WorldWideScience

Sample records for autotrophs

  1. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  2. Impact of Aquifer Heterogeneities on Autotrophic Denitrification.

    Science.gov (United States)

    McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.

    2015-12-01

    Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.

  3. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  4. Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius.

    Science.gov (United States)

    Langworthy, T A

    1977-06-01

    Complex lipids from the thermoacidophilic facultative autotroph Sulfolobus acidocaldarius, as well as a strictly autotrophic isolate, were compared between cells grown on yeast extract and elemental sulfur. Lipids from both organisms grown autotrophically were nearly identical. Each contained about 15% neutral lipids, 35% glycolipids, and 50% acidic lipids. Glycolipids and acidic lipids contained C40H82-76-derived glycerol ether residues. Major glycolipids included the glycerol ether analogues of glucosyl galactosyl diglyceride (5%) and glucosyl polyol diglyceride (75%). Acidic lipids were comprised mainly of the glycerol ether analogues of phosphatidyl inositol (7%), inositolphosphoryl glucosyl polyol diglyceride (72%), and a partially characterized sulfate- and phosphate-containing derivative of glucosyl polyol diglyceride (13%). The lipids from cells grown heterotrophically were similar to those from autotrophically grown cells, except that the partially characterized acidic lipid was absent. In addition, the two glycolipids as well as the respective inositolphosphoryl derivatives were each present in nearly equal proportions.

  5. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

    Science.gov (United States)

    Hügler, Michael; Sievert, Stefan M.

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  6. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    Science.gov (United States)

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  7. Autotrophic Biofilters for Oxidation of Nitric Oxide

    Institute of Scientific and Technical Information of China (English)

    陈建孟; 陈浚; LanceHershman; 王家德; DanielP.Y.Chang

    2004-01-01

    Carbon foam—a kind of new engineering material as packing material was adopted in three biofilters with different pore dimensions and adapted autotrophic nitrite nitrobacteria to investigate the purification of nitric oxide (NO) in a gas stream. The biofilm was developed on the surface of carbon foams using nitrite as its only nitric source. The moisture in the filter was maintained by ultrasonic aerosol equipment which can minimize the thickness of the liquid film. The liquid phase nitrification test was conducted to determine the variability and the potential of performance among the three carbon foam biofilters. The investigation showed that during the NO2-—N inlet concentration of 200 g·L-1·min-1 to 800 g·L-1·min-1, the 24PPC (pores per centimeter) carbon foam biofilter had the greatest potential, achieving the NO2-—N removal efficiency of 94% to 98%. The 8PPC and 18PPC carbon foam biofilters achieved the NO2-—N removal efficiency of 15% to 21% and of 30% to 40%, respectively. The potential for this system to remove NO from a gas stream was shown on the basis of a steady removal efficiency of 41% to 50% which was attained for the 24PPC carbon foam biofilter at specified NO inlet concentration of 66.97 mg·m-3 to 267.86mg·m-3 and an empty-bed residence time of 3.5 min.

  8. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron...

  9. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  10. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria.

    Science.gov (United States)

    Burnap, Robert L

    2015-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The "proteomic constraint" is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the

  11. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Robert L Burnap

    2015-01-01

    Full Text Available Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular, most importantly, protein expression. The ‘proteomic constraint’ is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity and cell surface to volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded the space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model (ARM, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light harvesting antennae, and the

  12. Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism.

    Science.gov (United States)

    Jazmin, Lara J; O'Grady, John P; Ma, Fangfang; Allen, Doug K; Morgan, John A; Young, Jamey D

    2014-01-01

    Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbon metabolism based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary (13)C MFA (INST-MFA), which is applicable to autotrophic systems that are at metabolic steady state but are sampled during the transient period prior to achieving isotopic steady state following the introduction of (13)CO2. We describe protocols for performing the necessary isotope labeling experiments, sample collection and quenching, nonaqueous fractionation and extraction of intracellular metabolites, and mass spectrometry (MS) analysis of metabolite labeling. We also outline the steps required to perform computational flux estimation using INST-MFA. By combining several recently developed experimental and computational techniques, INST-MFA provides an important new platform for mapping carbon fluxes that is especially applicable to autotrophic organisms, which are not amenable to steady-state (13)C MFA experiments.

  13. Denitrification characteristics of a sulfur autotrophic denitrification reactor

    Directory of Open Access Journals (Sweden)

    Chenxiao ZHANG

    2016-02-01

    Full Text Available The denitrification characteristics of a sulfur autotrophic denitrification reactor are investigated. The results show that domestication of sulfur autotrophic bacteria is completed within 15 days after biofilm formation in the reactor, which is shorter than other similar researches. The nitrogen removal rate remains over than 90%, and the denitrification rate reaches 18.5 mg N/(L·h with influent NO-3-N of 70 mg/L , influent pH of 8 and HRT of 4.3 h . Thiobacillus denitrificans are observed in the whole reactor when domestication finishes, while it is more abundant in the middle and lower part. The optimal influent NO-3-N concentration for the reactor is 50 mg/L, the optimal temperature is 30~35 ℃, the optimal influent pH is 7~8, and the nitrogen removal rate is over than 90%.

  14. Autotrophic stoichiometry emerging from optimality and variable co-limitation

    Directory of Open Access Journals (Sweden)

    Kai W Wirtz

    2016-11-01

    Full Text Available Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation and co-limitation by multiple resources in autotrophs revt were in the past often described by heuristic formulations.In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects.The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1 that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2 that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s while down-regulating machineries for the

  15. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    Science.gov (United States)

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  16. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    OpenAIRE

    2013-01-01

    Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absen...

  17. [Study on hydrogen autotrophic denitrification of bio-ceramic reactor].

    Science.gov (United States)

    Chen, Dan; Wang, Hong-Yu; Song, Min; Yang, Kai; Liu, Chen

    2013-10-01

    Nitrate wastewater is processed in a bio-ceramic reactor based on hydrogen autotrophic denitrification. The implementation procedure of biological denitrification by hydrogen autotrophic denitrification was investigated. The effects of hydraulic retention time, influent nitrate load, influent pH, temperature and the amount of hydrogen were assessed throughout this trial. The results showed that the removal rate of NO-(3) -N was 94. 54% and 97. 47% when the hydraulic retention time was 24 h and 48 h, respectively. When the hydraulic retention time was in the range of 5-16 h, the removal rate gradually dropped with the shortening of the hydraulic retention time. When the influent NO-(3) -N concentration was low, with the increase in the influent NO-(3) -N concentration, the degradation rate also increased. The denitrification was inhibited when the NO-(3) -N concentration was higher than 110 mg.L-1. Neutral and alkaline environment was more suitable for the reactor. The reactor showed a wide range of temperature adaptation and the optimum temperature of the reactor was from 25 to 30 degrees C. When hydrogen was in short supply, the effect of denitrification was significantly reduced. These results indicated the specificity of hydrogen utilization by the denitrifying bacteria. The effluent nitrite nitrogen concentration was maintained at low levels during the operation.

  18. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H(13)CO3(-) and H(12)CO3(-) as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H(13)CO3(-), demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the (13)C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment.

  19. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of fos

  20. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic activity in late...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  1. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    Science.gov (United States)

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  2. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis

    OpenAIRE

    Huber, Harald; Gallenberger, Martin; Jahn, Ulrike; Eylert, Eva; Berg, Ivan A.; Kockelkorn, Daniel; Eisenreich, Wolfgang; Fuchs, Georg

    2008-01-01

    Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO2 acce...

  3. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote.

    Science.gov (United States)

    Urschel, Matthew R; Hamilton, Trinity L; Roden, Eric E; Boyd, Eric S

    2016-05-01

    Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments.

  4. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  5. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.

    Science.gov (United States)

    Umrania, Valentina V

    2006-07-01

    Investigations were carried out to isolate microbial strains from soil, mud and water samples from metallurgically polluted environment for bioremediation of toxic heavy metals. As a result of primary and secondary screening various 72 acidothermophilic autotrophic microbes were isolated and adapted for metal tolerance and biosorption potentiality. The multi-metal tolerance was developed with higher gradient of concentrations of Ag, As, Bi, Cd, Cr, Co, Cu, Hg, Li, Mo, Pb, Sn and Zn. The isolates were checked for their biosolubilization ability with copper containing metal sulfide ores. In case of chalcopyrite 85.82% and in covellite as high as 97.5% copper solubilization occurred in presence of 10(-3) M multi-heavy metals on fifth day at 55 degrees C and pH 2.5. Chemical analyses were carried out by inductively coupled plasma spectroscopy (ICP) for metal absorption. The selected highly potential isolate (ATh-14) showed maximum adsorption of Ag 73%, followed by Pb 35%, Zn 34%, As 19%, Ni 15% and Cr 9% in chalcopyrite.

  6. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    Science.gov (United States)

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  7. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren;

    2010-01-01

    We present a study of autotrophic and heterotrophic activities of Arctic sea ice (Malene Bight, SW Greenland) as measured by 2 different approaches: (1) standard incubation techniques (H14CO3– and [3H]thymidine incubation) on sea ice cores brought to the laboratory and (2) cores incubated in situ...... in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  8. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.

    Science.gov (United States)

    Hu, Yajing; Holden, James F

    2006-06-01

    The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.

  9. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...... was followed by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic...... activity in late March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m(-2), reflecting the net result of a sea ice-related gross...

  10. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2014-01-01

    The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...

  11. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction

    NARCIS (Netherlands)

    Pozo, Guillermo; Jourdin, Ludovic; Lu, Yang; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2016-01-01

    Recent evidence suggests that autotrophic sulfate reduction could be driven by direct and indirect electron transfer mechanisms in bioelectrochemical systems. However, much uncertainty still exists about the electron fluxes from the electrode to the final electron acceptor sulfate during autotrop

  12. Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.; Rossetti, S.

    2006-01-01

    The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effec

  13. Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal.

    Science.gov (United States)

    Ucar, Deniz; Cokgor, Emine Ubay; Sahinkaya, Erkan

    2016-01-01

    Nitrate and perchlorate were identified as significant water contaminants all over the world. This study aims at evaluating the performances of the heterotrophic-autotrophic sequential denitrification process for reductive nitrate and perchlorate removal from drinking water. The reduced nitrate concentration in the heterotrophic reactor increased with increasing methanol concentrations and the remaining nitrate/nitrite was further removed in the following autotrophic denitrifying process. The performances of the sequential process were studied under varying nitrate loads of [Formula: see text] at a fixed hydraulic retention time of 2 h. The C/N ratio in the heterotrophic reactor varied between 1.24 and 2.77 throughout the study. Nitrate and perchlorate reduced completely with maximum initial concentrations of [Formula: see text] and 1000 µg/L, respectively. The maximum denitrification rate for the heterotrophic reactor was [Formula: see text] when the bioreactor was fed with [Formula: see text] and 277 mg/L methanol. For the autotrophic reactor, the highest denitrification rate was [Formula: see text] in the first period when the heterotrophic reactor performance was low. Perchlorate reduction was initiated in the heterotrophic reactor, but completed in the following autotrophic process. Effluent sulphate concentration was below the drinking water standard level of 250 mg/L and pH was in the neutral level.

  14. Combined removal of sulfur compounds and nitrate by autotrophic denitrication in bioaugmented activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.

    2007-01-01

    An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters a

  15. [Endogenous respiration process analysis of heterotrophic biomass and autotrophic biomass based on respiration map ].

    Science.gov (United States)

    Li, Zhi-hua; Bai, Xu-li; Zhang, Qin; Liu, Yi; He, Chun-bo

    2014-09-01

    The endogenous process is an important metabolic part of the activated sludge, and the understanding of this process is still unclear. Characteristics of endogenous respiration for heterotrophic bacteria and autotrophic nitrifiers were analyzed using respirogram. Results showed that both heterotrophic and autotrophic bacteria entered the stage of endogenous respiration at almost the same time, but heterotrophic bacteria first entered the stage of dormancy i. e. , they were easier to recover a higher proportion of biomass during the dormancy stage, indicating that heterotrophic bacteria exhibited strong environmental adaptability. Autotrophic bacteria were, however, quite different. This finding confirmed that autotrophic bacteria were more vulnerable from the viewpoint of endogenous respiration. In addition, the study also found that the increase of endogenous respiration rate ratio reflected the decreased sludge activity. And the proportion of endogenous respiration was an important parameter to characterize the activity of activated sludge, which can be used as a quantitative index for the health status of activated sludge. The findings further deepened the understanding of endogenous respiration process and provided a theoretical basis for the operation and management of wastewater treatment plants.

  16. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  17. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    Science.gov (United States)

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  18. Experimental effects of grazers on autotrophic species assemblages across a nitrate gradient in Florida springs

    Science.gov (United States)

    Springs face accelerated degradation of ecosystem structure, namely in the form of autotrophic species assemblage shifts from submerged vascular macrophytes to benthic filamentous algae. Increasing nitrate concentrations have been cited as a primary driver of this shift and numeric nutrient criteria...

  19. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now, an

  20. Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2012-07-01

    Full Text Available Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3- into the oxic, suboxic and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx- and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139 was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.

  1. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

  2. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.

    Science.gov (United States)

    Sahinkaya, Erkan; Kilic, Adem

    2014-03-01

    Nitrate and chromate can be present together in water resources as nitrate is a common co-contaminant in surface and ground waters. This study aims at comparatively evaluating simultaneous chromate and nitrate reduction in heterotrophic and sulfur-based autotrophic denitrifying column bioreactors. In sulfur-based autotrophic denitrification process, elemental sulfur and nitrate act as an electron donor and an acceptor, respectively, without requirement of organic supplementation. Autotrophic denitrification was complete and not adversely affected by chromate up to 0.5 mg/L. Effluent chromate concentration was water treatment due to the elimination of organic supplementation and the risk of treated effluent contamination.

  3. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    Science.gov (United States)

    Veuger, Bart; Pitcher, Angela; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Middelburg, Jack J.

    2013-04-01

    A dual stable isotope (15N and 13C) tracer approach in combination with compound-specific stable isotope analysis of bacterial and Thaumarchaeotal lipid biomarkers was used to investigate nitrification and the associated growth of autotrophic nitrifiers in the Dutch coastal North Sea. This study focusses on the stoichiometry between nitrification and DIC fixation by autotrophic nitrifiers as well as on the contributions of bacteria versus Thaumarchaeota to total autotrophic DIC-fixation by nitrifiers. Water from the dutch coastal North Sea was collected at weekly to biweekly intervals during the winter of 2007-2008. Watersamples were incubated with 15N-labeled ammonium and 15N was traced into nitrate and suspended material to quantify rates of nitrification and ammonium assimilation respectively. Growth of autotrophic nitrifiers was measured by incubating water samples with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) and subsequent analysis of 13C in bacterial phospholipid-derived fatty acids (PLFAs) and the Thaumarchaeotal biomarker crenarchaeol. Results revealed high nitrification rates with nitrification being the primary sink for ammonium. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95%). The ratio between rates of nitrification versus DIC fixation by nitrifiers was higher or even much higher than typical values for autotrophic nitrifiers, indicating that little DIC was fixed relative to the amount of energy that was generated by nitrification, and hence that other other processes for C acquisition may have been relevant as well. The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the

  4. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  5. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  6. Autotrophic carbon sources for fish communities in a tropical coastal ecosystem (Gazi bay, Kenya)

    OpenAIRE

    Nyunja, J; Ntiba, M; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, Steven

    2009-01-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isoto...

  7. Autotrophic ammonia oxidation at low pH through urea hydrolysis.

    Science.gov (United States)

    Burton, S A; Prosser, J I

    2001-07-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.

  8. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae).

    Science.gov (United States)

    Carfagna, Simona; Bottone, Claudia; Cataletto, Pia Rosa; Petriccione, Milena; Pinto, Gabriele; Salbitani, Giovanna; Vona, Vincenza; Pollio, Antonino; Ciniglia, Claudia

    2016-09-01

    In plants and algae, sulfate assimilation and cysteine synthesis are regulated by sulfur (S) accessibility from the environment. This study reports the effects of S deprivation in autotrophic and heterotrophic cultures of Galdieria phlegrea (Cyanidiophyceae), a unicellular red alga isolated in the Solfatara crater located in Campi Flegrei (Naples, Italy), where H2S is the prevalent form of gaseous S in the fumarolic fluids and S is widespread in the soils near the fumaroles. This is the first report on the effects of S deprivation on a sulfurous microalga that is also able to grow heterotrophically in the dark. The removal of S from the culture medium of illuminated cells caused a decrease in the soluble protein content and a significant decrease in the intracellular levels of glutathione. Cells from heterotrophic cultures of G. phlegrea exhibited high levels of internal proteins and high glutathione content, which did not diminish during S starvation, but rather glutathione significantly increased. The activity of O-acetylserine(thiol)lyase (OASTL), the enzyme synthesizing cysteine, was enhanced under S deprivation in a time-dependent manner in autotrophic but not in heterotrophic cells. Analysis of the transcript abundance of the OASTL gene supports the OASTL activity increase in autotrophic cultures under S deprivation.

