2 pellets. The testing efficiency is improved because the passive gamma ray method and a hole-bored NaI crystal and four channel multichannel analyzer are used. The false discrimination rate is reduced as the average comparing method is taken. This device is simple in structure and easy in operation. It has provided a new testing tool for the fuel elements production in China. This device has successfully been used in Qinshan Nuclear Power Plant in testing its fuel elements

  17. Fuel enrichment reduction for heavy water moderated research reactors

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1984-01-01

    Twelve heavy-water-moderated research reactors of significant power level (5 MW to 125 MW) currently operate in a number of countries, and use highly enriched uranium (HEU) fuel. Most of these reactors could in principle be converted to use uranium of lower enrichment, subject in some cases to the successful development and demonstration of new fuel materials and/or fuel element designs. It is, however, generally accepted as desirable that existing fuel element geometry be retained unaltered to minimise the capital costs and licensing difficulties associated with enrichment conversion. The high flux Australian reactor, HIFAR, at Lucas Heights, Sydney is one of 5 Dido-class reactors in the above group. It operates at 10 MW using 80% 235 U HEU fuel. Theoretical studies of neutronic, thermohydraulic and operational aspects of converting HIFAR to use fuels of reduced enrichment have been made over a period. It is concluded that with no change of fuel element geometry and no penalty in the present HEU fuel cycle burn-up performance, conversion to MEU (nominally 45% 235 U) would be feasible within the limits of current fully qualified U-Al fuel materials technology. There would be no significant, adverse effects on safety-related parameters (e.g. reactivity coefficients) and only small penalties in reactor flux. Conversion to LEU (nominally 20% 235 U) a similar basis would require that fuel materials of about 2.3 g U cm -3 be fully qualified, and would depress the in-core thermal neutron flux by about 15 per cent relative to HEU fuelling. In qualitative terms, similar conclusions would be expected to hold for a majority of the above heavy water moderated reactors. (author)

  18. Low enrichment fuel development at INEL

    International Nuclear Information System (INIS)

    Newton, D.G.

    1993-01-01

    EG and G Idaho, Inc. is under contract to the Department of Energy to operate the Idaho National Engineering Laboratory (INEL). The INEL is located in southeastern Idaho. This facility has been operating since 1949 and was originally called the National Reactor Testing Station. Several contractors manage projects on this facility. Most projects at INEL are concerned with either reactor safety or irradiation testing. At Test Area North, for example, experiments are being conducted on the effects of loss of coolant. At the Test Reactor Area the ATR (Advanced Test Reactor) and ETR (Engineering Test Reactor) are used for irradiation testing and, of course, those of you working at Argonne will recognize the Experimental Breeder Reactors I and II. SPERT is an acronym for Special Power Excursion Reactor Test. A part of this former reactor facility has been converted into a fuel fabrication laboratory facility. At SPERT IV a miniature fabrication facility has been set up to duplicate the aluminide plate fuel processing line at Atomics International. In other words, a model of the supplier's processing has been created, so that what process changes are developed here can then be scaled up to production. The process is described showing: making UAI x powder, making compact for fuel core, making experimental fuel plate and compact assembly, inspection and testing the fuel plate. Main concern was related to possible swelling

  19. Reduced enriched fuel status at CERCA

    International Nuclear Information System (INIS)

    Tissier, A.; Fanjas, Y.

    1991-01-01

    CERCA's main objective is to satisfy its customers, improving quality of its products, and maintaining the costs as low as possible. Its Research and Development program reveals this goal. Different R and D topics under development at short (recycling of scraps), at medium (X-ray imaging machine) and at long term (improvement of fuel materials) are presented as evidence of this will. (orig.)

  20. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  1. Optimization of axial enrichment and gadolinia distributions for BWR fuel under control rod programming, (2)

    International Nuclear Information System (INIS)

    Hida, Kazuki; Yoshioka, Ritsuo

    1992-01-01

    A method has been developed for optimizing the axial enrichment and gadolinia distributions for the reload BWR fuel under control rod programming. The problem was to minimize the enrichment requirement subject to the criticality and axial power peaking constraints. The optimization technique was based on the successive linear programming method, each linear programming problem being solved by a goal programming algorithm. A rapid and practically accurate core neutronics model, named the modified one-dimensional core model, was developed to describe the batch-averaged burnup behavior of the reload fuel. A core burnup simulation algorithm, employing a burnup-power-void iteration, was also developed to calculate the rigorous equilibrium cycle performance. This method was applied to the optimization of axial two- and 24-region fuels for demonstrative purposes. The optimal solutions for both fuels have proved the optimality of what is called burnup shape optimization spectral shift. For the two-region fuel with a practical power peaking of 1.4, the enrichment distribution was nearly uniform, because a bottom-peaked burnup shape flattens the axial power shape. Optimization of the 24-region fuel has shown a potential improvement in BWR fuel cycle economics, which will guide future advancement in BWR fuel designs. (author)

  2. PULSTAR fuel, low enrichment, long lifetime, economical, proven

    International Nuclear Information System (INIS)

    Carter, Robert E.; Leonard, Bobby E.

    1993-01-01

    In 1962, the Western New York Research Center, Inc., located at the State University of New York at Buffalo, decided they had a need for a reactor with pulsing and high power steady state capabilities. Both General Atomic and the American Machine and Foundry Corporation (AMF) were contacted to ascertain if it were feasible to construct a dual purpose reactor of this type. The General Atomic proposal indicated the feasibility but would not warrant a steady state power of 2 MW with ultimate capability of 5 MW. AMF did provide a conceptual design for such a dual reactor, call the PULSTAR, and sufficient design information to confirm that the operating specifications could be met. The PULSTAR fuel consisted of 6 enrichment UO 2 sintered pellets in zircaloy tubes (pins) mounted in a x 5 array inside a fuel assembly. The fuel design was patterned after fuel that was under development for light water power reactors and that had been extensively tested under high power pulse conditions in the SPERT Test Reactor. The fuel assemblies are rectangular in a horizontal cross section, 315 inches by 2.74 inches, allowing for flat control blades to be inserted in the core grid arrangement. The active height of the core is approximately 24 inches. In the initial Buffalo AMF contract, a collaborative development agreement was signed in conjunction with agreement to construct the facility. After completion of the Buffalo PULSTAR Reactor, the PULSTAR fuel underwent an extensive test program which resulted in some minor changes in the basic design. In 1965, North Carolina State University contracted with AMF for the construction of a dual MW steady state (with ultimate capability of 5 MW and pulsing PULSTAR Research Reactor. Their fuel is identical to the Buffalo fuel except for having an enrichment of 4% U-235. This paper presented basic information about the characteristics and performance of the PULSTAR Research Reactor fuel. The following summarizes this information. The fuel is of

  3. PULSTAR fuel, low enrichment, long lifetime, economical, proven

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Robert E; Leonard, Bobby E [Institute for Resource Management, Inc., Bethesda, MD (United States)

    1993-08-01

    In 1962, the Western New York Research Center, Inc., located at the State University of New York at Buffalo, decided they had a need for a reactor with pulsing and high power steady state capabilities. Both General Atomic and the American Machine and Foundry Corporation (AMF) were contacted to ascertain if it were feasible to construct a dual purpose reactor of this type. The General Atomic proposal indicated the feasibility but would not warrant a steady state power of 2 MW with ultimate capability of 5 MW. AMF did provide a conceptual design for such a dual reactor, call the PULSTAR, and sufficient design information to confirm that the operating specifications could be met. The PULSTAR fuel consisted of 6 enrichment UO{sub 2} sintered pellets in zircaloy tubes (pins) mounted in a x 5 array inside a fuel assembly. The fuel design was patterned after fuel that was under development for light water power reactors and that had been extensively tested under high power pulse conditions in the SPERT Test Reactor. The fuel assemblies are rectangular in a horizontal cross section, 315 inches by 2.74 inches, allowing for flat control blades to be inserted in the core grid arrangement. The active height of the core is approximately 24 inches. In the initial Buffalo AMF contract, a collaborative development agreement was signed in conjunction with agreement to construct the facility. After completion of the Buffalo PULSTAR Reactor, the PULSTAR fuel underwent an extensive test program which resulted in some minor changes in the basic design. In 1965, North Carolina State University contracted with AMF for the construction of a dual MW steady state (with ultimate capability of 5 MW and pulsing PULSTAR Research Reactor. Their fuel is identical to the Buffalo fuel except for having an enrichment of 4% U-235. This paper presented basic information about the characteristics and performance of the PULSTAR Research Reactor fuel. The following summarizes this information. The fuel

  4. Low enrichment fuel conversion for Iowa State University. Final report

    International Nuclear Information System (INIS)

    Bullen, D.B.; Wendt, S.E.

    1996-01-01

    The UTR-10 research and teaching reactor at Iowa State University (ISU) has been converted from high-enriched fuel (HEU) to low- enriched fuel (LEU) under Grant No. DE-FG702-87ER75360 from the Department of Energy (DOE). The original contract period was August 1, 1987 to July 31, 1989. The contract was extended to February 28, 1991 without additional funding. Because of delays in receiving the LEU fuel and the requirement for disassembly of the HEU assemblies, the contract was renewed first through May 31, 1992, then through May 31, 1993 with additional funding, and then again through July 31, 1994 with no additional funding. In mid-August the BMI cask was delivered to Iowa State. Preparations are underway to ship the HEU fuel when NRC license amendments for the cask are approved

  5. Configuration of LWR fuel enrichment or burnup yielding maximum power

    International Nuclear Information System (INIS)

    Bartosek, V.; Zalesky, K.

    1976-01-01

    An analysis is given of the spatial distribution of fuel burnup and enrichment in a light-water lattice of given dimensions with slightly enriched uranium, at which the maximum output is achieved. It is based on the spatial solution of neutron flux using a one-group diffusion model in which linear dependence may be expected of the fission cross section and the material buckling parameter on the fuel burnup and enrichment. Two problem constraints are considered, i.e., the neutron flux value and the specific output value. For the former the optimum core configuration remains qualitatively unchanged for any reflector thickness, for the latter the cases of a reactor with and without reflector must be distinguished. (Z.M.)

  6. Irradiation program of slightly enriched fuel elements at the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Casario, J.A.; Cesario, R.H.; Perez, R.A.; Sidelnik, J.I.

    1987-01-01

    An irradiation program of fuel elements with slightly enriched uranium is implemented, tending to the homogenization of core at Atucha I nuclear power plant. The main benefits of the enrichment program are: a) to extend the average discharge burnup of fuel elements, reducing the number of elements used to generate the same amount of energy. This implies a smaller annual consumption of elements and consequently the reduction of transport and replacement operations and of the storage pool systems as well as that of radioactive wastes; b) the saving of uranium and structural materials (Zircaloy and others). In the initial stage of program an homogeneous core enrichment of 0.85% by weight of U-235 is anticipated. The average discharge burnup of fuel elements, as estimated by previous studies, is approximately 11.6 MW d/kg U. The annual consumption of fuel elements is reduced from 396 of natural uranium to 205, with a load factor of 0.85. It is intended to reach the next equilibrium steps with an enrichment of 1.00 and 1.20% in U-235. (Author)

  7. Development for analysis system of rods enrichment of nuclear fuels

    International Nuclear Information System (INIS)

    Rojas C, E.L.

    1998-01-01

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  8. The burnable poisons utilization for fissile enriched CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D; Nainer, O [Team 3 Solutions, Don Mills, ON (Canada)

    1996-12-31

    Utilization of burnable poison for the fissile enriched fueled CANDU 6 Mk1 core is investigated. The main incentives for this analysis are the reduction of void reactivity effects, the maximization of the fissile content of fresh fuel bundles, and the achievement of better power shape control, in order to preserve the power envelope of the standard 37 rod fuel bundle. The latter allows also the preservation of construction parameters of the standard core (for example: number and location of reactivity devices). It also permits the use of regular shift fueling schemes. The paper makes analyses of MOX weapons-grade plutonium and 1.2% SEU fueled CANDU 6 Mk 1 cores. (author). 6 refs., 4 tabs., 10 figs.

  9. Low-enriched uranium-molybdenum fuel plate development

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Prokofiev, I.G.

    2000-01-01

    To examine the fabricability of low-enriched uranium-molybdenum powders, full-size 450 x 60 x 0.5-mm (17.7 x 2.4 x 0.020-in.) fuel zone test plates loaded to 6 g U/cm 3 were produced. U-10 wt.% Mo powders produced by two methods, centrifugal atomization and grinding, were tested. These powders were supplied at no cost to Argonne National Laboratory by the Korean Atomic Energy Research Institute and Atomic Energy of Canada Limited, respectively. Fuel homogeneity indicated that both of the powders produced acceptable fuel plates. Operator skill during loading of the powder into the compacting die and fuel powder morphology were found to be important when striving to achieve homogeneous fuel distribution. Smaller, 94 x 22 x 0.6-mm (3.7 x 0.87 x 0.025-in.) fuel zone, test plates were fabricated using U-10 wt.% Mo foil disks instead of a conventional powder metallurgy compact. Two fuel plates of this type are currently undergoing irradiation in the RERTR-4 high-density fuel experiment in the Advanced Test Reactor. (author)

  10. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Transportation. (iv) [Reserved] (2) Average carbon-related exhaust emissions will be calculated to the nearest...

  11. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  12. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Science.gov (United States)

    2010-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year does...

  13. Use of enriched uranium as a fuel in CANDU reactors

    International Nuclear Information System (INIS)

    Zech, H.J.

    1976-08-01

    The use of slightly enriched uranium as a fuel in CANDU-reactors is studied in a simple parametric way. The results show the possibility of 1) about 30% savings in natural uranium consumption 2) about 35% increase in the utilization of the natural uranium 3) a decrease in fuelling costs to about 70 - 80% of the normal case of natural uranium fuelling. (orig.) [de

  14. The development of lower enrichment fuels for Canadian research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Feraday, M A; Belanger, L; Grolway, C M [AECL, Atomic Energy of Canada Limited, Chalk River, ON (Canada); Foo, M T [CRNL, Combustion Engineering Superheater Ltd., Moncton, NB (Canada)

    1983-08-01

    As part of the world wide move to proliferation resistant fuels, new fuels which use reduced enrichment uranium are being developed for use in the NRX and NRU reactors. A fuel consisting of particles of a USiAl alloy dispersed in an Al matrix has been selected for development along with Al-37 wt% U alloy and Al-U{sub 3}O{sub 8} cermet as backup fuels. This report outlines the progress made in the development of the Al-USiAl and Al-37 wt% U. Results show that good quality extruded rods containing either fuel can be made with techniques similar to those used to fabricate the current NRX and NRU fuels. However, the new fuels will be more expensive to make. Although the oxidation behaviour of the Al-USiAl is not as good as that of the Al-U alloys, its corrosion behaviour in high temperature water does not seem much worse. The oxidation and aqueous corrosion of A-37 wt% U are not much different from those of the Al-U alloys currently used. (author)

  15. Low enriched uranium fuel conversion and fuel shipping guide

    International Nuclear Information System (INIS)

    1997-01-01

    The analysis of reactor core physics and thermal hydraulics was completed in 1993. A supplement to the Final Safety Analysis Report describing the results of these analyses was submitted to the Nuclear Regulatory Commission along with proposed Technical Specifications in May, 1993. Discussions with the NRC staff led to a submittal of revised proposed Technical Specifications in February, 1994. The analytical work is complete. A second portion of the grant was to develop a fuel shipping guide for university research reactors. Such a guide was developed and is available for use by the research reactor community

  16. Effect of reduced enrichment on the fuel cycle for research reactors

    International Nuclear Information System (INIS)

    Travelli, A.

    1982-01-01

    The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel

  17. Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Carmona, Roberto; Oropeza, Ivonne P.

    2007-01-01

    An optimization methodology based on the Genetic Algorithms (GA) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The optimization algorithm was linked to the HELIOS code to evaluate the neutronic parameters included in the objective function. The goal is to search for a fuel lattice with the lowest average enrichment, which satisfy a reactivity target, a local power peaking factor (PPF), lower than a limit value, and an average gadolinia concentration target. The methodology was applied to the design of a 10 x 10 fuel lattice, which can be used in fuel assemblies currently used in the two BWRs operating at Mexico. The optimization process showed an excellent performance because it found forty lattice designs in which the worst one has a better neutronic performance than the reference lattice design. The main contribution of this study is the development of an efficient procedure for BWR fuel lattice design, using GA with an objective function (OF) which saves computing time because it does not require lattice burnup calculations

  18. Criticality safety study of dry spent fuel cask loaded with increased enrichment fuel

    International Nuclear Information System (INIS)

    Bznuni, S.; Baghdasaryan, N.; Amirjanyan, A.

    2013-01-01

    Existing Dry Spent Fuel Casks (DSC) for transporting and storing of Armenian NPP fuel was licensed for WWER-440 fuel assemblies with 3.6% enrichment. Having in mind that ANPP introduced new fuel assemblies with increased enrichment (3.82 %) re-assessment of criticality safety analysis for DSC is required. Criticality safety analysis of DSC was performed by KENO-VI program using 238-GROUP ENDF/B-VII.0 LIBRARY (V7-238). Results of analysis showed that additional 8 borated racks for fuel assemblies should be included in the design of DSC. In addition feasibility study was performed to find out level of burnup-credit approach implementation to keep current design of DSC unchanged. Burnup-credit analysis was performed by STARBUCS program using axial burnup profiles from Armenian NPP neutronics analysis carried out by BIPR code. (authors)

  19. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  20. Criticality evaluation of BWR MOX fuel transport packages using average Pu content

    International Nuclear Information System (INIS)

    Mattera, C.; Martinotti, B.

    2004-01-01

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by a homogeneous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, COGEMA LOGISTICS has studied a new calculation method based on the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in our approach. With this new method, for the same package reactivity, the Pu-content allowed in the package design approval can be higher. The COGEMA LOGISTICS' new method allows, at the design stage, to optimise the basket, materials or geometry for higher payload, keeping the same reactivity

  1. Minimization of waste from uranium purification, enrichment and fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    As any industry, nuclear industry generates a diverse range of waste which has to be managed in a safe manner to be acceptable to the public and the environment. The cost of waste management, the risks to the public and employees, and the detriment to the environment are dependent on the quantity and radioactive content of the waste generated. Waste minimization is a necessary activity needed to reduce the impact from nuclear fuel cycle operations and it is included in the national policy of some countries. In recognition of the importance of the subject, the IAEA has decided to review the current status of the work aimed at waste minimization in the nuclear fuel cycle. The waste minimization issues related to the back end of the nuclear fuel cycle are covered in Technical Reports Series No. 377 'Minimization of Radioactive Waste from Nuclear Power Plants and the Back End of the Nuclear Fuel Cycle' published in 1995. The present report deals with the front end of the nuclear fuel cycle, including existing options, approaches, developments and some specific considerations to be taken into account in decision making on waste minimization. It has been recognized that, in comparison with the back end of the nuclear fuel cycle, much less information is available, and this report should be considered as a first attempt to analyse waste minimization practices and opportunities in uranium purification, conversion, enrichment and fuel fabrication. Although mining and milling is an important part of the front end of the nuclear fuel cycle, these activities are excluded from consideration since relevant activities are covered in other IAEA publications.

  2. Minimization of waste from uranium purification, enrichment and fuel fabrication

    International Nuclear Information System (INIS)

    1999-10-01

    As any industry, nuclear industry generates a diverse range of waste which has to be managed in a safe manner to be acceptable to the public and the environment. The cost of waste management, the risks to the public and employees, and the detriment to the environment are dependent on the quantity and radioactive content of the waste generated. Waste minimization is a necessary activity needed to reduce the impact from nuclear fuel cycle operations and it is included in the national policy of some countries. In recognition of the importance of the subject, the IAEA has decided to review the current status of the work aimed at waste minimization in the nuclear fuel cycle. The waste minimization issues related to the back end of the nuclear fuel cycle are covered in Technical Reports Series No. 377 'Minimization of Radioactive Waste from Nuclear Power Plants and the Back End of the Nuclear Fuel Cycle' published in 1995. The present report deals with the front end of the nuclear fuel cycle, including existing options, approaches, developments and some specific considerations to be taken into account in decision making on waste minimization. It has been recognized that, in comparison with the back end of the nuclear fuel cycle, much less information is available, and this report should be considered as a first attempt to analyse waste minimization practices and opportunities in uranium purification, conversion, enrichment and fuel fabrication. Although mining and milling is an important part of the front end of the nuclear fuel cycle, these activities are excluded from consideration since relevant activities are covered in other IAEA publications

  3. Airborne effluent control at fuel enrichment, conversion, and fabrication plants

    International Nuclear Information System (INIS)

    Mitchell, M.E.

    1976-01-01

    Uranium conversion, enrichment, and fuel fabrication facilities generate gaseous wastes that must be treated prior to being discharged to the atmosphere. Since all three process and/or handle similar compounds, they also encounter similar gaseous waste disposal problems, the majority of which are treated in a similar manner. Ventilation exhausts from personnel areas and equipment off-gases that do not contain corrosive gases (such as HF) are usually passed through roughening and/or HEPA filters prior to release. Ventilation exhausts that contain larger quantities of particles, such as the conversion facilities' U 3 O 8 sampling operation, are passed through bag filters or cyclone separators, while process off-gases containing corrosive materials are normally treated by sintered metal filters or scrubbers. The effectiveness of particle removal varies from about 90 percent for a scrubber alone to more than 99.9 percent for HEPA filters or a combination of the various filters and scrubbers. The removal of nitrogen compounds (N 2 , HNO 3 , NO/sub x/, and NH 3 ) is accomplished by scrubbers in the enrichment and fuel fabrication facilities. The conversion facility utilizes a nitric acid recovery facility for both pollution control and economic recovery of raw materials. Hydrogen removal from gaseous waste streams is generally achieved with burners. Three different systems are currently utilized by the conversion, enrichment, and fuel fabrication plants to remove gaseous fluorides from airborne effluents. The HF-rich streams, such as those emanating from the hydrofluorination and fluorine production operations of the conversion plant, are passed through condensers to recover aqueous hydrofluoric acid

  4. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  5. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  6. Neutronic analysis of a fuel element with variations in fuel enrichment and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Martins, Felipe; Velasquez, Carlos E.; Cardoso, Fabiano; Fortini, Angela; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In this work, the goal was to evaluate the neutronic behavior during the fuel burnup changing the amount of burnable poison and fuel enrichment. For these analyses, it was used a 17 x 17 PWR fuel element, simulated using the 238 groups library cross-section collapsed from ENDF/BVII.0 and TRITON module of SCALE 6.0 code system. The results confirmed the effective action of the burnable poison in the criticality control, especially at Beginning Of Cycle (BOC) and in the burnup kinetics, because at the end of the fuel cycle there was a minimal residual amount of neutron absorbers ({sup 155}Gd and {sup 157}Gd), as expected. At the end of the cycle, the fuel element was still critical in all simulated situations, indicating the possibility of extending the fuel burn. (author)

  7. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  8. Draining Water from Aircraft Fuel Using Nitrogen Enriched Air

    Directory of Open Access Journals (Sweden)

    Michael Frank

    2018-04-01

    Full Text Available This paper concerns a computational study of the process of removing water from an aircraft’s fuel tank by pumping nitrogen enriched air (NEA from the bottom of the tank. This is an important procedure for the smooth, efficient, and safe operation of the aircraft’s engine. Due to the low partial pressure of water in the pumped NEA, it absorbs water from the fuel. The water-laden bubbles enter the ullage, the empty space above the fuel, and escape into the environment. The effects of the number of NEA inlets and the NEA mass flow rate on the timescale of the NEA pumping were investigated using Computational Fluid Dynamics. The results reveal that the absorption of water by the NEA bubbles is low and is not affected by the number of the inlets used. Yet, the water content in the fuel decreases fast during the procedure, which is the desired outcome. We show that this is due to the relatively dry NEA entering the ullage and displacing the moist air, thus reducing the partial pressure of water at the fuel/ullage interface. This shift from equilibrium conditions forces water to evaporate from the fuel’s entire surface. Furthermore, the amount of water migrating from the fuel directly into the ullage is significantly greater than that absorbed by the rising bubbles. In turn, the rate of decrease of the water content in the ullage is determined by the total NEA mass flow rate and this is the dominant contributor to the draining time, with the number of NEA nozzles playing a minor role. We confirmed this by pumping NEA directly into the ullage, where we observe a significant decrease of water even when the NEA is not pumped through the fuel. We also show that doubling the mass flow rate halves the draining time. When considering the capability of most modern aircraft to pump NEA through the fuel as part of their inerting system, the proposed method for removing water is particularly attractive, requiring very little (if at all design modification.

  9. Reactivity feedbacks of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 deg. C to 50 deg. C and 100 deg. C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U 3 O 8 -Al was about 2% more than the original UAl x -Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.

  10. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  11. 40 CFR 600.510-08 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-08 Section 600.510-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  12. 40 CFR 600.510-93 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-93 Section 600.510-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  13. 40 CFR 600.510-86 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-86 Section 600.510-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  14. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3

  15. Reduced enrichment fuel and its reactivity effects in the University Training Reactor Moata

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1983-08-01

    Concern for nuclear proliferation is likely to preclude future supply of highly enriched uranium fuel for research reactors such as the University Training Reactor Moata. This study calculates the fuel densities necessary to maintain the reactivity per plate of the present high enrichment (90 per cent 235 U) fuel for a range of lower enrichments assuming that no geometry changes are allowed. The maximum uranium density for commercially available aluminium-type research reactor fuels is generally considered to be about 1.7 g cm -3 . With this density limitation, the minimum enrichment to maintain present reactivity per plate is about 35 per cent 235 U. For low enrichment (max. 20 per cent 235 U) fuel, the required U density is about 2.9 g cm -3 , which is beyond the expected range for UAl/sub x/-Al but within that projected for the longer term development and full qualification for U 3 O 8 -Al. Medium enrichment (nominally 45 per cent 235 U) Al/sub x/-Al would be entirely satisfactory as an immediate replacement fuel, requiring no modifications to the reactor and operating procedures, and minimal reappraisal of safety issues. Included in this study are calculations of the fuel coefficients at various enrichments, the effect of replacing standard fuel plates or complete elements with 45 per cent enriched fuel, and the reactivity to be gained by replacing 12-plate with 13-plate elements

  16. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    James, R.A.

    1980-01-01

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  17. Effects of fuel enrichment on the physics characteristics of plutonium-fueled light water high converter reactors

    International Nuclear Information System (INIS)

    Chawla, R.; Seiler, R.; Gmur, K.

    1986-01-01

    Investigations have been carried out for three additional cores of the phase 1 experimental program on light water high converter reactor test lattices in the PROTEUS facility. An 8% (average) fissile plutonium tight-pitch lattice with a fuel/moderator volumetric ratio of 2.0 was considered. As for the earlier reported 6% (average) fissile plutonium test lattice, H 2 O, Dowtherm, and air were the moderator state investigated. Significant enrichment-dependent trends have been identified in the comparisons of calculated and experimental results for the wet (moderated cases, particularly for the important reaction rate ratio of 238 U capture of 239 Pu fission. These are then reflected in the comparison of moderator voidage characteristics, expressed in terms of individual components of the kinfinity void coefficient

  18. Effects of fuel enrichment on the physics characteristics of plutonium-fueled light water high converter reactors

    International Nuclear Information System (INIS)

    Chawla, R.; Seiler, R.; Gmuer, K.

    1986-01-01

    Investigations have been carried out for three additional cores of the phase 1 experimental program on light water high converter reactor test lattices in the PROTEUS facility. An 8% (average) fissile plutonium tight-pitch lattice with a fuel/moderator volumetric ratio of 2.0 was considered. As for the earlier reported 6% (average) fissile plutonium test lattice, H 2 O, Dowtherm, and air were the moderator states investigated. Significant enrichment-dependent trends have been identified in the comparisons of calculated and experimental results for the wet (moderated) cases, particularly for the important reaction rate ratio of 238 U capture to 239 Pu fission. These are then reflected in the comparison of moderator voidage characteristics, expressed in terms of individual components of the k-infinity void coefficient. (author)

  19. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  20. 78 FR 63518 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico... Louisiana Energy Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has authorized...

  1. 77 FR 18272 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Louisiana Energy Services (LES), LLC, National enrichment Facility in Eunice, New Mexico, and has verified...

  2. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  3. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has verified that cascades...

  4. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  5. RA3: Application of a calculation model for fuel management with SEFE (Slightly Enriched Fuel Elements)

    International Nuclear Information System (INIS)

    Estryk, G.; Higa, M.

    1993-01-01

    The RA-3 (5 MW, MTR) reactor is mainly utilized to produce radioisotopes (Mo-99, I-131, etc.). It started operating with Low Enrichment Uranium (LEU) in 1990, and spends around 12 fuels per year. Although this consumption is small compared to a nuclear power station. It is important to do a good management of them. The present report describes: - A reactor model to perform the Fuel Shuffling. - Results of fuel management simulations for 2 and a half years of operation. Some features of the calculations can be summarized as follows: 1) A 3D calculation model is used with the code PUMA. It does not have experimental adjustments, except for some approximations in the reflector representation and predicts: power, flux distributions and reactivity of the core in an acceptable way. 2) Comparisons have been made with the measurements done in the commissioning with LEU fuels, and it has also been compared with the empirical method (the previous one) which had been used in the former times of operation with LEU fuel. 3) The number of points of the model is approximately 13500, an it can be run in 80386 personal computer. The present method has been verified as a good tool to perform the simulations for the fuel management of RA-3 reactor. It is expected to produce some economic advantages in: - Achieving a better utilization of the fuels. - Leaving more time of operation for radioisotopes production. The activation measurements through the whole core required by the previous method can be significantly reduced. (author)

  6. Uranium Enrichment Determination of the InSTEC Sub Critical Ensemble Fuel by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Borrell Munnoz, Jose L.; LopezPino, Neivy; Diaz Rizo, Oscar; D'Alessandro Rodriguez, Katia; Padilla Cabal, Fatima; Arbelo Penna, Yunieski; Garcia Rios, Aczel R.; Quintas Munn, Ernesto L.; Casanova Diaz, Amaya O.

    2009-01-01

    Low background gamma spectrometry was applied to analyze the uranium enrichment of the nuclear fuel used in the InSTEC Sub Critical ensemble. The enrichment was calculated by two variants: an absolute method using the Monte Carlo method to simulated detector volumetric efficiency, and an iterative procedure without using standard sources. The results confirm that the nuclear fuel of the ensemble is natural uranium without any additional degree of enrichment. (author)

  7. Reduction of fuel enrichment for research reactors built-up in accordance with Russian (Soviet) projects

    International Nuclear Information System (INIS)

    Aleksandrov, A.B.; Enin, A.A.; Tkachyov, A.A.

    2001-01-01

    In accordance with the Russian program of reduced enrichment for research and test reactors (RERTR) built-up in accordance with Russian (Soviet) projects, AO 'NCCP' performs works on FA fabrication with reduced enrichment fuel. The main trends and results of performed works on research reactors FEs and FAs based on UO 2 and U-9%Mo fuel with U 235 19.7% enrichment are described. (author)

  8. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  9. Low enrichment fuel conversion for Iowa State University

    International Nuclear Information System (INIS)

    Rohach, A.F.; Hendrickson, R.A.

    1990-08-01

    Work during the reported period was centered primarily in preparation for receiving the LEU fuel and the shipping of the HEU fuel. The LEU fuel has not been received. The HEU fuel assemblies for the UTR-10 reactor will not fit into any current research reactor shipping containers; therefore, the fuel assemblies must be disassembled and the fuel shipped as fuel plates. Procedures and practices have been developed so that the fuel assemblies will be disassembled in a shielded environment

  10. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  11. Criticality issues with highly enriched fuels in a repository environment

    International Nuclear Information System (INIS)

    Taylor, L.L.; Sanchez, L.C.; Rath, J.S.