  9. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    Science.gov (United States)

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge.

  10. First flowering hybrid between autotrophic and mycoheterotrophic plant species: breakthrough in molecular biology of mycoheterotrophy.

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Miyoshi, Kazumitsu; Tsutsumi, Chie; Yukawa, Tomohisa

    2014-03-01

    Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.

  11. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification.

    Science.gov (United States)

    Tang, Youneng; Zhou, Chen; Ziv-El, Michal; Rittmann, Bruce E

    2011-01-01

    This work presents a model to predict the alkalinity, pH, and Langelier Saturation Index (LSI) in heterotrophic and H(2)-based autotrophic denitrification systems. The model can also be used to estimate the amount of acid, e.g. HCl, added to the influent (method 1) or the pH set point in the reactor (method 2: pH can be maintained stable by CO(2)-sparge using a pH-control loop) to prevent the pH from exceeding the optimal range for denitrification and to prevent precipitation from occurring. The model was tested with two pilot plants carrying out denitrification of groundwater with high hardness: a heterotrophic system using ethanol as the electron donor and an H(2)-based autotrophic system. The measured alkalinity, pH, and LSI were consistent with the model for both systems. This work also quantifies: (1) how the alkalinity and pH in Stage-1 significantly differ from those in Stage-2; (2) how the pH and LSI differ significantly in the two denitrification systems while the alkalinity increase is about the same; and (3) why CO(2) addition is the preferred method for autotrophic system, while HCl addition is the preferred method for the heterotrophic system.

  12. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    Directory of Open Access Journals (Sweden)

    B. Veuger

    2012-11-01

    Full Text Available Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate in combination with compound-specific stable isotope (13C analysis of bacterial- and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41–221 nmol N l−1h−1. Ammonium assimilation was always substantially lower than nitrification with nitrification on average contributing 89% (range 73–97% to total ammonium consumption.

    13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27–95%. The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance. These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance

  13. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.

    Science.gov (United States)

    Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker; Kappler, Andreas

    2016-10-15

    Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3(-)reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of (14)C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments.

  14. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    Science.gov (United States)

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells.

  15. Coupling autotrophic sulfide mineral weathering with dolomite dissolution in a subglacial ecosystem

    Science.gov (United States)

    Boyd, E. S.; Hamilton, T. L.; Havig, J. R.; Lange, R.; Murter, E.; Skidmore, M. L.; Peters, J.; Shock, E.

    2013-12-01

    Evidence in the rock record suggests that glaciers have been present and covered a significant portion of the Earth's surface since the putative Mozaan Glaciation (circa 2.9 Ga) and were demonstrated recently to host active microbial communities that impact local and global biogeochemical cycles. In the present study, we applied a microcosm-based radioisotopic biocarbonate tracer approach to quantify rates of inorganic carbon assimilation in sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada at 4°C. Rates of inorganic carbon assimilation were stimulated by the addition of ammonium and phosphate, suggesting that these nutrients might be of limited supply in the subglacial environment or, in the case of ammonia, might be serving as a source of reductant fueling inorganic carbon fixation. Geochemical analyses were used to assess the potential redox couples that might be fueling autotrophic activity. The difference in the concentration of sulfate (2.4 mM) in unamended microcosm fluids when compared to fluids sampled from killed controls following 180 days incubation suggests that inorganic carbon assimilation in microcosms is driven by microbial populations involved in the oxidation of mineral sulfides, most likely pyrite. Amendment of microcosms with 1 mM ammonia led to near stoichiometric production of nitrate (~890 μM) and lower production of sulfate (~1.5 mM), indicating that the enhanced activity observed in ammonia treated microcosms is likely due to the stimulation of autotrophic ammonia oxidizing populations. The isotopic composition of dissolved organic carbon in subglacial meltwaters ranged was -24.40 ‰ versus VPDB, which is consistent with a source for this organic carbon via the activity of autotrophs that use the Calvin cycle of inorganic carbon fixation. Quantification and sequencing of transcripts of Calvin cycle biomarker genes (ribulose-1,5 bisphosphate carboxylase/oxygenase, encoded by cbbL) suggest the presence of a ubiquitous

  16. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapte...... demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.......Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  17. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    Science.gov (United States)

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  18. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.

    Science.gov (United States)

    Zaybak, Zehra; Pisciotta, John M; Tokash, Justin C; Logan, Bruce E

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34 ± 4 mA/m(2). Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs.

  19. An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Walton, M.R.; Dugan, P.R. (EG G Idaho, Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1994-11-01

    Carbon dioxide is a greenhouse gas that is believed to be a major contributor to global warming. Studies have shown that significant amounts of CO[sub 2] are released into the atmosphere as a result of fossil fuels combustion. Therefore, considerable interest exists in effective and economical technologies for the removal of CO[sub 2] from fossil fuel combustion gas streams. This work evaluated the use of autotrophic microbes for the removal of CO[sub 2] from coal fired power plant combustion gas streams. The CO[sub 2] removal rates of the following autotrophic microbes were determined: [ital Chlorella pyrenoidosa], [ital Euglena gracilis], [ital Thiobacillus ferrooxidans], [ital Aphanocapsa delicatissima], [ital Isochrysis galbana], [ital Phaodactylum tricornutum], [ital Navicula tripunctata schizonemoids], [ital Gomphonema parvulum], [ital Surirella ovata ovata], and four algal consortia. Of those tested, [ital Chlorella pyrenoidosa] exhibited the highest removal rate with 2.6 g CO[sub 2] per day per g dry weight of biomass being removed under optimized conditions. Extrapolation of these data indicated that to remove CO[sub 2] from the combustion gases of a coal fired power plant burning 2.4 x 10[sup 4] metric tons of coal per day would require a bioreactor 386 km[sup 2] x 1m deep and would result in the production of 2.13 x 10[sup 5] metric tons (wet weight) of biomass per day. Based on these calculations, it was concluded that autotrophic CO[sub 2] removal would not be feasible at most locations, and as a result, alternate technologies for CO[sub 2] removal should be explored. 14 refs., 7 figs., 2 tabs.

  20. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  1. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  2. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...... the optimal operating conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Three control structures are obtained and benchmarked by their capacity to reject the disturbances before...... the Anammox reactor....

  3. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko;

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major......). Results indicate that the continuous inoculation strategy was more rapid and effective to achieve nitrogen removal than the sequential inoculation approach. Nitrogen loss in the reactor continuously inoculated with AnAOB was observed after 120 day operation, with an average NH4+-N and TN removal rate of 3...

  4. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures

    DEFF Research Database (Denmark)

    Harper, W.F.; Terada, Akihiko; Poly, F.;

    2009-01-01

    Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically...... accelerated by a factor of 1.4-13. NH2OH addition caused a 20-40% decrease in the median aggregate size, broadened the shape of the aggregate size distribution by up to 230%, and caused some of the microcolonies to appear slightly more dispersed. Longer term NH2OH addition in fed batch bioreactors decreased...

  5. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem;

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...... logic diagnosis tool was developed, utilizing stoichiometric and concentration ratio measurements and removal efficiencies, along with rules derived from process knowledge. The tool could accurately determine the overall performance of the system and can therefore serve as a powerful tool to provide...

  6. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore......Multi-species biofilm modeling has been used for many years to understand the interactions between species in different biofilm systems, but the complex symbiotic relationship between species is sometimes overlooked, because models do not always include all relevant species and components...

  7. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson; De Francisci, Davide; Angelidaki, Irini

    2015-01-01

    In addition to providing cheap or free mineral nutrients, wastewaters may contain organic carbon compounds that could increase productivity of algal cultures. This study defined a strategy for the addition of organic carbon to photobioreactors in order to improve their productivity compared...... to autotrophic growth. Chlorella sorokiniana was cultivated in medium supplemented with sodium acetate in concentrations equivalent to the volatile fatty acid concentration found in anaerobic digester effluent. Flat-panel photobioreactors were operated using 16:8 light:dark cycles, with different strategies...... in an increased efficiency of the photobioreactor....

  8. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2015-01-01

    A novel feedforward–feedback control strategy was developed for complete autotrophic nitrogen removal in a sequencing batch reactor. The aim of the control system was to carry out the regulation of the process while keeping the system close to the optimal operation. The controller was designed......), the controller resulted in a significant performance improvement: removal efficiency was kept at a stable high level in the presence of influent ammonium concentration disturbances, and the absolute deviation on removal efficiency was reduced by 40%. The successful validation of the controller in a lab......-scale reactor is a promising result, which brings this control strategy one step closer to full-scale implementation....

  9. Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs.

    Science.gov (United States)

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Xu, Juan; Sheng, Guo-Ping; Sun, Yu-Jiao; Yu, Han-Qing

    2011-04-01

    In this work, the heterotrophic growth on the microbial products of autotrophs and the effecting factors were evaluated with both experimental and modeling approaches. Fluorescence in situ hybridization (FISH) analysis illustrated that ammonia oxidizers (AOB), nitrite oxidizers (NOB), and heterotrophs accounted for about 65%, 20%, and 15% of the total bacteria, respectively. The mathematical evaluation of experimental data reported in literature indicated that heterotrophic growth in nitrifying biofilm (30-50%) and granules (30%) was significantly higher than that of nitrifying sludge (15%). It was found that low influent ammonium resulted in a lower availability of soluble microbial products (SMP) and a slower heterotrophic growth, but high ammonium (>150 mg N L(-1)) feeding would lead to purely AOB dominated sludge with high biomass-associated products contained effluent, although the absolute heterotrophic growth increased. Meanwhile, the total active biomass concentration increased gradually with the increasing solids retention time, whereas the factions of active AOB, NOB, and heterotrophs varied a lot at different solids retention times. This work could be useful for better understanding of the autotrophic wastewater treatment systems.

  10. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation.

    Science.gov (United States)

    Jabeen, Gugan; Farooq, Robina

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.

  11. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  12. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    Science.gov (United States)

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  13. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone

    Institute of Scientific and Technical Information of China (English)

    Weili Zhou; Yeiue Sun; Bingtao Wu; Yue Zhang; Min Huang; Toshiaki Miyanaga; Zhenjia Zhang

    2011-01-01

    Sulfur-limestone was used in the autotrophic denitrification process to remove the nitrate and nitrite in a lab scale upflow biofilter.Synthetic water with four levels of nitrate and nitrite concentrations of 10,40,70 and 100 mg N/L was tested.When treating the low concentration of nitrate- or nitrite-contaminated water (10,40 mg N/L),a high removal rate of about 90% was achieved at the hydraulic retention time (HRT) of 3 hr and temperature of 20-25℃.At the same HRT,50% of the nitrate or nitrite could be removed even at the low temperature of 5-10℃.For the higher concentration nitrate and nitrite (70,100 mg N/L),longer HRT was required.The batch test indicated that influent concentration,HRT and temperature are important factors affecting the denitrification efficiency.Molecular analysis implied that nitrate and nitrite were denitrified into nitrogen by the same microorganisms.The sequential two-stepreactions from nitrate to nitrite and from nitrite to the next-step product might have taken place in the same cell during the autotrophic denitrification process.

  14. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media

    Energy Technology Data Exchange (ETDEWEB)

    Dayananda, C.; Sarada, R.; Ravishankar, G.A. [Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 020 (India); Usha Rani, M.; Shamala, T.R. [Food Microbiology Department, Central Food Technological Research Institute, Mysore 570 020 (India)

    2007-01-15

    Growth of Botryococcus braunii was studied using different autotrophic media such as bold basal medium (BBM), and bold basal with ammonium carbonate (BBMa), BG11, modified Chu 13 medium. Among the different autotrophic media used, BG11 was found to be the best medium for biomass and hydrocarbon production, although B. braunii showed appreciable level of growth and biomass production in all the tested media. The culture maintained at 16:8h light and dark cycle with 1.2+/-0.2klux light intensity at 25+/-1{sup o}C temperature was found to be the best for growth (2.0 and 2.8gL{sup -1} of biomass was produced by the B. braunii strains SAG 30.81 and LB-572, respectively) and hydrocarbon production (46% and 33%, respectively, by SAG 30.81 and LB 572 strains on dry weight basis) whereas continuous illumination with agitation at 90rpm had maximum influence for the production of exopolysaccharides. The results of the present study indicate that the organism can acclimatize to different culture conditions and to a wide range of culture media with production of more than one metabolite. (author)

  15. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO_{2} for environmental remediation

    Indian Academy of Sciences (India)

    GUGAN JABEEN; ROBINA FAROOQ

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridiumljungdahlii utilize electric currents as an electron source from the cathode to reduce CO_{2} to extracellular, multicarbon,exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly fromCO_{2} is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion ofCO_{2} implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acidand hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In ourstudy, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at −400 mV by aDC power supply at 37°C, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment ofbio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in lesstime. The main aim of the research was to investigate the impact of low-cost substrate CO_{2}, and the longercathode recovery range was due to bacterial reduction of CO_{2} to multicarbon chemical commodities withelectrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energyefficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acidand hexanol being in excess of 80% proved that BES was a remarkable technology.

  16. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    Science.gov (United States)

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  17. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  18. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid.

    Science.gov (United States)

    Butler, R G; Umbreit, W W

    1966-02-01

    Butler, Richard G. (Rutgers, The State University, New Brunswick, N.J.), and Wayne W. Umbreit. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid. J. Bacteriol. 91:661-666. 1966.-The strictly autotrophic bacterium, Thiobacillus thiooxidans, can be shown to assimilate a variety of organic materials. Aspartic acid can be assimilated into protein and can be converted into CO(2), but even in the presence of sulfur it cannot serve as the sole source of carbon for growth. The reason appears to be that aspartic acid is converted into inhibitory materials.

  19. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic g

  20. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan;

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  1. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings.

  2. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  3. Signatures of Autotrophic and Heterotrophic Metabolic Activity in Enrichment Cultures from a Sulphur Oxidizing Acid Mine Site

    Science.gov (United States)

    Slater, G. F.; Bernier, L.; Cowie, B. R.; Warren, L. A.

    2006-12-01

    Delineating the role of microorganisms in geochemical processes of interest in natural environments requires the development of tools that provide the ability to distinguish amongst microbial activity associated with different metabolic guilds. The gap between phylogenetic characterization and phenotypic understanding remains, underscoring the need to consider alternative methods. Compound specific analysis of cellular components has the potential to differentiate between active metabolic processes supporting microbial communities and may be especially useful in extreme environments. The goal of this study was to determine whether the phospholipids fatty acid (PLFA) distribution and isotopic signatures associated with autotrophs and heterotrophs enriched from an acid mine drainage (AMD) system differed, and further whether natural consortial autotrophic isolates showed similar signatures to autotrophic pure strains of Acidithiobacillus ferrooxidans and A. thiooxidans. Two distinct initial enrichments with tetrathionate and CO2 yielded primarily autotrophic (95%) Acidithiobaccillus spp. sulphur oxidizing communities. The remaining microbial members of theses enrichments (subculture of the consortial isolates in a medium amended with glucose but without tetrathionate selectively resulted in their visible growth. PLFA profiles and δ13C signatures from autotrophic (1) natural enrichments, pure cultures of (2) A. ferrooxidans and (3) A. thiooxidans were similar, but collectively differed from those of the natural heterotrophic enrichment cultures. The PLFA profiles for the heterotrophic communities were made up of primarily (88-99%) C16:0 and two isomers of C18:1. In contrast, the autotrophic communities had high proportions of C16:1 (up to 18%) as well as cyclo C17 and cyclo C19 PLFA that combined comprised 18 to 58% of the observed PLFA. The δ13C signatures of the PLFA also differed strongly between the two trophic levels. The δ13C of the autotrophic PLFA, - 24 to

  4. Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process.

    Science.gov (United States)

    Chen, Shen-Yi; Lu, Li-An; Lin, Jih-Gaw

    2016-06-01

    This study conducted a completely autotrophic nitrogen removal over nitrite (CANON) process in a continuous anoxic upflow bioreactor to treat synthetic wastewater with TMAH (tetramethylammonium hydroxide) ranging from 200 to 1000mg/L. The intermediates were analyzed for understanding the metabolic pathway of TMAH biodegradation in CANON process. In addition, (15)N-labeled TMAH was used as the substrate in a batch anoxic bioreactor to confirm that TMAH was converted to nitrogen gas in CANON process. The results indicated that TMAH was almost completely biodegraded in CANON system at different influent TMAH concentrations of 200, 500, and 1000mg/L. The average removal efficiencies of total nitrogen were higher than 90% during the experiments. Trimethylamine (TMA) and methylamine (MA) were found to be the main biodegradation intermediates of TMAH in CANON process. The production of nitrogen gas with (15)N-labeled during the batch anaerobic bioreactor indicated that CANON process successfully converted TMAH into nitrogen gas.

  5. [Expression of phosphofructokinase gene from Escherichia coli K-12 in obligately autotrophic bacterium Acidithiobacillus thiooxidans].

    Science.gov (United States)

    Tian, Keli; Lin, Jianqun; Liu, Xiangmei; Liu, Ying; Zhang, Changkai

    2003-10-01

    A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 (EC 2.7.1. 11) gene (pfkA) was constructed and transferred into Acidithiobacillus thiooxidans Tt-Z2 by conjugation. The transfer frequency of plasmid from E. coli to Tt-Z2 was 2.6 x 10(-6). More than 68% of Tt-Z2 cells carried the recombinant plasmids after being cultured for 50 generations without selective pressure, which showed that pSDK-1 was maintained consistently in Tt-Z2. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (14 U/g was lower than that in E. coli (K-12: 86 U/g; DF1010 carrying plasmid pSDK-1: 97 U/g). In th presence of glucose, the Tt-Z2 transconjugant consumed glucose leading to a better growth yield.

  6. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  7. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  8. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis.

    Science.gov (United States)

    Huber, Harald; Gallenberger, Martin; Jahn, Ulrike; Eylert, Eva; Berg, Ivan A; Kockelkorn, Daniel; Eisenreich, Wolfgang; Fuchs, Georg

    2008-06-03

    Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO(2) fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO(2) acceptor molecule acetyl-CoA is regenerated. Oxaloacetate is reduced to succinyl-CoA by an incomplete reductive citric acid cycle lacking 2-oxoglutarate dehydrogenase or synthase. Succinyl-CoA is reduced to 4-hydroxybutyrate, which is then activated to the CoA thioester. By using the radical enzyme 4-hydroxybutyryl-CoA dehydratase, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA. Finally, beta-oxidation of crotonyl-CoA leads to two molecules of acetyl-CoA. Thus, the cyclic pathway forms an extra molecule of acetyl-CoA, with pyruvate synthase and PEP carboxylase as the carboxylating enzymes. The proposal is based on in vitro transformation of 4-hydroxybutyrate, detection of all enzyme activities, and in vivo-labeling experiments using [1-(14)C]4-hydroxybutyrate, [1,4-(13)C(2)], [U-(13)C(4)]succinate, or [1-(13)C]pyruvate as tracers. The pathway is termed the dicarboxylate/4-hydroxybutyrate cycle. It combines anaerobic metabolic modules to a straightforward and efficient CO(2) fixation mechanism.

  9. Residence time of carbon substrate for autotrophic respiration of a grassland ecosystem correlates with the carbohydrate status of its vegetation

    Science.gov (United States)

    Ostler, Ulrike; Lehmeier, Christoph A.; Schleip, Inga; Schnyder, Hans

    2016-04-01

    Ecosystem respiration is composed of two component fluxes: (1) autotrophic respiration, which comprises respiratory activity of plants and plant-associated microbes that feed on products of recent photosynthetic activity and (2) heterotrophic respiration of microbes that decompose organic matter. The mechanistic link between the availability of carbon (C) substrate for ecosystem respiration and its respiratory activity is not well understood, particularly in grasslands. Here, we explore, how the kinetic features of the supply system feeding autotrophic ecosystem respiration in a temperate humid pasture are related to the content of water-soluble carbohydrates and remobilizable protein (as potential respiratory substrates) in vegetation biomass. During each September 2006, May 2007 and September 2007, we continuously labeled 0.8 m2 pasture plots with 13CO2/12CO2 and observed ecosystem respiration and its tracer content every night during the 14-16 day long labeling periods. We analyzed the tracer kinetics with a pool model, which allowed us to precisely partition ecosystem respiration into its autotrophic and heterotrophic flux components. At the end of a labeling campaign, we harvested aboveground and belowground plant biomass and analyzed its non-structural C contents. Approximately half of ecosystem respiration did not release any significant amount of tracer during the labeling period and was hence characterized as heterotrophic. The other half of ecosystem respiration was autotrophic, with a mean residence time of C in the respiratory substrate pool between 2 and 6 d. Both the rate of autotrophic respiration and the turnover of its substrate supply pool were correlated with plant carbohydrate content, but not with plant protein content. These findings are in agreement with studies in controlled environments that revealed water-soluble carbohydrates as the main substrate and proteins as a marginal substrate for plant respiration under favorable growth conditions

  10. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  11. Targeting Autotrophic and Lithotrophic Microorganisms from Fumarolic Ice Caves of Mt. Erebus, Antarctica

    Science.gov (United States)

    Anitori, R.; Davis, R.; Connell, L.; Kelley, M.; Staudigel, H.; Tebo, B. M.

    2011-12-01

    Terrestrial and aquatic volcanic oligotrophic environments can host microorganisms that obtain their energy from reduced inorganic chemicals present in volcanic rocks and soils. We sampled basaltic rock from terrestrial Dark Oligotrophic Volcanic Ecosystems (DOVEs) located in two fumarole ice caves, Warren and Warren West, located near the summit of Mt. Erebus, Antarctica. For reference, we sampled a similar cave, Harry's Dream, which receives continuous light during the Austral summer. We report here culturing data for bacterial and eukaryotic microbes from rocky soils in these caves when targeting lithotrophic organisms using media containing reduced inorganic compounds (Mn2+, Fe2+, NH4+). In addition, to test for the possible presence of inorganic carbon fixation, we screened samples for the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene. Culturing of soil samples on media targeting both autotrophs and heterotrophs yielded a diverse collection of generally slow-growing colonies of bacteria (majority), fungi and non-fungal eukaryotes. Manganese(II)-oxidizing colonies were identified in Warren and Harry's Dream, and these exhibited two colony morphotypes upon subculturing. Sequencing of the PCR amplified 16S rRNA gene identified a bacterium distantly related to Pseudonocardia sp., a genus with known manganese oxidizers. Other bacteria enriched included members of the Actinobacteria, Alphaproteobacteria and Betaproteobacteria. There was a low diversity in cultured eukaryotes representing several potential undescribed species (Geomyces sp., Penicillium sp.) and isolates that may represent alternate, previously undescribed habitats and forms (Psilolechia leprosa, Alternaria alternata). One Warren isolate was a 99% 16S rRNA match to the N2 fixer Bradyrhizobium sp.; when inoculated into liquid medium specific for N2 fixers, growth was maintained upon subculture. Putative iron oxidizers were also enriched from the two DOVE caves, using slush agar iron

  12. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  13. Targeted Enhancement of H2 and CO2 Uptake for Autotrophic Production of Biodiesel in the Lithoautotrophic Bacterium Ralsonia Eutropha

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C. A.; Sullivan, R.; Johnson, C.; Yu, J.; Maness, P. C.

    2013-01-01

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expression and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.

  14. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells

    Science.gov (United States)

    Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh

    2016-08-01

    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.

  15. The effect of SRT on nitrate formation during autotrophic nitrogen removal of anaerobically treated wastewater.

    Science.gov (United States)

    Lee, Po-Heng; Kwak, Wonji; Bae, Jeaho; McCarty, Perry L

    2013-01-01

    Autotrophic nitrogen removal, coupling nitritation (ammonium to nitrite) with anaerobic ammonium oxidation (anammox), offers a promising nitrogen-removal alternative, especially for post-treatment of anaerobically-treated wastewater. However, previous reports suggest that less than 90% total nitrogen removal should be expected with this process alone because over 10% of the ammonium removed will be converted to nitrate. This is caused because nitrite conversion to nitrate is required for reduction of carbon dioxide to cell carbon. However, recent research results suggest that more limited nitrate formation of only a few per cent sometimes occurs. It was hypothesized such lower nitrate yields may result from use of long solids retention times (SRT) where net biological yields are low, and providing that the ratio of oxygen added to influent ammonium concentrations is maintained at or below 0.75 mol/mol. Overall reaction equations were developed for each process and combined to evaluate the potential effect of SRT on process stoichiometry. The results support the use of a long SRT to reduce net cell yield, which in turn results in a small percentage conversion to nitrate during ammonium removal and high total nitrogen removals in the range of 90 to 94%.

  16. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application.

  17. A study of autotrophic communities in two Victoria Land lakes (Continental Antarctica using photosynthetic pigments

    Directory of Open Access Journals (Sweden)

    Roberto BARGAGLI

    2010-08-01

    Full Text Available The composition of algal pigments and extracellular polymeric substances (EPS was determined in microbial mats from two lakes in Victoria Land (Continental Antarctica with different lithology and environmental features. The aim was to expand knowledge of benthic autotrophic communities in Antarctic lacustrine ecosystems, providing reference data for future assessment of possible changes in environmental conditions and freshwater communities. The results of chemical analyses were supported by microscopy observations. Pigment profiles showed that filamentous cyanobacteria are dominant in both lakes. Samples from the water body at Edmonson Point had greater biodiversity, fewer pigments and lower EPS ratios than those from the lake at Kar Plateau. Differences in mat composition and in pigment and EPS profile between the two lakes are discussed in terms of local environmental conditions such as lithology, ice-cover and UV radiation. The present study suggests that a chemical approach could be useful in the study of benthic communities in Antarctic lakes and their variations in space and time.

  18. Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria

    Directory of Open Access Journals (Sweden)

    JongOh Shin

    2016-09-01

    Full Text Available Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2 to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2 or carbon monoxide (CO, via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications.

  19. Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria

    Science.gov (United States)

    Shin, Jongoh; Song, Yoseb; Jeong, Yujin; Cho, Byung-Kwan

    2016-01-01

    Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2) to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2) or carbon monoxide (CO), via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications. PMID:27733845

  20. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri.

    Science.gov (United States)

    Tang, Wang-Gang; Song, Ping; Cao, Zheng-Yu; Wang, Peng; Zhu, Guo-Ping

    2015-06-01

    In eukaryotes, NAD(+)-dependent isocitrate dehydrogenase (IDH) is strictly mitochondrial and is a key enzyme in the Krebs cycle. To date, all known NAD(+)-specific IDHs (NAD-IDHs) in the mitochondria are believed to be heteromeric in solution. Here, a unique homodimeric NAD-IDH from Ostreococcus tauri (OtIDH), the smallest autotrophic picoeukaryote, was unveiled. Active OtIDH has a molecular weight of ∼93 kDa with each subunit of 46.7 kDa. In the presence of Mn(2+) and Mg(2+), OtIDH displayed 42-fold and 51-fold preference for NAD(+) over NADP(+), respectively. Interestingly, OtIDH exhibited a sigmoidal kinetic behavior in response to isocitrate unlike other homodimeric homologs, and a remarkably high affinity for isocitrate (S0.5 < 10 μM) unlike other hetero-oligomeric homologs. Furthermore, its coenzyme specificity can be completely converted from NAD(+) (ancient trait) to NADP(+) (adaptive trait) by rational mutagenesis based on the evolutionary trace. Mutants D344R and D344R/M345H displayed a 15-fold and 72-fold preference for NADP(+) over NAD(+), respectively, indicating that D344 and M345 are the determinants of NAD(+) specificity. These findings also suggest that OtIDH may be an ancestral form of type II IDHs (all reported members are NADP(+)-linked enzymes) and may have evolved into NADP(+)-dependent IDH for adaptation to the increased demand of NADPH under carbon starvation.

  1. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  2. Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence.

    Science.gov (United States)

    Holland, Alexandra D; Wheeler, Dean R

    2011-05-01

    For non-inhibitory irradiances, the rate of algal biomass synthesis was modeled as the product of the algal autotrophic yield Φ(DW) and the flux of photons absorbed by the culture, as described using Beer-Lambert law. As a contrast to earlier attempts, the use of scatter-corrected extinction coefficients enabled the validation of such approach, which bypasses determination of photosynthesis-irradiance (PI) kinetic parameters. The broad misconception that PI curves, or the equivalent use of specific growth rate expressions independent of the biomass concentration, can be extended to adequately model biomass production under light-limitation is addressed. For inhibitory irradiances, a proposed mechanistic model, based on the photosynthetic units (PSU) concept, allows one to estimate a target speed νT across the photic zone in order to limit the flux of photons per cell to levels averting significant reductions in Φ(DW) . These modeled target speeds, on the order of 5-20 m s(-1) for high outdoor irradiances, call for fundamental changes in reactor design to optimize biomass productivity. The presented analysis enables a straightforward bioreactor parameterization, which, in-turn, guides the establishment of conditions ensuring maximum productivity and complete nutrients consumption. Additionally, solar and fluorescent lighting spectra were used to calculate energy to photon-counts conversion factors.

  3. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor.

    Science.gov (United States)

    De Clippeleir, Haydée; Vlaeminck, Siegfried E; Carballa, Marta; Verstraete, Willy

    2009-11-01

    Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).

  4. Drinking Water Denitrification using Autotrophic Denitrifying Bacteria in a Fluidized Bed Bioreactor 

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid-mohammadi

    2013-02-01

    Full Text Available Background and Objectives: Contamination of drinking water sources with nitrate may cause adverse effects on human health. Due to operational and maintenance problems of physicochemical nitrate removal processes, using biological denitrification processes have been performed. The aim of this study is to evaluate nitrate removal efficiency from drinking water using autotrophic denitrifying bacteria immobilized on sulfur impregnated activated carbon in a fluidized bed bioreactor. Materials and Methods: After impregnating activated carbon by sulfur as a microorganism carriers and enrichment and inoculation of denitrifying bacteria, a laboratory-scale fluidized bed bioreactor was operated. Nitrate removal efficiency, nitrite, turbidity, hardness and TOC in the effluent were examined during the whole experiment under various conditions including constant influent nitrate concentration as 90 mg NO3--N/l corresponding to different HRT ranging from 5.53 to 1.5 hr. Results: We found that  the denitrification rates was depended on the hydraulic retention time and the nitrate removal efficiency was up to 98%  and nitrite concentration was lower than 1mg/l at optimum HRT=2.4 hr respectively. Moreover, there was no difference in hardness between influent and effluent due to supplying sodium bicarbonate as carbon source for denitrifying bacteria.  However pH, TOC, hardness, and turbidity of the effluent met the W.H.O guidelines for drinking water.  Conclusion: This study demonstrated that an innovative carrier as sulfur impregnated activated carbon could be used as both the biofilm carrier and energy source for treating nitrate contaminated drinking water in the lab-scale fluidized bed bioreactor.

  5. Partitioning Longleaf Pine Soil Respiration into Its Heterotrophic and Autotrophic Components through Root Exclusion

    Directory of Open Access Journals (Sweden)

    Althea A. ArchMiller

    2016-02-01

    Full Text Available Rapid and accurate estimations of the heterotrophic and autotrophic components of total soil respiration (Rs are important for calculating forest carbon budgets and for understanding carbon dynamics associated with natural and management-related disturbances. The objective of this study was to use deep (60 cm root exclusion tubes and paired control (i.e., no root exclusion collars to estimate heterotrophic respiration (Rh and Rs, respectively, in three 26-year-old longleaf pine (Pinus palustris Mill. stands in western Georgia. Root biomass was measured in root exclusion tubes and control collars after 102–104 days of incubation and fine root biomass loss from root exclusion was used to quantify root decay. Mean Rs from control collars was 3.3 micromol•CO2•m−2•s−1. Root exclusion tubes decreased Rs, providing an estimate of Rh. Mean Rh was 2.7 micromol•CO2•m−2•s−1 when uncorrected by pretreatment variation, root decay, or soil moisture compared to 2.1 micromol•CO2•m−2•s−1 when Rh was corrected for root decay. The corresponding ratio of Rh to Rs ranged from 66% to 82%, depending on the estimation method. This study provides an estimate of Rh in longleaf pine forests, and demonstrates the potential for deep root exclusion tubes to provide relatively rapid assessments (i.e., ~40 days post-treatment of Rh in similar forests. The range in Rh to Rs is comparable to other reports for similar temperate coniferous ecosystems.

  6. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    Science.gov (United States)

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction.