    1998-03-01

    This paper presents preliminary analysis of a volcanic tuff repository containing a combination of low enrichment commercial spent nuclear fuels (SNF) and DOE-owned SNF packages. These SNFs were analyzed with respect to their criticality risks. Disposal of SNF packages containing significant fissile mass within a geologic repository must comply with current regulations relative to criticality safety during transportation and handling within operational facilities. However, once the repository is closed, the double contingency credits for criticality safety are subject to unremediable degradation, (e.g., water intrusion, continued presence of neutron absorbers in proximity to fissile material, and fissile material reconfiguration). The work presented in this paper focused on two attributes of criticality in a volcanic tuff repository for near-field and far-field scenarios: (1) scenario conditions necessary to have a criticality, and (2) consequences of a nuclear excursion that are components of risk. All criticality consequences are dependent upon eventual water intrusion into the repository and subsequent breach of the disposal package. Key criticality parameters necessary for a critical assembly are: (1) adequate thermal fissile mass, (2) adequate concentration of fissile material, (3) separation of neutron poison from fissile materials, and (4) sufficient neutron moderation (expressed in units of moderator to fissile atom ratios). Key results from this study indicated that the total energies released during a single excursion are minimal (comparable to those released in previous solution accidents), and the maximum frequency of occurrence is bounded by the saturation and temperature recycle times, thus resulting in small criticality risks

  12. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  13. International collaboration to study the feasibility of implementing the use of slightly enriched uranium fuel in the Embalse CANDU reactor

    International Nuclear Information System (INIS)

    Rouben, B.; Chow, H.C.; Leung, L.K.H.; Inch, W.; Fink, J.; Moreno, C.

    2004-01-01

    In the last few years, Nucleoelectrica Argentina S.A. and Atomic Energy of Canada Limited have collaborated on a study of the technical feasibility of implementing Slightly Enriched Uranium (SEU) fuel in the Embalse CANDU reactor in Argentina. The successful conversion to SEU fuel of the other Argentine heavy-water reactor, Atucha 1, served as a good example. SEU presents an attractive incentive from the point of view of fuel utilization: if fuel enriched to 0.9% 235 U were used in Embalse instead of natural uranium, the average fuel discharge burnup would increase significantly (by a factor of about 2), with consequent reduction in fuel requirements, leading to lower fuel-cycle costs and a large reduction in spent-fuel volume per unit energy produced. Another advantage is the change in the axial power shape: with SEU fuel, the maximum bundle power in a channel decreases and shifts towards the coolant inlet end, consequently increasing the thermalhydraulics safety margin. Two SEU fuel carriers, the traditional 37-element bundle and the 43-element CANFLEX bundle, which has enhanced thermalhydraulic characteristics as well as lower peak linear element ratings, have been examined. The feasibility study gave the organizations an excellent opportunity to perform cooperatively a large number of analyses, e.g., in reactor physics, thermalhydraulics, fuel performance, and safety. A Draft Plan for a Demonstration Irradiation of SEU fuel in Embalse was prepared. Safety analyses have been performed for a number of hypothetical accidents, such as Large Loss of Coolant, Loss of Reactivity Control, and an off-normal condition corresponding to introducing 8 SEU bundles in a channel (instead of 2 or 4 bundles). There are concrete safety improvements which result from the reduced maximum bundle powers and their shift towards the inlet end of the fuel channel. Further improvements in safety margins would accrue with CANFLEX. In conclusion, the analyses identified no issues that

  14. Study of Fuel Rods Axial Enrichment Distribution Effect on the Neutronic Parameters of the Reactor Core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Nasiri, S. H.

    2012-01-01

    Optimization of the fuel burn up is an important issue in nuclear reactor fuel management and technology. Radial enrichment distribution in the reactor core is a conventional method and axial enrichment is constant along the fuel rod. In this article, the effects of axial enrichment distribution variation on neutronic parameters of PWR core are studied. The axial length of the core is divided into ten sections, considering axial enrichment variation and leaving the existing radial enrichment distribution intact. This study shows that the radial and axial power peaking factors are decreased as compared with the typical conventional core. In addition, the first core lifetime lasts 30 days longer than normal PWR core. Moreover, at the same time boric acid density is 0.2 g/kg at the beginning of the cycle. The flux shape is also flat at the beginning of the cycle for the proposed configuration of the axially enrichment distribution.

  15. Determining method and device for enrichment distribution inside of fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi.

    1997-01-01

    An enrichment degree at an initial burning stage of each of fuel rods of a BWR type reactor assembly is divided into groups. The enrichment degree at the initial burning stage of each of the groups is inputted, and the burning period from the loading to the taking out is divided into a plurality of burning steps. Nuclear characteristics of fuel assemblies such as the power of fuel rods, R-factor and infinite multiplication factor in each of the burning steps are estimated. The enrichment degree of the group of enrichment degree at the initial burning stage and the estimated power of fuel rods in a reactor operation state during the burning step are stored in the memory. A sensitivity coefficient showing the amount of change of the power of fuel rods in the burning step relative to the change of the enrichment degree of the group of enrichment degree is evaluated. A weighing function in the burning step is inputted. The maximum value of the product of the weighing function and the power of fuel rods throughout the entire burning steps is determined as an aimed function. Optimization calculation is conducted for determining the enrichment degree of the group so as to minimize the aimed function thereby determining the distribution of the enrichment degree. (N.H.)

  16. Research reactors. Problems of fuel element enrichment reduction. Deliberations and comments

    International Nuclear Information System (INIS)

    1978-10-01

    This paper summarises the main data from the major research reactors in the Federal Republic of Germany utilising highly enriched uranium (HEU) and presently available fuel technology for their fuel elements. The required modification for an adaption of the fabrication to lower enriched fuel are considered as well as the consequences on reactor performance operation and licensing. On the basis of past experience with reactor modifications a rough estimate of 82 months is given for the conversion of a reactor to a modified type of fuel and of 70 months for a fuel test program. The conclusions reflect the own calculations and data from other papers submitted to INFCE-WG 8C

  17. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  18. ZPR-3 Assembly 11: A cylindrical sssembly of highly enriched uranium and depleted uranium with an average 235U enrichment of 12 atom % and a depleted uranium reflector

    International Nuclear Information System (INIS)

    Lell, R.M.; McKnight, R.D.; Tsiboulia, A.; Rozhikhin, Y.

    2010-01-01

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was 235 U or 239 Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core 235 U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation Working Group (CSEWG) Benchmark

  19. Evaluation of fuel performance with different enrichment degrees for an experimental device

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Pino, Eddy S.; Gomes, Daniel S.; Abe, Alfredo Y.; Silva, Antonio Teixeira e

    2013-01-01

    Evaluation of fuel performance is conventionally carried out using specific codes developed to this aim. The obtained data are confirmed by experimental measurements performed using devices, which are located inside research reactors, projected to simulate reactor conditions under normal operation. Due to the limitations of the available reactor core length for irradiation in research reactors core, fuel rods used to obtain experimental data must present the same characteristics of the real fuel rod, but with a shorter length. Then, in order to compare the obtained results to the expected behavior of the real fuel rod, the experimental fuel rod should be designed with a free volume to fuel volume ratio very closed to the one of the full scale fuel rod. The aim of this paper is to evaluate some parameters and aspects related to the fuel rod behavior in a rod applied to the experimental irradiation device called Nuclear Fuel Irradiation Circuit (CAFE-Mod1) considering two fuel enrichment degrees: a typical commercial PWR enrichment and a value about 4 times higher. This evaluation is carried out by means of an adapted fuel performance code. Some of the parameter evaluated were fuel temperature and fission gas release as function of the fuel enrichment level. The results obtained in this paper were very similar to the ones previously obtained without consider similar free volume between the experimental and the full length fuel rod, regardless of low increases observed for the internal rod pressure and the amount of fission gas released. (author)

  20. Irradiation behavior of low-enriched U/sub 6/Fe-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, G.L.; Domagala, R.F.; Copeland, G.L.

    1987-10-01

    An irradiation test of miniature fuel plates containing low-enriched (20% /sup 235/U)U/sub 6/Fe dispersed and clad in Al was performed. The postirradiation examination shows U/sub 6/Fe to form extensive fission gas bubbles at burnups of only approx. = 20% of the original 20% fuel enrichment. Plate failure by fission gas-driven pillowing occurred at approx. = 40% burnup. This places U/sub 6/FE at the lowest burnup capability among low enriched dispersion fuels that have been tested for use in research and test reactors

  1. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  2. Low-enriched research reactor fuel: Post-Irradiation Examinations at SCK-CEN

    International Nuclear Information System (INIS)

    Van den Berghe, S.; Leenaers, A.

    2007-01-01

    Generally, research and test reactors are fuelled with fuel plates instead of pins. In most cases in the past, these plates consisted of high enriched (higher than 95 percent 235 U) UAl 3 powder mixed with a pure Al matrix (called the meat) in between two aluminium alloy plates (the cladding). These plates are then assembled in fuel elements of different designs to fit the needs of the various reactors. Since the 1970's, efforts have been going on to replace the high-enriched, low-density UAl 3 fuel with high-density, low enriched ( 235 U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched materials because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative and the Reduced Enrichment for Research and Test Reactors program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has been obtained with U 3 Si 2 fuel, which is currently used in many research reactors in the world. However, efforts to search for a better replacement have continued and are currently directed towards the U-Mo alloy fuel (7-10 weight percent Mo)

  3. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    International Nuclear Information System (INIS)

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1995-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the technical specifications of the GTRR so that LEU U 3 Si 2 -Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort. (author)

  4. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    International Nuclear Information System (INIS)

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1991-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the Technical Specifications of the GTRR so that LEU U 3 Si 2 -Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort

  5. Note on current position regarding the development by the UKAEA of Reduced Enrichment fuels for Research and Test Reactors

    International Nuclear Information System (INIS)

    Hickey, B.

    1983-01-01

    (Mechanically assembled) 90% enriched. The work carried out so far can be summarised as follows: Precipitation trials from uranyl nitrate followed by calcining of 800 deg C and further treatment at 1400 deg C have resulted in the production of U 3 O 8 particles in the desired size range of +325/-100 mesh with densities of up to 82 g/cc and surface areas down to 0.06 m 2 /g. Studies of variables are continuing in order to maximise the production of particles within the above size range; Pressing trials at various pressures have confirmed that compacts averaging 95% theoretical density can be produced without the use of a binder. A study of the use of power-weighing as an assessment of uranium content indicates that a precision of ± 0.5% can be achieved; this is comparable with current instrument measuring techniques; Rolling trials have shown that close control of core dimensions and good metallurgical bonding can be achieved using an aluminium-clad 6082 alloy for the clads and frames. Dogboning, clad thickness and uranium segregation determined by radiography are within the limits currently applied to U/Al alloy plates; Welding and forming trials on the plates produced have been satisfactory and it is not anticipated that difficulties will be encountered in fuel element assembly; At the present time, prototype fuel elements, both concentric and plate type, containing U 3 O 8 /Al cermet cores at 45% enrichment are being manufactured for irradiation trials. Proposals for these trials are being studied by the appropriate reactor safety committees and it is anticipated that irradiation in UK reactors will commence early in 1981. Arrangements are being made for post-irradiation examination of the fuel elements

  6. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched 235U fuel pins

    International Nuclear Information System (INIS)

    Caprioli, Sara

    2004-04-01

    A possibility for more efficient use of the nuclear fuel in a pressurized water reactor is investigated. The alternative proposed here consists of the implementation of PWR fuel assemblies with differently enriched 235 U fuel pins. This possibility is examined in comparison with the standard assembly design. The comparison is performed both in terms of single assembly performance and in the terms of nuclear reactor core performance and fuel utility. For the evaluation of the actual performance of the new assembly types, 5 operated fuel core sequences of R3 (Ringhals' third unit), for the period 1999 - 2004 (cycles 17 - 21) were examined. For every cycle, the standard fresh fuel assemblies have been identified and taken as reference cases for the study of the new type of assemblies with differently enriched uranium rods. In every cycle, assemblies with and without burnable absorber are freshly loaded into the core. The axial enrichment distribution is kept uniform, allowing for a radial (planar) enrichment level distribution only. At an assembly level, it has been observed that the implementation of the alternative enrichment configuration can lead to lower and flatter internal peaking factor distribution with respect to the uniformly enriched reference assemblies. This can be achieved by limiting the enrichment levels distribution to a rather narrow range. The highest enrichment level chosen has the greatest impact on the power distribution of the assemblies. As it increases, the enrichment level drives the internal peaking factor to greater values than in the reference assemblies. Generally, the highest enrichment level that would allow an improvement in the power performance of the assembly lies between 3.95 w/o and 4.17 w/o. The highest possible enrichment level depends on the average enrichment of the overall assembly, which is kept constant to the average enrichment of the reference assemblies. The improvements that can be obtained at this level are rather

  7. An optimal sequence of the reload charge fuel enrichment to a reactor

    International Nuclear Information System (INIS)

    Sato, S.

    1975-01-01

    An optimal sequence of enrichment of the reload charge of a three regions PWR during its life has been determined by dynamic programming. The state of the reactor is specified by the burnup of the fuel in the three regions and their initial enrichments. Constraints were imposed on the power peaking factor, the maximum burnup, the length of each stage between refueling and the total life of the reactor. 'Central-scatter loading' was assumed at each reloading. The two group diffusion equations were solved by the modal method for the static calculations of the reactor. Otimization of enrichment of the reload charge was performed under several hypotheses on the variation of the costs of uranium, costs of enrichment and the plant factor during the reactor life. It was observed that the optimum enrichment of the reload fuel is influenced more by the cost of enrichment rather than plant factor or cost of uranium. (Author) [pt

  8. Some implications of batch average burnup calculations on predicted spent fuel compositions

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1984-01-01

    The accuracy of using batch-averaged burnups to determine spent fuel characteristics (such as isotopic composition, activity, etc.) was examined for a typical pressurized-water reactor (PWR) fuel discharge batch by comparing characteristics computed by (a) performing a single depletion calculation using the average burnup of the spent fuel and (b) performing separate depletion calculations based on the relative amounts of spent fuel in each of twelve burnup ranges and summing the results. The computations were done using ORIGEN 2. Procedure (b) showed a significant shift toward a greater quantity of the heavier transuranics, which derive from multiple neutron captures, and a corresponding decrease in the amounts of lower transuranics. Those characteristics which derive primarily from fission products, such as total radioactivity and total thermal power, are essentially identical for the two procedures. Those characteristics that derive primarily from the heavier transuranics, such as spontaneous fission neutrons, are underestimated by procedure (a)

  9. Proceedings of the international meeting on development, fabrication and application of reduced enrichment fuels for research and test reactors

    International Nuclear Information System (INIS)

    1983-08-01

    Separate abstracts were prepared for each of the papers presented in the following areas: (1) Reduced Enrichment Fuels for Research and Test Reactors (RERTR) Program Status; (2) Fuel Development; (3) Fuel Demonstrations; (4) General Topics; and (5) Specific Reactor Applications

  10. Structure, conduct, and sustainability of the international low-enriched fuel fabrication industry

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2008-01-01

    This paper examines the cost structures of fabricating Low-Enriched Uranium fuel (LEU, enriched to 5% enrichment) light water reactor fuels. The LEU industry is decades old, and (except for high entry cost, i.e., the cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added by industry incumbents at Nth-of-a-Kind cost to the maximum capacity allowed by the license. On the other hand, new entrants face higher First-of-a-Kind costs and high new-facility licensing costs, increasing the scale required for entry thus discouraging small scale entry by countries with only a few nuclear power plants. Therefore, the industry appears to be competitive with sustainable investment in fuel-cycle states, and structural barriers-to-entry increase its proliferation resistance. (author)

  11. Study on the Calculation of Pebble-Bed Reactor Multiplication Factor As a Function of Fuel Kernel Radius at Various Enrichments

    International Nuclear Information System (INIS)

    Zuhair; Suwoto

    2009-01-01

    Main characteristics of PBR comes from utilization of coated particle fuels dispersed in pebble fuels . Because of vibration, fuel kernel can be grouped into cluster and in these cases, neutronic characteristics of pebble fuel significantly changes . In this study, cluster is modeled structural form consisting of uniform cubic cells with eight neighborhood TRISO particles . Neutronic characteristics was investigated by calculating pebble-bed reactor multiplication factor as a function of fuel kernel radius at various enrichments . The calculation results using MCNP5 code with ENDF/BVI neutron library show that k eff value depends on the average fuel radius and reaches its minimum when all kernels have the same radius, i.e. 0.0280 cm . With this radius, the total kernel surface area achieves maximum value . The dependence of k eff on fuel kernel radius decreases in relation to the increase in uranium enrichment . However, k eff value is not affected by fuel kernel radius when the uranium is 100% enriched . From these result, it can be concluded that, exception of uranium enrichment, the selection of fuel kernel radius should be considered thoroughly in designing a PBR, since this parameter provides significant influences on neutronic characteristics of the reactor. (author)

  12. Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel

    International Nuclear Information System (INIS)

    Bolon, A.E.; Straka, M.; Freeman, D.W.

    1997-01-01

    The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded

  13. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  14. Low enrichment fuel conversion for Iowa State University

    International Nuclear Information System (INIS)

    Rohach, A.F.; Hendrickson, R.A.

    1991-08-01

    Work during the reported period was centered primarily in preparation for receiving the LEU fuel and the shipping of the HEU fuel. This included development of procedures and tools for the disassembly process. During the period we held many practice sessions applying these tools and practices to a dummy fuel assembly. The LEU fuel was received on April 10, 1991 and the reactor was shut down on May 3, 1991 for refueling. The twelve HEU fuel assemblies in the UTR-10 reactor core were removed and disassembled during the week of May 6--9, 1991. The disassembly process went smoothly with only a few minor problems. Also during this reporting period several experimental measurements and preventative maintenance tasks were accomplished. Finally procedures and practices have been developed for the new LEU fuel loading and critical experiments which are to be completed during the late summer of 1991

  15. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  16. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  17. Study of correcting the effect of daughter age on determining 235U enrichment of fuel rods

    International Nuclear Information System (INIS)

    Deng Jingshan; Zhou Chengfang; Luo Minxuan; Liu Yun

    1997-01-01

    Gamma-ray passive technique is a very effective method to assay and determine 235 U enrichment of nuclear power plant fuel rods. There is a weakness in this passive method, i.e. only after the uranium isotope daughters of UO 2 pellets have reached to equilibrium with uranium parent, then the 235 U enrichment can be determined. This weakness greatly restricts the application of the method. A new two-peak and two-window technique is developed that can overcome the interference of uranium daughter decay in determining 235 U enrichment of nuclear fuel rods, and the results are very satisfactory. The new technique will play an important role in the gamma-ray passive technique for determining 235 U enrichment of fuel rods. This new technique also makes the gamma-ray passive method perfectly. (11 figs., 6 tabs.)

  18. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are there fleet average... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.55 Are there fleet...

  19. Benchmark criticality experiments for fast fission configuration with high enriched nuclear fuel

    International Nuclear Information System (INIS)

    Sikorin, S.N.; Mandzik, S.G.; Polazau, S.A.; Hryharovich, T.K.; Damarad, Y.V.; Palahina, Y.A.

    2014-01-01

    Benchmark criticality experiments of fast heterogeneous configuration with high enriched uranium (HEU) nuclear fuel were performed using the 'Giacint' critical assembly of the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) of the National Academy of Sciences of Belarus. The critical assembly core comprised fuel assemblies without a casing for the 34.8 mm wrench. Fuel assemblies contain 19 fuel rods of two types. The first type is metal uranium fuel rods with 90% enrichment by U-235; the second one is dioxide uranium fuel rods with 36% enrichment by U-235. The total fuel rods length is 620 mm, and the active fuel length is 500 mm. The outer fuel rods diameter is 7 mm, the wall is 0.2 mm thick, and the fuel material diameter is 6.4 mm. The clad material is stainless steel. The side radial reflector: the inner layer of beryllium, and the outer layer of stainless steel. The top and bottom axial reflectors are of stainless steel. The analysis of the experimental results obtained from these benchmark experiments by developing detailed calculation models and performing simulations for the different experiments is presented. The sensitivity of the obtained results for the material specifications and the modeling details were examined. The analyses used the MCNP and MCU computer programs. This paper presents the experimental and analytical results. (authors)

  20. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  1. Atomics International fuel fabrication facility and low enrichment program [contributed by T.A. Moss, AI

    International Nuclear Information System (INIS)

    Moss, T.A.

    1993-01-01

    The AI facility is approximately 30,000 square feet in area and consists of four general areas. One area is devoted to the production of UAl x powder. It consists of a series of arc melting furnaces, crushing lines, glove boxes, and compacting presses. The second area is used for the rolling of fuel plates. The third area is used for the machining of the plates to final size and also the machining of the fuel elements. In the fourth area the fuel plates are swaged into assemblies, and all welding and inspection operations are performed. As part of the lower enrichment program we are scheduled to put a second UAl x powder line into operation and we have had to expand some of our storage area. Under the low enrichment program the AI fuel facility will be modified to accommodate a separate low enrichment Al x production line and compacting line. This facility modification should be done by the end of the fiscal year. We anticipate producing fuel with an enrichment slightly less than 20% We anticipate powder being available for plate production shortly after the facility is completed. Atomics International is scheduled to conduct plate LEU verification work using fully enriched material in the June-July time period, at which time we will investigate what level of uranium loadings we can go to using the current process. It is anticipated that 55 volume percent uranium compound in our fuel form can be achieved

  2. Some Main Results of Commissioning of the Dalat Research Reactor with Low Enriched Fuel

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2014-01-01

    After completion of design calculation of the Dalat Nuclear Research Reactor (DNRR) for conversion from high-enriched uranium fuel (HEU) to low-enriched uranium (LEU) fuel, the commissioning programme for DNRR with entire core loaded with LEU fuel was successfully carried out from 24 November 2011 to 13 January 2012. The experimental results obtained during the implementation of commissioning programme showed a good agreement with design calculations and affirmed that the DNRR with LEU core have met all safety and exploiting requirements. (author)

  3. Economical Feedback of Increasing Fuel Enrichment on Electricity Cost for VVER-1000

    Directory of Open Access Journals (Sweden)

    Mohammed Saad Dwiddar

    2015-08-01

    Full Text Available A methodology of evaluating the economics of the front-end nuclear fuel cycle with a price change sensitivity analysis for a VVER-1000 reactor core as a case study is presented. The effect of increasing the fuel enrichment and its corresponding reactor cycle length on the energy cost is investigated. The enrichment component was found to represent the highly expenses dynamic component affecting the economics of the front-end fuel cycle. Nevertheless, the increase of the fuel enrichment will increase the reactor cycle length, which will have a positive feedback on the electricity generation cost (cent/KWh. A long reactor operation time with a cheaper energy cost set the nuclear energy as a competitive alternative when compared with other energy sources.

  4. Criticality safety of storage barrels for enriched uranium fresh fuel at the RB research reactor

    International Nuclear Information System (INIS)

    Pesic, M. P.

    1997-01-01

    Study on criticality safety of fresh low and high enriched uranium (LEU and HEU) fuel elements in the storage/transport barrels at the RB research reactor is carried out by using the well-known MCNP computer code. It is shown that studied arrays of tightly closed fuel barrels, each entirely loaded with 100 fresh (HEU or LEU) fuel slugs, are far away from criticality, even in cases of an unexpected flooding by light water.(author)

  5. Pebble bed modular reactor fuel enrichment discrimination using delayed neutrons - HTR2008-58133

    International Nuclear Information System (INIS)

    Skoda, R.; Rataj, J.; Uhera, J.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it's on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method. (authors)

  6. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  7. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  8. Automobile fuel economy : potential effects of increasing the corporate average fuel economy standards

    Science.gov (United States)

    2000-08-01

    Between 1981 and 1999, the average price of gasoline, adjusted for inflation, declined more than 60 percent. During the same period, the U.S. transportation sector's consumption of oil rose from less than 10 million to nearly 13 million barrels per d...

  9. A NEM diffusion code for fuel management and time average core calculation

    International Nuclear Information System (INIS)

    Mishra, Surendra; Ray, Sherly; Kumar, A.N.

    2005-01-01

    A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)

  10. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  11. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  12. Enrichment measurement in TRIGA type fuels; Medicion de enriquecimiento en combustibles tipo Triga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Mazon R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-05-15

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  13. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  14. The proposed use of low enriched uranium fuel in the High Flux Australian Reactor (HIFAR)

    International Nuclear Information System (INIS)

    Vittorio, D.; Durance, G.

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) operates the High Flux Australian Reactor (HIFAR). HIFAR commenced operation in the late 1950's with fuel elements containing uranium enriched to 93%. From that time the level of enrichment has gradually decreased to the current level of 60%. It is now proposed to further reduce the enrichment of HIFAR fuel to <20% by utilising LEU fuel assemblies manufactured by RISO National Laboratory, that were originally intended for use in the DR-3 reactor. Minor modifications have been made to the assemblies to adapt them for use in HIFAR. A detailed design review has been performed and initial safety analysis and reactor physics calculations are to be submitted to ARPANSA as part of a four-stage approval process. (author)

  15. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  16. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  17. Prompt neutron decay constant for the Oak Ridge Research Reactor with 20 wt % 235U enriched fuel

    International Nuclear Information System (INIS)

    Ragan, G.E.; Mihalczo, J.T.

    1986-01-01

    This paper describes measurements of the prompt neutron decay constant at delayed criticality for the Oak Ridge Research Reactor (ORR) using 20 wt % 235 U enriched fuel and compares these measurements with similar measurements using 93.2 wt % 235 U enriched fuel. This reactor parameter is of interest because it affects the transient behavior of the reactor in prompt criticality accident situations. This experiment is part of a program to investigate the differences in the performance of research reactors fueled with highly enriched and low enriched uranium. The prompt neutron decay constants were obtained using noise analysis measurement techniques for a core with newly fabricated, unirradiated fuel elements

  18. Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Shibata, Toshikazu.

    1982-01-01

    This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)

  19. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  20. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched {sup 235}U fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Sara

    2004-04-01

    A possibility for more efficient use of the nuclear fuel in a pressurized water reactor is investigated. The alternative proposed here consists of the implementation of PWR fuel assemblies with differently enriched {sup 235}U fuel pins. This possibility is examined in comparison with the standard assembly design. The comparison is performed both in terms of single assembly performance and in the terms of nuclear reactor core performance and fuel utility. For the evaluation of the actual performance of the new assembly types, 5 operated fuel core sequences of R3 (Ringhals' third unit), for the period 1999 - 2004 (cycles 17 - 21) were examined. For every cycle, the standard fresh fuel assemblies have been identified and taken as reference cases for the study of the new type of assemblies with differently enriched uranium rods. In every cycle, assemblies with and without burnable absorber are freshly loaded into the core. The axial enrichment distribution is kept uniform, allowing for a radial (planar) enrichment level distribution only. At an assembly level, it has been observed that the implementation of the alternative enrichment configuration can lead to lower and flatter internal peaking factor distribution with respect to the uniformly enriched reference assemblies. This can be achieved by limiting the enrichment levels distribution to a rather narrow range. The highest enrichment level chosen has the greatest impact on the power distribution of the assemblies. As it increases, the enrichment level drives the internal peaking factor to greater values than in the reference assemblies. Generally, the highest enrichment level that would allow an improvement in the power performance of the assembly lies between 3.95 w/o and 4.17 w/o. The highest possible enrichment level depends on the average enrichment of the overall assembly, which is kept constant to the average enrichment of the reference assemblies. The improvements that can be obtained at this level are

  1. Report of the Working Party on the conversion of HIFAR to low enrichment uranium fuel

    International Nuclear Information System (INIS)

    1986-06-01

    This report states the effect on research reactor operations and applications of international and national political decisions relating to fuel enrichment. Technical work done in Australia and overseas to establish parameters for conversion of research reactors from High Enrichment Uranium (HEU) to Low Enrichment Uranium (LEU) have been considered in developing a strategy for HIFAR. The requirements of the research groups, isotope production group and reactor operating staff have been considered. For HIFAR to continue to provide the required facilities in support of the national need, it is concluded these should be no reduction of neutron flux

  2. Linear accelerator fuel enricher regenerator (LAFER) and fission product transmutor (APEX)

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.; Takahashi, H.; Grand, P.; Kouts, H.J.C.

    1979-01-01

    In addition to safety, two other major problems face the nuclear industry today; first is the long-term supply of fissle material and second is the disposal of long-lived fission product waste. The higher energy proton linear accelerator can assist in the solution of each of these problems. High energy protons from the linear accelerator interact with a molten lead target to produce spallation and evaporation neutrons. The neutrons are absorbed in a surrounding blanket of light water power reactor (LWR) fuel elements to produce fissile Pu-239 or U-233 fuel from natural fertile U-238 or Th-232 contained in the elements. The fissile enriched fuel element is used in the LWR power reactor until its reactivity is reduced after which the element is regenerated in the linear accelerator target/blanket assembly and then the element is once again burned (fissioned) in the power LWR. In this manner the natural uranium fuel resource can supply an expanding nuclear power reactor economy without the need for fuel reprocessing, thus satisfying the US policy of non-proliferation. In addition, the quantity of spent fuel elements for long-term disposal is reduced in proportion to the number of fuel regeneration cycles through the accelerator. The limiting factor for in-situ regeneration is the burnup damage to the fuel cladding material. A 300 ma-1.5 GeV (450 MW) proton linear accelerator can produce approximately one ton of fissile (Pu-239) material annually which is enough to supply fuel to three 1000 MW(e) LWR power reactors. With two cycles of enriching and regenerating, the nuclear fuel natural resource can be stretched by a factor of 3.6 compared to present fuel cycle practice without the need for reprocessing. Furthermore, the need for isotopic enrichment facilities is drastically reduced

  3. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  4. Central fuel banking to reduce the number of proliferation sensitive enrichment activities

    International Nuclear Information System (INIS)

    Cserhati, A.

    2008-01-01

    Central fuel banking is a complex international political, economic and technical concept that aims to reduce uncontrolled spreading of uranium enrichment technology in the world in order to prevent proliferation of nuclear weapons. This paper first gives an outline of the notions: 'non-proliferation', the 'front-end' of the fuel cycle, the scope of fuel baking, nuclear fuel and the 60 years of enrichment technology. Enrichment technology is highly concentrated in the nuclear weapon states and other developed countries, but this is not exclusive any more. The technology is spreading. The global demand for enrichment services - parallel to massive nuclear investments in the civil sector and the ageing of older facilities - is constantly growing. Proliferation sensitivity calls for an effective and comprehensive non-proliferation regime. The solution may be multilateralizing the nuclear fuel cycle. After a historical overview, the proposals on multilateral nuclear approaches are presented. The assessment of the proposals is complex in the dimensions of: the non-proliferation aim, the assurance of supply aspect and other variables such as legal issues and non-nuclear inducements. A general evaluation and the recommendations of the Expert Panel of the IAEA are introduced outlining a plan on a middle- and long-term basis. The conclusion of the paper stresses the importance and challenge in finding the 'new balance' between obligations and interests of the members of the global community stating that the answers will have a significant impact on the nuclear indus- try, world wide economics and security policy. (orig.)

  5. Plutonium-enriched thermal fuel production experience in Belgium

    International Nuclear Information System (INIS)

    LeBlanc, J.M.

    1983-01-01

    Taking into account the strategic aspects of nuclear energy such as availability and sufficiency of resources and independence of energy supply, most countries planning to use plutonium look mainly to its use in fast reactors. However, by recycling the recovered uranium and plutonium in light water reactors, the saving of the uranium that would otherwise be required could already be higher than 35%. Therefore, until fast reactors are introduced, for macro- or microeconomic reasons, the plutonium recycle option seems to be quite valuable for countries having the plutonium technology. In Belgium, Belgonucleaire has been developing the plutonium technology for more than 20 yr and has operated a mixed oxide fuel fabrication plant since 1973. The past ten years of plant operation have provided for many improvements and relevant new documented experiences establishing a basis for new modifications that will be beneficial to the intrinsic quality, overall safety, and economy of the fuel

  6. Impact of UO{sub 2} Enrichment of Fuel Zoning Rods in Long Cycle Operation of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Cheol; Lee, Deokjung [KHNP CRI, Daejeon (Korea, Republic of); Jeong, Eun; Choe, Jiwon [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Extending the cycle length can not only increase the energy production, but also bring down outage costs by reducing the number of refueling outages during the lifetime of a nuclear power plant. It is reasonable that more fresh fuels are loaded for long cycle operation. However, minimizing the number of fresh fuels is essential in aspect of fuel economics. This can cause high power peaking near the water holes, due to increased thermalization of neutrons in those regions. To prevent this, special fuel zoning rods are used and surround the water holes. These rods use lower-enriched uranium (they have an enrichment rate lower than the other fuel rods). If we adjust the enrichment rate of fuel zoning rods, we can reduce power peaking and moreover increase cycle length. In this paper, we designed a core suitable for long cycle operation and we conducted sensitivity tests of fuel cycle length on UO2 enrichment rate in fuel zoning region in order to extend the cycle length while using the same number of fresh fuels. The correlations between the fuel zoning enrichment and cycle length, peaking factor, CBC and shutdown margin were analyzed. The more the enrichment rate in fuel zoning region increases, the more the fuel cycle length increases. At the same time, CBC, Fq and shutdown margin do not change significantly. Increasing the fuel zoning enrichment rate presents the right property of increasing the fuel cycle length without causing a large change to CBC, Fq and shutdown margin. In conclusion, by increasing the uranium enrichment rate in fuel zoning region, fuel cycle length can be increased and the safety margins can be maintained for long cycle operation of cores.