  7. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott D [Mississippi State Univ., Mississippi State, MS (United States)

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  8. An Autotrophic Origin for the Coded Amino Acids is Concordant with the Coevolution Theory of the Genetic Code.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-10-01

    The coevolution theory of the origin of the genetic code maintains that the biosynthetic relationships between amino acids co-evolved with the genetic code organization. In other words, the metabolism of amino acids co-evolved with the organization of the genetic code because the biosynthetic pathways of amino acids occurred on tRNA-like molecules. Thus, a heterotrophic origin of amino acids-also only of those involved in the early phase of the structuring of the genetic code-would seem to contradict the main postulate of the coevolution theory. As a matter of fact, this origin not being linked to the metabolism of amino acids in any way-being taken from a physical setting-would seem to remove the possibility that this metabolism had instead heavily contributed to the structuring of the genetic code. Therefore, I have analyzed the structure of the genetic code and mechanisms that brought to its structuring for understanding if the coevolution theory is compatible with autotrophic or heterotrophic conditions. One of the arguments was that an autotrophic origin of amino acids would have the advantage to be able to directly link their metabolism to the structure of the genetic code if-as hypothesized by the coevolution theory-the biosyntheses of amino acids occurred on tRNA-like molecules. Simultaneously, a heterotrophic origin would not have been able to link the metabolism of amino acids to the structure of the genetic code for the absence of a precise determinism of allocation of amino acids, that is to say of a clear mechanism-linked to tRNA-like molecules, for example-that would have determined the specific pattern observed in the genetic code of the biosynthetic relationships between amino acids. The conclusion is that an autotrophic origin of coded amino acids would seem to be the condition under which the genetic code originated.

  9. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  10. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    Directory of Open Access Journals (Sweden)

    Jessica K Cole

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  11. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due...... of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... (qPCR) and by acetogenic and methanogenic microorganisms, shown present in the mofettes by previous studies. Combined Δ14C and δ13C isotope mass balances indicated that microbially derived carbon accounted for 8–27 % of bulk SOM in this soil layer. The findings imply that autotrophic microorganisms...

  12. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    Science.gov (United States)

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.

  13. Characterization of the start-up period of single-step autotrophic nitrogen removal in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-song; QIN Yu; FANG Fang; YANG Guo-hong

    2008-01-01

    The characteristics of the start-up period of single-step autotrophic nitrogen removal process were investigated. The autotrophic nitrogen removal process used a sequencing batch reactor to treat wastewater of medium to low ammonia-nitrogen concentration, with dissolved oxygen (DO), hydraulic retention time (HRT) and temperature controlled. The experimental conditions were temperature at (30(2) (C, ammonia concentration of (60 to 120) mg/L, DO of (0.8 to 1.0) mg/L, pH from 7.8 to 8.5 and HRT of 24 h. The rates of nitrification and nitrogen removal turn out to be 77% and 40%, respectively, after a start up period going through three stages divided according to nitrite accumulation: sludge domestication, nitrifying bacteria selection and sludge adaptation. It is demonstrated that dissolved oxygen is critical to nitrite accumulation and elastic YJZH soft compound packing is superior to polyhedral hollow balls in helping the bacteria adhere to the membrane.

  14. Metabolic potential of microbial mats and microbialites: Autotrophic capabilities described by an in silico stoichiometric approach from shared genomic resources.

    Science.gov (United States)

    Cerqueda-García, Daniel; Falcón, Luisa I

    2016-08-01

    Microbialites and microbial mats are complex communities with high phylogenetic diversity. These communities are mostly composed of bacteria and archaea, which are the earliest living forms on Earth and relevant to biogeochemical evolution. In this study, we identified the shared metabolic pathways for uptake of inorganic C and N in microbial mats and microbialites based on metagenomic data sets. An in silico analysis for autotrophic pathways was used to trace the paths of C and N to the system, following an elementary flux modes (EFM) approach, resulting in a stoichiometric model. The fragility was analyzed by the minimal cut sets method. We found four relevant pathways for the incorporation of CO2 (Calvin cycle, reverse tricarboxylic acid cycle, reductive acetyl-CoA pathway, and dicarboxylate/4-hydroxybutyrate cycle), some of them present only in archaea, while nitrogen fixation was the most important source of N to the system. The metabolic potential to incorporate nitrate to biomass was also relevant. The fragility of the network was low, suggesting a high redundancy of the autotrophic pathways due to their broad metabolic diversity, and highlighting the relevance of reducing power source. This analysis suggests that microbial mats and microbialites are "metabolic pumps" for the incorporation of inorganic gases and formation of organic matter.

  15. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    Science.gov (United States)

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h).

  16. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  17. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Chang; Dong Li; Yuhai Liang; Zhuo Yang; Shaoming Cui; Tao Liu; Huiping Zeng

    2013-01-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated.The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400,300,and 200 mg N/L) but constant influent ammonia load.The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23℃).The average removal rate and removal loading of NH4 +-N and TN was 83.90%,1.26 kg N/(m3.day),and 70.14%,1.09 kg N/(m3.day),respectively.Among the influencing factors like pH,dissolved oxygen and alkalinity,it was indicated that the pH was the key parameter of the performance of the CANON system.Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way.Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria,which had low diversity in different stages,while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable.These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation,which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  18. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  19. The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance.

    Science.gov (United States)

    Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L

    2012-05-01

    The goal of this study was to evaluate the contribution of oak trees (Quercus spp.) and their associated mycorrhizal fungi to total community soil respiration in a deciduous forest (Black Rock Forest) and to explore the partitioning of autotrophic and heterotrophic respiration. Trees on twelve 75 × 75-m plots were girdled according to four treatments: girdling all the oaks on the plot (OG), girdling half of the oak trees on a plot (O50), girdling all non-oaks on a plot (NO), and a control (C). In addition, one circular plot (diameter 50 m) was created where all trees were girdled (ALL). Soil respiration was measured before and after tree girdling. A conservative estimate of the total autotrophic contribution is approximately 50%, as indicated by results on the ALL and OG plots. Rapid declines in carbon dioxide (CO(2)) flux from both the ALL and OG plots, 37 and 33%, respectively, were observed within 2 weeks following the treatment, demonstrating a fast turnover of recently fixed carbon. Responses from the NO and O50 treatments were statistically similar to the control. A non-proportional decline in respiration rates along the gradient of change in live aboveground biomass complicated partitioning of the overall rate of soil respiration and indicates that belowground carbon flux is not linearly related to aboveground disturbance. Our findings suggest that in this system there is a threshold disturbance level between 35 and 74% of live aboveground biomass loss, beyond which belowground dynamics change dramatically.

  20. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].

    Science.gov (United States)

    Mokrosnop, V M; Polishchuk, A V; Zolotareva, E K

    2016-01-01

    The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2-3 and 1.6-2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2-7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

  1. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, A.P.; Jyothibabu, R.; Jagadeesan, L.; Lallu, K.R.; Karnan, C.

    , the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8×106...

  2. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W

    2016-05-01

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  3. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  4. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan;

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from nitro...

  5. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation.

    Science.gov (United States)

    Courtens, Emilie N P; Boon, Nico; De Clippeleir, Haydée; Berckmoes, Karla; Mosquera, Mariela; Seuntjens, Dries; Vlaeminck, Siegfried E

    2014-03-01

    With oxygen supply playing a crucial role in an oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor (RBC), its controlling factors were investigated in this study. Disc rotation speeds (1.8 and 3.6rpm) showed no influence on the process performance of a lab-scale RBC, although abiotic experiments showed a significant effect on the oxygenation capacity. Estimations of the biological oxygen uptake rate revealed that 85-89% of the oxygen was absorbed by the microorganisms during the air exposure of the discs. Indeed, increasing the disc immersion (50 to 75-80%) could significantly suppress undesired nitratation, on the short and long term. The presented results demonstrated that nitratation could be controlled by the immersion level and revealed that oxygen control in an OLAND RBC should be predominantly based on the atmospheric exposure percentage of the discs.

  6. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Krause-Jensen, Dorte; Dalsgaard, Tage;

    2014-01-01

    We measured net planktonic community production (NCP), community respiration (CR), and gross primary production (GPP) in September, February, and May in a subarctic Greenland fjord influenced by glacial meltwater and terrestrial runoff. Potential controls of pelagic carbon cycling, including...... the role of terrestrial carbon, were investigated by relating surface-water partial pressure of CO2 (PCO2), NCP, GPP, and CR to physicochemical conditions, chlorophyll a (Chl a) concentration, phytoplankton production, inventories of particulate (POC) and dissolved organic carbon (DOC) and vertical flux...... of POC. The planktonic community was net heterotrophic in the photic zone in September (NCP = −21 ± 45 mmol O2 m−2 d−1) and February (NCP = −17 mmol O2 m−2 d−1) but net autotrophic during a developing spring bloom in May (NCP = 129 ± 102 mmol O2 m−2 d−1). In September, higher temperatures, shorter day...

  7. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    Science.gov (United States)

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo

    2016-07-01

    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel.

  8. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".

    Science.gov (United States)

    Rasigraf, Olivia; Kool, Dorien M; Jetten, Mike S M; Sinninghe Damsté, Jaap S; Ettwig, Katharina F

    2014-04-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic

  9. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes.

    Science.gov (United States)

    Nguyen, Van Khanh; Hong, Sungsug; Park, Younghyun; Jo, Kyungmin; Lee, Taeho

    2015-02-01

    Two-chamber bioelectrochemical systems (BESs) have recently been developed for nitrate removal from nitrate-contaminated water. In this study, we compared the nitrate removal performance of biocathodes of BESs when using abiotic and biotic anodes. Acetate was used as electron donor in BESs with biotic anode, whereas a direct current power supply was used as energy source in BESs with abiotic anode. The nitrogen removal efficiency increased from 18.1% to 43.0% when the voltage supplied to the BES with abiotic anode increased from 0.7 V to 0.9 V, whereas no higher removal efficiency was obtained at a higher supplied voltage (1.1 V). The highest efficiency (78.0%) of autotrophic nitrogen removal was achieved when electron transfer from the biotic anode chamber of BESs was used. Unexpectedly, control of the cathode potential did not enhance nitrate removal in BESs with biotic anode. Special attention was paid to elucidate the differences of bacterial communities catalysing autotrophic denitrification in the biocathodes of BESs with abiotic and biotic anodes. Data from denaturing gradient gel electrophoresis and phylogenetic analysis suggested that denitrification in BESs with abiotic anode could be attributed to Nitratireductor sp., Shinella sp., and Dyella sp., whereas the dominant bacterial denitrifiers in BESs with biotic anode were found to be Pseudomonas sp., Curtobacterium sp., and Aeromonas sp. These results implied that biocathodes of BESs with biotic anode are more efficient than those of BESs with abiotic anode for nitrate removal from nitrate-contaminated water in practical applications.

  10. [Quantifying soil autotrophic microbes-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    Science.gov (United States)

    Shi, Ran; Chen, Xiao-Juan; Wu, Xiao-Hong; Jian, Yan; Yuan, Hong-Zhao; Ge, Ti-Da; Sui, Fang-Gong; Tong, Cheng-Li; Wu, Jin-Shui

    2013-07-01

    Soil autotrophic microbe has been found numerous and widespread. However, roles of microbial autotrophic processes and the mechanisms of that in the soil carbon sequestration remain poorly understood. Here, we used soils incubated for 110 days in a closed, continuously labeled 14C-CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. The allocation of 14C-labeled assimilated carbon in variable soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) were also examined over the 14C labeling span. The results showed that significant amounts of 14C-SOC were measured in paddy soils, which ranged from 69.06-133.81 mg x kg(-1), accounting for 0.58% to 0.92% of the total soil organic carbon (SOC). The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC) were dependent on the soils, ranged from 2.54 to 8.10 mg x kg(-1), 19.50 to 49.16 mg x kg(-1), respectively. There was a significantly positive linear relationship between concentrations of 14C-SOC and 14C-MBC (R2 = 0.957**, P < 0.01). The 14C-DOC and 14C-MBC as proportions of total DOC, MBC, were 5.65%-24.91% and 4.23%-20.02%, respectively. Moreover, the distribution and transformation of microbes-assimilated-derived C had a greater influence on the dynamics of DOC and MBC than that on the dynamics of SOC. These data provide new insights into the importance of microorganisms in the fixation of atmospheric CO2 and of the potentially significant contributions made by microbial autotrophy to terrestrial C cycling.

  11. The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD(+) Oxidoreductase Essential for Autotrophic Growth

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, PL; Zhang, T; Dar, SA; Leang, C; Lovley, DR

    2012-12-26

    It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD(+) oxidoreductase which contributes to ATP synthesis by an H+-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H-2 as the electron source and CO2 as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation. IMPORTANCE Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as

  12. The Robin, Erithacus Rubecula (Passeriformes, Turdidae, As a Component of Autotrophic Consortia of Forest Cenoses, Northeast Ukraine

    Directory of Open Access Journals (Sweden)

    Chaplygina A. B.

    2016-08-01

    Full Text Available The role of the robin, Erithacus rubecula Linnaeus, 1758 as a consort of autotrophic consortia is considered. It has been found that representatives of 9 higher taxa of animals (Mammalia, Aves, Gastropoda, Insecta, Arachnida, Acarina, Malacostraca, Diplopoda, Clitellata have trophic and topical links with the robin. At the same time, the robin is a consort of determinants of autotrophic consortia, which core is represented mostly by dominating species of deciduous trees (Quercus robur Linnaeus, 1753 (24.6 %, Tilia cordata Miller, 1768 (17.5 %, Acer platanoides Linnaeus, 1753 (22.8 %, Acer campestre Linnaeus, 1753, and also by sedges (Carex sp. and grasses (Poaceae. The robin also belongs to the concentre of the second and higher orders as a component of forest biogeocenoses and forms a complex trophic system. In the diet of its nestlings, there have been found 717 objects from 32 invertebrate taxa, belonging to the phylums Arthropoda (99.2 %, 31 species and Annelida (0.8 %, 1 species. The phylum Arthropoda was represented by the most numerous class Insecta (76.9 %, in which 10 orders (Lepidoptera (46.8 % dominates and 20 families were recorded, and also by the classes Arachnida (15.0 %, Malacostraca (5.3 % and Diplopoda (1.9 %. The invertebrate species composition was dominated by representatives of a trophic group of zoophages (14 species; 43.8 %; the portion of phytophages (7 species; 21.9 %, saprophages (18.7 %, and necrophages (15.6 % was the less. The highest number of food items was represented by phytophages (N = 717; 51 %, followed by zoophages (34 %, saprophages (12 %, and necrophages (3 %. The difference among study areas according to the number of food items and the number of species in the robin nestling diet is shown. In NNP “HF”, the highest number of food items was represented by phytophages - 47 % (N = 443, whereas zoophages were the most species-rich group (43.3 %, 13 species. In NNP “H”, phytophages also prevailed in

  13. An integrated process of three-dimensional biofilm-electrode with sulfur autotrophic denitrification (3DBER-SAD) for wastewater reclamation.

    Science.gov (United States)

    Hao, Ruixia; Meng, Chengcheng; Li, Jianbing

    2016-08-01

    A three-dimensional biofilm-electrode reactor (3DBER) was integrated with sulfur autotrophic denitrification (SAD) to improve nitrogen removal performance for wastewater reclamation. The impacts of influent carbon/nitrogen (C/N) ratio, electric current, and hydraulic retention time (HRT) were evaluated. The new process, abbreviated as 3DBER-SAD, achieved a more stable denitrification compared to the recently studied 3DBER in literature. Its nitrogen removal improved by about 45 % as compared to 3DBER, especially under low C/N ratio conditions. The results also revealed that the biofilm bacteria community of 3DBER-SAD contained 21.1 % of the genus Thauera, 19.3 % of the genus Thiobacillus and Sulfuricella, as well as 5.3 % of the genus Alicycliphilus, Pseudomonas, and Paracoccus. The synergy between these heterotrophic, sulfur autotrophic, and hydrogenotrophic denitrification bacteria was believed to cause the high and stable nitrogen removal performance under various operating conditions.

  14. Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus.

    Science.gov (United States)

    Tanaka, K; Ishizaki, A; Kanamaru, T; Kawano, T

    1995-02-05

    Hydrogen-oxidizing bacterium, Alcaligenes eutrophus autotrophically produces biodegradable plastic material, poly(D-3-hydroxybutyrate), P(3HB), from carbon dioxide, hydrogen, and oxygen. In autotrophic cultivation of the microorganism, it is essential to eliminate possible occurrence of gas explosions from the fermentation process. We developed a bench-plant scale, recycled-gas, closed-circuit culture system equipped with several safety features to perform autotrophic cultivation of A. eutrophus by maintaining the oxygen concentration in the substrate gas phase below the lower limit for a gas explosion (6.9%). The culture vessel utilized a baskettype agitator, resulting in a K(L) a value of 2970 h(-1). Oxygen gas was also directly fed to the fermentor separately from the other gases. As a result, 91.3 g . dm(-3) of the cells and 61.9 g . dm(-3) of P(3HB) were obtained after 40 h of cultivation under this oxygen-limited condition. The results compared favorably with those reported for mass production of P(3HB) by heterotrophic fermentation. (c) 1995 John Wiley & Sons, Inc.

  15. Optimization of a Nile Red method for rapid lipid determination in autotrophic, marine microalgae is species dependent.

    Science.gov (United States)

    Balduyck, Lieselot; Veryser, Cedrick; Goiris, Koen; Bruneel, Charlotte; Muylaert, Koenraad; Foubert, Imogen

    2015-11-01

    Several studies have been conducted to develop rapid methods for quantification of lipid content in microalgae, as an alternative for time consuming gravimetric methods. Different studies showed that lipid staining with Nile Red in whole cell suspensions and subsequently quantification by the use of a spectrofluorometric device is a promising method, but a profound optimization and validation is rare. It has already been proven that the correlation curve for quantification is species dependent, but it has not yet been investigated whether this is also the case for the optimization of the Nile Red assay protocol. Therefore, two autotrophic, marine microalgae, Nannochloropsis oculata and T-Isochrysis lutea, strongly differing in e.g. cell wall structure, were selected in this study to investigate whether optimization of the Nile Red assay is species dependent. Besides this, it was checked for one of these species, Nannochloropsis, whether the lipid content, determined by the Nile Red assay, could indeed be correlated with the neutral and/or total lipid content determined by gravimetric methods. It was found that optimization of the Nile Red assay was strongly species dependent. Consequently, optimization has to be done for each species before using the assay. For Nannochloropsis, a good correlation was found between total and neutral lipid content obtained by the Nile Red assay and by gravimetric methods.

  16. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones.

    Science.gov (United States)

    Li, An-Jie; Hou, Bao-Lian; Li, Mei-Xi

    2015-11-01

    In this study, six N-acyl-homoserine lactone (AHL) molecules (C6-HSL, C8-HSL, C10-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL and 3-oxo-C10-HSL) were each dosed into a bioreactor and seeded using autotrophic nitrifying sludge (ANS). The effects of the AHLs on cell adhesion, nitrification and sludge granulation were investigated. The results indicated that the efficiencies of cell adhesion and ammonia removal both had a close correlation with the side chain length and β position substituent group of the AHLs. The best-performing AHL in terms of accelerating bacterial attached-growth was 3-oxo-C6-HSL, whereas C6-HSL outperformed the others in terms of the ammonia degradation rate. The addition of 3-oxo-C6-HSL or C6-HSL increased the biomass growth rate, microbial activity, extracellular proteins and nitrifying bacteria, which can accelerate the formation of nitrifying granules. Consequently, selecting AHL molecules that could improve bacteria in attached-growth mode and nitrification efficiency simultaneously will most likely facilitate the rapid granulation of nitrifying sludge.

  17. Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD.

    Science.gov (United States)

    Tang, Kimberley; An, Shijie; Nemati, Mehdi

    2010-11-01

    Microbial cultures originated from an oil reservoir were used in three biofilm reactors and effects of sulphide and nitrate loading rates and molar loading ratio on the removal of sulphide, nitrate and acetate, and composition of end products were investigated. Application of biofilms improved sulphide and nitrate removal rates significantly when compared with freely suspended cells. Maximum sulphide and nitrate removal rates under autotrophic conditions were 30.0 and 24.4 mM h(-1), respectively (residence time: 0.5h). Oxidation of acetate occurred only at nitrate to sulphide molar loading ratios around 0.7 or higher when nitrate was present at levels higher than that required for oxidation of sulphide to sulphur. Conversion of sulphide to sulphate increased from 0% to 66% as nitrate to sulphide molar loading ratio was increased from 0.34 to 3.98. The highest nitrate and acetate removal rates in the bioreactor operated under heterotrophic conditions were 183.2 and 88.0 mM h(-1), respectively (residence time: 0.8h).

  18. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae.

  19. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios.

    Science.gov (United States)

    Song, Weimin; Chen, Shiping; Zhou, Yadan; Wu, Bo; Zhu, Yajuan; Lu, Qi; Lin, Guanghui

    2015-11-30

    Diel hysteresis occurs often between soil CO2 efflux (R(S)) and temperature, yet, little is known if diel hysteresis occurs in the two components of R(S), i.e., autotrophic respiration (R(A)) and heterotrophic respiration (R(H)), and how diel hysteresis will respond to future rainfall change. We conducted a field experiment in a desert ecosystem in northern China simulating five different scenarios of future rain regimes. Diel variations of soil CO2 efflux and soil temperature were measured on Day 6 and Day 16 following the rain addition treatments each month during the growing season. We found contrasting responses in the diel hysteresis of R(A) and R(H) to soil temperature, with a clockwise hysteresis loop for R(H) but a counter-clockwise hysteresis loop for R(A). Rain addition significantly increased the magnitude of diel hysteresis for both R(H) and R(A) on Day 6, but had no influence on either on Day 16 when soil moisture was much lower. These findings underline the different roles of biological (i.e. plant and microbial activities) and physical-chemical (e.g. heat transport and inorganic CO2 exchange) processes in regulating the diel hysteresis of R(A) and R(H), which should be considered when estimating soil CO2 efflux in desert regions under future rainfall regime.

  20. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation.

    Science.gov (United States)

    Khadem, Ahmad F; Pol, Arjan; Wieczorek, Adam; Mohammadi, Seyed S; Francoijs, Kees-Jan; Stunnenberg, Henk G; Jetten, Mike S M; Op den Camp, Huub J M

    2011-09-01

    Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicumstrain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with (13)CH(4) or (13)CO(2) in batch and chemostat cultures demonstrated that CO(2) is the sole carbon source for growth of strain SolV. In the presence of CH(4), CO(2) concentrations in the headspace below 1% (vol/vol) were growth limiting, and no growth was observed when CO(2)concentrations were below 0.3% (vol/vol). The activity of the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), measured with a (13)C stable-isotope method was about 70 nmol CO(2) fixed · min(-1)· mg of protein(-1). An immune reaction with antibody against the large subunit of RuBisCO on Western blots was found only in the supernatant fractions of cell extracts. The apparent native mass of the RuBisCO complex in strain SolV was about 482 kDa, probably consisting of 8 large (53-kDa) and 8 small (16-kDa) subunits. Based on phylogenetic analysis of the corresponding RuBisCO gene, we postulate that RuBisCO of the verrucomicrobial methanotrophs represents a new type of form I RuBisCO.

  1. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture.

    Science.gov (United States)

    Santos, C A; Caldeira, M L; Lopes da Silva, T; Novais, J M; Reis, A

    2013-06-01

    In order to produce single-cell oil for biodiesel, a yeast and a microalga were, for the first time, grown in two separate reactors connected by their gas-phases, taking advantage of their complementary nutritional metabolisms, i.e., respiration and photosynthesis. The yeast Rhodosporidium toruloides was used for lipid production, originating a carbon dioxide-enriched outlet gas stream which in turn was used to stimulate the autotrophic growth of Chlorella protothecoides in a vertical-alveolar-panel (VAP) photobioreactor. The microalgal biomass productivity was 0.015 gL(-1)h(-1), and its lipid productivity attained 2.2 mgL(-1)h(-1) when aerated with the outlet gas stream from the yeast fermenter. These values represent an increase of 94% and 87%, respectively, as compared to a control culture aerated with air. The CO2 bio-fixed by the microalgal biomass reached an estimated value of 29 mgL(-1)h(-1) in the VAP receiving the gas stream from the fermenter, a value 1.9 times higher than that measured in the control VAP.

  2. Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria

    Science.gov (United States)

    Slobodkina, Galina B.; Mardanov, Andrey V.; Ravin, Nikolai V.; Frolova, Anastasia A.; Chernyh, Nikolay A.; Bonch-Osmolovskaya, Elizaveta A.; Slobodkin, Alexander I.

    2017-01-01

    Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle. PMID:28194142

  3. High-efficient nitrogen removal by coupling enriched autotrophic-nitrification and aerobic-denitrification consortiums at cold temperature.

    Science.gov (United States)

    Zou, Shiqiang; Yao, Shuo; Ni, Jinren

    2014-06-01

    This study paid particular attention to total nitrogen removal at low temperature (10°C) by excellent coupling of enriched autotrophic nitrifying and heterotrophic denitrifying consortiums at sole aerobic condition. The maximum specific nitrifying rate of the nitrifying consortium reached 8.85mgN/(gSSh). Further test in four identical lab-scale sequencing batch reactors demonstrated its excellent performance for bioaugmentation in potential applications. On the other hand, the aerobic denitrifying consortium could achieve a specific denitrifying rate of 32.93mgN/(gSSh) under dissolved oxygen of 1.0-1.5mg/L at 10°C. Coupling both kinds of consortiums was proved very successful for a perfect total nitrogen (TN) removal at COD/N of 4 and dissolved oxygen of 1.5-4.5mg/L, which was hardly reached by any single consortium reported previously. The encouraging results from coupling aerobic consortiums implied a huge potential in practical treatment of low-strength domestic wastewater (200-300mg/L COD) during wintertime.

  4. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2009-01-01

    Full Text Available Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas, in a minimal mineral (oligotrophic media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the marine Antarctic soil the poorest (only one. Snow samples from Col du Midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone. The only microorganism identified in the Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  5. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria.

    Science.gov (United States)

    Matassa, Silvio; Verstraete, Willy; Pikaar, Ilje; Boon, Nico

    2016-09-15

    Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h(-1)) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal.

  6. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Directory of Open Access Journals (Sweden)

    O. Bonilla-Findji

    2010-11-01

    Full Text Available A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP was followed by maxima of bacterial respiration (BR and production (BP. The trophic balance (heterotrophy vs. autotrophy of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l−1 d−1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold, respiration (up to 4.5-fold and growth efficiency (up to 2.9-fold but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  7. Response of heterotrophic and autotrophic microbial plankton to inorganic and organic inputs along a latitudinal transect in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Martínez-García

    2010-01-01

    Full Text Available Atmospheric nutrient deposition into the open ocean increased over the past decades as a result of human activity and water-soluble organic nitrogen accounts for up to 30% of the total nitrogen inputs. The effects of inorganic and/or organic nutrient inputs on phytoplankton and heterotrophic bacteria have never been concurrently assessed in open ocean oligotrophic communities over a wide spatial gradient. We studied the effects of potentially limiting inorganic (nitrate, ammonium, phosphate, silica and organic nutrient (glucose, aminoacids inputs on microbial plankton biomass, community structure and metabolism in five microcosm experiments conducted along a latitudinal transect in the Atlantic Ocean (from 26° N to 29° S.

    Primary production rates increased up to 1.8-fold. Bacterial respiration and microbial community respiration increased up to 14.3 and 12.7-fold, respectively. Bacterial production and bacterial growth efficiency increased up to 58.8-fold and 2.5-fold, respectively. The largest increases were measured after mixed inorganic-organic nutrients additions. Changes in microbial plankton biomass were small as compared with those in metabolic rates. A north to south increase in the response of heterotrophic bacteria was observed, which could be related to a latitudinal gradient in phosphorus availability. Our results suggest that organic matter inputs associated with atmospheric deposition into the Atlantic Ocean will result in a predominantly heterotrophic versus autotrophic response and in increases in bacterial growth efficiency, particularly in the Southern Hemisphere. Subtle differences in the initial environmental and biological conditions are likely to result in differential microbial responses to inorganic and organic matter inputs.

  8. A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen

    Energy Technology Data Exchange (ETDEWEB)

    Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2013-02-04

    Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

  9. Balance Between Autotrophic and Heterotrophic Components and Processes in Microbenthic Communities of Sandy Sediments: A Field Study

    Science.gov (United States)

    Sundbäck, Kristina; Nilsson, Per; Nilsson, Claes; Jönsson, Benno

    1996-12-01

    The microscopic community of a microtidal sandy sediment on the Swedish west coast was studied in situat two depths (0·5 and 4 m) on four occasions (January, April, August and October). Biomass of microalgae, bacteria, ciliates and meiofauna, as well as primary and bacterial productivity, were quantified. Meiofaunal grazing on algae and bacteria was measured simultaneously by radiolabelling intact sediment cores. Autotrophic biomass dominated the microbial community at both depths and on all sampling occasions, accounting for 47-87% of the microbial biomass. Meiofauna contributed 10-47%, while bacteria and ciliates together made up less than 6%. The microflora was dominated by attached (epipsammic) diatoms, but occasional ' blooms ' of motile species occurred. Vital cells of planktonic diatoms contributed to benthic algal biomass in spring. Primary productivity exceeded bacterial productivity in April and August at both depths, while the balance was reversed in October and January. Meiofauna grazed between 2 and 12% of the algal biomass per day, and between 0·3 and 37% of the bacterial biomass. Almost an order of magnitude more algal (17-138 mg C m -2) than bacterial (0·1-33 mg C m -2) carbon was grazed daily. At the shallow site, primary productivity always exceeded grazing rates on algae, whereas at the deeper site, grazing exceeded primary productivity in October and January. Bacterial productivity exceeded grazing at both depths on all four occasions. Thus, meiofaunal grazing seasonally controlled microalgal, but not bacterial, biomass. These results suggest that, during summer, only a minor fraction (food web ' through meiofauna. During spring and autumn, however, a much larger fraction (≈30-60%) of primary production may pass through meiofauna. During winter, meiofaunal grazing is a less important link in the shallow zone, but at sublittoral depths, algal productivity may be limiting, and meiofauna depend on other food sources, such as bacteria and

  10. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO{sub 2}-free biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Chen, Chun-Yen [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Center for Biosciences and Biotechnology, National Cheng Kung University, Tainan (China)

    2010-10-15

    Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO{sub 2}-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark-photo fermentation was stably operated for nearly 80 days, giving a maximum H{sub 2} yield of 11.61 mol H{sub 2}/mol sucrose and a H{sub 2} production rate of 673.93 ml/h/l. The biogas produced from the sequential dark-photo fermentation (containing ca. 40.0% CO{sub 2}) was directly fed into a microalga culture (Chlorella vulgaris C-C) cultivated at 30 C under 60 {mu}mol/m{sup 2}/s illumination. The CO{sub 2} produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C-C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid. (author)

  11. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse.

    Science.gov (United States)

    Rosa, Luiz H; Tabanca, Nurhayat; Techen, Natascha; Pan, Zhiqiang; Wedge, David E; Moraes, Rita M

    2012-10-01

    The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.

  12. Hydrogen Photoevolution Indicates an Increase in the Antenna Size of Photosystem I in Chlamydobotrys stellata during Transition from Autotrophic to Photoheterotrophic Nutrition.

    Science.gov (United States)

    Boichenko, V A; Wiessner, W; Klimov, V V; Mende, D; Demeter, S

    1992-09-01

    The changes in the light-harvesting antenna size of photosystem I were investigated in the green alga Chlamydobotrys stellata during transition from autotrophic to photoheterotrophic nutrition by measuring the light-saturation behavior of hydrogen evolution following single turnover flashes. It was found that during autotrophic-to-photoheterotrophic transition the antenna size of photosystem I increased from 180 to 250 chlorophyll. The chlorophyll (a + b)/P700 ratio decreased from 800 to 550. The electron transport of photosystem I measured from reduced 2,6-dichloro-phenolindophenol to methylviologen was accelerated 1.4 times. In the 77K fluorescence spectra, the photosystem II fluorescence yield was considerably lowered relative to the photosystem I fluorescence yield. It is suggested that the increased light-harvesting capacity and redistribution of absorbed excitation energy in favor of photosystem I is a response of photoheterotrophic algae to meet the ATP demand for acetate metabolism by efficient photosystem I cyclic electron transport when the noncyclic photophosphorylation is inhibited by CO(2) deficiency.

  13. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931 Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

    Directory of Open Access Journals (Sweden)

    Manuel J. Becerra-Dórame

    2012-01-01

    Full Text Available Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control, an autotrophic system (AS based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.

  14. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems.

    Science.gov (United States)

    Becerra-Dórame, Manuel J; Martínez-Porchas, Marcel; Martínez-Córdova, Luis R; Rivas-Vega, Martha E; Lopez-Elias, José A; Porchas-Cornejo, Marco A

    2012-01-01

    Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control), an autotrophic system (AS) based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS) based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.