  7. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Science.gov (United States)

    2010-05-07

    ... Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule #0;#0;Federal... Fuel Economy Standards; Final Rule AGENCY: Environmental Protection Agency (EPA) and National Highway... reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the...

  8. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J C; Foo, M T; Berthiaume, L C; Herbert, L N; Schaefer, J D; Hawley, D [Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, ON KOJ 1JO (Canada)

    1985-07-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U{sub 3}Si in aluminum, to complement the dispersions of U{sub 3}Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U{sub 3}Si have been manufactured. (author)

  9. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.; Hawley, D.

    1985-01-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U 3 Si in aluminum, to complement the dispersions of U 3 Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U 3 Si have been manufactured. (author)

  10. Selection and use of a low enriched fuel in high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-08-01

    A new nuclear fuel composition for research reactors (Osiris, Siloe) is studied using low enriched (E<20%) uranium oxide. Its utilization leads to modifications in the facilities of these experimental reactors: increase of primary coolant flow, modifications in failed element detection system, handling of materials and storage

  11. Metallurgical and reactor physics aspects of using low enrichment fuel in Safari-I

    International Nuclear Information System (INIS)

    1978-09-01

    The feasibility of using lower than 93% enriched fuel in the SAFARI-I research and materials testing reactor is reviewed. Metallurgical experiments show that, using standard U-Al alloy technology and keeping the 235 U loading per element constant without altering the fuel plate thickness, a maximum of 35 weight percent of uranium in the meat can be achieved. This corresponds to using a minimum enrichment of 40% 235 U in order to retain the same mass of 235 U in the core. Even then a loss of approximately 3,3% in reactivity is calculated, which is more than the 2,8% sup(deltak)/k which is normally allowed for burnup. Using current U-Al alloy fuel technology, and an enrichment of approximately 45% 235 U, no changes in core configuration or coolant requirements will be necessary. The use of 20% enriched uranium will require the development of a new fuel design and technology if drastic redesign and modification of the reactor and coolant circuits is to be avoided. Without such new technology, the redesign and modification of the reactor will cost upwards of 3 million dollars and take up to 5 years to complete, requiring a complete shutdown of the reactor for approximately 2 years

  12. Analysis of the production of U3O8 powder for low enrichment fuel plates

    International Nuclear Information System (INIS)

    Boero, N.L.; Celora, J.; Parodi, C.A.; Ponieman, G.; Kellner, M.; Marajofsky, A.

    1987-01-01

    Description is made of the processes used in the production of U 3 O 8 powder for low enrichment plates for fuel elements for Research Reactors. The analysis of the efficiency of each batch is foccused on the relationship between milling and sieving times and the morphology of the product in each production step. (Author)

  13. Operational impacts of low-enrichment uranium fuel conversion on the Ford Nuclear Reactor

    International Nuclear Information System (INIS)

    Bernal, F.E.; Brannon, C.C.; Burgard, N.E.; Burn, R.R.; Cook, G.M.; Simpson, P.A.

    1985-01-01

    The University of Michigan Department of Nuclear Engineering and the Michigan Memorial-Phoenix Project have been engaged in a cooperative effort with Argonne National Laboratory to test and analyze low-enrichment fuel in the Ford Nuclear Reactor (FNR). The effort was begun in 1979, as part of the Reduced Enrichment Research and Test Reactor Program, to demonstrate on a whole-core basis the feasibility of enrichment reduction from 93% to <20% in Materials Test Reactor-type fuel designs. The first low-enrichment uranium (LEU) core was loaded into the FNR and criticality was achieved on December 8, 1981. The final LEU core was established October 11, 1984. No significant operational impacts have resulted from conversion of the FNR to LEU fuel. Thermal flux in the core has decreased slightly; thermal leakage flux has increased. Rod worths, temperature coefficient, and void coefficient have changed imperceptibly. Impressions from the operators are that power defect has increased slightly and that fuel lifetime has increased

  14. Study of Reduced-Enrichment Uranium Fuel Possibility for Research Reactors

    Directory of Open Access Journals (Sweden)

    Ruppel V.A.

    2015-01-01

    Full Text Available Having analyzed the results obtained in the work, it is possible to conclude that the flux density of fast and thermal neutrons in the shell of fuel elements in EFA in REU-zone decreased on average by 5% for UO2 fuel and by 7% for U9%Mo fuel. Change of neutrons flux density during the cycle does not exceed 4% for both fuel types. On average the fuel burnup in reactor core during the cycle for UO2 and U9%Mo increased by 2.8%. It is 1% less that in HEU-zone, which is conditioned by higher initial loading of 235U in fuel assembly with REU fuel.

  15. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  16. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  17. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  18. Light-duty vehicle fuel economy improvements, 1979--1998: A consumer purchase model of corporate average fuel economy, fuel price, and income effects

    Science.gov (United States)

    Chien, David Michael

    2000-10-01

    The Energy Policy and Conservation Act of 1975, which created fuel economy standards for automobiles and light trucks, was passed by Congress in response to the rapid rise in world oil prices as a result of the 1973 oil crisis. The standards were first implemented in 1978 for automobiles and 1979 for light trucks, and began with initial standards of 18 MPG for automobiles and 17.2 MPG for light trucks. The current fuel economy standards for 1998 have been held constant at 27.5 MPG for automobiles and 20.5 MPG for light trucks since 1990--1991. While actual new automobile fuel economy has almost doubled from 14 MPG in 1974 to 27.2 MPG in 1994, it is reasonable to ask if the CAFE standards are still needed. Each year Congress attempts to pass another increase in the Corporate Average Fuel Economy (CAFE) standard and fails. Many have called for the abolition of CAFE standards citing the ineffectiveness of the standards in the past. In order to determine whether CAFE standards should be increased, held constant, or repealed, an evaluation of the effectiveness of the CAFE standards to date must be established. Because fuel prices were rising concurrently with the CAFE standards, many authors have attributed the rapid rise in new car fuel economy solely to fuel prices. The purpose of this dissertation is to re-examine the determinants of new car fuel economy via three effects: CAFE regulations, fuel price, and income effects. By measuring the marginal effects of the three fuel economy determinants upon consumers and manufacturers choices, for fuel economy, an estimate was made of the influence of each upon new fuel economy. The conclusions of this dissertation present some clear signals to policymakers: CAFE standards have been very effective in increasing fuel economy from 1979 to 1998. Furthermore, they have been the main cause of fuel economy improvement, with income being a much smaller component. Furthermore, this dissertation has suggested that fuel prices have

  19. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  20. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Watanabe, Shouichi; Yoshioka, Kenichi; Mitsuhashi, Ishi; Kumanomido, Hironori; Sugahara, Satoshi; Hiraiwa, Kouji

    2009-01-01

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO 2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO 2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO 2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  1. U.S. progress in the development of very high density low enrichment research reactor fuels

    International Nuclear Information System (INIS)

    Meyer, M. K.; Wachs, D. M.; Jue, J.-F.; Keiser, D. D.; Gan, J.; Rice, F.; Robinson, A.; Woolstenhulme, N. E.; Medvedev, P.; Hofman, G. L.; Kim, Y.-S.

    2012-01-01

    The effort to develop low-enriched fuels for high power research reactors began world-wide in 1996. Since that time, hundreds of fuel specimens have been tested to investigate the operational limits of many variations of U-Mo alloy dispersion and monolithic fuels. In the U.S., the fuel development program has focused on the development of monolithic fuel, and is currently transitioning from conducting research experiments to the demonstration of large scale, prototypic element assemblies. These larger scale, integral fuel performance demonstrations include the AFIP-7 test of full-sized, curved plates configured as an element, the RERTR-FE irradiation of hybrid fuel elements in the Advanced Test Reactor, reactor specific Design Demonstration Experiments, and a multi-element Base Fuel Demonstration. These tests are conducted alongside mini-plate tests designed to prove fuel stability over a wide range of operating conditions. Along with irradiation testing, work on collecting data on fuel plate mechanical integrity, thermal conductivity, fission product release, and microstructural stability is underway. (authors)

  2. Examinations of the irradiation behaviour of U3Si2 test fuel plates with low enrichment

    International Nuclear Information System (INIS)

    Muellauer, J.

    1989-01-01

    Five low-enriched (19.7% 235 U), high-density (4.7 gU/cm/ 3 ) U 3 Si 2 -test fuel plates (miniplates) with different fine grain contents have been qualified under irradiation. During the course of irradiation up to burnup of 63% 235 U depletion, no released fractions of gaseous or solid fission products from the fuel plate to the rig coolant were detected. The measured swelling rate of the fuel zone (meat) is less than 0.45% ΔV/10 20 fissions/cm 3 the blister-threshold temperature of the fuel plates is above 520 0 C. The favourable irradiation behavior of the U 3 Si 2 fuel plates was not influenced by using higher amounts of fine grained particles (40% [de

  3. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    Science.gov (United States)

    Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  4. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  5. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  6. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  7. An enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3

    International Nuclear Information System (INIS)

    Park, Tongkyu; Yang, Won Sik; Kim, Sang-Ji

    2017-01-01

    Highlights: • An enhanced search algorithm for charged fuel enrichment was developed for equilibrium cycle analysis with REBUS-3. • The new search algorithm is not sensitive to the user-specified initial guesses. • The new algorithm reduces the computational time by a factor of 2–3. - Abstract: This paper presents an enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3. The current enrichment search algorithm of REBUS-3 takes a large number of iterations to yield a converged solution or even terminates without a converged solution when the user-specified initial guesses are far from the solution. To resolve the convergence problem and to reduce the computational time, an enhanced search algorithm was developed. The enhanced algorithm is based on the idea of minimizing the number of enrichment estimates by allowing drastic enrichment changes and by optimizing the current search algorithm of REBUS-3. Three equilibrium cycle problems with recycling, without recycling and of high discharge burnup were defined and a series of sensitivity analyses were performed with a wide range of user-specified initial guesses. Test results showed that the enhanced search algorithm is able to produce a converged solution regardless of the initial guesses. In addition, it was able to reduce the number of flux calculations by a factor of 2.9, 1.8, and 1.7 for equilibrium cycle problems with recycling, without recycling, and of high discharge burnup, respectively, compared to the current search algorithm.

  8. Status of the natural and enriched uranium market: the basic economical factor for the development of the fuel cycle

    International Nuclear Information System (INIS)

    Nochev, T.

    1999-01-01

    Status of the Natural and Enriched Uranium Market - the Basic. Economical Factor for the Development of the Fuel Cycle An overview of the status of the natural and enriched uranium market has been performed and it offers a possibility to estimate the changes and tendencies, the knowledge of which is needed in negotiations about the fresh fuel. The simplified financial analysis presented here demonstrates the economical profitability of the storage of the spent fuel making now the allocations for the future reprocessing

  9. Conversion and standardization of university reactor fuels using low-enrichment uranium - Options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The U.S. Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the U.S. Department of Energy. (author)

  10. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab

  11. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  12. A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors

    International Nuclear Information System (INIS)

    McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

    1994-01-01

    The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel's waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts

  13. Optimization of axial enrichment distribution for BWR fuels using scoping libraries and block coordinate descent method

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2017-03-15

    Highlights: • An optimization method for axial enrichment distribution in a BWR fuel was developed. • Block coordinate descent method is employed to search for optimal solution. • Scoping libraries are used to reduce computational effort. • Optimization search space consists of enrichment difference parameters. • Capability of the method to find optimal solution is demonstrated. - Abstract: An optimization method has been developed to search for the optimal axial enrichment distribution in a fuel assembly for a boiling water reactor core. The optimization method features: (1) employing the block coordinate descent method to find the optimal solution in the space of enrichment difference parameters, (2) using scoping libraries to reduce the amount of CASMO-4 calculation, and (3) integrating a core critical constraint into the objective function that is used to quantify the quality of an axial enrichment design. The objective function consists of the weighted sum of core parameters such as shutdown margin and critical power ratio. The core parameters are evaluated by using SIMULATE-3, and the cross section data required for the SIMULATE-3 calculation are generated by using CASMO-4 and scoping libraries. The application of the method to a 4-segment fuel design (with the highest allowable segment enrichment relaxed to 5%) demonstrated that the method can obtain an axial enrichment design with improved thermal limit ratios and objective function value while satisfying the core design constraints and core critical requirement through the use of an objective function. The use of scoping libraries effectively reduced the number of CASMO-4 calculation, from 85 to 24, in the 4-segment optimization case. An exhausted search was performed to examine the capability of the method in finding the optimal solution for a 4-segment fuel design. The results show that the method found a solution very close to the optimum obtained by the exhausted search. The number of

  14. Post-irradiation studies of test plates for low enriched fuel elements for research reactors

    International Nuclear Information System (INIS)

    Groos, E.; Buecker, H.J.; Derz, H.; Schroeder, R.

    1988-07-01

    In developing new fuels for research reactor elements that allow the use of low enriched uranium (LEU) 3 Si 2 , U 3 Si 1.5 , U 3 Si 1.3 and U 3 Si. Even up to high burnup rates (80% fifa) U 3 Si 2 was proved to be a reliable fuel that according to the test results achieved to date complies with all necessary requirements above all with respect to dimensional stability. U 3 Si showed significant changes of the fuel microstructure associated with considerably higher fuel swelling, that will probably exclude its use in research reactor operation. The irradiation of U 3 Si 1.3 and U 3 Si 1.5 plates had to be terminated untimely. Up to a burnup of 40% fifa these plates behaved quite well. An extrapolation to higher burnup rates, however only seems to be possible with reservations. (orig./HP) [de

  15. Atomics International fuel fabrication facility and low enrichment program. Part 2

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1993-01-01

    Most of you know our company from the last meeting in May in Vienna, so I won't steal your time with explaining and demonstrating the same techniques that we have heard this morning f rom the other speakers. I would just take some words to explain the order of business with highly enriched uranium. NUKEM handles around almost two tons of highly enriched uranium a year and it was necessary to satisfy all the new physical protection philosophies. That means that we have to install storage and safe fabrication sites for a lot of money, 2.5 meter thick concrete walls, and different alarm systems. So just to demonstrate how silly this business is, we have just overcome this for highly enriched uranium, and now we speak about low enriched uranium for which we don't need all of these investments to make this business safe. I would just like to concentrate my words on the status of fabrication and considerations in my company concerning the medium enriched uranium and low enriched uranium. In TABLE I are the different fuel types (see column 1) and then we have the fabrication in column 2; (The reason that I use the blackboard this morning is that I try to demonstrate all the techniques. However, all the speakers before me did this and in theory we are not so far away from each other.) the experience of my company in kg. In column 3 is the irradiation experience of these fuels types. Column 4 shows the studies and calculations made in our company for lower and medium enriched fuels. The preliminary fabrication tests and calculations are in column 5, and in column 6 we have the delivery time for a prototype core in months after UF 6 supply. Column 7 shows the time for the development of specifications including irradiation time in years for 6 and 7, and column 8 is the estimated cost of 6 and 7. There is just one fuel that is not in this summary and that is U-Zr

  16. Recommended reactor coolant water chemistry requirements for WWER-1000 units with 235U higher enriched fuel

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2011-01-01

    The last decade worldwide experience of PWRs and WWERs confirms the trends for the improvement of the nuclear power industry electricity production through the implementation of high burn-up or high fuel duty, which are usually accompanied with the usage of UO 2 fuel with higher content of 235 U - 4.0% - 4.5% (5.0%). It was concluded that the onset of sub-cooled nucleate boiling (SNB) on the fuel cladding surfaces and the initial excess reactivity of the core are the primary and basic factors accompanying the implementation of uranium fuel with higher 235 U content, aiming extended fuel cycles and higher burn-up of the fuel in Pressurized Water Reactors. As main consequences of the presence of these factors the modifications of chemical / electrochemical environments of nuclear fuel cladding- and reactor coolant system- surfaces are evaluated. These conclusions are the reason for: 1) The determination of the choices of the type of fuel cladding materials in respect with their enough corrosion resistance to the specific fuel cladding environment, created by the presence of SNB; 2) The development and implementation of primary circuit water chemistry guidelines ensuring the necessary low corrosion rates of primary circuit materials and limitation of cladding deposition and out-of-core radioactivity buildup; 3) Implementation of additional neutron absorbers which allow enough decrease of the initial concentration of H 3 BO 3 in coolant, so that its neutralization will be possible with the permitted alkalising agent concentrations. In this paper the specific features of WWER-1000 units in Bulgarian Nuclear Power Plant; use of 235 U higher enriched fuel in the WWER-1000 reactors in the Kozloduy NPP; coolant water chemistry and radiochemistry plant data during the power operation period of the Kozloduy NPP Unit 5, 15 th fuel cycle; evaluation of the approaches and results by the conversion of the WWER-1000 Units at the Kozloduy NPP to the uranium fuel with 4.3% 235 U as

  17. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  18. Optimal management of fuel in nuclear reactors with slightly enriched uranium and heavy water

    International Nuclear Information System (INIS)

    Serghiuta, D.

    1994-01-01

    This Ph.D. thesis presents the general principles guiding the optimal management of the fuel in CANDU type reactors with slightly enriched uranium. A method is devised which is based on the specific physical characteristics of this type of reactors and makes use of the multipurpose mathematical programming satisfying economical and nuclear safety requirements. The main goal of this work was the establishing of a refueling optimal methodology at equilibrium maintaining the reactor critical during operation. It also minimizes the fuel cycle cost through minimization of the utilized fissile material and at the same time by maximizing the reactor duty time through an optimal chain of refilling operations. This work can be considered as a contribution to a future project of CANDU type reactor core based on slightly enriched uranium. 74 Figs., 9 Tabs., 62 Refs

  19. Atomics international fuel fabrication facility and low enrichment program [contributed by H.W. Hassel, NUKEM

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1993-01-01

    NUKEM handles around almost two tons of highly enriched uranium a year and it was necessary to satisfy all the new physical protection philosophies. That means that we have to install storage and safe fabrication sites for a lot of money, 25 meter thick concrete walls, and different alarm systems. So just to demonstrate how silly this business is, we have just overcome this for highly enriched uranium, and now we speak about low enriched uranium for which we don't need all of these investments to make this business safe. I would-just like to concentrate my words on the status of fabrication and considerations in my company concerning the medium enriched uranium and low enriched uranium. In the table are the different fuel types (see column) and then we have the fabrication in column 2 the experience of my comp any in kg. In column 3 is the irradiation experience of these fuels types. Column 4 shows the studies and calculations made in our company for lower and medium enriched fuels. The preliminary fabrication tests and calculations are in column 5, and in column 6 we have the delivery time for a prototype core in months after UF 6 supply. Column 7 shows the time for the development of specifications including irradiation time in years for 6 and 7 and column is the estimated cost of 6 and 7 There is just one fuel that is not in this summary and that is U-Zr. We now see how complex and sophisticated this business is. I have told you already that we have installed for a lot of millions of Deutsche Mark the physical protection, storage vaults and things like that. Now we have to investigate all these different types of fuels for, as you see, a lot of money. Maybe these are a lot of optimistic figures; anyway the question is, does this make all the overall nuclear situation worldwide easier or not. One cannot answer for the moment, but anyway we have a lot of problems

  20. An approach to the nuclear fuel enrichment technology; Jedan prilaz tehnologiji obogacivanja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Marsicanin, B [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1979-07-01

    In this paper the impact of new construction materials development on the technology of nuclear fuel enrichment by centrifugal method is considered. New composite materials, based on carbon fibres, with high tensile strength and low density have better characteristics than any other structural material used for centrifuge rotor so far. Possible improvements of centrifuge performance are pointed out, based on comparative analyses of material characteristics for composite and other materials. (author)

  1. Verification of the enrichment of fresh VVER-440 fuel assemblies at NPP Paks

    Energy Technology Data Exchange (ETDEWEB)

    Almasia, I.; Hlavathya, Z.; Nguyena, C. T. [Institute of Isotopes, Hungarian Academy of Sciences, Budapest, (Hungary); others, and

    2012-06-15

    A Non Destructive Analysis (NDA) method was developed for the verification of {sup 235}U enrichment of both homogeneous and profiled VVER-440 reactor fresh fuel assemblies by means of gamma spectrometry. A total of ca. 30 assemblies were tested, five of which were homogeneous, with {sup 235}U enrichment in the range 1,6% to 3,6%, while the others were profiled with pins of 3,3% to 4,4% enrichment. Two types of gamma detectors were used for the test measurements: 2 coaxial HPGe detectors and a miniature CdZnTe (CZT) detector fitting into the central tube of the assemblies. It was therefore possible to obtain information from both the inside and the outside of the assemblies. It was shown that it is possible to distinguish between different types of assemblies within a reasonable measurement time (about 1000 sec). For the HPGe measurements the assemblies had to be lifted out from their storage rack, while for the CZT detector measurements the assemblies could be left at their storage position, as it was shown that the neighbouring assemblies do not affect measurement inside the assemblies' central tube. The measured values were compared to Monte Carlo simulations carried out using the MCNP code, and a recommendation for the optimal approach to verify the {sup 235}U enrichment of fresh VVER-440 reactor fuel assemblies is suggested.

  2. Progress in qualifying low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Hayes, S.L.; Meyer, M.K.

    2001-01-01

    The U.S. Reduced Enrichment for Research and Test Reactors program is working to qualify dispersions of U-Mo alloys in aluminum with fuel-meat densities of 8 to 9 gU cm -3 . Post irradiation examinations of the small fuel plates irradiated in the Advanced Test Reactor during the high-temperature RERTR-3 tests are virtually complete, and analysis of the large quantity of data obtained is underway. We have observed that the swelling of the fuel plates is stable and modest and that the swelling is dominated by the temperature-dependent interaction of the U-Mo fuel and the aluminum matrix. In order to extract detailed information about the behavior of these fuels from the data, a complex fuel-plate thermal model is being developed to account for the effects of the changing fission rate and thermal conductivity of the fuel meat during irradiation. This paper summarizes the empirical results of the post irradiation examinations and the preliminary results of the model development. In addition, the schedule for irradiation of full-sized elements in the HFR-Petten is briefly discussed. (author)

  3. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  4. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  5. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  6. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  7. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  8. Latest developments in rolled fuels for materials-testing reactors: a trend towards the use of low-enriched uranium

    International Nuclear Information System (INIS)

    Fanjas, Y.

    1981-01-01

    The properties of rolled fuels and the work done in this field by CERCA is described. The technology developed conforms to low enrichment requirements, whilst guaranteeing a satisfactory level of reactor performance [fr

  9. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  10. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  11. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    International Nuclear Information System (INIS)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee

    2016-01-01

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO_x ,SO_x and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that "1H and "1"3C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species

  12. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  13. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  14. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  15. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  16. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  17. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    International Nuclear Information System (INIS)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed

    2013-01-01

    The operations with the fissile materials such as U 235 introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k eff ) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed

  18. Comparison of heuristic optimization techniques for the enrichment and gadolinia distribution in BWR fuel lattices and decision analysis

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Martín-del-Campo, Cecilia; Montes-Tadeo, José-Luis; François, Juan-Luis; Ortiz-Servin, Juan-José; Perusquía-del-Cueto, Raúl

    2014-01-01

    Highlights: • Different metaheuristic optimization techniques were compared. • The optimal enrichment and gadolinia distribution in a BWR fuel lattice was studied. • A decision making tool based on the Position Vector of Minimum Regret was applied. • Similar results were found for the different optimization techniques. - Abstract: In the present study a comparison of the performance of five heuristic techniques for optimization of combinatorial problems is shown. The techniques are: Ant Colony System, Artificial Neural Networks, Genetic Algorithms, Greedy Search and a hybrid of Path Relinking and Scatter Search. They were applied to obtain an “optimal” enrichment and gadolinia distribution in a fuel lattice of a boiling water reactor. All techniques used the same objective function for qualifying the different distributions created during the optimization process as well as the same initial conditions and restrictions. The parameters included in the objective function are the k-infinite multiplication factor, the maximum local power peaking factor, the average enrichment and the average gadolinia concentration of the lattice. The CASMO-4 code was used to obtain the neutronic parameters. The criteria for qualifying the optimization techniques include also the evaluation of the best lattice with burnup and the number of evaluations of the objective function needed to obtain the best solution. In conclusion all techniques obtain similar results, but there are methods that found better solutions faster than others. A decision analysis tool based on the Position Vector of Minimum Regret was applied to aggregate the criteria in order to rank the solutions according to three functions: neutronic grade at 0 burnup, neutronic grade with burnup and global cost which aggregates the computing time in the decision. According to the results Greedy Search found the best lattice in terms of the neutronic grade at 0 burnup and also with burnup. However, Greedy Search is

  19. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  20. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  1. In core fuel management optimization by varying the equilibrium cycle average flux shape for batch refuelled reactors

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-12-01

    We suggest a method to overcome this problem of optimization by varying reloading patterns by characterizing each particular reloading pattern by a set of intermediate parameters that are numbers. Plots of the objective function versus the intermediate parameters can be made. When the intermediate parameters represent the reloading patterns in a unique way, the optimum of the objective function can be found by interpolation within such plots and we can find the optimal reloading pattern in terms of intermediate parameters. These have to be transformed backwards to find an optimal reloading pattern. The intermediate parameters are closely related to the time averaged neutron flux shape in the core during an equilibrium cycle. This flux shape is characterized by a set of ratios of the space averaged fluxes in the fuel zones and the space averaged flux in the zone with the fresh fuel elements. An advantage of this choice of intermediate parameters is that it permits analytical calculation of equilibrium cycle fuel densities in the fuel zones for any applied reloading patten characterized by a set of equilibrium cycle average flux ratios and thus, provides analytical calculations of fuel management objective functions. The method is checked for the burnup of one fissile nuclide in a reactor core with the geometry of the PWR at Borssele. For simplicity, neither the conversion of fuel, nor the buildup of fission products were taken into account in this study. Since these phenomena can also be described by the equilibrium cycle average flux ratios, it is likely that this method can be extended to a more realistic method for global in core fuel management optimization. (orig./GL)

  2. Development of very-high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snegrove, J.L.; Hofmann, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    The RERTR (=Reduced Enrichment for Research and Test Reactors) program has begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun. (author)

  3. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.

    2012-01-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  4. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

    2012-07-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  5. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  6. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  7. The Ford Nuclear Reactor demonstration project for the evaluation and analysis of low enrichment fuel

    International Nuclear Information System (INIS)

    Kerr, W.; King, J.S.; Lee, J.C.; Martin, W.R.; Wehe, D.K.

    1991-07-01

    The whole-core LEU fuel demonstration project at the University of Michigan was begun in 1979 as part of the Reduced Enrichment Research and Test Reactor (RERTR) Program at Argonne National Laboratory. An LEU fuel design was selected which would produce minimum perturbations in the neutronic, operations, and safety characteristics of the 2-MW Ford Nuclear Reactor (FNR). Initial criticality with a full LEU core on December 8, 1981, was followed by low- and full-power testing of the fresh LEU core, transitional operation with mixed HEU-LEU configurations, and establishment of full LEU equilibrium core operation. The transition from the HEU to the LEU configurations was achieved with negligible impact on experimental utilization and safe operation of the reactor. 78 refs., 74 figs., 84 tabs

  8. Calculation of parameters for inspection planning and evaluation: low enriched uranium conversion and fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.; Harms, N.L.

    1981-02-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities at low-enriched uranium (LEU) conversion and fuel fabrication facilities. This report presents the results and conclusions of those analyses. Implementation of IAEA safeguards at LEU conversion and fuel fabrication facilities must take into account a variety of practical problems and constraints. One of the key concerns is the problem of flow verification, especially product verification. The objective of this report is to help put the problem of flow verification in perspective by presenting the results of some specific calculations of inspection effort and probability of detection for various product measurement strategies. In order to provide quantitative information about the advantages and disadvantages of the various strategies, eight specific cases were examined

  9. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  10. Proposal of new 235U nuclear data to improve keff biases on 235U enrichment and temperature for low enriched uranium fueled lattices moderated by light water

    International Nuclear Information System (INIS)

    Wu, Haicheng; Okumura, Keisuke; Shibata, Keiichi

    2005-06-01

    The under prediction of k eff depending on 235 U enrichment in low enriched uranium fueled systems, which had been a long-standing puzzle especially for slightly enriched ones, was studied in this report. Benchmark testing was carried out with several evaluated nuclear data files, including the new uranium evaluations from preliminary ENDF/B-VII and CENDL-3.1. Another problem reviewed here was k eff underestimation vs. temperature increase, which was observed in the sightly enriched system with recent JENDL and ENDF/B uranium evaluations. Through the substitute analysis of nuclear data of 235 U and 238 U, we propose a new evaluation of 235 U data to solve both of the problems. The new evaluation was tested for various uranium fueled systems including low or highly enriched metal and solution benchmarks in the ICSBEP handbook. As a result, it was found that the combination of the new evaluation of 235 U and the 238 U data from the preliminary ENDF/B-VII gives quite good results for most of benchmark problems. (author)

  11. Postirradiation examination of a low enriched U3Si2-Al fuel element manufactured and irradiated at Batan, Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Sugondo, S.; Nasution, H.

    1994-01-01

    The first low-enriched U 3 Si 2 -Al dispersion plate-type fuel element produced at the Nuclear Fuel Element Center, BATAN, Indonesia, was irradiated to a peak 235 U burnup of 62%. Postirradiation examinations performed to data shows the irradiation behavior of this element to be similar to that of U 3 Si 2 -Al plate-type fuel produced and tested at other institutions. The main effect of irradiation on the fuel plates is a thickness increase of 30--40 μm (2.5-3.0%). This thickness increase is almost entirely due to the formation of a corrosion layer (Boehmite). The contribution of fuel swelling to the thickness increase is rather small (less than 10 μm) commensurate with the burnup of the fuel and the relatively moderate as-fabricated fuel volume fraction of 27% in the fuel meat

  12. The use of the average plutonium-content for criticality evaluation of boiling water reactor mixed oxide-fuel transport and storage packages

    International Nuclear Information System (INIS)

    Mattera, C.

    2003-01-01

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and (Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by an homogenous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, Cogema Logistics (formerly Transnucleaire) has studied a new calculation method based on the use of the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in the paper. (author)

  13. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  14. Neutronics substantiation of possibility for conversion of the WWR-K reactor core to operation with low-enriched fuel

    International Nuclear Information System (INIS)

    Arinkin, F.M.; Gizatulin, Sh.H.; Zhantikin, T.M.; Koltochnik, S.N.; Takibaev, A.Zh.; Talanov, S.V.; Chakrov, P.V.; Chekushina, L.V.

    2002-01-01

    The studies are aimed to calculation and experimental justification of possibility for conversion of the WWR-R reactor core to low-enriched nuclear fuel (the 19.75-% enrichment in isotope U-235), resulting in reducing the risk of non-sanctioned proliferation of nuclear materials which can be used as weapons materials. The analysis of available published data, related to problem of reduction of enrichment in the fuel used in research thermal reactors, has been carried out. Basing on the analysis results, reference fuel compositions have been chosen, in particular, uranium dioxide (UO 2 ) in aluminum master form and the UA1 4 alloy. Preliminary calculations have shown that, with the WWR-K reactor core preserved existing critical characteristics (the fuel composition: UA1 4 ), the uranium concentration in the fuel element is to be increased by a factor of 2.0-2.2, being impossible technologically. The calculations have been performed by means of the Monte Carlo computational codes. The program of optimal conversion of the WWR-K reactor core to low-enriched fuel has been developed, including: development of calculation models of the reactor core, composed of various designs of fuel elements and fuel assemblies (FA), on a base of corresponding computational codes (diffusion, statistical, etc.); implementation of experiments in the zero-power reactor (critical assembly) with the WWR-C-type FA, in view of correction of the computational constants used in calculations; implementation of reactor core neutronics calculations, in view of selection of the U-235 optimal content in the low-enriched fuel elements and choice of FA reload strategy at the regime of reactor core after burning; determination of the fuel element specification; determination of the critical and operational loads for the reactor core composed of rod/tubular fuel elements; calculation of the efficiency of the protection control system effectors, optimization of its composition, number and locations in the

  15. Argentine activities related to the development of low enriched fuel elements

    International Nuclear Information System (INIS)

    Giorsetti, Domingo R.; Perez, Edmundo E.