  15. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms.

    Science.gov (United States)

    King, Ryan S; Brain, Richard A; Back, Jeffrey A; Becker, Christopher; Wright, Moncie V; Djomte, Valerie Toteu; Scott, W Casan; Virgil, Steven R; Brooks, Bryan W; Hosmer, Alan J; Chambliss, C Kevin

    2016-03-01

    The authors performed a multiple-pulsed atrazine experiment to measure responses of autotrophic endpoints in outdoor stream mesocosms. The experiment was designed to synthetically simulate worst-case atrazine chemographs from streams in agricultural catchments to achieve 60-d mean concentrations of 0 μg/L (control), 10 μg/L, 20 μg/L, and 30 μg/L. The authors dosed triplicate streams with pulses of 0 μg/L, 50 μg/L, 100 μg/L, and 150 μg/L atrazine for 4 d, followed by 7 d without dosing. This 11-d cycle occurred 3 times, followed by a recovery (untreated) period from day 34 to day 60. Mean ± standard error 60-d atrazine concentrations were 0.07 ± 0.03 μg/L, 10.7 ± 0.05 μg/L, 20.9 ± 0.24 μg/L, and 31.0 ± 0.17 μg/L for the control, 10-μg/L, 20-μg/L, and 30-μg/L treatments, respectively. Multivariate analyses revealed that periphyton and phytoplankton community structure did not differ among treatments on any day of the experiment, including during the atrazine pulses. Control periphyton biomass in riffles was higher immediately following the peak of the first atrazine pulse and remained slightly higher than some of the atrazine treatments on most days through the peak of the last pulse. However, periphyton biomass was not different among treatments at the end of the present study. Phytoplankton biomass was not affected by atrazine. Metaphyton biomass in pools was higher in the controls near the midpoint of the present study and remained higher on most days for the remainder of the study. Ceratophyllum demersum, a submersed macrophyte, biomass was higher in controls than in 20-μg/L and 30-μg/L treatments before pulse 3 but was not different subsequent to pulse 3 through the end of the present study. Maximum daily dissolved oxygen (DO, percentage of saturation) declined during each pulse in approximate proportion to magnitude of dose but rapidly converged among treatments after the third pulse. However

  16. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2015-09-01

    Full Text Available To quantify the contribution of autotrophic microorganisms to organic matter formation (OM in soils, we investigated natural CO2 vents (mofettes situated in a wetland in NW Bohemia (Czech Republic. Mofette soils had higher SOM concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C and stable carbon isotope ratios (δ13C to characterize SOM and its sources in two moffetes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in δ13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in δ13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw−1 d−1. We inferred that the negative δ13C shift was caused by the activity of chemo-lithoautotrophic microorganisms, as

  17. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine

    2015-01-01

    . This contribution describes the development of a fuzzy-logic based system for both diagnosis and control of a CANR reactor. Based on a combination of measurements of the nitrogen species concentration in the influent and in the effluent on the one hand, and insights into the activities of three distinctive...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...... of the reactor with process engineering insight analysis. An evaluation of both the diagnosis tool and the controller was done by simulating a disturbance in the influent concentration. High and steady nitrogen removal efficiency was achieved thanks to the diagnosis and control system. Finally, development...

  18. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  19. Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids.

    Science.gov (United States)

    Sabia, Alessandra; Baldisserotto, Costanza; Biondi, Stefania; Marchesini, Roberta; Tedeschi, Paola; Maietti, Annalisa; Giovanardi, Martina; Ferroni, Lorenzo; Pancaldi, Simonetta

    2015-12-01

    Neochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N. oleoabundans was investigated in order to simultaneously make the cultivation more economically feasible and environmentally sustainable. Experiments were performed by testing the following media: autotrophic exhausted medium (E+) and mixotrophic exhausted medium after cultivation with glucose (EG+) of N. oleoabundans cells grown in a 20-L photobioreactor (PBR). Both exhausted media were replenished with the same amounts of nitrate and phosphate as the control brackish medium (C). Growth kinetics, nitrate and phosphate consumption, photosynthetic pigments content, photosynthetic efficiency, cell morphology, and lipid production were evaluated. Moreover, the free fatty acid (FFA) composition of exhausted media and the polyamine (PA) concentrations of both algae and media were analyzed in order to test if some molecules, released into the medium, could influence algal growth and metabolism. Results showed that N. oleoabundans can efficiently grow in both exhausted media, if appropriately replenished with the main nutrients (E+ and EG+), especially in E+ and to the same extent as in C medium. Growth promotion of N. oleoabundans was attributed to PAs and alteration of the photosynthetic apparatus to FFAs. Taken together, results show that recycling growth medium is a suitable solution to obtain good N. oleoabundans biomass concentrations, while providing a more sustainable ecological impact on water resources.

  20. Biological removal of nitrate by an oil reservoir culture capable of autotrophic and heterotrophic activities: kinetic evaluation and modeling of heterotrophic process.

    Science.gov (United States)

    An, Shijie; Stone, Heather; Nemati, Mehdi

    2011-06-15

    Kinetics of heterotrophic denitrification was investigated using an oil reservoir culture with the ability to function under both autotrophic and heterotrophic conditions. In the batch system nitrate at concentrations up to 30 mM did not influence the kinetics but with 50mM slower growth and removal rates were observed. A kinetic model, representing the denitrification as reduction of nitrate to nitrite, and subsequent reduction of nitrite to nitrous oxides and nitrogen gas was developed. The value of various kinetic coefficients, including maximum specific growth rate, saturation constant, yield and activation energy for nitrate and nitrite reductions were determined by fitting the experimental data into the developed model. In continuous bioreactors operated with 10 or 30 mM nitrate, complete removal of nitrate (no residual nitrite) and linear dependency between nitrate loading and removal rates were observed for loading rates up to 0.21 and 0.58 mM h(-1), respectively. The highest removal rates of 0.31 and 0.94 mM h(-1) observed at loading rates of 0.42 mM h(-1) and 1.26 mM h(-1), with corresponding removal percentages of nitrate and total nitrogen being 75.4, 54.4%, and 74.4 and 17.9%, respectively. Developed kinetic model predicted the performance of the continuous bioreactors with accuracy.

  1. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies.

    Science.gov (United States)

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member's ecophysiology in a variety of habitats.

  2. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    Directory of Open Access Journals (Sweden)

    Hirotsugu eFujitani

    2015-10-01

    Full Text Available Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representative of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.

  3. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Li, Lu; Feng, Chuanping; Dong, Shanshan; Chen, Nan

    2016-07-01

    Two parallel biofilters applying sulfur/pyrite-based autotrophic denitrification were investigated for removing COD, TP and TN by a coordinated process. Results demonstrated good performance by removing 86.32% vs 87.14% COD and 92.56% vs 89.65% NH4(+)-N. Biofilter with sulfur (BS) was superior on nitrate (89.74% vs 80.72%) and TN removal (83.18% vs 70.42%) while biofilter with pyrite (BP) was better on TP removal (82.58% vs 77.40%) and maintaining sulfate (27.56mgL(-1) vs 41.55mgL(-1)) and pH (7.13 vs 6.31). Water-permeable adsorbents lowered clogging risk and buffered loading. Clone library revealed reasons of diversities, pH variation and sulfate accumulation of both biofilters. Sulfur was efficient on denitrification but whose byproducts were troublesome, pyrite produced less byproduct but which was sensitive to organics. This research was the first attempt to systematically compare two promising alternatives and their merits/demerits for rural wastewater on-site treatment.

  4. Autotrophic Biofilters for Oxidation of Nitric Oxide%自养型生物过滤器硝化氧化一氧化氮

    Institute of Scientific and Technical Information of China (English)

    陈建孟; 陈浚; L.Hershman; 王家德; D.P.Y.Chang

    2004-01-01

    Carbon foam-a kind of new engineering material as packing material was adopted in three biofilters with different pore dimensions and adapted autotrophic nitrite nitrobacteria to investigate the purification of nitric oxide (NO) in a gas stream. The biofilm was developed on the surface of carbon foams using nitrite as its only nitric source. The moisture in the filter was maintained by ultrasonic aerosol equipment which can minimize the thickness of the liquid film. The liquid phase nitrification test was conducted to determine the variability and the potential of performance among the three carbon foam biofilters. The investigation showed that during the NO-2-N inlet concentration of 200 g-L-1 .min-1 to 800 g-L-1 .min-1, the 24PPC (pores per centimeter) carbon foam biofilter had the greatest potential, achieving the NO-2-N removal efficiency of 94% to 98%. The 8PPC and 18PPC carbon foam biofilters achieved the NO-2-N removal efficiency of 15% to 21% and of 30% to 40%, respectively. The potential for this system to remove NO from a gas stream was shown on the basis of a steady removal efficiency of 41% to 50% which was attained for the 24PPC carbon foam biofilter at specified NO inlet concentration of 66.97mg.m-3to 267.86 mg.m-3 and an empty-bed residence time of 3.5 min.

  5. Qualitative distinction of autotrophic and heterotrophic processes at the leaf level by means of triple stable isotope (C-O-H patterns

    Directory of Open Access Journals (Sweden)

    Adam eKimak

    2015-11-01

    Full Text Available Foliar samples were harvested from two oaks, a beech and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (d13C, d18O and dD were analysed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the d13C values are in agreement with the transition from remobilized carbohydrates (juvenile period, to current photosynthates (mature phase. While the opponent seasonal trends of d18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for dD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins to 57 permil (oak blades in dD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on dD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.

  6. Qualitative Distinction of Autotrophic and Heterotrophic Processes at the Leaf Level by Means of Triple Stable Isotope (C–O–H) Patterns

    Science.gov (United States)

    Kimak, Adam; Kern, Zoltan; Leuenberger, Markus

    2015-01-01

    Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level. PMID:26635835

  7. Application of ultrasound and air stripping for the removal of aromatic hydrocarbons from spent sulfidic caustic for use in autotrophic denitrification as an electron donor.

    Science.gov (United States)

    Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho

    2013-01-01

    Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.

  8. Microbial community and population dynamics of single-stage autotrophic nitrogen removal for dilute wastewater at the benchmark oxygen rate supply.

    Science.gov (United States)

    Huang, Yu-Tzu; Chen, Shiou-Shiou; Lee, Po-Heng; Bae, Jaeho

    2013-11-01

    Microbial communities and their kinetic performance in a single-stage autotrophic nitrogen-removal filter at an optimal oxygen supply were examined to determine the presence and activity of denitrifiers, anaerobic ammonia-oxidizing (anammox), ammonia-oxidizing, and nitrite-oxidizing bacteria. To this end, different molecular biology techniques such as real-time quantitative polymerase chain reaction (qPCR) and biomarkers such as 16S rRNA revealed a diverse microbial community along the filter. It was important to survey the specific species of anammox bacteria using a newly designed Candidatus Brocadiafulgida (BF) specific primer, as well as Candidatus Brocadia anammoxidans (BA) and Candidatus Kuenenia stuttgartiensis (KS) specific primers. An unexpected finding was that the predominant anammox species switched from KS in concentrated wastewater to BA in dilute wastewaters. The Eckenfelder model of the NH3-N transformation along the filter was Se=S0 exp(-0.192D/L(2.3217)). These results provide a foundational understanding of the microbial structure and reaction kinetics in such systems.

  9. Effect of red cyst cell inoculation and iron(II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions.

    Science.gov (United States)

    Hong, Min-Eui; Choi, Yoon Young; Sim, Sang Jun

    2016-01-20

    The negative effect of heat stress on the autotrophic astaxanthin production by Haematococcus pluvialis has been observed during outdoor culture in summer. Under the summer conditions, the proliferation of vegetative cells was highly halted in the green stage and the inducibility in the biosynthesis of astaxanthin was partly hindered in the red stage. Herein, under outdoor summer conditions in which variations of the diurnal temperature occur, heat-stress-driven inefficient vegetative growth of H. pluvialis was highly improved by inoculating the red cyst cells; thereby, maintaining relatively moderate intracellular carotenoid levels in the green stage. Subsequently, a remarkably enhanced astaxanthin titer was successfully obtained by supplementing 50 μM iron(II) to induce the heat stress-driven Haber-Weiss reaction in the red stage. As a result, the productivity of astaxanthin in the cells cultured under summer temperature conditions (23.4-33.5 °C) using the two methods of red cell (cyst) inoculation and the iron(Fe(2+)) supplementation was increased by 147% up to 5.53 mg/L day compared with that of the cells cultured under spring temperature conditions (17.5-27.3 °C). Our technical solutions will definitely improve the annual natural astaxanthin productivity in H. pluvialis in locations confronted by hot summer weather, particularly in large-scale closed photobioreactor systems.

  10. Effect of C/N Ratio,Temperature,pH on Autotrophic Denitrification Rate with Hydrogen Gas,Iron (II) and Sodium Sulfide as Electron Donors

    Institute of Scientific and Technical Information of China (English)

    Junfeng Su; Sicheng Shao; Tinglin Huang; Fang Ma; Gang Wen; Shengchen Zheng; Kai Zhang

    2016-01-01

    Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir sediments and utilize different electron donors for isolates to improve nitrate removal efficiency. Using traditional enrichment approach, one purified anaerobic bacterium ( Y12 ) capable of NO-3⁃N removal from sediments was obtained. The species identity of Y12 was determined via 16S rRNA gene sequence analysis to be Acinetobacter. In this work, the fastest denitrification rates were observed with ferrous iron as electron donor. And, slightly slower rates were observed with hydrogen and sodium sulfide as electron donors. However, when used hydrogen gas, ferrous iron and sodium sulfide as electron donors, C/N ratios had little effect on autotrophic denitrification rate at the initial C/N ratio from 1.5 to 9.0. Meanwhile, when made use of hydrogen gas, ferrous iron and sodium sulfide as electron donors, a maximum nitrate removal ratio of 100.00%, 91.43%and 87.99% at the temperature of 30℃, respectively. Moreover, maximum denitrification activity was observed at pH 6.0-7.0.

  11. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  12. Invasion of a semi-arid shrubland by annual grasses increases autotrophic and heterotrophic soil respiration rates due to altered soil moisture and temperature patterns

    Science.gov (United States)

    Mauritz, M.; Hale, I.; Lipson, D.

    2010-12-01

    Shrub grassland conversions are a globally occurring phenomenon altering habitat structure, quality and nutrient cycling. Grasses and shrubs differ in their above and belowground biomass allocation, root architecture, phenology, litter quality and quantity. Conversion affects soil microbial communities, soil moisture and temperature and carbon (C) allocation patterns. However, the effect of conversion on C storage is regionally variable and there is no consistent direction of change. In Southern California invasion by annual grasses is a major threat to native shrub communities and it has been proposed that grass invasion increases NPP and ecosystem C storage (Wolkovich et al, 2009). In order to better understand how this shrub grassland conversion changes ecosystem C storage it is important to understand the partitioning of soil respiration into autotrophic and heterotrophic components. Respiration was measured in plots under shrubs and grasses from February when it was cold and wet to July when it was hot and dry, capturing seasonal transitions in temperature and water availability. Roots were excluded under shrubs and grasses with root exclusion cores to quantify heterotrophic respiration. Using total soil respiration (Rt) = autotrophic respiration (root) (Ra)+ heterotrophic respiration (microbial) (Rh) the components contributing to total soil respiration can be evaluated. Respiration, soil moisture and temperature were measured daily at four hour intervals using Licor 8100 automated chamber measurements. Throughout the measurement period, Rt under grasses exceeded Rt under shrubs. Higher Rt levels under grasses were mainly due to higher Ra in grasses rather than changes in Rh. On average grass Ra was almost double shrub Ra. Higher grass respiration levels are partially explained by differences in soil moisture and temperature between shrubs and grasses. Respiration rates responded similarly to seasonal transitions regardless of treatment although Ra had a much

  13. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Science.gov (United States)

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  14. The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon.

    Science.gov (United States)

    Mardanov, Andrey V; Slododkina, Galina B; Slobodkin, Alexander I; Beletsky, Alexey V; Gavrilov, Sergey N; Kublanov, Ilya V; Bonch-Osmolovskaya, Elizaveta A; Skryabin, Konstantin G; Ravin, Nikolai V

    2015-02-01

    Geoglobus acetivorans is a hyperthermophilic anaerobic euryarchaeon of the order Archaeoglobales isolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genus Geoglobus is their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds, n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability of G. acetivorans to grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2 fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multiheme c-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds and n-alkanes, although an ability of G. acetivorans to grow on these substrates was not observed in laboratory experiments. Overall, our results suggest that Geoglobus species could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.

  15. 自养、异养和混养下小球藻的生长及生化成分%Growth and Biochemical Components of Chlorella Vulgaris Under Autotrophic, Heterotrophic and Mixotrophic Cultivations

    Institute of Scientific and Technical Information of China (English)

    王海英; 郭祀远; 郑必胜; 李存芝

    2004-01-01

    Investigated in this paper are the growth and biochemical components,such as soluble protein,soluble sugar,chlorophyll and fatty acid composition of Chlorella vulgaris,under autotrophic,heterotrophic and mixotrophic cultivations.The results show that the biomass of Chlorella vulgaris under heterotrophic and mixotrophic cultivations is much higher than that under autotrophic cultivation,that the specific growth rates are respectively 2.13 and 3 times that under autotrophic growth,and that the growth of cells under mixotrophic cultivation is affected by iiluminence,but the effect is not significant at the illuminances of 2.5and 4.0kix,especially in the stationary phase.Compared with autotrophic growth,the content of fat under heterotrophic cultivation obviously increases,while the contents of soluble protein and saccharide decrease,especially chlorophyll.Heterotrophic cultivation is helpful to the accumulation of linolenic acid.The adoption of light makes soluble proteins,saccharides and chlorophyll increase under mixotrophic growth,and the illuminence also has effect on the biochemical component of Chlorella vulgaris.%对小球藻在自养、异养和混养条件下的生长状况及细胞的生化成分(如可溶性蛋白、可溶性糖、叶绿素及脂肪酸组成)进行了研究.结果表明:异养和混养培养的小球藻的生物量远大于自养时的生物量;异养和混养培养的小球藻的比生长速率分别是自养时的2.13倍和3倍;光照对混养条件下的细胞生长有影响,但光照强度为2.5 klx和4.0 klx时细胞生长的差别并不明显,尤其在稳定生长期;与自养生长相比,异养过程中小球藻的脂肪含量明显增加,可溶性蛋白和可溶性糖的含量则有不同程度的降低,叶绿素含量大大减少;异养有利于亚麻酸的积累;在混养条件下,光照使可溶性蛋白、可溶性糖和叶绿素的含量增加,其强度对细胞的生化成分有影响.

  16. Start-up of a completely autotrophic nitrogen removal process in a three- dimensional electrode-biofilm reactor%三维电极生物膜反应器全程自养脱氮的启动研究

    Institute of Scientific and Technical Information of China (English)

    郭劲松; 杨琳; 陈猷鹏; 方芳; 唐金晶

    2012-01-01

    A completely autotrophic nitrogen removal process was started up in a three-dimensional electrode-biofilm reactor for artificial ammonia wastewater treatment. The titanium rod coated with a thin layer of ruthenium was used as anode to generate oxygen. In the aerobic area, NH4^+-N was oxidized to NO3^- -N or NO2^- -N by nitrifying bacteria. The active carbon fiber-felt was used as cathode to generate hydrogen. And in this anaerobic area, the denitrification was completed while hydrogen was acted as the electron donor. A lot of carbon particles were filled in tbe cathode area used as three- dimensional electrode. Nitrification and denitrification process were controlled by adjusting dissolved oxygen and pH values under the condition that the initial concentration of ammonia-nitrogen was 30 mg·L^-1 , the hydraulic retention time was 24h and the temperature was 30℃. After biofilm was formed and stabilized, the removal rate of NH4^+-N and TN achieved 97.8% and 92.4% respectively. It was indicated that the completely autotrophic nitrogen removal was started up successfully. The scanning electron microscopy showed that the bacteria on surface of activated carbon fiber felt were mainly short rod-shaped Pseudomonas, while the bacteria on the surface of the activated carbon particles were Micrococcus denitrificans. They both belong to hydrogen autotrophic denitrifying bacteria. In the reactor, the stable autotrophic nitrogen system was gradually established.%采用人工配制氨氮废水,对三维电极生物膜反应器进行全程自养脱氮的启动研究.反应器中阳极采用钌涂层钛棒,在阳极区电解水产氧供硝化菌进行硝化反应;阴极采用活性炭纤维毡,并在阴极区填充活性炭颗粒构建三维电极,在阴极区电解水产氢供反硝化菌完成反硝化过程.在进水NH4^+-N浓度30mg·L^-1、温度30℃、HRT为24h的试验条件下,通过调节DO和pH实现对硝化和反硝化反应的控制.结果

  17. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria.

    Science.gov (United States)

    Tahon, Guillaume; Tytgat, Bjorn; Stragier, Pieter; Willems, Anne

    2016-01-01

    Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.

  18. 城市污水厂活性污泥强化自养反硝化菌研究%Experimental Study of Autotrophic Denitrification Bacteria Through Bioaugmentation of Activated Sludge from Municipal Wastewater Plant

    Institute of Scientific and Technical Information of China (English)

    常玉梅; 杨琦; 郝春博; 尚海涛; 姜体胜

    2011-01-01

    Activated sludge of municipal wastewater treatment plant was domesticated by sulfur as the electron donor under autotrophic.The sludge activity was determined by measuring growth rate of sludge. The removal efficiency of nitrate and sulfate production efficiency were analyzed by continuously measuring the concentration of NO3- -N and S024-. When the removal efficiency of nitrate was more than 90%, 16S rRNA genetic libraries were built up to compare their microbial biodiversity. The growth rate of sludge is 0.177 g/( L· d). The relation between concentration of nitrate and time meets first order reaction kinetics. The bacteria in the sludge affiliated with Beta-Proteobacteria, Deta-Proteobacteria, Gamma-Proteobacteria and Unclassified bacteria. Beta-Proteobacteria is the main phylum in the sludge. Bacteria related to Thiobacillus denitrificans from denitrifying bioreaetor perform 48.65%. In addition, the bacteria of Denitratisoma sp. , Curvibacter sp. , Thermomonas sp. Geobacter sp. are existed in the sludge. The study of autotrophic denitrifying bacteria diversity is conducive to optimization of reaction conditions and efficient removal of nitrate.%采集北京高碑店城市污水厂的反硝化污泥样品,以硫磺作为电子供体进行驯化培养.测定污泥的增长率来确定污泥活性,分别测定NO-N、SO浓度来确定硝酸盐的去除效率和硫酸盐生成速率.当硝酸盐去除率达到90%以上时,提取污泥中微生物总DNA,构建16S rRNA基因片段克隆文库来分析细菌群落结构,结果表明,污泥的增长率为0.177 g/(L·d),污泥中硝酸盐浓度与时间的关系符合一级反应.污泥中细菌类群主要为Beta-Proteobacteria、Deta-Proteobacteria、Gamma-Proteobacteria和Unclassified bacteria,其中Beta-Proteobacteria类细菌占主导地位.在成熟的反硝化污泥中,自养反硝化菌Thiobacillusdenitrificans占所占比例高达48.65%.此外,反应器中还存在Denitratisoma sp.、Curvibacter sp

  19. Experiments on Sulphur-Based Autotrophic Denitrification under Condition of Different Carriers%不同载体条件的硫自养反硝化脱氮试验

    Institute of Scientific and Technical Information of China (English)

    袁莹; 周伟丽; 王晖

    2012-01-01

    Sulphur-based autotrophic denitrification was applied to treat the low concentration nitrate-contaminated water in this paper. Granular activated carbon and biological ceramsite were used as the carriers, forming the biological activated carbon (2#) system and biological ceramsite (3#) system, respectively. The two systems were compared with anaerobic sludge (1#) system without carrier. When the low concentration nitrate—contaminated water was 13 mg/L, it took 40 days for system 1# to achieve successful start—up, 10 days for system 2#, and 30 days for system 3#. In anaerobic sludge (1#) system only 82 % nitrate and 53 % TN were removed with unstable denitrification effect, and hydraulic retention time (HRT) remained as long as 5-6 h; while a high NO3--N and TN removal rate of about 100 % and 83 % were achieved in biological activated carbon (2#) system without accumulation of NO2--N, and the shortest HRT reached 1 h; in biological ceramsite (3#) system 96 % nitrate and 82 % TN were removed without any accumulation of NO2--N, and the shortest HRT was 0.5 h. Therefore, choosing suitable carrier was necessary and beneficial for the autotrophic denitrification process to achieve higher treatment efficiency and lower running cost.%采用硫自养反硝化法处理模拟低浓度硝酸盐废水,以颗粒活性炭和陶粒作为微生物的载体,分别形成生物活性炭系统(2#系统)和生物陶粒系统(3#系统),并与不加载体的絮状污泥系统(1#系统)对比.结果表明在进水NO3--N浓度为13 mg/L的条件下,1#启动成功需40 d左右、2#需10 d左右、3#需30 d左右;1#系统的NO3--N和TN去除率分别为82%和53%,脱氮效果不稳定,水力停留时间(iRT)为5~6 h;2#系统的最低HRT达到1h,NO3--N去除率接近100%,TN去除率达到83%,且无NO2--N的积累;3#系统的去除效果与2#相近,NO3--N去除率达到96%,TN去除率达到82%,也无NO2--N的积累,并且HRT可以降至0.5 h.由此表明在硫自养反

  20. Growth of microalgae in autotrophic stationary systems

    Directory of Open Access Journals (Sweden)

    Paulo Cunha

    2008-06-01

    Full Text Available In this paper we evaluate the growth of nine marine microalgae species (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira fluviatilis and Isochrysis sp. and one freshwater species (Chlorella vulgaris under stationary autotrophy conditions, using erlenmeyers fl asks with 800mL of culture medium exposed to constant light intensities providing a photon flux density of about 150μmol.m-2.s-1 and 25±2oC temperature and constant air flow. The experiment was carried out in a controlled environment considering a block delineating randomized over time with three replicates. The Nannochloropsis oculata showed the highest value of maximum cellular density, but with a longer period of time and a lower growth rate. This was probably due to its tiny cell size, demanding a large number of cells per volume to attain its optimum conditions for light, nutrients, water and atmospheric carbon dioxide. In addition, in spite of showing one of the lowest values of maximum cellular density, Thalassiosira fluviatilis was the species that reached its maximum in a short period of time at the highest growth rate. Chlorella vulgaris was the only freshwater species tested and it showed the poorest performance for all the variables analyzed in the current study.

  1. Electro-autotrophic synthesis of higher alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Cho, Kwang Myung

    2016-11-01

    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  2. Electro-autotrophic synthesis of higher alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Cho, Kwang Myung

    2015-10-06

    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  3. 硫磺/石灰石自养反硝化系统脱氮除磷性能研究%Performance of Nitrogen and Phosphorus Removal of Sulfur/Limestone Autotrophic Denitrification System

    Institute of Scientific and Technical Information of China (English)

    袁玉玲; 李睿华

    2011-01-01

    In order to investigate the performance of nitrogen and phosphorus removal of the sulfur/limestone system from low C/N municipal sewage,a sulfur/limestone packed column reactor fed with synthetic wastewater,and operated in the way of anaerobic biological filter was constructed.The effects of HRT,initial concentration of phosphate,pH and temperature on nitrogen and phosphorus removal were studied.The results showed that with influent of NO-3-N 30 mg/L,PO4^3--P 15 mg/L,the optimal HRT value was 6 h,and removal rates of TN and phosphorus were 100% and 44.64% respectively.Initial concentration of phosphate and initial pH had a significant influence on nitrogen and phosphorus removal.In order to keep nitrogen removal rate higher than 90%,initial concentration of phosphate should not be below 0.4 mg/L;the optimal pH value was 6.5,and removal rates of TN and phosphorus were 91.51% and 47.68% respectively.Temperature had a positive impact on that system,the nitrogen and phosphorus removal rate decreased with decreasing temperature.The nitrate removal efficiency was high in the temperature range of 18-30℃,and the efficiency of phosphorus removal rate reached about 50%,when the temperature was between 25-30℃.The dephosphorization behavior of sulfur/limestone system correlated closely with autotrophic denitrification process,and the mechanism of phosphate removal of the SLAD system was mainly due to chemical precipitation.The system had the performance of nitrogen and phosphorus removal from low C/N municipal sewage,the highest phosphorus removal rate could reach 50%.%为了考察硫磺/石灰石系统对于低C/N的城市污水进行同步脱氮除磷的性能,设计了体积比为1∶1的硫磺/石灰石柱式反应器,以人工配水为处理对象,采用厌氧生物滤池运行方式,研究了HRT、初始磷浓度、pH、温度等因素对其脱氮除磷性能的影响.结果表明,在进水NO 3^--N为30 mg/L左右,PO4^3--P为15 mg/L条件下,系统

  4. 自养条件下高氯酸盐降解细菌群落研究%The Study of the Structure of Perchlorate(ClO4-)-degrading Bacterial Communities Under Autotrophic Conditions

    Institute of Scientific and Technical Information of China (English)

    谢宇轩; 关翔宇; 于丽莎; 刘菲

    2014-01-01

    For the purpose of further investigating the biological degradation under an autotrophic condition and well understanding the microbial community structures in a complex environment, hydrogen was used as an electron donor to completely reduce perchlorate(ClO4-)in this study. The composition of microbial communities after degradation was analyzed via the construction of a cloning library by using the High-Throughput Sequencing method(HiSeq 2000). 71 days were needed to completely degrade 10 mg/L ClO4-. Microbial phylogenic analysis of HD(hydrogen degradation)after degradation indicated that the relative abundance of total bacteria in the HD was 84.96%whereas the relative abundance of Proteobacteria was 68.11%, whose percentage accounting for the total bacteria reached to 80.16%. The relative abundance of Dechloromonas which is representative in PRB was 2.7%in the HD. Simultaneously, the relative abundance of Azospira was 3.1%. KEGG was used to analyze the function of bacteria in HD. The relative abundance of genes which engaged in carbohydrate metabolism was 4.75%, and the genes included in energy metabolism was 3.35%, whereas the genes participated in nitrogen cycle was 0.72%, and the genes involving chloride transformation was 0.83%. It was demonstrated that degradation of ClO4-in a complicated condition was achieved by various kinds of microbes rather than a single one. Adding hydrogen as an electron donor to change microbial community played a role in the purification or selection process in the system, which allowed the complex systems to have the specific capacity to remove given contaminates.%旨在研究自养条件下以氢气作为电子供体高氯酸根离子(ClO4-)的微生物降解机制,利用HiSeq 2000对微生物群落结构及多样性进行高通量测序及分析。结果表明,添加氢气的HD(hydrogen degradation)体系将10 mg/L ClO4-降至检出限以下共经历71 d。ClO4-完全降解后HD体系中总细菌的相对丰度为84

  5. Impacto del pastoreo sobre picoplancton autotrófico en dos lagos andinos (Patagonia, Argentina con diferentes relaciones luz:nutrientes Grazing impact on autotrophic picoplankton in two south Andean lakes (Patagonia, Argentina with different light:nutrient ratios

    Directory of Open Access Journals (Sweden)

    ESTEBAN G. BALSEIRO

    2004-03-01

    protistas podría deberse a un mayor requerimiento de nutrientes limitantesAndean ultraoligotrophic lakes are environments with high light:nutrient ratios. In these lakes a particular planktonic food web has been noticed, constituted by large mixotrophic ciliates which share and compete for food resources with nanoflagellates and cladocerans. Clearance rates on autotrophic picoplankton of nanoflagellates, the ciliate Ophrydium naumanni and cladocerans were compared through grazing experiments in lakes Moreno Oeste and Rivadavia. The lakes exhibited significant differences in the light:nutrient ratio and had different crustacean and zooplankton compositions. In lake Moreno Oeste the metalimnion was included in the euphotic zone resulting in an illuminated layer where deep chlorophyll maxima developed. On the contrary, in lake Rivadavia the illuminated layers were restricted to the epilimnion and no deep chlorophyll maxima were observed. In lake Moreno Oeste, the contribution to total bacterivory of the ciliate O. naumanni and the cladoceran Ceriodaphnia dubia was observed to increase at 30 m depth, due mainly to the vertical distribution of both species. On the contrary, the grazing rates of the nanoflagellate assemblage, dominated by the mixotrophic Chrysochromulina parva, did not change along the water column and were considerably high (one order of magnitude higher than those obtained for O. naumanni and C. dubia. In lake Rivadavia, nanoflagellate grazing rates were lower and the relative impact of the nanoflagellate assemblage was comparable to those of O. naumanni and Daphnia cf .commutata. The observed difference in clearance rates of the nanoflagellate assemblage probably would reflect an increase in the phagotrophy where light energy is higher relative to phosphorus. In lake Moreno Oeste where light is not limiting, the observed increase of the phagotrophy by protists may be due to a higher requirement of limiting elements

  6. 自养脱氮工艺有机物去除段与硝化段精确分离的实现与实时控制%Precise separation of organic removal and nitrification process and real-time control method of autotrophic nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    唐晓雪; 马斌; 徐竹兵; 彭永臻

    2012-01-01

    To save energy consumption in domestic wastewater treatment, three-stage autotrophic nitrogen removal process including organics removal SBR, partial nitrification SBR and anammox UASB was proposed. At room temperature of (26±1)℃ , short-term effect of aeration rate and MLSS on organic removal process was investigated by seeding activity sludge taken from a pilot-plant reactor of partial nitrification. The results show that both concentrations of NO2- N and NO3- -N were lower than 0. 1 mg · L-1 at various aeration rates and sludge concentrations before the end of COD biodegradation stage. After that, the wastewater entered a difficult-degradating stage in reactor where COD concentration remained at nearly constant level and NO-2-N and NO3 -N concentrations accumulated rapidly and nitrifying-bacteria activity increased. Obviously, nitrification did not occur during the process removing organics under different aeration conditions. Therefore, under various conditions of aeration and sludge concentration the first organics was removed and then partial nitrification to remove NO3 -N. However, for three-stage autotrophic nitrogen removal process, NH4 -N concentration could decrease from 11.6 mg · L-1 to 3.4 mg · L-1 (TN loss) during organics removal process under aeration values of 100 L · h-1 , 60 L · h1 and 20 L · h-1. The peak point of pH profile and the inflexion of DO curve stayed the same with the end of removing organics throughout, and so they could be used as real-time control signals to indicate the end of organic removal process.%为了实现城市污水处理过程中的节能降耗,提出了三段式城市污水自养脱氮工艺,阐述了除有机物SBR在整套工艺中的重要地位,探讨了不同曝气量与污泥浓度条件下,除有机物SBR中有机物的去除特征与规律.结果表明,在不同的曝气量及污泥浓度条件下,COD降解结束前NO2--N与NO3--N的浓度均低于0.1 mg·L-1,反应器进入COD难降解阶段后,NO2

  7. Autotrophic and heterotrophic characteristics in a polluted tropical estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ramaiah, N.; Chandramohan, D.; Nair, V.R.