    1983-01-01

    Within the framework of the RERTR Program and supported by the technical cooperation work agreed upon between the U.S.A. and Argentina in May 1979, the CNEA Nuclear Fuel Department - Low Enriched Fuel Elements Project (ECBE Project), has carried on its own program for developing fuels with low enrichment for research and test reactors. Up to the present, its main objective has been to replace the highly enriched fuel used in its only reactor (RA-3) for research, development and radioisotopes production. The basic stages of the Argentine Program are shown in Table 1. At a meeting held in Vienna in March, 1980, the CNEA stated that its development of fuels with low enrichment would be in two fuel lines: UAl x -Al and U 3 O 8 -Al, and that its aim would be to reach uranium densities of 18-2.2 g/cm 3 for the UAI x -Al line and 2.4-3.0 g/cm 3 for the U 3 O 8 line. At the international meeting held at ANL in November, 1980, and after having received depleted uranium and uranium with 20% and 45% enrichment (purchased from the U.S.A. for manufacturing miniplates and possible standard fuels) to carry on the proposed development, CNEA anticipated -- after its first tests -- that the conditions were satisfactory for reaching uranium densities of 2.4-3.0 g/cm 3 in U 3 O 8 -Al fuel and of 2.4 g/cm 3 in UAI x -Al fuel. In February 1981, after Argentina accepted the obligation of paying for the irradiation service, authorization was obtained for irradiating miniplates in the Oak Ridge Reactor within the RERTR Program. In June 1981, the first set of miniplates was sent to Oak Ridge National Laboratory (ORNL). The maximum actual densities reached at that time were 3.12 g/cm 3 with U 3 O 8 -Al and 2.52 g/cm 3 with UAl x -Al. During a visit of the CNEA Project Technical Manager to the Argonne National Laboratory (ANL) in July 1981, and after exchanging ideas with ANL professional staff, the CNEA decided to incorporate a new line of development, that of U 3 Si-Al. Three months later

  16. Conversion to low-enriched fuel in research reactor aspects of licensing the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Jacquemin, J.

    1985-01-01

    Conversion to low-enriched fuel and usage of new developed highly densified fuel in research-reactors will be an essential alteration in operating the reactor. According to the German Energy Act this has to be licensed. here might be some risk to the licensee of an older research-reactor by suspending his operating license because he cannot meet current requirements to be fulfilled or because of a court decision.Disposal of irradiated fuel elements of the new fuel type is a further significant problem which has to be solved before issuing a new license. (author)

  17. Thermal-hydraulic analysis for core conversion to the use of low-enriched uranium fuels in the KUR

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Kanda, Keiji; Shibata, Toshikazu

    1985-01-01

    A feasibility study has been performed on the core conversion to the use of low-enriched uranium (LEU) fuels in the KUR. Five fuel element geometries are studied. For each fuel element, the relation between the pressure drop and the flow rate, critical heat flux, and heat fluxes for the onset of flow instability and the onset of nucleate boiling are calculated using the computer code PLTEMP3.MOD1 which has been developed for this analysis. The effect of fuel material (UAl x -Al, U 3 O 8 -Al and U 3 Si 2 -Al) on the peak fuel temperatures is also studied. A particular interest in the mixed core which may be constructed on the way to the use of LEU fuels, the change in the bypass flow rate due to the change in the gap between different fuel elements is investigated. (author)

  18. Neutronics and thermalhydraulics characteristics of the CANDU core fueled with slightly enriched uranium 0.9% U235

    International Nuclear Information System (INIS)

    Raica, V.; Sindile, A.

    1999-01-01

    The interest concerning the slightly enriched uranium (SEU) fuel cycle is due to the possibility to adapt (to convert) the current reactor design using natural uranium fuel to this cycle. Preliminary evaluations based on discharged fuel burnup estimates versus enrichment and on Canadian experience in fuel irradiation suggest that for a 0.93% U-235 enrichment no design modifications are required, not even for the fuel bundle. The purpose of this paper is to resume the results of the studies carried on in order to clarify this problem. The calculation methodology used in reactor physics and thermal-hydraulics analyses that were performed adapted and developed the AECL suggested methodology. In order to prove the possibility to use the SEU 0.93% without any design modification, all the main elements from the CANDU Reactor Physics Design Manual were studied. Also, some thermal-hydraulics analyses were performed to ensure that the operating and safety parameters were respected. The estimations sustain the assumption that the current reactor and fuel bundle design is compatible to the using of the SEU 0.93% fuel. (author)

  19. ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; National Security; Inst. of Physics and Power Engineering

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation

  20. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  1. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  2. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vin a Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  3. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  4. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vinca Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  5. Determination of burnup, cooling time and initial enrichment of PWR spent fuel by use of gamma-ray activity ratios

    International Nuclear Information System (INIS)

    Min, D.K.; Park, H.J.; Park, K.J.; Ro, S.G.; Park, H.S.

    1999-01-01

    The Korea Atomic Energy Institute has been developing the algorithms for sequential determination of cooling time, initial enrichment and burnup of the PWR spent fuel assembly by use of gamma ratio measurements, i.e. 134 Cs/ 137 Cs, 154 Eu/ 137 Cs and 106 Ru 137 Cs/( 134 Cs) 2 . Calculations were performed by applying the ORIGEN-S code. This method has advantages over combination techniques of neutron and gamma measurement, because of its simplicity and insensitivity to the measurement geometry. For verifying the algorithms an experiment for determining the cooling time, initial enrichment and burnup of the two PWR spent fuel rods was conducted by use of high-resolution gamma detector (HPGe) system only. This paper describes the method used and interim results of the experiment. This method can be applied for spent fuel characterization, burnup credit and safeguards of the spent fuel management facility

  6. Economical benefits for the use of slightly enriched fuel elements at the Atucha-I nuclear power plant

    International Nuclear Information System (INIS)

    Sidelnik, J.I.; Sosa, M.A.

    1987-01-01

    The fuel represents a very important factor in the operative cost of the Atucha I nuclear power plant. This cost is drastically reduced with the use of fuel elements of slightly enriched uranium. The annual saving is analyzed with actual values for fuel elements with an enrichment of 0.85% by weight of U-235. With the reactor core in equilibrium state the annual saving achieved is approximately 7.5-10 u$s. According to the present irradiation plan, the benefit for the transition period is studied. An analysis of the sensitivity to differential increments in factors determining the cost of fuel elements or to changes in manufacturing losses is also performed, calculating its effect on the waste, the storage of irradiated elements and the amount of UO 2 required. (Author)

  7. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Liu, Zhi; Grass, Michael E.; Biegalski, Michael D.; Lee, Yueh-Lin; Morgan, Dane; Christen, Hans M.; Bluhm, Hendrik; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  8. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  9. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    International Nuclear Information System (INIS)

    Uriarte, A.; Ramos, L.; Estrada, J.; del Val, J. L.

    1962-01-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO 2 F 2 solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs

  10. Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates

    International Nuclear Information System (INIS)

    Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

    1996-05-01

    This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event ( 20 fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10 20 fissions, the number of fissions equals about 10 28 , which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada

  11. Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

    1996-05-01

    This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event (<10{sup 20} fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10{sup 20} fissions, the number of fissions equals about 10{sup 28}, which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada.

  12. Average biomass of four Northwest shrubs by fuel size class and crown cover.

    Science.gov (United States)

    Robert E. Martin; David W. Frewing; James L. McClanahan

    1981-01-01

    The average biomass of big sagebrush (Artemisia tridentata Nutt.), antelope bitterbrush (Purshia tridentata (Pursh) DC.), snowbrush ceanothus (Ceanothus velutinus Dougl. ex Hook.), and greenleaf manzanita (Arctostaphylos patula Greene) was 6.1, 5.1, 10.7, and 16.2 tons per acre (13.9,...

  13. Safety concerning the alteration in fuel material usage (new installation of the uranium enrichment pilot plant) at Ningyo Pass Mine of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    A report of the Committee on Examination of Nuclear Fuel Safety was presented to the Atomic Energy Commission of Japan, which is concerned with the safety in the alteration of fuel material usage (new installation of the uranium enrichment pilot plant) at the Ningyo Pass Mine. Its safety was confirmed. The alteration, i.e. installation of the uranium enrichment pilot plant, is as follows. Intended for the overall test of centrifugal uranium enrichment technology, the pilot plant includes a two-storied main building of about 9,000 m 2 floor space, containing centrifuges, UF 6 equipment, etc., a uranium storage of about 1,000 m 2 floor space, and a waste water treatment facility, two-storied with about 300 m 2 floor space. The contents of the examination are safety of the facilities, criticality control, radiation control, waste treatment, and effects of accidents on the surrounding environment. (Mori, K

  14. Determination of the average number of electrons released during the oxidation of ethanol in a direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Majidi, Pasha; Pickup, Peter G.

    2015-01-01

    The energy efficiency of a direct ethanol fuel cell (DEFC) is directly proportional to the average number of electrons released per ethanol molecule (n-value) at the anode. An approach to measuring n-values in DEFC hardware is presented, validated for the oxidation of methanol, and shown to provide n-values for ethanol oxidation that are consistent with trends and estimates from full product analysis. The method is based on quantitative oxidation of fuel that crosses through the membrane to avoid the errors that would otherwise result from crossover. It will be useful for rapid screening of catalysts, and allows performances (polarization curves) and n-values to be determined simultaneously under well controlled transport conditions.

  15. Feasibility Study on Nitrogen-15 Enrichment and Recycling System for Innovative FR Cycle System With Nitride Fuel

    International Nuclear Information System (INIS)

    Masaki Inoue; Kiyoshi Ono; Tsuna-aki Fujioka; Koji Sato; Takeo Asaga

    2002-01-01

    Highly-isotopically-enriched nitrogen (HE-N 2 ; 15 N abundance 99.9%) is indispensable for a nitride fueled fast reactor (FR) cycle to minimize the effect of carbon-14 ( 14 C) generated mainly by 14 N(n,p) 14 C reaction in the core on environmental burden. Thus, the development of inexpensive 15 N enrichment and recycling technology is one of the key aspects for the commercialization of a nitride fueled FR cycle. Nitrogen isotope separation by the gas adsorption technique was experimentally confirmed in order to obtain its technological perspective. A conventional pressure swing adsorption technique, which is already commercialized for recovering the nitrogen gas from multi-composition gas-mixture, would be suitable for recovering in both reprocessing and fuel fabrication to recycle the HE-N 2 gas. A couple of the nitride fuel cycle system concepts including the reprocessing and fuel fabrication process flow diagrams with the HE-N 2 gas recycling were newly designed for both aqueous and non-aqueous (pyrochemical) nitride fuel recycle plants, and also the effect of the HE-N 2 gas recycling on the economics of each concept was evaluated. (authors)

  16. Conversion of the RB reactor neutrons by highly enriched uranium fuel and lithium deuteride

    International Nuclear Information System (INIS)

    Strugar, P.; Sotic, O.; Ninkovic, M.; Pesic, M.; Altiparmakov, D.

    1981-01-01

    A thermal-to-fast-neutron converter has been constructed at the RB reactor. The material used for the conversion of thermal neutrons is highly enriched uranium fuel of Soviet production applied in Yugoslav heavy water experimental reactors RA and RB. Calculations and preliminary measurements show that the spectrum of converted neutrons only slightly differs from that of fission neutrons. The basic characteristics of converted neutrons can be expressed by the neutron radiation dose of 800 rad (8 Gy) for 1 h of reactor operation at a power level of 1 kW. This dose is approximately 10 times higher than the neutron dose at the same place without converter. At the same time, thermal neutron and gamma radiation doses are negligible. The constructed neutron converter offers wide possibilities for applications in reactor and nuclear physics and similar disciplines, where neutron spectra of high energies are required, as well as in the domain of neutron dosimetry and biological irradiations in homogeneous fields of larger dimensions. The possibility of converting thermal reactor neutrons with energies of about 14 MeV with the aid of lithium deuteride from natural lithium has been considered too. (author)

  17. recovery of enriched uranium from waste solution obtained from fuel fabrication laboratories

    International Nuclear Information System (INIS)

    Othman, S.H.A.

    2003-01-01

    reversed-phase partition chromatography is shown to be a convenient and applicable method for the quantitative recovery of uranium (19.7% enriched with 235 U) from highly impure solution . the processing of uranium compounds for atomic energy project especially in FMPP(Egyptian fuel manufacture pilot plant) gives rise to a variety of wastes in which the uranium content is of considerable importance. the recovery of uranium from concentrated mother liquors produced from ADU (ammonium diuranate ) precipitation, as well as those due to ADU washing is studied in this work. column of poly-trifluoro-monochloro-ethilene (Kel-F) supporting tri-n-butyl-phosphate (TBP) retains uranium .impurities are eluted with 6.5 M HCl, and the uranium is eluted with water and the recovery of uranium is better than 94%. A mathematical model was suggested to stimulate the sorption process of uranium ions (or any other ion ) by column of solvent impregnated resin containing organic extractant (the same as the previous column) . An excellent agreement was founded between the experimental results and the mathematical model

  18. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  19. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  20. Post-pulse detail metallographic examinations of low-enriched uranium silicide plate-type miniature fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1991-10-01

    Pulse irradiation at Nuclear Safety Research Reactor (NSRR) was performed using low-enriched (19.89 w% 235 U) unirradiated silicide plate-type miniature fuel which had a density of 4.8 gU/cm 3 . Experimental aims are to understand the dimensional stability and to clarify the failure threshold of the silicide plate-type miniature fuel under power transient conditions through post-pulse detail metallographic examinations. A silicide plate-type miniature fuel was loaded into an irradiation capsule and irradiated by a single pulse. Deposited energies given in the experiments were 62, 77, 116 and 154 cal/g·fuel, which lead to corresponding peak fuel plate temperatures, 201 ± 28degC, 187 ± 10degC, 418 ± 74degC and 871 ± 74degC, respectively. Below 400degC, reliability and dimensional stability of the silicide plate fuel was sustained, and the silicide plate fuel was intact. Up to 540degC, wall-through intergranular crackings occurred in the Al-3%Mg alloy cladding. With the increase of the temperature, the melting of the aluminum cladding followed by recrystallization, the denudation of fuel core and the plate-through intergranular cracking were observed. With the increase of the temperature beyond 400degC, the bowing of fuel plate became significant. Above the temperature of 640degC molten aluminum partially reacted with the fuel core, partially flowed downward under the influence of surface tension and gravity, and partially formed agglomerations. Judging from these experimental observations, the fuel-plate above 400degC tends to reduce its dimensional stability. Despite of the apparent silicide fuel-plate failure, neither generation of pressure pulse nor that of mechanical energy occurred at all. (J.P.N.)

  1. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  2. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte, A; Ramos, L; Estrada, J; Val, J L. del

    1962-07-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO{sub 2}F{sub 2} solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs.

  3. The use of fuel of various enrichment for flux shaping; Koriscenje goriva razlicitog obogacenja za dobijanje zeljene raspodele neutronskog fluksa

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N; Pesic, M; Strugar, P [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1980-07-01

    Spatial flux shaping, particularly obtaining maximum thermal neutron flux in experimental channels of a research reactor or flux flattening in a power reactor, is often desired in nuclear reactor utilization. Some experimental results of flux shaping at the RB reactor by use of the fuel of various enrichment are resented. Considerable increases in thermal neutron flux in central experimental channels is obtained and can serve as a starting point for further investigations as well as for comparison with theoretical models. (author)

  4. Reactivity worth of the thermal column of a MTR type swimming pool research reactor using low enriched uranium fuel

    International Nuclear Information System (INIS)

    Ali Khan, L.; Ahmad, N.

    2002-01-01

    The reactivity worth of the thermal column of a typical MTR type swimming pool research reactor using low enriched uranium fuel has been determined by modeling the core using standard computer codes. It was also measured experimentally by operating the reactor in the stall and open ends. The calculated value of the reactivity worth of the thermal column is about 14% greater than the experimentally determined value

  5. The main conditions ensured problemless implementation of 235U high enriched fuel in Kozloduy NPP (Bulgaria) - WWER-1000 Units

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.; Minkova, K.; Michaylov, G.; Penev, P.; Gerchev, N.

    2009-01-01

    The collected water chemistry and radiochemistry data during the operation of the Kozloduy NPP Unit 5 for the period 2006-2009 (12-th, 13-th 14-th and 15-th fuel cycles) undoubtedly indicate for WWER-1000 Units (whose specific features are: Steam generators with austenitic stainless steel 08Cr18N10T tubing; Steam generators are with horizontal straight tubing and Fuel elements cladding material is Zr-1%Nb (Zr1Nb) alloy), that one realistic way for problemless implementation of 235 U high enriched fuel have been found. The main feature characteristics of this way are: Implementation of solid neutron burnable absorbers together with the dissolved in coolant neutron absorber - natural boric acid; Application of fuel cladding materials with enough corrosion resistance by the specific fuel cladding environment created by presence of SNB; Keeping of suitable coolant water chemistry which ensures low corrosion rates of core- and out-of-core- materials and limits in core (cladding) depositions and restricts out-of-core radioactivity buildup. The realization of this way in WWER-1000 Units in Kozloduy NPP was practically carried out through: 1) Implementation of Russian fuel assemblies TVSA which have as fuel cladding material E-110 alloy (Zr1Nb) with enough high corrosion resistance by presence of sub-cooled nucleate boiling (SNB) and use burnable absorber (Gd) integrated in the uranium-gadolinium (U-Gd 2 O 3 ) fuel (fuel rod with 5.0% Gd 2 O 3 ); 2) Development and implementation of water chemistry primary circuit guidelines, which require the relation between boric acid concentration and total alkalising agent concentrations to ensure coolant pH 300 = 7.0 - 7.2 values during the whole operation period. The above mentioned conditions by the passing of WWER-1000 Units in NPP Kozloduy to uranium fuel with 4.4% 235 U (TVSA fuel assemblies) practically ensured avoidance of the creation of the necessary conditions for AOA onset. The operational experience (2006-2009) of the

  6. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current

    International Nuclear Information System (INIS)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun

    2013-01-01

    Microbial fuel cells (MFCs) are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic wastes to electricity. In this study, the effects of different inoculum sources (river sediment, activated sludge and anaerobic sludge) and electrical current stimulation were evaluated using single-chamber air-cathode MFCs as model reactors based on performance in enrichment process and electrochemical characteristics of the reactors. The result revealed the rapid anodic biofilm development and substrate utilization of the anaerobic sludge-inoculated MFC. It was also found that the river sediment-inoculated MFC achieved the highest power output of 195 μW, or 98 mW m −2 , due to better developed anodic biofilm confirmed by scanning electron microscopy. The current stimulation enhanced the anodic biofilm attachment over time, and therefore reduced the MFC internal resistance by 27%, increased the electrical capacitance by four folds, and improved the anodic biofilm resilience against substrate deprivation. For mature MFCs, a transient application of a negative voltage (−3 V) improved the cathode activity and maximum power output by 37%. This improvement was due to the bactericidal effect of the electrode potential higher than +1.5 V vs. SHE, demonstrating a substantial benefit of treating MFC cathode after long-term operation using suitable direct electrical current. -- Highlights: •Voltage stimulation (+2 V) during inoculation reduced MFC internal resistance and improved biofilm resilience. •Voltage stimulation increased biofilm electrical capacitance by 5-fold. •Negative voltage stimulation (−3 V) enhanced the maximum power output by 37%. •River sediment MFC obtained higher power due to better anodic biofilm coverage. •Anaerobic sludge quickly developed anodic biofilm for MFC and quickly utilized volatile fatty acids

  7. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  8. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  9. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  10. Study of the reduced enrichment fuel conversion at the University of Missouri-Rolla reactor

    International Nuclear Information System (INIS)

    Straka, M.; Bolon, A.; Covington, L.

    1987-01-01

    The method used to analyze the low-enriched uranium core which has been proposed for the University of Missouri-Rolla Reactor is described. Results of calculations for the high-enriched uranium core have been compared with the measured data whenever possible in order to verify this method. For most of the cases that were analyzed the proposed method is adequate and the results obtained for the low-enriched uranium core can be used in revising the licensing documents. (Author)

  11. Materials safeguards and accountability in the low enriched uranium conversion-fabrication sector of the fuel cycle

    International Nuclear Information System (INIS)

    Schneider, R.A.; Nilson, R.; Jaech, J.L.

    1978-01-01

    Today materials accounting in the low enriched conversion-fabrication sector of the LWR fuel cycle is of increased importance. Low enriched uranium is rapidly becoming a precious metal with current dollar values in the range of one dollar per gram comparing with gold and platinum at 7-8 dollars per gram. In fact, people argue that its dollar value exceeds its safeguards value. Along with this increased financial incentive for better material control, the nuclear industry is faced with the impending implementation of international safeguards and increased public attention over its ability to control nuclear materials. Although no quantity of low enriched uranium (LEU) constitutes a practical nuclear explosive, its control is important to international safeguards because of plutonium production or further enrichment to an explosive grade material. The purpose of the paper is to examine and discuss some factors in the area of materials safeguards and accountability as they apply to the low enriched uranium conversion-fabrication sector. The paper treats four main topics: basis for materials accounting; our assessment of the proposed new IAEA requirements; adequacy of current practices; and timing and direction of future modifications

  12. Unsteady Reynolds averaged Navier-Stokes: toward accurate predictions in fuel-bundles and T-junctions

    International Nuclear Information System (INIS)

    Merzari, E.; Ninokata, H.; Baglietto, E.

    2008-01-01

    Traditional steady-state simulation and turbulence modelling are not always reliable. Even in simple flows, the results can be not accurate when particular conditions occur. Examples are buoyancy, flow oscillations, and turbulent mixing. Often, unsteady simulations are necessary, but they tend to be computationally not affordable. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach holds promise to be less computational expensive than Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS), reaching a considerable degree of accuracy. Moreover, URANS methodologies do not need complex boundary formulations for the inlet and the outlet like LES or DNS. The Test cases for this methodology will be Fuel Bundles and T-junctions. Tight-Fuel Rod-Bundles present large scale coherent structures than cannot be taken into account by a simple steady-state simulation. T-junctions where a hot fluid and a cold fluid mix present temperature fluctuations and therefore thermal fatigue. For both cases the capacity of the methodology to reproduce the flow field are assessed and it is evaluated that URANS holds promise to be the industrial standard in nuclear engineering applications that do not involve buoyancy. The codes employed are STAR-CD 3.26 and 4.06. (author)

  13. Development of WWER-440 fuel. Use of fuel assemblies of 2-nd and 3-rd generations with increased enrichment

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Lushin, V.; Ananev, U.; Baranov, A.; Kukushkin, U.

    2009-01-01

    The problem of increasing the power of units at NPPs with WWER-440 is of current importance. There are all the necessary prerequisites for the above-stated problem as a result of updating the design of fuel assemblies and codes. The decrease of power peaking factor in the core is achieved by using profiled fuel assemblies, fuel-integrated burning absorber, FAs with modernized docking unit, modern codes, which allows decreasing conservatism of RP safety substantiation. A wide range of experimental studies of fuel behaviour has been performed which has reached burn-up of (50-60) MW·day/kgU in transition and emergency conditions, post-reactor studies of fuel assemblies, fuel rods and fuel pellets with a 5-year operating period have been performed, which prove high reliability of fuel, presence of a large margin in the fuel pillar, which helps reactor operation at increased power. The results of the work performed on introduction of 5-6 fuel cycles show that the ultimate fuel state on operability in WWER-440 reactors is far from being achieved. Neutron-physical and thermal-hydraulic characteristics of the cores of working power units with RP V-213 are such that actual (design and measured) power peaking factors on fuel assemblies and fuel rods, as a rule, are smaller than the maximum design values. This factor is a real reserve for power forcing. There is experience of operating Units 1, 2, 4 of the Kola NPP and Unit 2 of the Rovno NPP at increased power. Units of the Loviisa NPP are operated at 109 % power. During transfer to work at increased power it is reasonable to use fuel assemblies with increased height of the fuel pillar, which allows decreasing medium linear power distribution. Further development of the 2-nd generation fuel assembly design and consequent transition to working fuel assemblies of the 3-rd generation provides significant improvement of fuel consumption under the conditions of WWER-440 reactors operation with more continuous fuel cycles and

  14. Remarks on the influence of enrichment reduction on fuel cycle costs

    International Nuclear Information System (INIS)

    Krull, W.

    1985-01-01

    The cost factors influencing the fuel cycle cost analysis for research reactors are discussed in detail with special emphasis on fuel element fabrication costs, burnup and reprocessing costs. Two different aspects for the conversion from HEU to LEU are considered: plus 14% U-235 weight per LEU fuel element and plus ca. 50 % U-235 weight per LEU fuel element. The cost factors and these conversion aspects were taken for calculating the changes in fuel cycle costs for the three different meat materials U 3 O 8 , U 3 Si 2 and U 3 Si. The results of these calculations can be summarized as following: - if in the HEU case the fuel loading and the burnup of a fuel element is low there will be some economic advantages in the LEU case; - if in the HEU case the fuel loading and the burnup of a fuel element is high there will be economic disadvantages in the LEU case. (author)

  15. Cooperative Russian-French experiment on plutonium-enriched fuels for fast burner reactor

    International Nuclear Information System (INIS)

    Zabud'ko, L.M.; Kurina, I.A.; Men'shikova, T.S.; Rogozkin, B.D.; Maershin, A.A.; Langi, A.; Pillon, S.

    2001-01-01

    Various kinds of nuclear fuels with an increased plutonium content are under study according to the program including three stages: fabrication, irradiation in BOR-60 reactor, post-irradiation examination. Flowsheets for fabricating pelletized and vibrocompacted fuels of UPu 0.45 O 2 , UPu 0.45 N, UPu 0.6 N, PuN + ZrN, PuO 2 + MgO are presented along with basic fuel properties. The irradiation of oxide fuel is carried out in an individual irradiation device at rated maximum temperature of the fuel at the beginning of irradiation equal to 2100 deg C. The irradiation of nitride fuel and the fuel based on inert matrices is performed in the other device with the aim of limitation of maximum temperature by the value of 1550 deg C. The duration of irradiation for all fuel types constitutes 750 EFPD. Fuel element charge in Bor-60 reactor core was realized in 2000 [ru

  16. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  17. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  18. Inerting of a Vented Aircraft Fuel Tank Test Article with Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Burns, Michael

    2001-01-01

    ...) required to inert a vented aircraft fuel tank. NEA, generated by a hollow fiber membrane gas separation system, was used to inert a laboratory fuel tank with a single vent on top designed to simulate a transport category airplane fuel tank...

  19. Operational experience with the first eighteen slightly enriched uranium fuel assemblies in the Atucha-1 nuclear power plant

    International Nuclear Information System (INIS)

    Higa, M.; Perez, R.; Pineyro, J.; Sidelnik, J.; Fink, J.; Casario, J.A.; Alvarez, L.

    1997-01-01

    Atucha I is a 357 Mwe nuclear station, moderated and cooled with heavy water, pressure vessel type of German design, located in Argentina. Fuel assemblies (FA) are 36 active natural UO2 rod clusters, 5.3 meters long and fuel is on power. Average FA exit burnup is 6 MWd/kg U. The reactor core contains 252 FA. To reduce the fuel costs about 6 MU$S/yr a program of utilization of SEU (0.85 %w U235) fuel was started at the beginning of 1995 with the introduction of 12 FA in the first step. The exit burnup of FA is approx. 10 MWd/kgU. It is planned to increase gradually the number of them up to having a full core with SEU fuel with an expected FA average exit burnup of 11 MWd/kgU. The SEU program has also the advantage of a strong reduction of spent fuel volume, and a moderate reduction of fuelling machine use. This paper presents the satisfactory operation experience with the introduction of the first 12 SEU fuel assemblies and the planned activities for the future. The fresh SEU fuel assemblies were introduced in six fuel channels located in an intermediate zone located 136 cm from the center of the reactor and selected because they have higher margins to the channel powers limits to accommodate the initial 15 to 20 % relative channel power increase. To verify the design and fuel management calculations, comparisons have been made of the calculated and measured values of the variation of channel ΔT, regulating rods insertion and flux reading in in-core detectors near to the refueled channel. The agreement was good and in most of the cases within the measurement errors. Cell calculations were made with WIMS-D4, and reactor calculations with PUMA. a fuel management 3D diffusion program developed in Argentina. With SEU fuel with a greater burnup in the central high power core region, new operating procedures were developed to prevent PCI failures in fuel power ramps that arise during operation. Some fuel rod and structural assembly design changes were introduced on the

  20. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  1. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - I: Nuclear Criticality Constraints

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-01-01

    This paper presents the mass, concentration, and volume required for a critical event to occur in homogeneous mixtures of fissile material and various other geologic materials. The fissile material considered is primarily highly enriched uranium spent fuel; however, 239 Pu is considered in some cases. The non-fissile materials examined are those found in the proposed repository area at Yucca Mountain, Nevada: volcanic tuff, iron rust, concrete, and naturally occurring water. For 235 U, the minimum critical solid concentration for tuff was 5 kg/m 3 (similar to sandstone), and in goethite, 45 kg/m 3 . The critical mass of uranium was sensitive to a number of factors, such as moisture content and fissile enrichment, but had a minimum, assuming almost 100% saturation and >20% enrichment, of 18 kg in tuff as Soddyite (or 9.5 kg as UO 2 ) and 7 kg in goethite. For 239 Pu, the minimum critical solid concentration for tuff was 3 kg/m 3 (similar to sandstone); in goethite, 20 kg/m 3 . The critical mass of plutonium was also sensitive to a number of factors, but had a minimum, assuming 100% saturation and 80-90% enrichment, of 5 kg in tuff and 6 kg in goethite

  2. Optimization of enrichment distributions in nuclear fuel assemblies loaded with Uranium and Plutonium via a modified linear programming technique

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas Vivas, Gabriel Francisco

    1999-12-01

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed Oxide (MOX) isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide range of applicability of the optimization technique. The feature of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactor (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or in the

  3. ALARA (As Low As Reasonable Achievable) procedure applied to fuel assembly fabrication with enriched reprocessing uranium (ERU)

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos; Degrange, Jean Pierre

    1998-01-01

    The study introduced by this paper compose the first step to the implementation of ALARA (As Low As Reasonable Achievable) for a nuclear fuel assembly factory which one of its two production lines will be designed to work with Enriched Reprocessing Uranium (ERU). This step includes the reference situation analysis is based on previsional dosimetric evaluations for individual and collective exposures of each factory operator (117 in total) working on 7 work stations, considering 6 annual production scenarios (10, 50 75, 100 and 150 ERU tons), which corresponds to an annual production of 600 tons (ERU plus enriched natural uranium ENU). The exposure indicators evolution, expressed in terms of collective dose, annual individual dose and radiological detrimental cost for workers, is also used in a complimentary way to guide the analysis. (author)

  4. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  5. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  6. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  7. Preliminary study for the transport of the fuel rods of U235 enriched to 1.8 per cent

    International Nuclear Information System (INIS)

    Cardenas, H.; Perez, A.

    1998-01-01

    Transport of 1,8% U235 enriched fuel rods needs both the evaluation of the radiological risk and considerations about criticality aspects. Issues as diverse production characteristics, storage facilities in the source of origin an economical aspects have to be added to the radiological and nuclear considerations. Transport of those rods through national territory must comply with the Argentine Regulatory authority's regulations, based on the Safety Series No. 6, (ed. 1985) -as amended 1990- IAEA. Safety criteria are exposed, taking into account the amount of material to be transported, container characteristics, packaging type and expedition conditions. (author)

  8. Preliminary experience and near future utilization programmes of the MPR-30 fueled by LEU [low enriched uranium

    International Nuclear Information System (INIS)

    Arbie, B.; Soentono, S.