    . Scheiwer et al. (1991) emphasized that microbial heterotrophic activity and primary production play very important roles in the formation and turnover of organic matter in eutrophic estuaries. 0272-7714/95/010045+ 11 $08.00/0 © 1995 Academic Press... production were invariably very low. The in situ heterotrophic activity, particularly in the southern region, appears to be adversely affected by the input of industrial effluents which may bring about metabolic stress and inhibit growth. We believe...

  8. The state of autotrophic ethanol production in Cyanobacteria.

    Science.gov (United States)

    Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T

    2015-07-01

    Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed.

  9. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    Science.gov (United States)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and microbial respiration is 83%. A modified method of roots exclusion was tested during field trails in the areas of localization of "peat spots". It showed the following results: 41% of root respiration and 59% of microbial respiration. So, the contribution of root respiration in forest depending on the method varied from 5 to 17%, and on peatland root respiration varied from 41 to 56%. Thus, all methods gave positive result and are suitable for the separate determination of root and microbial respiration in permafrost-affected soils. However, for a more accurate assessment is necessary to increase the number of replications and the experiment period.

  10. Genetic and metabolic variability in autotrophic and heterotrophic bacteria

    Science.gov (United States)

    Decicco, B. T.

    1972-01-01

    The studies to evaluate an organism's ability to maintain normal physiological activities over a long period of time in a bioregenerative system are presented. Studies reviewed include: heat tolerant mutants of Pseudomonas fluoresceins, virulence factors of the Staphylococci, and the effect of mutations on the virulence for man in common and ubiquitous microorganisms.

  11. Autotrophic denitrification using hydrogen generated from metallic iron corrosion.

    Science.gov (United States)

    Sunger, Neha; Bose, Purnendu

    2009-09-01

    Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m(-3) d(-1) and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L(-1) (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m(-3) d(-1) and HRT of 15.6 days produced effluent with nitrate concentration of approximately 0.025 mg N L(-1) (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.

  12. HYDROGEN KINETICS LIMITATION OF AN AUTOTROPHIC SULPHATE REDUCTION REACTOR

    Directory of Open Access Journals (Sweden)

    CÉSAR SÁEZ-NAVARRETE

    2012-01-01

    Full Text Available El uso de sustratos inorgánicos podría reducir los costos y simplificar la operación de sistemas de tratamiento de aguas que utilizan bacterias reductoras de sulfato. Sin embargo, el uso de H2 como sustrato energético y la bioproducción de H2S podrían provocar limitaciones cinéticas. El objetivo de este estudio fue evaluar las condiciones en las que la capacidad de transferencia de masa de un bioreactor de reducción de sulfato, limita su cinética de reducción. La cinética del reactor fue obtenida monitoreando la presión del sistema en condiciones de no limitación por sulfato. Se concluyó que el diseño del bioreactor debería basarse en sus propiedades de transferencia. La tasa de consumo de H2 alcanzó un máximo de 10-4 M/min, para una tasa de reducción de sulfato de 3.4 g·L-1·d-1. Para evitar limitación por H2 se requirió un kLa de 1.48 min-1 a 1.2·109 cells/L (1.23·10-9 L·min-1·cell-1, valor relevante para propósitos de escalamiento.

  13. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    Science.gov (United States)

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.

  14. The Stereochemical Basis of the Genetic Code and the (Mostly) Autotrophic Origin of Life

    Science.gov (United States)

    Fontecilla-Camps, Juan C.

    2014-01-01

    Spark-tube experiments and analysis of meteorite contents have led to the widespread notion that abiotic organic molecules were the first life components. However, there is a contradiction between the abundance of simple molecules, such as the amino acids glycine and alanine, observed in these studies, and the minimal functional complexity that even the least sophisticated living system should require. I will argue that although simple abiotic molecules must have primed proto-metabolic pathways, only Darwinian evolving systems could have generated life. This condition may have been initially fulfilled by both replicating RNAs and autocatalytic reaction chains, such as the reductive citric acid cycle. The interactions between nucleotides and biotic amino acids, which conferred new functionalities to the former, also resulted in the progressive stereochemical recognition of the latter by cognate anticodons. At this point only large enough amino acids would be recognized by the primordial RNA adaptors and could polymerize forming the first peptides. The gene duplication of RNA adaptors was a crucial event. By removing one of the anticodons from the acceptor stem the new RNA adaptor liberated itself from the stereochemical constraint and could be acylated by smaller amino acids. The emergence of messenger RNA and codon capture followed. PMID:25522252

  15. A novel high-throughput drip-flow system to grow autotrophic biofilms of contrasting diversities

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen;

    The impact of community diversity on the functioning and assembly of microbial systems remains a central questions in microbial ecology. This question is often addressed by either combining a few cultures without necessarily a history of coexistence, or by using environmental communities, which......, the effect of community composition and diversity on various ecological processes can then be rigorously examined. We hypothesize that the increased loading, resulting in thicker biofilms, will decrease the drift in the community and impose limited environmental filtering by providing more diverse niches....... Thus, thicker biofilms are likely to host greater diversity. A system with 40 replicates has been constructed using flow-through polypropylene columns housing a defined number of single-sized glass beads supported by a stainless steel mesh. Biofilms consisting primarily of ammonia oxidizing and nitrite...

  16. Anatomical relations among endophytic holoparasitic angiosperms, autotrophic host plants and mycorrhizal fungi: A novel tripartite interaction.

    Science.gov (United States)

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L; Talavera, Salvador

    2010-05-01

    Mycorrhizae are widespread mutualistic symbioses crucial for the functioning of terrestrial ecosystems. Not all plants associate with mycorrhizae; most parasitic plants have been suggested to be nonmycorrhizal because they have developed alternative strategies to obtain nutrients. In endophytic parasitic plants, whose vegetative bodies grow completely inside their mycorrhizal host roots, the opportunity for establishing a tripartite association seems evident, but information on these systems is lacking. In studying natural associations among the endophytic holoparasite Cytinus hypocistis, their Cistaceae host species, and associated mycorrhizal fungi, we found that mycorrhizae were associated with the hosts and the parasites, reaching high frequencies of colonization. In parasitic and host root tissues, mycorrhizal fungi spread in the parenchymatic cells by intracellular growth and formed hyphal coils and vesicles, while the cambium and the vascular tissues were never colonized. This report is the first on a tripartite association of an endophytic parasitic plant, its host, and mycorrhizae in natural conditions, representing a novel trophic interaction not previously reported within the angiosperms. Additional studies on the interactions occurring among these three players are needed because they may be crucial to our understanding of how this mutualistic-antagonistic system is functioning and evolving.

  17. Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular SBR system

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mutlu, Ayten Gizem; Gernaey, Krist

    2013-01-01

    screening of the parameter space proposed by Sin et al. (2008) - to find the best fit of the model to dynamic data. Finally, the calibrated model was validated with an independent data set. CONCLUSION: The presented calibration procedure is the first customized procedure for this type of system...... and is expected to contribute to achieve a fast and effective model calibration, an important enabling tool for various biochemical engineering design, control and operation problems....

  18. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    Science.gov (United States)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results indicated that it is possible to modulate the product formation by limiting key nutrients of acetyl-CoA pathway and using a continuous fermentation in two-stage fermentor design to improve ethanol yields. The last experimental study was conducted to commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a bench-scale to a pilot scale 100-L fermentor. Results indicated a six-fold improvement in ethanol concentration (25.3 g L-1 at the end of 59 d) compared to previous Clostridium strain P11 and Clostridium carboxidivorans fermentations plus the formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  19. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems

    Science.gov (United States)

    There is a need to develop practical methods to reduce nitrate -nitrogen loads from recirculating aqua-culture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-...

  20. Dynamics of various viral groups infecting autotrophic plankton in Lake Geneva

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Zhong, X.; Jacquet, S.

    by Department EFPA from INRA. We are grateful to Jean- Christophe Hustache and Pascal Chifflet who helped for sampling, Frédéric Rimet and Leslie Lainé for phytoplankton and zooplankton analyses, respectively. We also want to thank Lyria Berdjeb for her...

  1. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Cao, W.; Das, A.; Saren, G.; Jiang, M.; Zhang, H.; Yu, X.

    Viral Nucleic Acid Kit (Roche) following the manufac- turer’s instructions (Zhang et al., 2010). Bacteria-specific primers 8F (AGRGTTTGATCCTGGCTCAG) and 1492R (CGG CTACCT- TGTTACGACTT) were used for 16S rRNA gene amplification. PCR reaction mixture (25 μ...Finder dye (Biov) and the correct bands were excised and purified using Zymoclean Gel DNA Recovery KitTM accord- ing to manufacturer’s protocol. The gel-purified 16S rRNA gene was ligated into pMD19-T simple vectors (Takara) according to the manufacturer’s...

  2. The Stereochemical Basis of the Genetic Code and the (Mostly Autotrophic Origin of Life

    Directory of Open Access Journals (Sweden)

    Juan C. Fontecilla-Camps

    2014-12-01

    Full Text Available Spark-tube experiments and analysis of meteorite contents have led to the widespread notion that abiotic organic molecules were the first life components. However, there is a contradiction between the abundance of simple molecules, such as the amino acids glycine and alanine, observed in these studies, and the minimal functional complexity that even the least sophisticated living system should require. I will argue that although simple abiotic molecules must have primed proto-metabolic pathways, only Darwinian evolving systems could have generated life. This condition may have been initially fulfilled by both replicating RNAs and autocatalytic reaction chains, such as the reductive citric acid cycle. The interactions between nucleotides and biotic amino acids, which conferred new functionalities to the former, also resulted in the progressive stereochemical recognition of the latter by cognate anticodons. At this point only large enough amino acids would be recognized by the primordial RNA adaptors and could polymerize forming the first peptides. The gene duplication of RNA adaptors was a crucial event. By removing one of the anticodons from the acceptor stem the new RNA adaptor liberated itself from the stereochemical constraint and could be acylated by smaller amino acids. The emergence of messenger RNA and codon capture followed.

  3. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils.

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A S; Wu, Jinshui

    2016-01-22

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  4. Grazing on autotrophic and heterotrophic picoplankton by ciliates isolated from Lake Kinneret, Israel

    NARCIS (Netherlands)

    Hadas, O.; Malinsky-Rushansky, N.; Pinkas, R.; Cappenberg, T.E.

    1998-01-01

    The rates of ingestion of three ciliates (Colpoda steinii, Cyclidium sp. and Stylonichia sp.) on fluorescently labeled heterotrophic bacteria, picocyanobacteria (Synechococcus P, CN) and a picoeukaryote isolated from Lake Kinneret were measured. Uptake values were 930, 35 and 1210 bacteria ciliate (

  5. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  6. Rare bacteriohopanepolyols as markers for an autotrophic, intra-aerobic methanotroph

    NARCIS (Netherlands)

    Kool, D.M.; Talbot, H.M.; Rush, D.; Ettwig, K.; Sinninghe Damsté, J.S.

    2014-01-01

    Bacteriohopanepolyols (BHPs) and their diagenetic products, hopanoids, are of great interest for their potential as bio-marker lipids in both present day environments as well as in the geological record. Specific structural features such as methylation of the A-ring, and number and type of functiona

  7. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist;

    Diagnosis and control modules based on fuzzy set theory were tested for novel bioreactor monitoring and control. Two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information to control the reactor. The separation...

  8. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist;

    2013-01-01

    This contribution explores the use of diagnosis and control modules based on fuzzy set theory and logic for bioreactor monitoring and control. With this aim, two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information...

  9. ZOOINDICATION AND PHYTOINDICATION OF AUTOTROPHIC AND HETEROTROPHIC CONSORTIA OF BIOGEOCOENOSES ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Kunah O. N.

    2014-08-01

    Full Text Available The main results of ecomorfology structure of soil mesofauna in the adjacent area of Dneprovsko-Orylskiy Natural Reserve (Ireland Pogorily ore Dyka Kosa have been presented by the methods of OMI- and RLQ – analysis. The components of variability of the soil animal world (in colony of Ardea cinerea L., which is conditioned by auto- and heterotrophic consortia and also by influence of edaphically properties of biogeocoenoses were determined. Also we registered the high level and dynamics of mineral feed and presence of nitrogen in the soil. The results of description of taxonomic and ecological diversity in association of mesopedobionts were presented. We proved that the coenomorphic type of the animals was bog-forest. On the basic of joint measuring of edaphically descriptions and features of fauna structure we estimated the properties of ecological niche of soil mesofauna.

  10. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    bacteria in compact reaction zones about 100 m thick separated by an intermediate zone with low or null metabolic activity. Both identified microbial communities showed a very low diversity and were dominated by halophilic and halotolerant Nitrosomonas sp. and Candidatus Brocadia anammoxidans...

  11. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism

    NARCIS (Netherlands)

    Meijer, WG; deBoer, P; vanKeulen, G

    1997-01-01

    The expression of the cbb and gap-pgk operons of Xanthobacter flavus encoding enzymes of the Calvin cycle is regulated by the transcriptional regulator CbbR. In order to identify other genes involved in the regulation of these operons, a mutant was isolated with a lowered activity of a fusion betwee

  12. Monitoring system for the study of autotrophic biofilms in bioremediation of polyaromatic compounds

    Science.gov (United States)

    Alarie, Jean P.; Bruttig, A.; Miller, Gordon H.; Hill, Walter; Vo-Dinh, Tuan

    1999-02-01

    Bacterial and other natural materials such as plants and algae have received increasing interest for bioremediation efforts. The identificatIon of materials capable of biodegrading or sequestering environmental pollutants offers an attractive alternative to chemical or physical means of remediation. A number of bacteria capable of biodegrAding organic or reducing metal pollutants have received great interest. Similarly, the use of natural plants to absorb pollutants from soil anD liquid samples is another potential approach. Our interest lies in identification of naturally occurring algae and their ability to absorb polyaromatic compounds (PAC) from groundwater sources (i.e. streams). These algae could serve as natural water filters for streams contaminated with Polyaromatic hydrocarbons. Polycyclic aromatic compounds, which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion or pyrolysis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air, soil and water. Among energy-related products, fossil fuels are the major sources of PACs. The primary sources of airborne PACs are associated with combustion, coal coking, and petroleum catalytic cracking. Coal and shale conversion also contribute to production of PACs. Production, transportation and, use of synthetic fuels and petroleum products provide