    1987-01-01

    The MTR type reactor MPR-30 G.A. Siwabessy, located at PUSPIPTEK Serpong has recently reached its first criticality. This multipurpose reactor is supposed to be the first MTR type reactor in the world that is designed and constructed to be fueled by low enriched uranium. Preliminary experience covering the approach to the first criticality and the excess reactivity loading as well as some thermal hydraulics and power ascension tests are briefly presented and discussed. The near future utilization programmes during and after commissioning are also presented. (Author)

  9. Progress in development of low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.

    2002-01-01

    Results from post irradiation examinations and analyses of U-Mo/Al dispersion mini plates are presented. Irradiation test RERTR-5 contained mini- fuel plates with fuel loadings of 6 and 8 g U cm -3 . The fuel material consisted of 6, 7 and 10 wt. % Mo-uranium-alloy powders in atomized and machined form. The swelling behavior of the various fuel types is analyzed, indicating athermal swelling of the U-Mo alloy and temperature-dependent swelling owing to U-Mo/Al interdiffusion. (author)

  10. A comparison of integral block and tubular interacting fuel element concepts for low enrichment HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A

    1972-04-15

    The tubular interacting fuel element has to date been the favoured U.K. high temperature reactor design. Recent attempts to lower fuel costs and the progress of the Fort St. Vrain reactor has focussed attention on alternative designs, and in particular on the attractive design simplicity of the integral block concept. The aim of this investigation is to compare the merits of both concepts from fuel cycle cost and thermal performance viewpoints and to determine whether optimization of the integral block concept leads to changes in the current design values of (a) fuel density, (b) Nc/Nu, and/or (c) mean discharge irradiation within the framework of present design limits.

  11. 76 FR 26996 - Notice of Intent To Prepare an Environmental Impact Statement for New Corporate Average Fuel...

    Science.gov (United States)

    2011-05-10

    ... uncertainties in the way in which key economic inputs (e.g., the price of fuel and the social cost of carbon... increased penetration of alternative fuel vehicles, including upstream emissions and impacts regarding waste... potential future increases in alternative fuel vehicle penetration could cause environmental impacts...

  12. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  13. Allocation of uranium enrichment services to fuel foreign and domestic nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This interim report was made in response to a request for information concerning the sale of U.S. uranium enrichment services to foreign countries and its effect on AEC's ability to meet domestic demands. Long-term enrichment services (June 30, 1974), both domestic and foreign, totaled 364,000 MW, or 44,000 MW more than its available capability. The first-come-first-served policy was modified to give preferential treatment to Yugoslav and Mexican requests because of IAEA commitments, and to shift six standard contracts from Japan. From Aug. to Sept. 1974, standard contracts were signed for all 15 pending domestic requests and for 33 pending foreign requests, with the remaining 45 foreign requests depending on NRC's approval of Pu recycle, although private enrichment or stockpile enriched U could meet these needs. There is no firm commitment in the private sector to build and operate the needed enrichment plant. The acceleration of foreign nuclear programs coupled with ERDA's termination of further long-term contracts, may lead to the emergence of foreign supply sources, and U.S. may lose its favorable balance-of-payments and its influence on international nuclear policies

  14. NARCISS critical stand experiments for studying the nuclear safety in accident water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Glushkov, E.S.; Bubelev, V.G.

    2005-01-01

    A brief description of the Topaz-2 SNPS designed under scientific supervision of RRC KI in Russia, and of the NARCISS critical facility, is given. At the NARCISS critical facility, neutronic peculiarities and nuclear safety issues of the Topaz-2 system reactor were studied experimentally. This work is devoted to a detailed description of experiments on investigation of criticality safety in accident water immersion og highly enriched uranium dioxide fuel elements, performed at the NARCISS facility. The experiments were carried out at water-moderated critical assemblies with varying height, number, and spacing of fuel elements. The results obtained in the critical experiments, computational models of the investigated critical configurations, and comparison of the computational and experimental results are given [ru

  15. Results of Cesar II critical facility with low enriched fuel balls

    Energy Technology Data Exchange (ETDEWEB)

    Langlet, G; Guerange, J; Laponche, B; Morier, F; Neef, R D; Bock, H J; Kring, F J; Scherer, W

    1972-06-15

    The Cesar facility has been transformed to load in its center a pebble bed fuel. This new Cesar assembly is called Cesar II. The program for the measurements with HTR type fuel balls is managed under a cooperation between physicists of CEA/CADARACHE and KFA/JUELICH. A description of the measuring zones of Cesar II and of the experimental results is given.

  16. Determination of U235 enrichment from nuclear fuel by neutronic activation

    International Nuclear Information System (INIS)

    Almeida, M.C.M. de.

    1988-01-01

    The enrichment of 235 U in UO 2 pellets samples through the instrumental neutron activation analysis method (I.N.A.A.) was determined. By high resolution gamma-ray spectrometry (H.R.G.S.), from analysis of isotopic ratios between fission products peaks from 235 U and 239 Np different energies peaks from 238 U, the enrichment was achieved. The 'Boatstrap' statistics technique for the analytical results, which is based in shaping results of an unknown distribution to the Gaussian distribution by B replications in interested statistics such as: the mean and its standard error, was introduced. (M.J.C.) [pt

  17. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  18. Finite element analysis of local overheating within plutonium enriched UO2 fuel rods caused by PuO2 islands

    International Nuclear Information System (INIS)

    Sarmiento, G.S.

    1980-01-01

    Within natural UO 2 fuel elements enriched with plutonium, this last material should form PuO 2 solid solutions inside the UO 2 pellets, in a wide range of concentrations. If the solutions are obtained by mechanical mixing of the oxides, PuO 2 islands are formed in the UO 2 matrix. These islands may be the source of several problems in the fuel behaviour, the most important being the overheating of the matrix in the neighbourhood of the particles. It is caused by the large fission cross section of plutonium compared with that of uranium. A detailed study of the thermal effects produced by PuO 2 particles in the UO 2 matrix and the cladding is then important for the specification of their permissible size. A portion of the fuel rods with spherical particles in the most significant places was studied. In order to obtain the dimensionless overheating of the fuel and cladding produced by the presence of those particles, the spatial distribution of temperature was calculated, solving the stationary and linear bidimensional equation of heat conducting using a finite element code. Several geometrical variables and material properties have been taken as dimensionless parameters. A satisfactory convergence of the numerical results to an asymptotic limit with a well-known exact solution, has been obtained. (orig.)

  19. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  20. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  1. An experimental study of a hydrogen-enriched ethanol fueled Wankel rotary engine at ultra lean and full load conditions

    International Nuclear Information System (INIS)

    Amrouche, F.; Erickson, P.A.; Varnhagen, S.; Park, J.W.

    2016-01-01

    Highlights: • H_2 was added at the intake of a single-rotor ethanol fueled Wankel engine. • The engine was operating at ultra-lean condition, WOT and 3000 rpm. • H_2 enrichment helps shortening the burn duration, enhance the thermal efficiency and reduce the BSEC. • H_2 addition helps to reduce HC, CO and CO_2 emissions. - Abstract: In this paper, the effect of hydrogen addition to ethanol in a monorotor Wankel engine at wide open throttle position and in an ultra-lean operating regime was experimentally investigated. For this aim, variation of hydrogen enrichment levels on the ethanol engine performance and emissions were considered. Experiments were carried out under a constant engine speed of 3000 rpm and fixed spark timing of 15 °BTDC. The test results showed that hydrogen enrichment improved the combustion process through shortening of the flame development and flame propagation periods and reducing the cyclic variation. Furthermore, the reduction of burn duration with the increase of hydrogen fraction enhances the thermal efficiency, reducing the brake-specific energy consumption, as well as reducing the unburned hydrocarbons emissions of the Wankel engine.

  2. The low enriched fuel cycle in the GA 1160 MW design and the switch-over to thorium

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.

    1974-03-15

    Calculations for the GA 1160 MW HTR are presented. The aim of these investigations was to compare the Low Enriched Uranium (LEU) cycle and the Thorium cycle for the GA 1160 MW HTR both using the same GA designed integral block fuel element. The total fuel cycle cost for the equilibrium cycle comes out to be about 16% cheaper for the Thorium cycle than for the Low-Enriched cycle. However, these favorable results for the thorium cycle are completely dependent on the availability of reprocessing and refabrication facilities, for costs comparable with the costs used for these investigations. The possibility of starting the reactor on a LEU 3 year cycle and later switching over to a thorium 4 year cycle was investigated. No cost penalties were found to be paid during the switch-over. The problems of local power peaks and age factors were not investigated in greater detail as only integral physical quantities were obtained from the neutron physics calculations. However, no indications of any problem in the switch-over phase were given. Elaborate 3-dimensional methods are necessary for further investigation of these types of problems.

  3. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)], E-mail: mfarhan_73@yahoo.co.uk; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)

    2008-09-15

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.

  4. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  5. Distribution of equilibrium burnup for an homogeneous core with fuel elements of slightly enriched uranium (0.85% U-235) at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Sidelnik, J.I.; Perez, R.A.; Salom, G.F.

    1987-01-01

    At Atucha I, the present fuel management with natural uranium comprises three burnup areas and one irradiation path, sometimes performing four steps in the reactor core, according to the requirements. The discharge burnup is 6.0 Mw d/kg U for a waste reactivity of 6.5 m k and a heavy water purity of 99.75%. This is a preliminary study to obtain the distribution of equilibrium burnup of an homogeneous core with slightly enriched uranium (0.85% by weight U-235), using the time-averaged method implemented in the code PUMA and a representative model of one third of core and fixed rod position. It was found a strategy of three areas and two paths that agrees with the present limits of channel power and specific power in fuel rod. The discharge burnup obtained is 11.6 Mw d/kg U. This strategy is calculated with the same method and a full core representation model is used to verify the obtained results. (Author)

  6. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  7. The development and testing of reduced enrichment fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.

    1983-01-01

    Fuel rods of uranium silicide dispersed in aluminum and clad in aluminum have been developed and tested in the laboratory and in-reactor. The properties of the dispersion fuel materials proved satisfactory with regard to thermal conductivity, aqueous corrosion resistance, strength and ductility, and thermal stability below 473 K. A vacancy condensation model is proposed to account for the thermally-induced swelling that occurs above 473 K by virtue of the chemical reactions that occur between the dispersed silicide fuel particles and the aluminum matrix. The in-reactor fuel core swelling was less than % after irradiation at high powers 76-131 kW/m) to a high terminal burnup (79.2 at% of U-235 atoms). (author)

  8. Development program for fuel elements with low enriched uranium for high temperature reactors

    International Nuclear Information System (INIS)

    1987-12-01

    The results of HTR fuel development taking place at the THTR's can be summarized as follows for the main points of core manufacture coating matrix and fuel emenent manufacture: 1. The well known gel precipitation process was modified for the manufacture of UO 2 cores. 2. The TRISO coating (additional SiC layer between two very dense PyC layers) can be applied with the required quality on an economical 10 kg scale. 3. The particle fracture in the complete fuel element due to manufacture was lowered during the course of the project to below the target values of -6 U/U total. For testing fuel elements, the required irradiation samples were designed in agreement with the reactor constructors, were prepared and the first phase of the irradiation program was successfully completed in the context of the HBK project. (orig./HP) [de

  9. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  10. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    Science.gov (United States)

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  11. Critical experiments simulating accidental water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Glushkov, L.S.

    2003-01-01

    The paper focuses on experimental analysis of nuclear criticality safety at accidental water immersion of fuel elements of the Russian TOPAZ-2 space nuclear power system reactor. The structure of water-moderated heterogeneous critical assemblies at the NARCISS facility is described in detail, including sizes, compositions, densities of materials of the main assembly components for various core configurations. Critical parameters of the assemblies measured for varying number of fuel elements, height of fuel material in fuel elements and their arrangement in the water moderator with a uniform or variable spacing are presented. It has been found from the experiments that at accidental water immersion of fuel elements involved, the minimum critical mass equal to approximately 20 kg of uranium dioxide is achieved at 31-37 fuel elements. The paper gives an example of a physical model of the water-moderated heterogeneous critical assembly with a detailed characterization of its main components that can be used for calculations using different neutronic codes, including Monte Carlo ones. (author)

  12. Delayed Fission Product Gamma-Ray Transmission Through Low Enriched UO2 Fuel Pin Lattices in Air

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, TH [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2004-10-18

    The transmission of delayed fission-product gamma rays through various arrangements of low-enriched UO2 fuel pin lattices in an air medium was studied. Experimental measurements, point-kernel and Monte Carlo photon transport calculations were performed to demonstrate the shielding effect of ordered lattices of fuel pins on the resulting gamma-ray dose to a detector outside the lattice. The variation of the gamma-ray dose on the outside of the lattice as a function of radial position, the so-called “channeling” effect, was analyzed. Techniques for performing experimental measurements and data reduction at Rensselaer Polytechnic Institute’s Reactor Critical Facility (RCF) were derived. An experimental apparatus was constructed to hold the arrangements of fuel pins for the measurements. A gamma-ray spectroscopy system consisting of a sodium-iodide scintillation detector was used to collect data. Measurements were made with and without a collimator installed. A point-kernel transport code was developed to map the radial dependence of the gamma-ray flux. Input files for the Monte Carlo code, MCNP, were also developed to accurately model the experimental measurements. The results of the calculations were compared to the experimental measurements. In order to determine the delayed fission-product gamma-ray source for the calculations, a technique was developed using a previously written code, DELBG and the reactor state-point data obtained during the experimental measurements. Calculations were performed demonstrating the effects of material homogenization on the gamma-ray transmission through the fuel pin lattice.Homogeneous and heterogeneous calculations were performed for all RCF fuel pin lattices as well as for a typical commercial pressurized water reactor fuel bundle. The results of the study demonstrated the effectiveness of the experimental measurements to isolate the channeling effect of delayed fission-product gamma-rays through lattices of RCF fuel pins

  13. Fabrication and irradiation testing of LEU [low enriched uranium] fuels at CRNL status as of 1987 September

    International Nuclear Information System (INIS)

    Sears, D.F.; Berthiaume, L.C.; Herbert, L.N.

    1987-01-01

    The current status of Chalk River Nuclear Laboratories' (CRNL) program to develop and test low-enriched uranium (LEU), proliferation-resistant fuels for use in research reactors is reviewed. CRNL's fuel manufacturing process has been qualified by the successful demonstration irradiation of 7 full-size rods in the NRU reactor. Now industrial-scale production equipment has been commissioned, and a fuel-fabrication campaign for 30 NRU rods and a MAPLE-X core is underway. Excess capacity could be used for commercial fuel fabrication. In the irradiation testing program, mini-elements with deliberately included core surface defects performed well in-reactor, swelling by only 7 to 8 vol% at 93 atomic percent burnup of the original U-235. The additional restraint provided by the aluminium cladding which flowed into the defects during extrusion contributed to this good performance. Mini-elements containing a variety of particle size distributions were also successfully irradiated to 93 at% burnup in NRU, as part of a study to establish the optimum particle size distribution. Swelling was found to be proportional to the percentage of fines (<44μm particles) contained in the cores. The mini-elements containing the composition normally used at CRNL had swollen by 5.8 vol%, and mini-elements with a much higher percentage of fines had swollen by 6.8 vol%, at 93 at% burnup. Also, a program to develop LEU targets for Mo-99 production, via the technology developed to fabricate dispersed silicide fuel, has started, and preliminary scoping studies are underway. (Author)

  14. Description of the CNEA U308 powder production plant for low enrichment fuel plates

    International Nuclear Information System (INIS)

    Boero, N.L.; Celora, J.; Parodi, C.A.; Pertossi, F.R.; Marajofsky, A.

    1987-01-01

    The design of the 20% enriched U 3 O 8 powder production plant was based on laboratory level experiments. The UF 6 hydrolysis, ADU precipitation, U 3 O 8 conversion processes were used. The equipment, controls and confinement were set not only by the processes but also by safety requirements according to the kind and physical form of the uranium compounds in each stage and criticality considerations. This paper describes the installation, set up and operation of the plant during production. (Author)

  15. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  16. Advances in the manufacturing and irradiation of reduced enrichment fuels for canadian research reactors

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.

    1984-01-01

    The procedures for manufacturing fuel rods of uranium silicide dispersed in aluminum and clad in aluminum have been optimized to maximize production rates while minimizing scrap losses. Melting and casting, chip machining and core extrusion have all been re-evaluated to improve their efficiency and significant gains have been made, whilst maintaining high quality standards. The results of our irradiation program on mini-elements up to a burnup of 80 atomic percent continue to be encouraging. The upper bound curve of fuel core swelling versus burnup in the range 0-80 atomic percent represents 1% swelling per 10 atomic percent burnup. Fuel core swelling has now been measured directly on six mini-elements from which the clad surface oxide had been removed showing that previous calculated values of core swelling were marginally conservative. (author)

  17. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  18. Cooperative efforts for the removal of high-enriched fresh fuel from the Vinca Institute of Nuclear Sciences

    International Nuclear Information System (INIS)

    Hopwood, W.; Moses, S.; Pesic, M.; Sotic, O.; Wander, T.

    2003-01-01

    In August 2002, the inventory of high-enriched uranium (HEU) fresh fuel at the Vinca Institute in Belgrade, Yugoslavia, was repackaged and shipped to the Russian Federation (R.F.), its country of origin under the former Soviet Union. Several thousand small fuel elements were repackaged by the Vinca Institute into approved shipping containers provided by the RF and loaded onto the approved ground transportation vehicle. The transportation from the Vinca Institute to the Belgrade Airport was done under the planning and protection of Yugoslavian and Serbian military and police organizations, with technical oversight being provided by the Vinca staff that escorted the convoy. Under constant security protection, the Russian crew loaded the fuel containers onto the cargo plane, and later it departed for an airport near Dimitrovgrad, Russia. In addition to the domestic control and accounting provided during this operation, this inventory was under International Atomic Energy Agency (IAEA) safeguards, and its inspectors appropriately confirmed, sealed and documented the inventory. The United States (U.S.) observers were also present, and appropriate data were collected because of nonproliferation interests and contractual support for all phases of the operation. Since this event, the Vinca staff has generated several papers describing the technical background and detailed activities of this operation. This paper describes the removal from the U.S. observers perspectives and recognizes the significant cooperation among the supporting countries and the achievements of the organizations directly involved. (author)

  19. Reactivity and isotopic composition of spent PWR [pressurized-water-reactor] fuel as a function of initial enrichment, burnup, and cooling time

    International Nuclear Information System (INIS)

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub ∞/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub ∞/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub ∞/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs

  20. Evaluation of neutronic characteristics of STACY 80-cm-diameter cylindrical core fueled with 6% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Sono, Hiroki

    2003-06-01

    For the examination of neutronic safety design of forthcoming experimental core configurations in the Static Experiment Critical Facility (STACY), neutronic characteristics of 80-cm-diameter cylindrical cores fueled with 6% enriched uranyl nitrate solution have been evaluated by computational analyses. In the analyses, the latest nuclear data library, JENDL-3.3, was used as neutron cross section data. The neutron diffusion and transport calculations were performed using a diffusion code, CITATION, in the SRAC code system and a continuous-energy Monte Carlo code, MVP. Critical level heights of the cores were obtained using such parameters as uranium concentration (up to 500 gU/l), free nitric acid concentration (up to 8 mol/l), and concentration of soluble neutron poisons, gadolinium and boron. It has been confirmed from the evaluation that all critical cores comply with safety criteria required in the STACY operation concerning excess reactivity, reactivity addition rates and shutdown margins by safety rods. (author)

  1. Detailed description of an SSAC at the facility level for a low-enriched uranium conversion and fuel fabrication facility

    International Nuclear Information System (INIS)

    Jones, R.J.

    1984-09-01

    Some States have expressed a need for more detailed guidance with regard to the technical elements in the design and operation of SSACs for both the national and the international objectives. To meet this need the present document has been prepared, describing the technical elements of an SSAC in considerable detail. The purpose of this document is therefore, to provide a detailed description of a system for the accounting for and control of nuclear material in a model low enriched uranium conversion and fuel fabrication facility which can be used by a facility operator to establish his own system in a way which will provide the necessary information for compliance with a national system for nuclear material accounting and control and for the IAEA to carry out its safeguards responsibilities

  2. Study on usage of low enriched uranium Russian type fuel elements for design of an experimental ADS research reactor

    International Nuclear Information System (INIS)

    Pesic, M.P.

    2005-01-01

    Conceptual design of an accelerator driven sub-critical experimental research reactor (ADSRR) was initiated in 1999 at the Vinca Institute of Nuclear Sciences, Serbia and Montenegro. Initial results of neutronic analyses of the proposed ADSRR-H were carried out by Monte Carlo based codes and available high-enriched uranium dioxide (HEU) dispersed Russian type TVR-S fuel elements (FE) placed in a lead matrix. Beam of charged particles (proton or deuteron) would be extracted from the high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation. In 2002, the Vinca Institute has, in compliance with the Reduced Enrichment for Research and Test Reactors (RERTR) Program, returned fresh HEU TVR-S type FEs back to the Russian Federation. Since usage of HEU FEs in research reactors is not further recommended, a new study of an ADSRR-L conceptual design has initiated in Vinca Institute in last two years, based on assumed availability of low-enriched uranium (LEU) dispersed type TVR-S FEs. Initial results of numerical simulations of this new ADSRR-L, published for the first time in this paper, shows that such a small low neutron flux system can be used as an experimental - 'demonstration' - ADS with neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate neutron spectrum. Neutron spectrum characteristics of the ADSRR-L are compared to ones of the ADSRR-H with the same mass (7.7 g) of 235 U nuclide per TVR-S FE. (author)

  3. Critical experiment program of heterogeneous core composed for LWR fuel rods and low enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Yamamoto, Toshihiro; Watanabe, Shouichi; Nakamura, Takemi

    2003-01-01

    In order to stimulate the criticality characteristics of a dissolver in a reprocessing plant, a critical experiment program of heterogeneous cores is under going at a Static Critical Experimental Facility, STACY in Japan Atomic Energy Research Institute, JAERI. The experimental system is composed of 5w/o enriched PWR-type fuel rod array immersed in 6w/o enriched uranyl nitrate solution. First series of experiments are basic benchmark experiments on fundamental critical data in order to validate criticality calculation codes for 'general-form system' classified in the Japanese Criticality Safety Handbook, JCSHB. Second series of experiments are concerning the neutron absorber effects of fission products related to the burn-up credit Level-2. For demonstrating the reactivity effects of fission products, reactivity effects of natural elements such as Sm, Nd, Eu and 103 Rh, 133 Cs, solved in the nitrate solution are to be measured. The objective of third series of experiments is to validate the effect of gadolinium as a soluble neutron poison. Properties of temperature coefficients and kinetic parameters are also studied, since these parameters are important to evaluate the transient behavior of the criticality accident. (author)

  4. Effects of high density dispersion fuel loading on the uncontrolled reactivity insertion transients of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2009-08-15

    The effects of using high density low enriched uranium on the uncontrolled reactivity insertion transients of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density U-Mo (9w/o) LEU fuels currently being developed under the RERTR program having uranium densities of 6.57 gU/cm{sup 3}, 7.74 gU/cm{sup 3} and 8.57 gU/cm{sup 3}. Simulations were carried out to determine the reactor performance under reactivity insertion transients with totally failed control rods. Ramp reactivities of 0.25$/0.5 s and 1.35$/0.5 s were inserted with reactor operating at full power level of 10 MW. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that when reactivity insertion was 0.25$/0.5 s, the new power level attained increased by 5.8% as uranium density increases from 6.57 gU/cm{sup 3} to 8.90 gU/cm{sup 3}. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved at the new power level, by 4.7 K, 4.4 K and 2.4 K, respectively. When reactivity insertion was 1.35$/0.5 s, the feedback reactivities were unable to control the reactor which resulted in the bulk boiling of the coolant; the one with the highest fuel density was the first to reach the boiling point.

  5. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    Science.gov (United States)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  6. The use of low enriched uranium fuel cycle in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    The present paper begins with a brief review of the status of research and development of experimental VHTR in Japan. On the basis of the experience gained from these work, assessment is made of commercial HTRs. Material balance with fuel burnup is calculated for the two core models; one is HTGR for steam cycle and the other VHTR for process heat application. The results of assessment of commercial HTRs are compared with those for LWR

  7. Monte Carlo calculational design of an NDA instrument for the assay of waste products from high enriched uranium spent fuels

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Schrandt, R.G.; MacDonald, J.L.; Cverna, F.H.

    1979-01-01

    The Monte Carlo design of the waste assay region of a dual assay system, to be installed at the Fluorinal and Storage Facility, is described. The instrument will be used by the facility operator to assay high-enriched spent fuel packages and waste solids produced from dissolution of the fuels. The fissile content discharged in the waste is expected to vary between 0 and 400 g of 235 U. Material accountability measurements of the waste must be obtained in the presence of large neutron (0.5 x 10 6 n/s) and gamma (50,000 R/hr) backgrounds. The assay system employs fast-neutron irradiation of the sample, using a 5 mg 252 Cf source, followed by delayed neutron counting after the source is transferred to storage. Calculations indicate a +-4-g (2 sigma) assay for a waste canister containing 300 g of 235 U is achievable with an end-of-life (1 mg) 252 Cf source and a background rate of 0.5 x 10 6 n/s

  8. 76 FR 74853 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2011-12-01

    ... agency decision- making process, given both the long time frame and NHTSA's obligation to conduct a... and agency decision-making process. NHTSA has a statutory obligation to conduct a separate de novo... those consumers who purchase their new MY 2025 vehicle with cash, the discounted fuel savings will...

  9. Calculation of average molecular parameters, functional groups, and a surrogate molecule for heavy fuel oils using 1H and 13C NMR spectroscopy

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2016-04-22

    Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.

  10. Calculation of average molecular parameters, functional groups, and a surrogate molecule for heavy fuel oils using 1H and 13C NMR spectroscopy

    KAUST Repository

    Abdul Jameel, Abdul Gani; Elbaz, Ayman M.; Emwas, Abdul-Hamid M.; Roberts, William L.; Sarathy, Mani

    2016-01-01

    Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.

  11. Development of very high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-02-01

    The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and first results should be available by end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun

  12. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Mikio Sakai; Tadatsugu Sakaya; Hiroaki Fujiwara; Akira Sakai

    2002-01-01

    Concrete cask system is focused as the candidate one for spent fuel dry storage facilities from economic potential in Japan. Concrete cask consists of a concrete storage cask and a steel canister. A canister containing nuclear spent fuel is shipped by a transportation cask from a nuclear power plant to an interim storage facility. The canister is transferred from the transportation cask to a storage cask by a transfer cask in the storage facility. IHI has developed a concrete cask horizontal transfer system. This transfer system indicates that a canister is transferred to a storage cask horizontally. This transfer system has a merit against canister drop accident in transfer operation, i.e. spent fuel assemblies can be kept safe during the transfer operation. There are guide rails inside of the concrete cask, and the canister is installed into the storage cask with sliding on the rails. To develop the horizontal transfer system, IHI carried out a heat load test and numerical analyses by CFD. Heat load experiment was carried out by using a full-scale prototype canister, storage cask and transfer vessel. The decay heat was simulated by an electric heater installed in the canister. Assuming high burn-up spent fuel storage, heat generation was set between 20.0 kW and 25.0 kW. This experiment was focused on the concrete temperature distribution. We confirmed that the maximum concrete temperature in transfer operation period was lower than 40 deg. C (Heat generation 22.5 kW). Moreover we confirmed the maximum concrete temperature passed 24 hours with horizontal orientation was below 90 deg. C (Heat generation 22.5 kW). We analyzed the thermal performance of the concrete cask with horizontal transfer condition and normal storage condition. Thermal analyses for horizontal transfer operation were carried out based on the experimental conditions. The tendency of the analytical results was in good agreement with experimental results. The purpose of vertical thermal analysis

  13. Kinetics parameter measurements on RSG-GAS, a low-enriched fuel reactor

    International Nuclear Information System (INIS)

    Jujuratisbela, U; Arbie, B; Pinem, S.; Tukiran; Suparlina, L.; Singh, O.P.

    1995-01-01

    Kinetics parameter measurements, such as reactivity worths of control rods and fuel elements, beam tube void reactivity, power reactivity coefficient and xenon poisoning reactivity have been performed on different cores of Reaktor Serba Guna G.A. Siwabessy (RSG-GAS). In parallel, a programme was also initiated to measure the other kinetics parameters like effective delayed neutron life time, prompt neutron decay constant, validation of period reactivity relationship and zero power frequency response function. The paper provides the results of these measurements. (author)

  14. Safe use of the Institute of Nuclear Physics reactor with low enriched fuel

    International Nuclear Information System (INIS)

    Baytelesov, S.A.; Dosimbaev, A.A.; Koblik, Yu.N.; Salikhbaev, U.S.; Khalikov, U.A.; Yuldashev, B.S.

    2006-01-01

    Full text: The requirements for safe exploitation of reactor do not accept boiling of water on the surface of fuel elements. At determination of safe thermal regime of reactor (permissible level of power) the regime of the most heat-stressed fuel assembly (FA) in the active core was analyzed. By using ASTRA code [1] the heat-stressed sector is determined by most heat-stressed FA. In calculations the power of reactor was selected so that stock factor prior to the water boiling on the FA surface was not less than 1.45. Besides, in calculations the value of maximal energy density in examined FA is decreased by 10 %. As the part of the energy generated in the FA cores will be lost in constructional materials of the active zone and on the reflector. The stocks of safety before occurrence of instability of flow in gaps between of FA and before crisis of heat exchange are also analyzed. Further, by using the MCNP-4C code [2], densities of fast (E > 0,821 MeV) and thermal flows (E < 0,625 eV) of neutrons were calculated for those experimental channels where the irradiation of samples would be carried out. (author)

  15. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  16. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  17. Study on the use of slightly enriched uranium fuel cycle in an existing CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1997-12-31

    To test the viability of CANFLEX-SEU bundles in an existing CANDU 6 reactor, core follow-up simulation has been carried out using the reactor fueling simulation program of the CANDU 6, RFSP computer code, and a lattice physics code, WIMS-AECL. During the core follow-up, bundle and channel powers and zone levels have been checked against their operating limits at each simulation. It is observed from the simulation results that an equilibrium core loaded with 0.9 w/o CANFLEX-SEU bundles could be refueled and maintained for 550 FPD without any significant violations in the channel and bundle power limits and the permissible operating range of the liquid zone controllers. 8 refs., 2 figs., 1 tab. (Author)

  18. Study on the use of slightly enriched uranium fuel cycle in an existing CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1998-12-31

    To test the viability of CANFLEX-SEU bundles in an existing CANDU 6 reactor, core follow-up simulation has been carried out using the reactor fueling simulation program of the CANDU 6, RFSP computer code, and a lattice physics code, WIMS-AECL. During the core follow-up, bundle and channel powers and zone levels have been checked against their operating limits at each simulation. It is observed from the simulation results that an equilibrium core loaded with 0.9 w/o CANFLEX-SEU bundles could be refueled and maintained for 550 FPD without any significant violations in the channel and bundle power limits and the permissible operating range of the liquid zone controllers. 8 refs., 2 figs., 1 tab. (Author)

  19. On-line item control at a high enriched nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Lewis, T.W.; Lewis, H.M.

    1984-01-01

    The on-line item control system at Nuclear Fuel Services, Inc., is a near-real time method capable of tracking uniquely identified items from creation through disposition. The system provides for improved control, timeliness, accuracy and usability of company information and the necessary data required to support the regulatory program for the protection against diversion of Special Nuclear Materials. The system consists of software applications (approximately 150 programs) with man/machine interface controls which provide facilities for correct data entry and for the protection of data integrity. This system went into stand-alone operation in September, 1983 after a twenty month parallel test run with the previous keybatched (manual forms) item control system

  20. Development for analysis system of rods enrichment of nuclear fuels; Desarrollo de un sistema de analisis de enriquecimiento de barras de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L

    1998-11-01

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  1. Optimization of neutronic characteristics of U3Si2 low enrichment fuel elements for a new design of IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.; Maiorino, J.R.; Gouvea, E.A.

    1989-01-01

    This work shows a study of neutronic optimization of U 3 Si 2 -Al low enrichment fuel element. This study has a goal to propose a optimized Core to be used in the research reactor IEA-R1. The external dimensions of the fuel element were maintained as constraints and the loss of reactivity along fuel life-time was defined as 'objective function', and it has been minimized by varying the fuel element dimensions. Cell calculations were made with HAMMER-TECH /3/ Code, for burnups up to 50% of U-235 initial mass. The Computer values of the objective function for several combinations of fuel element dimensions were fitted by a surface using the SAS system /9/, and it has been minimized by a Harwell subroutine /10/. (author) [pt

  2. HEATHYD, Steady-State Thermal Hydraulic Analysis of Low-Enriched U Fuel Reactor

    International Nuclear Information System (INIS)

    NABBI, R.

    1989-01-01

    1 - Description of program or function: HEATHYD is a code for the steady-state heat transfer calculation of research nuclear reactors with forced convection. It models heat transfer and coolant flow for assemblies of parallel fuel plates of MTR type with any axial power distribution. The thermodynamic model accounts for single phase cooling and sub- cooled boiling condition using the transition criterion of Bergeles-Rosenow. In addition to the calculation of the channel flow velocities and coolant pressure drops, HEATHYD calculates axial distribution of the coolant and clad-surface temperatures. Safety margins to the critical heat flux as a result of burnout condition or flow instability are determined. 2 - Method of solution: Applying the finite difference method, HEATHYD solves the equations of heat conduction and heat transfer to the coolant. For the physical properties of the coolant as a function of the coolant temperature polynomials of degree 6 are used. Depending on the coolant condition, different correlations for the heat transfer coefficient can be applied. The analysis of the critical cooling conditions resulting in burnout or flow instability, is performed according to the correlations developed by Mirshak/ Labuntsov and Forgan/Whittle

  3. Fuel assembly

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Shimada, Hidemitsu; Aoyama, Motoo; Nakajima, Junjiro

    1998-01-01

    In a fuel assembly for an n x n lattice-like BWR type reactor, n is determined to 9 or greater, and the enrichment degree of plutonium is determined to 4.4% by weight or less. Alternatively, n is determined to 10 or greater, and the enrichment degree of plutonium is determined to 5.2% by weight or less. An average take-out burnup degree is determined to 39GWd/t or less, and the matrix is determined to 9 x 9 or more, or the average take-out burnup degree is determined to 51GWd/t, and the matrix is determined to 10 x 10 or more and the increase of the margin of the maximum power density obtained thereby is utilized for the compensation of the increase of distortion of power distribution due to decrease of the kinds of plutonium enrichment degree, thereby enabling to reduce the kind of the enrichment degree of MOX fuel rods to one. As a result, the manufacturing step for fuel pellets can be simplified to reduce the manufacturing cost for MOX fuel assemblies. (N.H.)

  4. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  5. Development of ISA procedure for uranium fuel fabrication and enrichment facilities: overview of ISA procedure and its application

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Yamada, Takashi; Takanashi, Mitsuhiro; Sasaki, Noriaki

    2013-01-01

    Integrated Safety Analysis (ISA) procedure for uranium fuel fabrication and enrichment facilities has been developed for aiming at applying risk-informed regulation to these uranium facilities. The development has carried out referring to the ISA (NUREG-1520) by the Nuclear Regulatory Commission (NRC). The paper presents purpose, principles and activities for the development of the ISA procedure, including Risk Level (RL) matrix and grading evaluation method of IROFS (Items Relied on for Safety), as well as general description and features of the procedure. Also described in the paper is current status in application of risk information from the ISA. Japanese four licensees of the uranium facilities have been conducting ISA for their representative processes using the developed procedure as their voluntary safety activities. They have been accumulating experiences and knowledge on the ISA procedure and risk information through the field activities. NISA (Nuclear and Industrial Safety Agency) and JNES (Japan Nuclear Energy Safety Organization) are studying how to use such risk information for the safety regulation of the uranium facilities, taking into account the licensees' experiences and knowledge. (authors)

  6. Effect of Long Time Oxygen Exposure on Power Generation of Microbial Fuel Cell with Enriched Mixed Culture

    International Nuclear Information System (INIS)

    Mimi Hani Abu Bakar; Mimi Hani Abu Bakar; Mimi Hani Abu Bakar; Pasco, N.F.; Gooneratne, R.; Hong, K.B.; Hong, K.B.; Hong, K.B.

    2016-01-01

    In this study, we are interested in the effect of long time exposure of the microbial fuel cells (MFCs) to air on the electrochemical performance. Here, MFCs enriched using an effluent from a MFC operated for about eight months. After 30 days, the condition of these systems was reversed from aerobic to anaerobic and vice versa, and their effects were observed for 11 days. The results show that for anaerobic MFCs, power generation was reduced when the anodes were exposed to dissolved oxygen of 7.5 ppm. The long exposure of anodic biofilm to air led to poor electrochemical performance. The power generation recovered fully when air supply stopped entering the anode compartment with a reduction of internal resistance up to 53 %. The study was able to show that mixed facultative microorganism able to strive through the aerobic condition for about a month at 7.5 ppm oxygen or less. The anaerobic condition was able to turn these microbes into exoelectrogen, producing considerable power in relative to their aerobic state. (author)

  7. Oscillator measurements of the reactivity changes resulting from the irradiation of low enrichment particulate fuel in the Dragon reactor

    International Nuclear Information System (INIS)

    Burbidge, B.L.H.; Franklin, B.M.; Small, V.G.

    1983-01-01

    This Report describes a series of experiments carried out as a joint UKAEA/CEA/DRAGON project to determine the reactivity changes of low-enrichment particulate fuel samples following their irradiation in the DRAGON reactor to various levels up to approximately 60,000 MWD/Te. The samples are described, together with the method of measurement of reactivity in the Winfrith reactor HECTOR, which was an extension of the well-known Oscillator Technique to yield simultaneously overall reactivity changes and changes in macroscopic absorption cross-sections. Measurements were carried out at room temperature in two reactor spectra; a thermal spectrum and one typical of an HTR type reactor. The resultant reactivity changes are presented together with the relevant sample burn-ups as determined by #betta#-scanning methods and, in some cases, by rigorous chemical analysis. The results of supporting measurements are also reported, carried out to characterise the neutron spectra in which the oscillator measurements were made and to determine the neutron flux distributions in the HECTOR reactor. (author)

  8. Proceedings of the international meeting on development, fabrication, and application of Reduced Enrichment fuels for Research and Test Reactors (RERTR). Base technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-08-01

    The international effort to develop new fuel materials and designs which will make it feasible to fuel research and test reactors throughout the world with low-enrichment uranium, instead of high-enrichment uranium, has made significant progress during the past year. This progress has taken place at research centers located in many different countries, and is of crucial interest to reactor operators and licensors whose geographical distribution is even more varied. It is appropriate, therefore, that international meetings be held periodically to foster direct communication among the specialists in this area. To achieve this purpose, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the third of a series which begun in 1978. The papers presented at this meeting were divided into sessions according to relevant subject: status of RERTR program and safety issues; development of new fuel types; testing of new fuel elements; specific reactor applications. These proceedings were edited by various members of the RERTR Program.

  9. Proceedings of the international meeting on development, fabrication, and application of Reduced Enrichment fuels for Research and Test Reactors (RERTR). Base technology

    International Nuclear Information System (INIS)

    1983-08-01

    The international effort to develop new fuel materials and designs which will make it feasible to fuel research and test reactors throughout the world with low-enrichment uranium, instead of high-enrichment uranium, has made significant progress during the past year. This progress has taken place at research centers located in many different countries, and is of crucial interest to reactor operators and licensors whose geographical distribution is even more varied. It is appropriate, therefore, that international meetings be held periodically to foster direct communication among the specialists in this area. To achieve this purpose, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the third of a series which begun in 1978. The papers presented at this meeting were divided into sessions according to relevant subject: status of RERTR program and safety issues; development of new fuel types; testing of new fuel elements; specific reactor applications. These proceedings were edited by various members of the RERTR Program

  10. Contribution to forecast of environmental impact, in the long run, for fuel cells of low and average temperature using the Delphi methodology

    International Nuclear Information System (INIS)

    Ribeiro, Maria Alice Morato; Oliveira, Wagner dos Santos

    2007-01-01

    Assessing future energy systems is of major importance for providing information on potential environmental awareness of some life cycle stages of innovative technologies, for determining competitive advantages compared to conventional technologies and for developing scenarios of future. Today, intense activity of R and D in cells is verified in fuel cells, practiced in centers of research, university, and laboratories of great companies, what it seems to indicate the use in wide scale of these generating right-handers of energy, before long. The work has a main objective, in the long run, to make a forecast of the environmental impact of low and average temperature fuel cells, analyzing all the stages of their useful life and final disposal of the materials that constitute them, using the Delphi methodology. The results of the environmental impact evaluation of the main materials used in the stacks are presented, considering their manufacture, operation and final disposal after their useful life ends. (author)

  11. Experimental RA reactor operation with 80% enriched fuel - Program of experimental operation: a) Program of experimental operation with 80% enriched fuel at low power, b) contents of the experimental operation with 80% enriched fuel at higher power levels; Program probnog rada: a) Program probnog rada reaktora sa 80% obogacenim gorivom na malim snagama, b) sadrzaj programa probnog rada reaktora RA sa 80% obogacenim gorivom na vecim snagama

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R; Sotic, O; Skoric, M; Cupac, S; Bulovic, V; Maric, I; Marinkov, L [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1980-10-15

    Highly enriched (80%) uranium oxide fuel was regularly used in the mixed reactor core with the 2% enriched fuel since 1976. The most important changes related to reactor operation, in comparison with the original design project were related to reactor core fuelling schemes. At the end of 1979 reactor was shutdown due to the corrosion coating noticed on some fuel elements and due to decrease quality of the heavy water. Subsequently the Sanitary inspector of Serbia has prohibited further reactor operation. Restart of the reactor will not be a simple continuation of operation. It is indispensable to perform complete experimental program including measurements of critical parameters at different power levels for the core with fresh 80% enriched fuel. The aim of this document is to obtain working permission and its contents are in agreement with the procedure demanded by the Safety Committee of the Institute. It includes results of optimization and safety analysis for the initial reactor core. Since the permission for restart is not obtained, a separate RA reactor safety report is prepared in addition to the program for experimental operation. This report includes: detailed program for reactor experimental operation with 80% enriched fuel in the core at low power levels, and contents of the experimental operation with 80% enriched fuel in the core at higher power levels. [Serbo-Croat] Od decembra 1976. godine redovno je korisceno 80% obogaceno gorivo u mesanoj resetki reaktorskog jezgra sa 2% obogacenim gorivom. Najvece izmene na reaktoru u odnosu na originalni projekat izvrsene su u nacinu rukovanja gorivom. Krajem marta 1979. godine obustavljen je rad reaktora usled naslaga na gorivnim elementima i loseg stanja teske vode. Naknadno je izdata zabrana za rad reaktora od strane Sanitarnog inspektora SR Srbije. Ponovno pustanje reaktora u rad nece biti jednostavan nastavak rada. Neophodno je da se izvede kompletan program merenja kriticnih parametara i drugih

  12. A study on items necessary to develop the requirements for the management of serious accidents postulated in fuel fabrication, enrichment and reprocessing facilities

    International Nuclear Information System (INIS)

    Takanashi, Mitsuhiro; Yamate, Kazuki; Asada, Kazuo; Yamada, Takashi; Endo, Shigeki

    2013-05-01

    The purpose of this study is to supply the points to discuss on new rules of fuel fabrication, enrichment and reprocessing facilities (hereinafter referred to as 'fuel cycle facilities') conducted by Nuclear Regulation Authority. Requirements for management of serious accidents in the fuel cycle facilities were summarized in this study. Taking into account the lessons learned from the accident of TEPCO Fukushima Daiichi Nuclear Power Plant in Mar. 2011, Act for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors was amended in June 2012. The main items of the amendment were as follows: Preparation for the management of serious accidents, Introduction of evaluation system for safety improvement, Application of new standards to existing nuclear facilities (back-fitting). Japan Nuclear Energy Safety organization (JNES) conducted a fundamental study on serious accidents and their management in the fuel cycle facilities and made a report. In the report, the concept of Defense in Depth and the definition of serious accidents for the fuel cycle facilities were discussed. Those discussions were conducted by reference to new regulation rules (draft) for power reactors and from the view of features of the fuel cycle facilities. However, further detailed studies are necessary in order to clarify some issues in it. It was also reflected opinions from experts in JNES technical meetings on accident management of the fuel cycle facilities to brush up this report. (author)

  13. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  14. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  15. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  16. Direct Measurement of Initial Enrichment, Burn-up and Cooling Time of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    International Nuclear Information System (INIS)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-01-01

    An outline of this presentation of what a Differential Die-Away (DDA) instrument can do are: (1) Principle of operation of DDA instrument; (2) Determination of initial enrichment (IE) (σ DDA response increases (die-away time is longer) with increasing fissile content; and (2) Spent fuel => DDA response decreases (die-away time is shorter) with higher burn-up (i.e. more neutron absorbers present).

  17. Neutronic calculations with transport and diffusion computer codes for light water moderated critical with UO2 enriched at 4,75% as fuel

    International Nuclear Information System (INIS)

    Sabundjian, G.; Nakata, H.

    1983-02-01

    The neutronic calculational procedure in a 4,75% w/O enriched UO 2 fueled light water moderated critical assembly was tested, using the transport codes and diffusin code available at the Instituto de Pesquisas Energeticas e Nucleares. The results of the tested codes, LEOPARD, CITHAMMER, LASER, GELS and CITATION, were found to be satisfatory and only a slight advantage is presented by CITHAMMER code. (Author) [pt

  18. Average annual doses, lifetime doses and associated risk of cancer death for radiation workers in various fuel fabrication facilities in India

    International Nuclear Information System (INIS)

    Iyer, P.S.; Dhond, R.V.

    1980-01-01

    Lifetime doses based on average annual doses are estimated for radiation workers in various fuel fabrication facilities in India. For such cumulative doses, the risk of radiation-induced cancer death is computed. The methodology for arriving at these estimates and the assumptions made are discussed. Based on personnel monitoring records from 1966 to 1978, the average annual dose equivalent for radiation workers is estimated as 0.9 mSv (90 mrem), and the maximum risk of cancer death associated with this occupational dose as 1.35x10 -5 a -1 , as compared with the risk of death due to natural causes of 7x10 -4 a -1 and the risk of death due to background radiation alone of 1.5x10 -5 a -1 . (author)

  19. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    Science.gov (United States)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  20. Concept and nuclear performance of direct-enrichment fusion breeder blanket using UO2 powder

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Kasahara, Takayasu; An, Shigehiro

    1985-01-01

    A new concept is presented for direct enrichment of fissile fuel in the blanket of a fusion-fission hybrid reactor. The enriched fuel produced by this means can be used in fission reactors without reprocessing. The outstanding feature of the concept is the powdered form in which UO 2 fuel is placed in the reactor blanket, where it is irradiated to the requisite enrichment for use as fuel in burner reactor, e.g. 3%. After removal from blanket, the powder is mixed to homogenize the enrichment. Fuel pellets and assemblies are then fabricated from the powder without reprocessing. The concept of irradiating UO 2 in powder eliminates the problems of spatial nonuniformity in fissile enrichment, and of radiation damage to fuel clad, encountered in attempting to enrich prefabricated fuel. Powder mixing for homogenization brings the additional benefit of removing volatile fission products. Also burnable poison can be added, as necessary, after irradiation. An extensive neutronic parameter survey showed that the optimum blanket arrangement for this enrichment concept is one presenting a fission suppressing configuration and with beryllium adopted as moderator. By this arrangement, the average 239 Pu enrichment obtained on the natural UO 2 fuel in the blanket reaches 3% after only 0.56 MW.yr/m"2 exposure. A conceptual design is presented of the blanket, together with associated fusion breeder, from which, practical application of the concept is shown to be promising. (author)

  1. State Averages

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...

  2. Application of gamma spectrometry technique in combination with weighing for material balance taking in the production of highly enriched U-A1 fuel

    International Nuclear Information System (INIS)

    Serin, P.A.

    1975-07-01

    The purpose of this project is to obtain the data on material balance for a batch of highly enriched U-Al alloys (used in the NRX and NRU reactors) during production of fuel, using gamma spectrometry (mainly the 186 KeV photopeak) and weighing, and to determine operational data of the Agency's single channel stabilized spectrometer (SAM-1) for measurement of the product typical for the production of highly enriched U-Al fuel (U-Al billets, fuel elements, scrap). The data collected indicates that gamma spectrometry using the single channel stabilized spectrometer is a valid non-destructive method of determining quantitatively U-235 content of U-Al alloy in the form of cast billets or extruded fuel elements providing that adequate standards are available. An accuracy of better than + 1% relative can be obtained using a simple jig to provide reproducible counting geometry. Count rates should be kept well below the saturation level of the detector and counter, preferably by a lead collimator in front of the detector. This non-destructive method is not easily applicable to scrap because of the inability to maintain constant geometry and to prepare standards closely similar in size and shape to the samples

  3. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  4. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@gmail.com [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hofman, Gerard L. [Argonne National Laboratory, Chicago, IL 60439 (United States); Kee, Robert J. [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); King, Jeffrey C. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-10-15

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  5. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  6. Post-irradiation analysis of low enriched U-Mo/Al dispersions fuel miniplate tests, RERTR 4 and 5

    International Nuclear Information System (INIS)

    Hofman, G.L.; Finlay, M.R.; Kim, Y.S.

    2005-01-01

    Interpretation of the post irradiation data of U-Mo/Al dispersion fuel mini plates irradiated in the Advanced Test Reactor to a maximum U-235 burn up of 80% are presented. The analyses addresses fuel swelling and porosity formation as these fuel performance issues relate to fuel fabrication and irradiation parameters. Specifically, mechanisms involved in the formation of porosity observed in the U-Mo/Al interaction phase are discussed and, means of mitigating or eliminating this irradiation phenomenon are offered. (author)

  7. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  8. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  9. World nuclear-fuel procurement: relationships between uranium and enrichment markets. Final report. International energies studies program

    International Nuclear Information System (INIS)

    Neff, T.L.

    1982-03-01

    This article explores the relationships between international uranium and enrichment markets under current contracting and equity arrangements and in comparison with actual feed requirements for existing and committed reactors. We begin with an overview of the world situation, examining current and prospective conditions. We then consider enrichment and uranium supply and demand situations of the three consumer nations outside the United States with the largest nuclear programs: France, Japan, and the Federal Republic of Germany. We conclude with an evaluation of likely directions of change in the coupled markets for uranium and enrichment services

  10. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the 134Cs/137Cs ratio method

    International Nuclear Information System (INIS)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-01-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the 134 Cs/ 137 Cs ratio method for measured radioactivities of 134 Cs and 137 Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured 134 Cs/ 137 Cs ratio from the contaminated soil is 0.996±0.07 as of March 11, 2011. Based on the 134 Cs/ 137 Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2±1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of 134 Cs/ 137 Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on 134 Cs/ 137 Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  11. Feeding the nuclear fuel cycle with a long term view; AREVA's front-end business units, uranium mining, UF6 conversion and isotopic enrichment

    International Nuclear Information System (INIS)

    Capus, G.A.P.; Autegert, R.

    2005-01-01

    As a leading provider of technological solutions for nuclear power generation and electricity transmission, the AREVA group has the unique capability of offering a fully integrated fuel supply, when requested by its customers. At the core of the AREVA group, COGEMA Front End Division is an essential part of the overall fuel supply chain. Composed of three Business Units and gathering several subsidiaries and joint 'ventures, this division enjoys several leading positions as shown by its market shares and historical production records. Current Uranium market evolutions put the natural uranium supply under focus. The uranium conversion segment also recently revealed some concerning evolutions. And no doubt, the market pressure will soon be directed also at the enrichment segment. Looking towards the long term, AREVA strongly believes that a nuclear power renewal is needed, especially to help limiting green house effect gas release. Therefore, to address future supplies needed to fuel the existing fleet of nuclear power plants, but also new ones, the AREVA group is planning very significant investments to build new facilities in all the three front-end market segments. As far as uranium mining is concerned, these new mines will be based upon uranium reserves of outstanding quality. As for uranium conversion and enrichment, two large projects will be based on the most advanced technologies. This paper is aimed at recalling COGEMA Front End Division experience, the current status of its plants and operating entities and will provide a detailed overview of its major projects. (authors)

  12. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, A., E-mail: afavalli@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schwalbach, P. [European Commission, DG Energy, Euratom Safeguards Luxemburg, Luxemburg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Tobin, S.J.; Trellue, H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Vaccaro, S. [European Commission, DG Energy, Euratom Safeguards Luxemburg, Luxemburg (Luxembourg)

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute {sup 137}Cs count rate and the {sup 154}Eu/{sup 137}Cs, {sup 134}Cs/{sup 137}Cs, {sup 106}Ru/{sup 137}Cs, and {sup 144}Ce/{sup 137}Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  13. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Science.gov (United States)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  14. Comparison of control rod effectiveness for thorium and low-enriched fuel cycles in the GA-1, 160 MW(e) design

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Hans Joachim

    1974-03-15

    In an investigation of the properties of the Thorium-Uranium (Th) and the Low-Enriched Uranium (LEU) fuel cycles it is also necessary to compare the effectiveness of the control rods in a reactor system operating with these sorts of fuel. Furthermore, it is under consideration to start a reactor with LEU fuel and switch-over to a Th cycle. It is also of interest to look at the switch-over phase in respect to the control rod effectiveness. The various fuel cycles have been studied for the same fuel element and control rod design, namely the one of GA's commercially available 1,160 MW(e) reference power station. This paper gives the first results on the control rod calculations and is presented mainly in two parts. Part 1 describes spectral effects which have been investigated by cell calculations with a discrete ordinates transport code. The main result is the higher effectiveness of a rod in a Th-cycle compared with a LEU-cycle. Part 2 reports on reactor calculations with a diffusion code and shows that this advantage can partially disappear in the reactor because of the spatial flux distribution. This effect has to be studied in further investigations for a full understanding.

  15. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  16. The enrichment secondary market

    International Nuclear Information System (INIS)

    Einbund, D.R.

    1986-01-01

    This paper will addresses two topics: the background to the present status of the enrichment secondary market and the future outlook of the secondary market in enrichment services, and the viability of the nuclear fuel brokerage industry. These two topics are inevitably connected, as most secondary market activity, not only in enrichment but also in natural uranium, has traditionally been conducted with the participation of brokers. Therefore, the author interrelates these topics

  17. International interest in the BONAPARTE measurement bench. Post-irradiation examination of lower-enriched fuel plates

    International Nuclear Information System (INIS)

    2014-01-01

    The Belgian Nuclear Research Center SCK-CEN has developed a measurement bench (BONAPARTE) for the non-destructive analysis on fuel plate and rod type fuel elements. BONAPARTE is a modular device that can be employed for many purposes. The article discusses the employment of the BONAPARTE device for the accurate full post-irradiation mapping of fuel plate swelling with degree of precision of just a few micrometers.

  18. Fuel assemblies

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo.

    1983-01-01

    Purpose: To improve the operation performance of a BWR type reactor by improving the distribution of the uranium enrichment and the incorporation amount of burnable poisons in fuel assemblies. Constitution: The average enrichment of uranium 235 is increased in the upper portion as compared with that in the lower portion, while the incorporation amount of burnable poisons is increased in an upper portion as compared with that in the lower portion. The difference in the incorporation amount of the burnable poisons between the upper and lower portions is attained by charging two kinds of fuel rods; the ones incorporated with the burnable poisons over the entire length and the others incorporated with the burnable poisons only in the upper portions. (Seki, T.)

  19. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  20. Sogin enriched uranium extraction (EUREX) plant spent fuel pool cleaning and decontamination utilizing the Smart Safe solution

    International Nuclear Information System (INIS)

    Denton, M.S.; Gili, M.; Nasta, M.; Quintiliani, R.; Caccia, G.; Botzen, W.; Forrester, K.

    2009-01-01

    SOGIN's EUREX facility in Italy was developed as a pilot plant functional testing laboratory for spent fuel reprocessing. This facility was operated successfully for many years since 1970 and was eventually shutdown consistent with Italy's suspension of all nuclear operations. At the time of suspension, the EUREX facility still had spent nuclear fuel assemblies in storage from a nearby PWR. Other fuel assemblies from an Italian AGR had remained stored in the spent fuel pool for the 20 years or so waiting for removal and reprocessing abroad. Being Magnox fuel elements, their recovery for the transport produced a huge amount of sludge in the pool. During this time, sediment, dirt, corrosion products, fuel cladding, etc. has collected within the fuel pool as a crud layer dispersed throughout. Most of this crud has accumulated on the horizontal surfaces of the pool and fuel element assemblies, while some remains as a suspended colloidal material. Furthermore many other contaminated metal components, used during the operation years, where still inside the pool. Due to a pool leak discovered in 2006, SOGIN speeded up its pool decommissioning program, making also available the transfer of the spent fuel to a nearby interim repository, with the goal to completely drain the pool in the shortest period of time. In order for SOGIN to successfully transfer the fuel assemblies from their current storage basket locations to the spent fuel transfer cask, the bulk of the crud needed to be removed. This cleanup operation was deemed necessary to minimize the suspension of contamination in the water during underwater handling operations. This would reduce the decontamination efforts on the transfer cask upon removal, once loaded with the spent fuel, and enhance safety by reducing potential underwater visibility issues. The operations were completed in July 2008 with the release to the environment of the pool water, thoroughly purified and without any relevant radiological impact. The

  1. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.; Ikonomou, P.; Hosoya, M.; Scott, P.; Fager, J.; Sanders, C.; Colwell, D.; Joyner, C.J.

    1994-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant

  2. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing; Saito, Tomonori; Regan, John M.

    2012-01-01

    biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode

  3. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  4. Development of a treatment technology for diluting highly enriched AL-based DOE spent nuclear fuel: principles and practices

    International Nuclear Information System (INIS)

    Adams, T.M.; Duncan, A.J.; Peacock, H.B.; Fisher, D.L.

    2001-01-01

    The Savannah River Site is the U.S. Department of Energy's preferred site for return and treatment of all aluminum-base, spent, research and test reactor fuel assemblies. There are over 20,000 spent fuel assemblies now stored in different countries around the world, and by 2035 many will be returned to SRS for treatment and interim storage. Interim storage canisters at SRS will be sent to a Mined Geologic Repository for long-term geologic storage. Laboratory and plant layout of a full-scale process for irradiated fuel has been completed. Tests of the off gas absorption system have been initiated using both surrogate and irradiated RERTR mini fuel plates. An pilot-scale L-Area Experimental Facility (LEF) is planned to validate induction furnace operations, remote handling, and the off gas system for trapping volatile elements under plant operating conditions. (authors)

  5. A study of a zone approach to IAEA [International Atomic Energy Agency] safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches

  6. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  7. Method of producing nuclear fuels

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Suzuki, Tokuyuki; Oomura, Hiroshi.

    1985-01-01

    Purpose: To fabricate a nuclear fuel assembly with uniform enrichment degree, in the blanket of a hybrid reactor. Constitution: A vessel charged with powderous source materials is conveyed by a conveying gas through a material charge/discharge tube to the inside of the blanket. Then, plasmas are formed in the inner space of the blanket so as to enrich the source materials by the irradiation of neutrons. After the average degree of enrichment reaches a predetermined level, the material vessel is discharged by the conveying gas onto a conveyor. The powder materials are separated from the source-material vessel and then charged into a source-material hopper. The mixed material of a uniform enrichment degree is supplied to a fuel-assembly-fabrication device. FP gases resulted after the enrichment are effectively separated and removed through an FP gas pipe. (Horiuchi, T.)

  8. Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zheng, Lijun; Yang, Dachi; Chang, Rong; Wang, Chengwen; Zhang, Gaixia; Sun, Shuhui

    2017-07-06

    We have developed "crack-tips" and "superlattice" enriched Pt-Cu nanoflakes (NFs), benefiting from the synergetic effects of "crack-tips" and "superlattice crystals"; the Pt-Cu NFs exhibit 4 times higher mass activity, 6 times higher specific activity and 6 times higher stability than those of the commercial Pt/C catalyst, respectively. Meanwhile, the Pt-Cu NFs show more enhanced CO tolerance than the commercial Pt/C catalyst.

  9. Evaluation of core physics analysis methods for conversion of the INL advanced test reactor to low-enrichment fuel

    International Nuclear Information System (INIS)

    DeHart, M. D.; Chang, G. S.

    2012-01-01

    Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR. (authors)

  10. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1995-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  11. Recent status of development and irradiation performance for plate type fuel elements with reduced 235U enrichment at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.W.

    1984-01-01

    According to the present state of development full size test fuel elements with the maximum uranium densities of 2,2 g U/cm 3 meat for UAlsub(x), 3,2 g U/cm 3 meat for U 3 O 8 and 4,8 g U/cm 3 meat for U 3 Si 2 can be fabricated at NUKEM in production scale. Special chemical procedures for the uranium recovery were developed ensuring an economic fuel fabrication process. The post irradiation examinations (PIE) of 12 UAlsub(x) (U density 2,2 g U/cm 3 meat) and U 3 O 8 (up to 3,1 g U/cm 3 meat) test plates irradiated in the ORR, Oak Ridge research reactor, were terminated. All 12 test plates show unobjectionable irradiation behavior. Extensive irradiation tests on full size fuel elements were performed. All inserted elements show perfect irradiation behavior. The PIE of the first HFR Petten U 3 O 8 fuel elements are in progress. The full size ORR U 3 Si 2 fuel elements with so far highest uranium density of 4,76 g U/cm 3 meat achieved a burnup of 50 % loss of 235 U up to May 1983. One element was withdrawn from the reactor for PIE, the second will be irradiated to a burnup of 75 % loss of 235 U. The further development is concentrated on Usub(x)Sisub(y) fuel with highest uranium density. U 3 Si miniplates with up to 6,1 g U/cm 3 meat are supplied meeting the required specification, U 3 Si miniplates with 6,7 g U/cm 3 are in fabrication. (author)

  12. Contribution to fuel depletion study in PWR type reactors, reactor core with three and four regions of enrichment

    International Nuclear Information System (INIS)

    Teixeira, M.C.C.

    1977-03-01

    The main methods for calculation of fuel depletion are studied and some approaches to do it are mentioned; the LEOPARD Code is described and full details are given for each subroutine, flow charts are included; the method given by the code for calculation of fuel depletion is described; some imperfections from the IPR's version are listed, and corrected, for instance: the method for burn-up calculation of heavy isotopes; the results of calculations for a reference reactor based on data of the Preliminary Safety Analysis Report (PSAR) for Angra I Nuclear Power Plant are presented and discussed. (author)

  13. Comparison of the thorium- and low-enriched uranium fuel cycle in the OTTO pebble bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E; Maly, V

    1973-03-15

    From the study of the physical, technical and economical properties of the LOTTO and TOTTO fuel cycle the authors draw the conclusion that no fundamental reason can be found for a definite preference of one of the two cycles. Either of them can be developed to become a very attractive concept. The flexibility of this reactor allows the design performance in that way that the reactor becomes a safe system with reasonable economy. The decision for the preference of the LOTTO or TOTTO can be allowed to be governed by the requirements of the outer fuel cycle or by politics.

  14. Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Sean R. Morrell

    2012-09-01

    Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace

  15. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Bodey, Isaac T.; Curtis, Franklin G.; Arimilli, Rao V.; Ekici, Kivanc; Freels, James D.

    2015-01-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  16. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  17. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  18. Investigations of uraniumsilicide-based dispersion fuels for the use of low enrichment uranium (LEU) in research and test reactors

    International Nuclear Information System (INIS)

    Nazare, S.

    1982-07-01

    The work presents at the outset, a review of the preparation and properties of uranium silicides (U 3 Si and U 3 Si 2 ) in so far as these are relevant for their use as dispersants in research reactor fuels. The experimental work deals with the preparation and powder metallurgical processing of Al-clad miniature fuel element plates with U 3 Si- und U 3 Si-Al up to U-densities of 6.0 g U/cm 3 . The compatibility of these silicides with the Al-matrix under equilibrium conditions (873 K) and the influence of the reaction on the dimensional stability of the miniplates is described and discussed. (orig.) [de

  19. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-27

    Tom Wenzel of Lawrence Berkeley National Laboratory comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicle, specifically on the relationship between vehicle weight and vehicle safety.

  20. MTR (Materials Testing Reactors) cores fuel management. Application of a low enrichment reactor for the equilibrium and transitory core calculation

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es

  1. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    2018-06-01

    Full Text Available Recent studies have revealed that caryophyllene and its stereoisomers not only exhibit multiple biological activities but also have desired properties as renewable candidates for ground transportation and jet fuel applications. This study presents the first significant production of caryophyllene and caryolan-1-ol by an engineered E. coli with heterologous expression of mevalonate pathway genes with a caryophyllene synthase and a caryolan-1-ol synthase. By optimizing metabolic flux and fermentation parameters, the engineered strains yielded 449 mg/L of total terpene, including 406 mg/L sesquiterpene with 100 mg/L caryophyllene and 10 mg/L caryolan-1-ol. Furthermore, a marine microalgae hydrolysate was used as the sole carbon source for the production of caryophyllene and other terpene compounds. Under the optimal fermentation conditions, 360 mg/L of total terpene, 322 mg/L of sesquiterpene, and 75 mg/L caryophyllene were obtained from the pretreated algae hydrolysates. The highest yields achieved on the biomass basis were 48 mg total terpene/g algae and 10 mg caryophyllene/g algae and the caryophyllene yield is approximately ten times higher than that from plant tissues by solvent extraction. The study provides a sustainable alternative for production of caryophyllene and its alcohol from microalgae biomass as potential candidates for next generation aviation fuels. Keywords: Caryophyllene, Caryolan-1-ol, Caryophyllene synthase, Caryolan-1-ol synthase, Mevalonate pathway, Bioproduct

  2. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.

    Science.gov (United States)

    Kohn, Richard A; Kim, Seon-Woo

    2015-10-07

    Fermentation of crops, waste biomass, or gases has been proposed as a means to produce desired chemicals and renewable fuels. The second law of thermodynamics has been shown to determine the net direction of metabolite flow in fermentation processes. In this article, we describe a process to isolate and direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others). Mathematical models of fermentation elucidated sets of conditions that thermodynamically favor synthesis of desired products. When these conditions were applied to mixed cultures from the rumen of a cow, bacteria that produced alcohols or alkanes were isolated. The examples demonstrate the first use of thermodynamic analysis to isolate bacteria and control fermentation processes for biofuel production among other uses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Uranium enrichment (a strategy analysis overview)

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-08-01

    An analysis of available information on enrichment technology, separative work supply and demand, and SWU cost is presented. Estimates of present and future enrichment costs are provided for use in strategy analyses of alternate nuclear fuel cycles and systems. (auth)

  4. Operational report, Advantages of gradual introducing of highly enriched fuel into the RA reactor core from economic aspect and users needs; Radni izvestaj, Prednost postupka parcijalnog uvodjenja visokoobogacenog goriva u reaktor RA sa aspekta ekonomicnosti i potreba korisnika

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R et al. [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1976-10-14

    The possibility of increasing the neutron flux in the RA reactor was considered for a number of years. The possibilities of reactor reconstruction are not realistic and they should be disregarded. The possibility that remains is to achieve higher neutron flux by improving the fueling scheme and above all by introducing highly enriched fuel into the reactor core. Decision to purchase highly enriched fuel was quicker due to the fact that the 2% enriched uranium fuel is not fabricated any more. There are two procedures for exchanging the fuel in the reactor core: a) removal of partially spent 2% enriched fuel and formation of the core with fresh highly enriched fuel; b) gradually introducing the new fuel into the existing RA reactor core according to a special transfer regime. This report includes some comparative analyses of these two procedures from both economic point of view and the needs of users, as well as some technical conditions. These results are in favour of gradual introducing of new fuel into the reactor core. relevant direct savings amount to 3 000 000 dinars. Some of the most important advantages cannot be estimated in this way. This report does not cover the safety analyses results which are presented in a series of other papers. [Serbo-Croat] Vec vise godina razmatra se mogucnost za povecanje neutronskog fluksa u reaktoru RA. Mogucnosti za rekonstrukciju reaktora RA u tom smislu su minimalne i realno ih treba odbaciti. Prema tome preostaje da se povecanje neutronskog fluksa postigne usavrsavanjem seme izmene goriva, a pre svega uvodjenjem goriva sa visokim stepenom obogacenja u reaktor RA. Donosenje odluke o nabavci visokoobogacenog goriva i njegovom uvodjenju u reaktor ubrzano je i cinjenicom da se staro 2% obogaceno uransko gorivo vise ne proizvodi. Postoje dva postupka za prevodjenje reaktora na ovo gorivo: a) Uklanjanjem poluistrosenog 2% obogacenog goriva iz reaktora i formiranjem jezgra iskljucivo od svezeg visokoobogacenog goriva, b

  5. In-core fuel management for nuclear reactor

    International Nuclear Information System (INIS)

    Ross, M.F.; Visner, S.

    1986-01-01

    This patent describes in-core fuel management for nuclear reactor in which the first cycle of a pressurized water nuclear power reactor has a multiplicity of elongated, square fuel assemblies supported side-by-side to form a generally cylindrical, stationary core consisting entirely of fresh fuel assemblies. Each assembly of the first type has a substantially similar low average fissile enrichment of at least about 1.8 weight percent U-235, each assembly of the second type having a substantially similar intermediate average fissile enrichment at least about 0.4 weight percent greater than that of the first type, and each assembly of the third type having a substantially similar high average fissile enrichment at least about 0.4 weight percent greater than that of the intermediate type, the arrangement of the low, intermediate, and high enrichment assembly types which consists of: a generally cylindrical inner core region consisting of approximately two-thirds the total assemblies in the core and forming a figurative checkerboard array having a first checkerboard component at least two-thirds of which consists of high enrichment and intermediate enrichment assemblies, at least some of the high enrichment assemblies containing fixed burnable poison shims, and a second checkerboard component consisting of assemblies other than the high enrichment type; and a generally annular outer region consisting of the remaining assemblies and including at least some but less than two-thirds of the high enrichment type assemblies

  6. Natural uranium utilization without enrichment and reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H.; Toshinsky, V.; Ryu, K. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    2001-07-01

    Two types of fast reactor are investigated to utilize the natural uranium without enrichment and reprocessing in an equilibrium state. The first trial is SFPR. Its fuel-shuffling pattern is optimized. An obtained result gives its peak fuel burnup of 22,5%, power peaking factor of 1.5 and peak excess reactivity of 2,15%. The second trial is CANDLE burnup scheme, where distribution shapes of neutron flux and nuclide densities are constant but move in axial direction with a constant velocity. A feasible solution gives the speed of burning region of 4,1 cm/year, k{sub eff} of 1,02 and average spent fuel burnup of 41%. (author)

  7. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  8. New generation of CASTOR registered casks for high enriched, high burn-up fuel from German NPP

    International Nuclear Information System (INIS)

    Gartz, R.; Kuehne, B.; Diersch, R.

    2004-01-01

    Requirements for new cask designs for transport and long-term dry storage of spent fuel assemblies (FA) from LWR-reactors are based on both increased source terms of the LWR FA including MOX FA, as well as the demand for economical optimisation of decommissioning costs by increased cask capacities. For this, cask development is the challenge to create and establish cask designs that can accommodate more FA with higher source terms, each under fixed boundary conditions (i.e. transport requirements and limitations of the power plants as crane loads and/or fixed maximum dimensions). This task has been elaborated by working simultaneously on different development actions each focussed to improve the cask performance. In the following a brief summary will be presented to give an overview which developments and investigations have been and are still will be performed for development and safety analyses of the new CASTOR registered -designs under the main subjects: material investigation and qualification, component tests and verifications, detailed design analysis and not at least design verification

  9. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

    Directory of Open Access Journals (Sweden)

    Jinfan Yang

    2018-01-01

    Full Text Available The aim of this study was to develop an effective carbonaceous solid acid for synthesizing green fuel additive through esterification of lignocellulose-derived levulinic acid (LA and n-butanol. Two different sulfonated carbons were prepared from glucose-derived amorphous carbon (GC400 and commercial active carbon (AC400. They were contrastively studied by a series of characterizations (N2 adsorption, X-ray diffraction, elemental analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and NH3 temperature programmed desorption. The results indicated that GC400 possessed stronger acidity and higher –SO3H density than AC400, and the amorphous structure qualified GC400 for good swelling capacity in the reaction solution. Assessment experiments showed that GC400 displayed remarkably higher catalytic efficiency than AC400 and other typical solid acids (HZSM-5, Hβ, Amberlyst-15 and Nafion-212 resin. Up to 90.5% conversion of LA and 100% selectivity of n-butyl levulinate could be obtained on GC400 under the optimal reaction conditions. The sulfonated carbon retained 92% of its original catalytic activity even after five cycles.

  10. Comparison of DUPIC fuel composition heterogeneity control methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity of the spent PWR fuel. In order to reduce the variation of isotopic composition of the DUPIC fuel, the inter-assembly mixing operation was taken three times. Then, three options have been considered: reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity of DUPIC fuel can be tightly controlled with the minimum amount of fresh uranium feed. For the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. 13 refs., 6 figs., 16 tabs. (Author)

  11. The reduced enrichment program for JRR-4

    International Nuclear Information System (INIS)

    Takayanagi, M.

    1992-01-01

    Japan Research Reactor No. 4(JRR-4) with the rated power of 3.5 MW, swimming pool type research reactor, 93 % enriched uranium ETR-type fuel used, light water moderated and cooled. The first criticality reached on 28th January, 1965. The reactor has operated for about 26 years. However, it was planed to the reduced enrichment of the fuels to low enrichment according to the International Reduced Enrichment for Research and Test Reactors (RERTR) program. This paper describes the program for conversion of the enrichment of fuel from 93 % to less than 20 %. (author)

  12. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: fabrication of light-water reactor fuel from enriched uranium dioxide

    International Nuclear Information System (INIS)

    Pechin, W.H.; Blanco, R.E.; Dahlman, R.C.; Finney, B.C.; Lindauer, R.B.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model enriched-uranium, light-water reactor (LWR) fuel fabrication plant, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment equipment is added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Some of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. (U.S.)

  13. Blueprint for domestic uranium enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    The AEC advisory committee on domestic production of uranium enrichment has studied for more than a year how to achieve the domestic enrichment of uranium by the construction and operation of a commercial enriching plant using centrifugal separation method, and the report was submitted to the Atomic Energy Commission on August 18, 1980. Japan has depended wholly on overseas services for her uranium enrichment needs, but the development of domestic enrichment has been carried on in parallel. The AEC decided to construct a uranium enrichment pilot plant using centrifuges, and it has been forwarded as a national project. The plant is operated by the Power Reactor and Nuclear Fuel Development Corp. since 1979. The capacity of the plant will be raised to approximately 75 ton SWU a year. The centrifuges already operated have provided the first delivery of fuel of about 1 ton for the ATR ''Fugen''. The demand-supply balance of uranium enrichment service, the significance of the domestic enrichment of uranium, the evaluation of uranium enrichment technology, the target for domestic enrichment plan, the measures to promote domestic uranium enrichment, and the promotion of the construction of a demonstration plant are reported. (Kako, I.)

  14. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hwei-Ting Tan

    2016-12-01

    Full Text Available Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tonnes. Lignin is synthesised in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with

  15. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

    Science.gov (United States)

    Tan, Hwei-Ting; Corbin, Kendall R.; Fincher, Geoffrey B.

    2016-01-01

    Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy

  16. Experiments on light water lattices with enriched uranium fuel; Analyse des donnees experimentales sur les reseaux a eau legere et uranium enrichi

    Energy Technology Data Exchange (ETDEWEB)

    Audinet, M [Societe des Forges et Ateliers du Creusot, 75 - Paris (France); Lamare, J de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Panossian, J [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    Experiments a light water lattices with slightly enriched uranium fuel, have been performed at Brookhaven and Bettis Plant Laboratories. The results are studied and compared with simple theories on reactor calculations. By taking into account shadow effects and non Maxwellian neutron spectrum, which are important in this kind of reactors, we have been able to explain the observed results fairly well. We can thus give a constituent set of formulas with which to calculate lattices similar to there we studied. (author) [French] Les resultats d'experiences effectuees aux Laboratoires de Brookbaven et de Bettis Plant, sur des reseaux heterogenes a eau legere et uranium metallique legerement enrichi, sont analyses et confrontes avec les theories simples du calcul de pile. En tenant compte des effets d'interaction et d'echauffement du spectre de neutrons qui sont importants dans ce type de reacteurs, on parvient a rendre compte convenablement des resultats observes. On a ainsi mis au point un formulaire permettant le calcul des reseaux quivpeuvent etre consideres comme assez semblables aux reseaux etudies. (auteur)

  17. Fuel Cycle of VVER-1000: technical and economic aspects

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.

    2009-01-01

    The paper contains estimations of dependences of technical and economic characteristics of VVER-1000 fuel cycle on number of charged FAs and their enrichment. In the study following restrictions were used: minimum quantity of loaded fresh FAs is equal 36 FAs, a maximum one - 78 (79) FAs and fuel enrichment is limited by value 4,95 %. The following technical and economic characteristics are discussed: cycle length, average burnup of spent fuel, specific consumption of natural uranium, specific quantity of separative work, annual production of thermal energy, fuel component of electrical energy cost, electricity generation cost. Results of estimations are presented as dependences of researched characteristics on cycle length, quantity of loaded FAs and their enrichments. The presented information allows to show tendencies and ranges of technical and economic characteristics at change of fuel cycle parameters. This information can be useful for definition of the fuel cycle parameters which satisfy the requirements of power system and exploiting organizations. (authors)

  18. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  19. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - II: Geochemical Constraints

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-01-01

    This article presents several reasonable cases in which four mechanisms - dissolution, physical mixing, adsorption, and precipitation (either chemical change or evaporation) - might concentrate fissile material in and around a disposal container for radioactive waste at the proposed repository at Yucca Mountain, Nevada. The possible masses, concentrations, and volume are then compared to criticality limits. The cases examined evaluate the geologic barrier role in preventing criticality since engineered options for preventing criticality (e.g., boron or gadolinium neutron absorber in the disposal container) are not considered. The solid concentrations able to form in the natural environment are insufficient for criticality to occur because (a) solutions of 235 U and 239 Pu are clearly not critical; (b) physical mixing of fissile material with the entire potential iron oxide (as goethite - FeOOH) in a waste package is not critical; (c) the adsorption of 239 Pu on consolidated iron oxide in a waste package is not critical; (d) the adsorption of 235 U on consolidated iron oxide in a waste package is not critical when accounting for reduced adsorption because of carbonates at high pH; (e) the filtration of iron oxide colloids, containing fissile material, by the thin invert material is not critical; (f) insufficient retention through precipitation of 235 U or 239 Pu occurs in the invert; (g) adsorption of 235 U and 239 Pu on devitrified or clinoptolite-rich tuff below the repository is not critical; (h) the average precipitation/adsorption of 235 U as uranyl silicates in the tuff is not critical by analogy with calcite deposition in lithophysae at Yucca Mountain; and (i) precipitation/adsorption (caused by cyclic drying) as uranyl silicates on fracture surfaces of the tuff is not critical by analogy with the oxidation of UO 2 , migration of U VI , and precipitation in fractures at the Nopal I ore deposit in Mexico

  20. Experimental operation of the RA reactor with 4 fuel channels containing 80% enriched dispersion fuel - Operational Report; Radni izvestaj - Eksperimentalna kampanja reaktora RA sa 4 kanala sa 80% obogacenim disperzionim gorivom

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R; Milosevic, M; Cupac, S; Kozomara, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1976-12-15

    Start of utilization of the new 80% enriched dispersion nuclear fuel is underway in the RA reactor core. Both economic and technical analyses were in favor of introducing the new fuel elements gradually into the RA reactor core. Thus overall theoretical and experimental analyses as well as other preparations are directed to transition regime based on gradual introducing of new fuel into the core, i.e. reactor core with two types of fuel. The objective of these analyses and preparation is establishment of conditions for safe reactor operation during transition period. The analyses and preparations are almost completed. The experimental data about fuel burnup during a time period of operation at nominal power i.e. daily decrease of excess reactivity is missing. This data is needed for planning the refueling (quantity of fresh fuel and frequency of refueling) during the transient period. This data can be obtained only by normal operation of the reactor during a period of time significantly longer than the period of attaining equilibrium poisoning, as time between two D{sub 2}O condensate overflows into the RA reactor core. Thus a ten day experimental campaign was planned to be done in December 1976. This report presents the most important results of safety analyses and preparation which show that, during this experimental period, the reactor operation is absolutely safe taking into account the most important parameters influencing reactor safety, as reactivity, thermal and temperature limits for fuel and the reactor, etc. Data to be obtained during this experimental campaign are significant because they would enable definition of future supply of fresh fuel during the transition period. [Serbo-Croat] Predstoji pocetak koriscenja novog 80% obogacenog uranskog disperzionog goriva u reaktoru RA. Ekonomske i tehnicke analize dale su prednost postupku postepenog uvodjenja novog goriva u reaktor RA. Prema tome, obimne teorijske i eksperimentalne analize i druge pripreme

  1. Possibility of implementation of 6-year fuel cycle at NPP with VVER-440 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heraltova, L., E-mail: lenka.heraltova@fjfi.cvut.cz [UJV Rez a.s., Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2015-12-15

    Highlights: • Possibility of extension of fuel cycle. • Increase of enrichment above 5% {sup 235}U. • Core properties calculated by diffusion code ANDREA. • Back end fuel cycle characteristic. - Abstract: This paper discusses possibility of an extension of a fuel cycle at a VVER-440 reactor for up to 6 years. The prolongation of a fuel cycle was realized by optimization of a fuel design and increasing of a fuel enrichment. The modified design of the fuel assembly covers change of pellet geometry, decreasing of parasitic absorption in construction materials, improved moderation of fuel pins and also increase of enrichment. Fuel assemblies with enrichment up to 7% {sup 235}U are considered for prolonged fuel batches. Three different batch lengths were considered for evaluation of core properties – 12, 18 and 24 months, and two types of burnable absorbers were included – Gd{sub 2}O{sub 3} and Er{sub 2}O{sub 3}. Comparison of proposed fuel assemblies was realized by length of a batch, average burnup, maximal power of fuel assembly or fuel pin, control fuel assembly worth, reactivity coefficients, and effective delayed neutrons fraction. Comparison of characteristics of a burned fuel discharged from a reactor core is discussed in the last part of the paper.

  2. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  3. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Thomas P

    2009-10-27

    I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

  4. Communication dated 30 May 2007 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the IAEA concerning enrichment bonds - A voluntary scheme for reliable access to nuclear fuel

    International Nuclear Information System (INIS)

    2007-01-01

    The Secretariat has received a letter dated 30 May 2007 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the IAEA attaching a UK Non-paper entitled 'Food for Thought: Enrichment Bonds - A Voluntary Scheme for Reliable Access to Nuclear Fuel'. As requested in that letter, the letter and the attachment is now being circulated for the information of all Member States

  5. Preparation of the capsule for the experiment with enriched fuel, task E-14-16-00-29; Priprema kapsula za eksperiment sa obogacenim gorivom, zad. E-14-16-00-29

    Energy Technology Data Exchange (ETDEWEB)

    Anastasijevic, P; Pavlovic, A; Zivkovic, S; Nikolic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1968-12-15

    Preparation of the experiment with highly enriched fuel was based on the experience gained in constructing the capsule for natural uranium fuel. The possibility of using capsules with enriched UO{sub 2} in the RA reactor was analyzed. Special attention was devoted to the analysis of heat removal from the fuel rods. Capsule for irradiation of enriched UO{sub 2} was designed. The most important change appeared in sealing zircaloy-2 with stainless steel part. This must be done by diffusion welding. Since there is no device for diffusion welding in our country the elements will be sent to Saclay, France. All the parts made of domestic material were fabricated in the Institute. Purchase of elements that must be imported is delayed due to procedures for obtaining foreign currency. The fabrication of the capsule can be completed within 25 days upon obtaining the mentioned material from abroad. This report contains the safety report for the experiment with the enriched fuel. Na osnovu dosadasnjeg rada i iskustva na izgradnji kapsula za neobogaceno gorivo izvrsena je priprema za eksperimenat sa obogacenim gorivom. Analizirana je mogucnost koriscenja kapsula sa obogadenim UO{sub 2} u reaktoru RA. Narocito je posvecena paznja analizi odvodjenja generisane toplote iz sipki gorivnih elemenata. Projektovana je kapsula za ozracivanje obogacenog UO{sub 2}. Najznacajnija izmena je kod spajanja dela od cirkaloja-2 sa delom od nerdjajuceg celika. To spajanje morace se izvrsiti na masini za difuziono zavarivanje. Kako takvu masinu nemamo u zemlji elemente cemo dati da se zavare u Saclay-u. Svi delovi za koje nije bio potreban uvozni materijal izradjeni su u nasem Institutu. Kapsula nije montirana jer materijal iz uvoza koji se ugradjuje u kapsulu nije jos stigao u zemlju. Nabavka uvoznlh elemenata nije izvrsena na vreme zbog zakasnjenja kod odobravanja deviznih sredstava. Potpuna montaza kapsule moze se obaviti 25 dana po dobijanju pomenutog materijala. U radu je dat i izvestaj o

  6. US enrichment reduction studies

    International Nuclear Information System (INIS)

    1979-06-01

    A major national program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is currently under way in the U.S., centered at the Argonne National Laboratory (ANL), to reduce the potential of research and test reactor fuels for increasing the proliferation of nuclear explosive devices. The main objective of the program is to provide the technical means by which the uranium enrichment to be used in these reactors can be reduced to less than 20% without significant economic and performance penalties. The criteria, basis and goals of the program are consistent with the results of a number of case studies which have been performed as part of the program

  7. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  8. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  9. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    International Nuclear Information System (INIS)

    Smirnov, A Yu; Sulaberidze, G A; Dudnikov, A A; Nevinitsa, V A

    2016-01-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment. (paper)

  10. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  11. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  12. Contribution of CERCA to the US DOE conference on the use of 20% and 45% enriched uranium as fuel for research reactors [contributed by J. Doumerc, CERCA

    International Nuclear Information System (INIS)

    Doumerc, J.

    1993-01-01

    This paper speaks only of prices. Some basic statements can be provided. All the results which have been displayed by Mr. Dewez represent the CERCA work performed within the last twelve months. We have invested in this a little less than million French francs, which is roughly 220 000. As far as prices are concerned, for the time being, we have to compare the prices of a steady state situation, which is represented by a well known process that has been in use for many years, with a transition situation which is the achievement of the same expertise in new, extrapolated fuels. That is why the comparison has to be corrected for the results within the next 2 to 3 years. Obviously, it seems that there are other factors which contribute to the price increases. I think there is a very significant example for this. When you have to introduce a given amount for 235-U in the fuel, either 93 or 20% enrichment, you need in the second case a higher total uranium content, which means that you have to convert two to four times more uranium from UF 6 to a uranium compound then from uranium compound to powder. Obviously, you cannot prepare Kg of some product at one price and 250 g of the same product at the same price. Moreover, there is some chance that the new process fabrication will be slightly more difficult to achieve than the previous one. We have observed in the past that progress was continuously improved, until we reached something like a steady state situation. Now alloy yields, for instance, are the same for all manufacturers, except ± 1% depending on the day-to-day events of the manufacturer itself. There is a very good reason to consider that the progress in the yields will be the same for the manufacturer of extrapolated fuels. In that event it is rather easy to foresee what it will be in the near future. In consideration, besides explaining some reasons as to why prices will become higher, there are many reasons of remaining confident with the final result

  13. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  14. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  15. Contribution of CERCA to the US DOE conference on the use of 20% and 45% enriched uranium as fuel for research reactors [contributed by Ph. Dewez and J. Doumerc, CERCA

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, Ph; Doumerc, J [CERCA, Paris (France)

    1993-08-01

    CERCA (Compagnie pour l'Etude et la Realisation de Combustibles Atomiques) is a private French Company that was set up more than 20 years ago, in 1957. The head office of our Company is located in Paris. We have an industrial center at Bonneuil-sur-Marne near Paris, and a research and production center at Romans, between the cities of Lyon and Marseille in southern France. Throughout its existence, CERCA has many times brought a significant contribution to the design and manufacturing procedures of fuels of all kinds: - graphite-gas - heavy water, gas cooled (El-4) - heavy water, water cooled (El-3 previous tube and snow crystal designs) - light water - high temperatures and also sophisticated control rods, fuel followers, etc. Among a wide variety of other type of fuel elements CERCA has been involved since 1960 in MTR fuel element production and operates in Romans a production unit capable of 15 to 20,000 fuel plates per year. The backing of our strong R and D department enabled not only to follow the regularly increasing demand for improved characteristics by the reactor designers and users, but also to remain always a little bit ahead of these requirements in order to be able at all times to face new demands. The present international concern about non-proliferation of weapons-grade enriched uranium is now focusing interest on fuel elements with high total uranium contents. The current performance level of our products, that was made possible by our previous R and D programs, is such that we will experience no problems in keeping many low or medium power research reactors in operation. About one year ago, CERCA decided to initiate a program of technological development, to face the problem of the reduction of available enrichment.

  16. Comparison of DUPIC fuel composition heterogeneity control methods

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. (author). 13 refs., 16 tabs., 6 figs

  17. Lowering the enrichment of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    An investigation of lowering the fuel enrichment of MNSR was realized. A 3-D neutronic model was developed for the analysis of the reactor. It was found that lower number of fuel elements is needed when UO 2 is used with 5.45 g of 235 U content in each fuel rod. Sensitivity of the reactor to the purity of the beryllium reflector proved to be an important factor in determining the reactor neutronics as well as the weight of loaded fuel in the core. Inherent safety features of low excess reactivity and shutdown margins are preserved and enhanced. Average thermal fluxes over different zones of the core are kept very much unchanged

  18. Lowering the enrichment of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Kamis, I.; Khattab, K.

    1999-01-01

    An investigation of lowering the fuel enrichment of MNSR was realized. A 3-D neutronic model was developed for the analysis of the reactor. It was found that lower number of fuel elements is needed when UO 2 is used with 5.45 g of 235 U content in each fuel rod. sensitivity of the reactor to the purity of the beryllium reflector proved to be an important factor in determining the reactor neutronics as well as the weight of loaded fuel in the core. Inherent safety feature of low excess reactivity and shutdown margins are preserved and enhanced. average thermal fluxes over different zones of the core are kept very much unchanged. (author)

  19. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    International Nuclear Information System (INIS)

    Krichinsky, Alan M.; Bates, Bruce E.; Chesser, Joel B.; Koo, Sinsze; Whitaker, J. Michael

    2009-01-01

    plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.

  20. Nuclear fuel elements and assemblies

    International Nuclear Information System (INIS)

    Saito, Shozo; Maki, Hideo.

    1982-01-01

    Purpose: To facilitate the attainment of the uranium enrichment or gadolinia enrichment of a pellet filled in a fuel element. Constitution: The axial length of a pellet filled in a fuel element is set to predetermined sizes according to the uranium enrichment factor, gadolinia enrichment or their combination. Thus, the uranium enrichment factor or gadolinia enrichment can be identified by attaining the axial length of the pellet by using such a pellt. (Kamimura, M.)

  1. The commercial role for centrifuge enrichment

    International Nuclear Information System (INIS)

    Readle, P.H.; Wilcox, P.

    1987-01-01

    The enrichment market is extremely competitive and capacity greatly exceeds demand. BNFL [British Nuclear Fuels Ltd.] is in a unique position in having commercial experience of the two enrichment technologies currently used industrially: diffusion, and centrifuge enrichment through its associate company Urenco. In addition, BNFL is developing laser enrichment techniques as part of a UK development programme. The paper describes the enrichment market, briefly discusses the relative merits of the various methods of uranium enrichment and concludes that the gas centrifuge will be best able to respond to market needs for at least the remainder of the century. (author)

  2. High enrichment to low enrichment core's conversion. Technical securities

    International Nuclear Information System (INIS)

    Abbate, P.; Madariaga, M.R.

    1990-01-01

    This work presents the fulfillment of the technical securities subscribed by INVAP S.E. for the conversion of a high enriched uranium core. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. These are neutronic and thermohydraulic securities. (Author) [es

  3. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  4. Modular enrichment measurement system for in-situ enrichment assay

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    A modular enrichment measurement system has been designed and is in operation within General Electric's Nuclear Fuel Fabrication Facility for the in-situ enrichment assay of uranium-bearing materials in process containers. This enrichment assay system, which is based on the ''enrichment meter'' concept, is an integral part of the site's enrichment control program and is used in the in-situ assay of the enrichment of uranium dioxide (UO 2 ) powder in process containers (five gallon pails). The assay system utilizes a commercially available modular counting system and a collimnator designed for compatability with process container transport lines and ease of operator access. The system has been upgraded to include a microprocessor-based controller to perform system operation functions and to provide data acquisition and processing functions. Standards have been fabricated and qualified for the enrichment assay of several types of uranium-bearing materials, including UO 2 powders. The assay system has performed in excess of 20,000 enrichment verification measurements annually and has significantly contributed to the facility's enrichment control program

  5. PC based uranium enrichment analyser

    International Nuclear Information System (INIS)

    Madan, V.K.; Gopalakrishana, K.R.; Bairi, B.R.

    1991-01-01

    It is important to measure enrichment of unirradiated nuclear fuel elements during production as a quality control measure. An IBM PC based system has recently been tested for enrichment measurements for Nuclear Fuel Complex (NFC), Hyderabad. As required by NFC, the system has ease of calibration. It is easy to switch the system from measuring enrichment of fuel elements to pellets and also automatically store the data and the results. The system uses an IBM PC plug in card to acquire data. The card incorporates programmable interval timers (8253-5). The counter/timer devices are executed by I/O mapped I/O's. A novel algorithm has been incorporated to make the system more reliable. The application software has been written in BASIC. (author). 9 refs., 1 fig

  6. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  7. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  9. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  10. The RERTR [Reduced Enrichment Research and Test Reactor] program:

    International Nuclear Information System (INIS)

    Travelli, A.

    1987-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) program is described. After a brief summary of the results which the RERTR program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results and new developments which ocurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U 3 Si 2 -Al and U 3 Si-Al fuels was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U 3 Si 2 -Al fuel at 4.8 g U/cm 3 was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40 % average burnup. Good progress was made in the area of LEU usage for the production of fission 99 Mo, and in the coordination of safety evaluations related to LEU conversions of U.S. university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U 3 Si-Al with 19.75 % enrichment and U 3 Si 2 -Al with 45 % enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR program. (Author)

  11. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.; Slater, J.B.

    1986-05-01

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  12. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Science.gov (United States)

    2011-01-04

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...

  13. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  14. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  15. Fuel cycles of WWER-1000 based on assemblies with increased fuel mass

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlovichev, A.; Shcherenko, A.

    2011-01-01

    Modern WWER-1000 fuel cycles are based on FAs with the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively. The highest possible fuel enrichment has reached its license limit that is 4.95 %. Research in the field of modernization, safety justification and licensing of equipment for fuel manufacture, storage and transportation are required for further fuel enrichment increase (above 5 %). So in the nearest future an improvement of technical and economic characteristics of fuel cycles is possible if assembly fuel mass is increased. The available technology of the cladding thinning makes it possible. If the fuel rod outer diameter is constant and the clad inner diameter is increased to 7.93 mm, the diameter of the fuel pellet can be increased to 7.8 mm. So the suppression of the pellet central hole allows increasing assembly fuel weight by about 8 %. In this paper we analyze how technical and economic characteristics of WWER-1000 fuel cycle change when an advanced FA is applied instead of standard one. Comparison is made between FAs with equal time interval between refueling. This method of comparison makes it possible to eliminate the parameters that constitute the operation component of electricity generation cost, taking into account only the following technical and economic characteristics: 1)cycle length; 2) average burnup of spent FAs; 3) specific natural uranium consumption; 4)specific quantity of separative work units; 5) specific enriched uranium consumption; 6) specific assembly consumption. Collected data allow estimating the efficiency of assembly fuel weight increase and verifying fuel cycle characteristics that may be obtained in the advanced FAs. (authors)

  16. A programme for Euratom safeguards inspectors, used in the assay of high enriched (H.E.U.) and low enriched (L.E.U.) uranium fuel materials by active neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme AECC (Active Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurement data originating from active neutron interrogation of HEU and LEU fuel materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for the Active Well Coincidence Counters and Active Neutron Coincidence Counters deployed by the Euratom Safeguards Directorate, Luxembourg

  17. Future of uranium enrichment

    International Nuclear Information System (INIS)

    Hosmer, C.

    1981-01-01

    The increasing amount of separative work being done in government facilities to produce low-enriched uranium fuel for nuclear utilities again raises the question: should this business-type, industrial function be burned over the private industry. The idea is being looked at by the Reagan administration, but faces problems of national security as well as from the unique nature of the business. This article suggests that a joint government-private venture combining enriching, reprocessing, and waste disposal could be the answer. Further, a separate entity using advanced laser technology to deplete existing uranium tails and lease them for fertile blankets in breeder reactors might earn substantial revenues to help reduce the national debt

  18. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  19. Radiological safety aspects in the fabrication of mixed oxide fuel elements. [Derived working limits in air and water for plutonium, enriched uranium and their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthi, T.N.; Janardhanan, S.; Soman, S.D. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.)

    The problems of radiological safety in the fabrication of (U, Pu)O/sub 2/ fuel assemblies for fast reactors utilising high exposure plutonium are discussed. Derived working limits for plutonium as a function of the burn-up of RAPS (Rajasthan Atomic Power Station) fuel, external gamma and neutron exposures from feed product batches, finished fuel pins and assemblies are presented. Shielding requirements for the various glove box operations are also indicated. In general, high exposure plutonium handling calls for remote fabrication and automation at various stages would play a key role in minimising exposures to personnel in a large production plant.

  20. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  1. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  2. Uranium enrichment. Technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Saire, D.E.; Gestson, D.K.; Peske, S.E.; Vanstrum, P.R.

    1983-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R+D efforts on various processes. (author)

  3. Uranium enrichment: technology, economics, capacity

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Jr., W. R.; Vanstrum, P. R.; Saire, D. E.; Gestson, D. K.; Peske, S. E.

    1982-08-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes.

  4. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  5. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  6. Availability of enrichment services

    International Nuclear Information System (INIS)

    Svenke, E.

    1977-01-01

    The report summarizes major uncertainties which are likely to influence future demands for uranium isotopic enrichment. Since for the next decade the development of nuclear power will be largely concerned with the increment in demand the timely need for enrichment capacity will be particularly sensitive to assumptions about growth rates. Existing worldwide capacity together with capacities under construction will be sufficient well into the 1980's. However, long decision and construction leadtime, uncertainty as to future demand as well as other factors, specifically high capital need, all of which entail financial risks, create hindrances to a timely development of increment. The adequacy of current technology is well demonstrated in plant operation and new technology is under way. Technology is, however, not freely available on a purely commercial basis. Commercial willingness, which anticipates a limited degree of financial risk, is requesting both long term back-up from the utilities that would parallel their firm decisions on the acquisition of nuclear power units, and a protective government umbrella. This situation depends on the symbiotic relationship that exists between the nuclear power generating organizations, the enrichment undertakings and the governments involved. The report accordingly stresses the need for a more cooperative approach and this, moreover, at the multinational level. There is otherwise a risk that proper resources and financing means will not be allocated to the enrichment sector. Export limitations that request the highest degree of industrial processing of nuclear fuel, i.e. the compulsory enrichment of natural uranium, do not serve the interests of overall industrial efficiency

  7. Enriched uranium cycles in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Mazzola, A.

    1994-01-01

    A study was made on the substitution of natural uranium with enriched and on plutonium recycle in unmodified PHWRs (pressure vessel reactor). Results clearly show the usefulness of enriched fuel utilisation for both uranium ore consumption (savings of 30% around 1.3% enrichment) and decreasing fuel cycle coasts. This is also due to a better plutonium exploitation during the cycle. On the other hand plutonium recycle in these reactors via MOX-type fuel appears economically unfavourable under any condition

  8. Achieving zero fuel failure rates at Armenian NPP

    International Nuclear Information System (INIS)

    Muradyan, T.

    2015-01-01

    In spite of the zero fuel failure rates in Armenian NPP there is a continued high level of interest. The generally accepted goal of achieving a zero failure rate requires detailed knowledge of existing failure mechanisms, their root causes and remedies. In this paper the foreign material management; water-chemistry regime; refuel machine management system and the transition into the use of vibration proof fuel of average enrichment 3,82% are presented

  9. Postirradiation examination of high-U-loaded, low-enriched U3O8, UAl2, and U3Si test fuel plates

    International Nuclear Information System (INIS)

    Gomez, J.; Morando, R.; Perez, E.E.; Giorsetti, D.R.; Copeland, G.L.; Hofman, G.L.; Snelgrove, J.L.

    1985-01-01

    The scope of this work is to present an evaluation of the postirradiation examination of the second set of high-U-loaded, low-enriched U 3 O 8 , UAl 2 and U 3 Si miniature plates manufactured by the Comision Nacional de Energia Atomica (CNEA) of Argentina, and irradiated and examined, within the framework of the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Oak Ridge National Laboratory and Argonne National Laboratory. This paper includes fabrication details of the plates, their irradiation history and the results of postirradiation examination which are compared to those of the previous test and to present results from other laboratories participating in the RERTR Program. Postirradiation examination of these plates showed satisfactory performance for the oxides, aluminides and silicides (except for the highest-loaded U 3 Si plate) with the only indication of detrimental behavior being the slight bowing of some plates at about 80% burnup

  10. Postirradiation examination of high-U-loaded, low-enriched U3O8, UAl2, and U3Si test fuel plates

    International Nuclear Information System (INIS)

    Gomez, J.; Morando, R.; Perez, E.E.; Giorsetti, D.R.; Copeland, G.L.; Hofman, G.L.; Snelgrove, J.L.

    1985-01-01

    The scope of this work is to present an evaluation of the postirradiation examination of the second set of high-U-loaded, low-enriched U 3 O 8 , UAl 2 and U 3 Si miniature plates manufactured by the Comision Nacional de Energia Atomica (CNEA) of Argentina, and irradiated and examined, within the framework of the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Oak Ridge National Laboratory and Argonne National Laboratory. This paper includes fabrication details of the plates, their irradiation history and the results of postirradiation examination which are compared to those of the previous test and to present results from other laboratories participating in the REM Program. Postirradiation examination of these plates showed satisfactory performance for the oxides, aluminides and silicides (except for the highest-loaded U 3 Si plate) with the only indication of detrimental behavior being the slight bowing of some plates at about 80% burnup. (author)

  11. Postirradiation examination of high-U-loaded low-enriched U3O8, UAl2, and U3Si test fuel plates

    International Nuclear Information System (INIS)

    Gomez, J.; Morando, R.; Perez, E.E.; Giorsetti, D.R.; Copeland, G.L.; Hofmann, G.; Snelgrove, J.L.

    1984-01-01

    The scope of this work is to present an evaluation of the postirradiation examination of the second set of high-U-loaded low-enriched U 3 O 8 , UAl 2 and U 3 Si miniature plates manufactured by the Comision Nacional de Energia Atomica (CNEA) of Argentina, and irradiated and examinated, within the framework of the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Oak Ridge National Laboratory and Argonne National Laboratory. This paper includes fabrication details of the plates, their irradiation history and the results of postirradiation examination which are compared to those of the previous test and to present results from other laboratories participating in the RERTR Program. Postirradiation examination of these plates showed satisfactory poerformance for the oxides, aluminides and silicides (except for the highest-loaded U 3 Si plate) with the only indication of detrimental behavior during the slight bowing of some plates at about 80% burnup

  12. Activity of the RA Reactor Physics group in 1980 - Definition of the Operation conditions for future safe and economical RA reactor operation with 80% enriched fuel; Prilog Ia - Rad sluzbe za fiziku reaktora RA u 1980. godini - Definisanje pogonskih uslova za dalji siguran i ekonomican rad reaktora RA sa 80% obogacenim gorivom

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1980-12-15

    During 1980. the RA reactor was not in operation. That is why this period was devoted to definition of operating conditions for further reactor operation with 80% enriched fuel. The fuel elements which were in the core at the moment of shutdown in March 1979will not be used again (388 80% enriched fuel elements, and 511 2% enriched fuel elements). The reactor will be operated only with 80% enriched fuel, staring with initiat core configuration with 440 elements on the borders gradually changing to equi;librium core with 720 fuel elements. The analyses were concerned with safety issues of future operation. [Serbo-Croat] Reaktor RA tokom 1980 godine nije radio. Zbog toga je ovaj period iskoriscen za intenzivan rad na definisanju pogonskih uslova za dalji rad reaktora sa 80% obogacenim gorivom. Gorivo sa kojim je reaktor prestao da radi marta 1979. godine (388 gorivnih elemenata 80% obogacenoh i 511 elementa 2% obogaceno) nece biti vraceno u jezgro, vec ce reaktor raditi samo sa 80% obogacenim gorivom, pocev od konfiguracije sa 440 elemenata na periferiji do ravnotezne konfiguracije sa 720 elemenata. Sve nalize su se bavile sigurnosnim aspektima rada reaktora sa visokoobogacenim gorivom u jezgru.

  13. Report of the Subcommittee on Domestic Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Subcommittee on Domestic Uranium Enrichment to the Atomic Energy Commission is described; which covers the procedure of the domestic uranium enrichment by centrifugal process up to the commercial production, reviewing the current situation in this field. Domestic uranium enrichment is important in the aspects of securing stable enrichment service, establishing sound fuel cycle, and others. As the future target, the production around the year 2000 is set at 3,000 tons SWU per year at least. The business of uranium enrichment, which is now developed in the Power Reactor and Nuclear Fuel Development Corporation, is to be carried out by private enterprise. The contents are as follows: demand and supply balance of uranium enrichment service, significance of domestic uranium enrichment, evaluation of centrifugal uranium enrichment technology, the target of domestic uranium enrichment, the policy of domestic uranium enrichment promotion. (J.P.N.)

  14. Status of the development of RU-43 fuel at INR Pitesti

    International Nuclear Information System (INIS)

    Horhoianu, G.

    2008-01-01

    More than 50000 fuel bundles containing natural uranium fuel have been irradiated in the CANDU-6 reactors of Cernavoda-Romania NPP, with a very low defect rate, to a core-average discharge burnup of 170-190 Mwh/kgU. Recovered uranium (RU) is a by-product of many light-water reactor (LWR) fuel recycling programs. After fission products and plutonium (Pu) have been removed from spent LWR fuel, RU is left. A fissile content in the RU of 0.9 to 1.1% makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficiently high neutron economy to use RU as fuel. RU from spent LWR fuel can be considered as a lower cost source of enrichment at the optimal enrichment level for CANDU fuel pellets. In Europe the feedstock of RU is approaching thousands tones and would provide sufficient fuel for hundreds CANDU-6 reactors years of operation. The use of RU fuel offers significant benefits to CANDU reactor operators. RU fuels improves fuel cycle economics by increasing the fuel burnup, which enables large cost reductions in fuel consumption and in spent fuel disposal. RU fuel offers enhanced operating margins that can be applied to increase reactor power. These benefits can be realized using existing fuel production technologies and practices, and with almost negligible changes to fuel receipt and handling procedures at the reactor. The application of RU fuel could be an important element in Cernavoda NPP. For this reason the Institute for Nuclear Research (INR), Pitesti has started a research programme aiming to develop a new fuel bundle RU-43 for extended burnup operation. The most relevant calculations performed on this fuel bundle design version are presented. Also, the stages of an experimental program aiming to verify the operating performance are briefly described in this paper. (orig.)

  15. Uranium enrichment: a vital new industry

    International Nuclear Information System (INIS)

    1975-10-01

    The energy problem facing the nation and the need for nuclear power are pointed out. Uranium enrichment and the demand for it are discussed. Reasons for, and obstacles to, private enrichment are outlined. The President's plan (including the Nuclear Fuel Assurance Act) is summarized

  16. Providing incentives to buy US enrichment

    International Nuclear Information System (INIS)

    Steyn, J.

    1985-01-01

    The U.S. Department of Energy is making a series of commercial and technological decisions crucial to its future as an enriching enterprise. The state of US enrichment, as revealed in this years AIF Fuel Cycle conference, is reported. (U.K.)

  17. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  18. Study of a Slightly Enriched R Reactor Fuel by Means of a Pulsed Neutron Source; Etude d'un reacteur a combustible legerement enrichi (rubeole) a l'aide de sources pulsees de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sagot, M.; Tellier, H. [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-04-01

    A Be O moderated reactor using slightly enriched uranium oxide as fuel was studied by the pulsed neutron source technique. The neutron lifetime was measured in two different cores without reflector, then attempts were made at the measurement of great negative reactivities introduced into the reactor under the following forms: decrease of the volume of the un reflected core, introduction of absorbing cadmium rods, removal of fuel at the periphery of the critical core while maintaining a constant height, and substitution of fuel elements by less reactive elements. In all cases, the results are compared with the data obtained by another type of experiment or by computation. (author) [French] Nous avons applique la methode des sources pulsees de neutrons a un reacteur utilisant de l'oxyde d'uranium legerement enrichi, modere a l'oxyde de beryllium et, apres avoir mesure le temps de vie des neutrons dans deux coeurs differents non reflechis, nous avons porte notre effort, sur la mesure de reactivites negatives importantes introduites dans le reacteur sous differentes formes: - diminution du volume du coeur non reflechi, - introduction de barres absorbantes en cadmium, - enlevement de combustible a la peripherie du coeur critique, tout en conservant une hauteur constante, - substitution d'elements de combustible par des elements moins reactifs. Dans tous les cas, les resultats sont compares aux valeurs obtenues par un autre type d'experience ou par le calcul. (auteur)

  19. Study of a Slightly Enriched R Reactor Fuel by Means of a Pulsed Neutron Source; Etude d'un reacteur a combustible legerement enrichi (rubeole) a l'aide de sources pulsees de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sagot, M; Tellier, H [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-04-01

    A Be O moderated reactor using slightly enriched uranium oxide as fuel was studied by the pulsed neutron source technique. The neutron lifetime was measured in two different cores without reflector, then attempts were made at the measurement of great negative reactivities introduced into the reactor under the following forms: decrease of the volume of the un reflected core, introduction of absorbing cadmium rods, removal of fuel at the periphery of the critical core while maintaining a constant height, and substitution of fuel elements by less reactive elements. In all cases, the results are compared with the data obtained by another type of experiment or by computation. (author) [French] Nous avons applique la methode des sources pulsees de neutrons a un reacteur utilisant de l'oxyde d'uranium legerement enrichi, modere a l'oxyde de beryllium et, apres avoir mesure le temps de vie des neutrons dans deux coeurs differents non reflechis, nous avons porte notre effort, sur la mesure de reactivites negatives importantes introduites dans le reacteur sous differentes formes: - diminution du volume du coeur non reflechi, - introduction de barres absorbantes en cadmium, - enlevement de combustible a la peripherie du coeur critique, tout en conservant une hauteur constante, - substitution d'elements de combustible par des elements moins reactifs. Dans tous les cas, les resultats sont compares aux valeurs obtenues par un autre type d'experience ou par le calcul. (auteur)

  20. Status report on the irradiation testing and post-irradiation examination of low-enriched U3O8-Al and UAlsub(x)-Al fuel element by the Netherlands Energy Research Foundation (ECN)

    International Nuclear Information System (INIS)

    Pruimboom, H.; Lijbrink, E.; Otterdijk, K. von; Swanenburg de Veye, R.J.

    1984-01-01

    Within the framework of the RERTR-programme four low-enriched (20%) MTR-type fuel elements have been irradiated in the High Flux Reactor at Petten (The Netherlands) and are presently subjected to postirradiation examination. Two of the elements contain UAlsub(x)-Al and two contain U 3 O 8 -Al fuel. The test irradiation has been completed up to the target burn-up values of 50% and 75% respectively. An extensive surveillance programme carried out during the test period has confirmed the excellent in-reactor behaviour of both types. Post-irradiation examination of the 50% burn-up test elements, comprising of dimensional measurements, burn-up determination, fuel metallography and blister testing, has sofar confirmed the irradiation experiences. Good agreement between calculated and measured power and burn-up characteristics has been found. A survey of the test element characteristics, their irradiation history, the irradiation tests and the preliminary PIE results is given in the paper. (author)

  1. Contribution to the study of the evolution of nuclear fuel composition in PWR type reactors. Reactor cores in three and four regions of enrichment

    International Nuclear Information System (INIS)

    Teixeira, M.C.C.

    1976-01-01

    The main methods for calculations of fuel depletion are studied and some approaches to do it are mentioned; the LEOPARD Code is described and full details are given for each subroutine, flow charts are included; the method given by the code for calculation of fuel depletion is described; some imperfections from the IPR's version are listed, and corrected, for instance: the method for burn-up calculation of heavy isotopes; the results of calculations for a reference reactor based on data of the Preliminary Safety Analysis Report (PSAR) for Angra I Nuclear Plant are presented and discussed. (author) [pt

  2. Neutron resonance averaging

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  3. Main results on pilot operation during 5 years of the 3rd generation fuel in VVER-440 reactors of Kola NPP

    International Nuclear Information System (INIS)

    Saprykin, V.; Sumarokov, M.; Gagarinskiy, A.; Sumarokova, A.; Adeev, V.

    2015-01-01

    In the report the results of comparison of main neutron-physical data of exploitation of nuclear fuel are presented for the average enrichment (on U - 235) of 4.87 for the 2nd and 3rd (12 piece) generations with the results of calculations by the complex of the programs KASKAD for 5 fuel loadings of Kola NPP Unit 4 with the reactor VVER- 440. The basic feature of fuel of the 3rd generation as compared with the 2nd is a presence of ribs of inflexibility at corners instead of cover of the fuel assembly and also the increased amount of uranium. The arrangement of fuel rods with different enrichment in fuel assemblies of the 2nd and 3rd generations is chosen identical for the convenient comparison of neutronic and thermohydraulic characteristics of the fuel of different generations. The fuel of 3rd generation was situated in the core symmetrically to the fuel of 2nd one

  4. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  5. Treat upgrade fuel fabrication

    International Nuclear Information System (INIS)

    Davidson, K.V.; Schell, D.H.

    1979-01-01

    An extrusion and thermal treatment process was developed to produce graphite fuel rods containing a dispersion of enriched UO 2 . These rods will be used in an upgraded version of the Transient Reactor Test Facility (TREAT). The improved fuel provides a higher graphite matrix density, better fuel dispersion and higher thermal capabilities than the existing fuel

  6. Structure and thermal properties of as-fabricated U-7Mo/Mg and U-10Mo/Mg low-enriched uranium research reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kulakov, Mykola, E-mail: mykola.kulakov@cnl.ca [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Saoudi, Mouna [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Piro, Markus H.A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Donaberger, Ronald L. [Canadian Neutron Beam Centre, Chalk River, ON K0J 1J0 Canada (Canada)

    2017-02-15

    Aluminum-clad U-7Mo/Mg and U-10Mo/Mg pin-type mini-elements (with a core uranium loading of 4.5 gU/cm{sup 3}) have been fabricated at the Canadian Nuclear Laboratories for experimental tests and ultimately for use in research and test reactors. In this study, the microstructure and phase composition of unirradiated U-7Mo/Mg and U-10Mo/Mg fuel cores were analyzed using optical and scanning electron microscopy, and neutron powder diffraction. Thermal properties were characterized using a combination of experimental measurements and thermodynamic calculations. The thermal diffusivity was measured using the laser flash method. The temperature-dependent specific heat capacities were calculated based on the linear rule of mixture using the weight fraction of different crystalline phases and their specific heat capacity values taken from the literature. The thermal conductivity was then calculated using the measured thermal diffusivity, the measured density and the calculated specific heat capacity. The resulting thermal conductivity is practically identical for both types of fuel. The in-reactor temperatures were predicted using conjugate heat transfer simulations. - Highlights: • Neutron diffraction analysis shows that most of the γ-U(Mo) phase was retained in as-fabricated U-7Mo/Mg and U-10Mo/Mg fuel cores. • The experimental thermal conductivity of both types of fuel is practically identical. • Based on conjugate heat transfer simulations, under normal operating conditions, the in-reactor fuel centreline temperature is about 510 K.

  7. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  8. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  9. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  10. Progress of the United States foreign research reactor spent nuclear fuel acceptance program. Reduced enrichment for research and test reactors conference 2002

    International Nuclear Information System (INIS)

    Clapper, Maureen

    2002-01-01

    Foreign Research Reactor Spent nuclear fuel Acceptance Program is actively working with research reactors to accept eligible material before the Acceptance Policy proper expires in 2006. Reactors/governments wishing to participate should contact US immediately if they have not done so already. Program operations are changing to adapt to new challenges. We continue to promote the importance of this Program to senior management in the Department of Energy

  11. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  12. The future cost of uranium enrichment

    International Nuclear Information System (INIS)

    Pouris, A.

    1986-01-01

    The cost of uranium enrichment is the most important factor determining the fuel cost of nuclear energy. This paper attempts to forecast the future direction of the price of separative work by examining the forces that determine it. It is argued that the interplay among the characteristics of enrichment technologies, the structure of the international market, and the balance of supply and demand determine the enrichment price. The analysis indicates that all forces point towards a price much lower than the current one. It is predicted that, depending on the technological advances, the price of separative work unit for uranium enrichment will range between $40 and $90 by the year 2000. (author)

  13. Contribution of CERCA to the US DOE conference on the use of 20% and 45% enriched uranium as fuel for research reactions. Part 2

    International Nuclear Information System (INIS)

    Doumerc, J.

    1993-01-01

    As far as prices are concerned, the author would like to state first that for the time being we have to compare the prices of a steady state situation, which is represented by a well known process that has been in use for many years, with a transitory situation which is the achievement of the same expertise in new, extrapolated fuels. That is why the comparison has to be corrected for the results within the next 2 to 3 years. Obviously, it seems that there are other factors which contribute to the price increases. I think there is a very significant example for this

  14. The ORR Whole-Core LEU Fuel Demonstration

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.

    1990-01-01

    The ORR Whole-Core LEU Fuel Demonstration, conducted as part of the US Reduced Enrichment Research and Test Reactor Program, has been successfully completed. Using commercially-fabricated U 3 Si 2 -Al 20%-enriched fuel elements (4.8 g U/cc) and fuel followers (3.5 g U/cc), the 30-MW Oak Ridge Research Reactor was safely converted from an all-HEU core, through a series of HEU/LEU mixed transition cores, to an all-LEU core. There were no fuel element failures and average discharge burnups were measured to be as high as 50% for the standard elements and 75% for the fuel followers. Experimental results for burnup-dependent critical configurations, cycle-averaged fuel element powers, and fuel-element-averaged 235 U burnups validated predictions based on three-dimensional depletion calculations. Calculated values for plutonium production and isotopic mass ratios as functions of 235 U burnup support the corresponding measured quantities. In general, calculations for reaction rate distributions, control rod worths, prompt neutron decay constants, and isothermal temperature coefficients were found to agree with corresponding measured values. Experimentally determined critical configurations for fresh HEU and LEU cores radially reflected with water and with beryllium are well-predicted by both Monte Carlo and diffusion calculations. 17 refs

  15. Critical experiments in AQUILON with fuels slightly enriched in uranium 235 or in plutonium; Experiences critiques dans aquilon portant sur des combustibles legerement enrichis en uranium 235 et en plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Chabrillac, M; Ledanois, G; Lourme, P; Naudet, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Reactivity comparisons have been, made in Aquilon II between geometrically identical lattices differing only by the composition of the fuel. The fuel elements consist in metallic uranium single rods with either slight differences of the isotopic composition (0.69 - 0.71 - 0.83 - 0.86 per cent of uranium 235) or slight additions of plutonium (0.043 per cent). Five lattices pitches have bean used, in order to produce a large variation of spectrum. Two additional sets of plutonium fuels are prepared to be used in the same conditions. The double comparisons: natural enriched 235 versus natural-enriched plutonium are made in such a way that a very precise interpretation is permitted. The results are perfectly consistent which seems to prove that the calculation methods are convenient. Further it can been inferred that the usual data, namely for the ratio of the {eta} of {sup 235}U and {sup 239}Pu seem reliable. (authors) [French] On a compare neutroniquement dans Aquilon II des reseaux geometriquement identiques mais comportant de petites differences de composition du combustible. EL s'agit de barres d'uranium metallique, les unes avec des teneurs differentes en isotopes 235 (0,69 - 0,71 - 0,83 - 0,86 pour cent) les autres comportant une legere addition de plutonium (0,043 pour cent). Les comparaisons ont ete faites a cinq pas differents, de maniere a mettre en jeu une assez large variation de spectre. Deux autres jeux de combustible au plutonium seront utilises ulterieurement dans les memes conditions. Les resultats des mesures se presentent sous forme de doubles comparaisons: naturel-enrichi 235/naturel-enrichi plutonium. On s'est place dans des conditions qui permettent des interpretations tres precises. Les resultats sont remarquablement coherents, ce qui semble montrer que les methodes de calcul sont bien adaptees, Ils tendent d'autre part a prouver que les valeurs numeriques admises dans la litterature, notamment pour le rapport des {eta} de l'U 235 et de Pu 239

  16. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  17. Important matter by confirmation of administrative office regarding repair of enriched uranium dissolution tanks in reprocessing plant of Power Reactor and Nuclear Fuel Development Corp

    International Nuclear Information System (INIS)

    1985-01-01

    The Nuclear Safety Commission acknowledged the policy of handling this matter by Science and Technology Agency after having received a report from the Committee on Examination of Nuclear Fuel Safety on April 11, 1985, and carried out the deliberation. The investigation and deliberation of this matter were instructed by the NSC to the Committee on January 24, 1985. It was confirmed that the repair welding applied to the place of leak of the dissolution tanks would not hinder the expected test dissolution, and if the leak occurs, the measures to detect it properly have been taken. In order to confirm the soundness of the repair welding, the Power Reactor and Nuclear Fuel Development Corp. is to carry out the test dissolution for about 400 hours per one tank dividing into three runs, and the observation of appearance is to be made after every run. The time of test dissolution, the items and contents of inspection were confirmed to be adequate. Moreover, the immersion corrosion test of test pieces and the long term corrosion test in a laboratory are to be carried out. (Kako, I.)

  18. Update on international uranium and enrichment supply

    International Nuclear Information System (INIS)

    Cleveland, J.M.

    1987-01-01

    Commercial nuclear power generation came upon us in the late 1950s and should have been relatively uneventful due to its similarities to fossil-powered electrical generation. Procurement of nuclear fuel appears to have been treated totally different from the procurement of fossil fuel, however, and only recently have these practices started to change. The degree of utility reliance on US-mined uranium and US Dept. of Energy (DOE)-produced enrichment services has changed since the 1970s as federal government uncertainty, international fuel market opportunity, and public service commission scrutiny has increased. Accordingly, the uranium and enrichment market has recognized that it is international just like the fossil fuel market. There is now oversupply-driven competition in the international nuclear fuel market. Competition is increasing daily, as third-world countries develop their own nuclear resources. American utilities are now diversifying their fuel supply arrangements, as they do with their oil, coal, and gas supply. The degree of foreign fuel arrangements depends on each utility's risk posture and commitment to long-term contracts. In an era of rising capital, retrofit, operating, and maintenance costs, economical nuclear fuel supply is even more important. This economic advantage, however, may be nullified by congressional and judicial actions limiting uranium importation and access to foreign enrichment. Such artificial trade barriers will only defeat US nuclear generation and the US nuclear fuel industry in the long term

  19. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  20. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  1. Reactivity measurements on an experimental assembly of 4.31 wt % 235U enriched UO2 fuel rods arranged in a shipping cask geometry

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1989-10-01

    A research program was initiated for the US Department of Energy (DOE) Sandia National Laboratory Transportation Systems Development Department in 1982 to provide benchmark type experimental criticality data in support of the design and safe operations of nuclear fuel transportation systems. The overall objective of the program is to identify and provide the experimental data needed to form a consistent, firm, and complete data base for verifying calculational models used in the criticality analyses of nuclear transport and related systems. A report, PNL-6205, issued in June 1988 (Bierman 1988) covered measurement results obtained from a series of experimental assemblies (TIC-1, 2, 3 and 4) involving neutron flux traps. The results obtained on a fifth experimental assembly (TIC-5), modeled after a calculational problem of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Committee on the Safety of Nuclear Installations (CSNI) Working Group, are covered in this report. 10 refs., 10 figs., 7 tabs

  2. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    OpenAIRE

    ALEKSEY. L. IZHUTOV; VALERIY. V. IAKOVLEV; ANDREY. E. NOVOSELOV; VLADIMIR. A. STARKOV; ALEKSEY. A. SHELDYAKOV; VALERIY. YU. SHISHIN; VLADIMIR. M. KOSENKOV; ALEKSANDR. V. VATULIN; IRINA. V. DOBRIKOVA; VLADIMIR. B. SUPRUN; GENNADIY. V. KULAKOV

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; th...

  3. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    , Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO 2 ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO 2 and MOX ceramics (Chromium oxide-doped UO 2 fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear

  4. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    irradiation, Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO{sub 2} ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO{sub 2} and MOX ceramics (Chromium oxide-doped UO{sub 2} fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The

  5. Juvenile psittacine environmental enrichment.

    Science.gov (United States)

    Simone-Freilicher, Elisabeth; Rupley, Agnes E

    2015-05-01

    Environmental enrichment is of great import to the emotional, intellectual, and physical development of the juvenile psittacine and their success in the human home environment. Five major types of enrichment include social, occupational, physical, sensory, and nutritional. Occupational enrichment includes exercise and psychological enrichment. Physical enrichment includes the cage and accessories and the external home environment. Sensory enrichment may be visual, auditory, tactile, olfactory, or taste oriented. Nutritional enrichment includes variations in appearance, type, and frequency of diet, and treats, novelty, and foraging. Two phases of the preadult period deserve special enrichment considerations: the development of autonomy and puberty. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  7. Present state of development of uranium enrichment

    International Nuclear Information System (INIS)

    1979-01-01

    The pilot plant for uranium enrichment started the operation on September 12, 1979. The pilot plant has been constructed by the Power Reactor and Nuclear Fuel Development Corp. in Ningyo Pass, Okayama Prefecture. 7000 centrifugal separators will be installed by mid 1981, and yearly production of 70 t SWU is expected. The Uranium Enrichment Committee of Japan Atomic Industrial Forum has made the proposal on the method of forwarding the development of uranium enrichment in Japan to Atomic Energy Commission and related government offices in December, 1978. This survey summarized the trends of uranium enrichment in Japan and foreign countries and the problems about nuclear non-proliferation, and provides with the reference materials. The demand and supply of uranium enrichment in the world, the present states and plans in USA, Europe, USSR and others, the demand and supply of uranium enrichment and the measures for securing it in Japan, the present state and future plan of uranium enrichment project in Japan, the international regulation of uranium enrichment, the recent policy of USA and INFCE, and the trend of the regulation of utilizing enriched uranium are described. Moreover, the concept of separation works in uranium enrichment and the various technologies of separation are explained. (Kako, I.)

  8. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  9. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  10. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  11. Determining average yarding distance.

    Science.gov (United States)

    Roger H. Twito; Charles N. Mann

    1979-01-01

    Emphasis on environmental and esthetic quality in timber harvesting has brought about increased use of complex boundaries of cutting units and a consequent need for a rapid and accurate method of determining the average yarding distance and area of these units. These values, needed for evaluation of road and landing locations in planning timber harvests, are easily and...

  12. Average Revisited in Context

    Science.gov (United States)

    Watson, Jane; Chick, Helen

    2012-01-01

    This paper analyses the responses of 247 middle school students to items requiring the concept of average in three different contexts: a city's weather reported in maximum daily temperature, the number of children in a family, and the price of houses. The mixed but overall disappointing performance on the six items in the three contexts indicates…

  13. Averaging operations on matrices

    Indian Academy of Sciences (India)

    2014-07-03

    Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...

  14. Average-energy games

    Directory of Open Access Journals (Sweden)

    Patricia Bouyer

    2015-09-01

    Full Text Available Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.

  15. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing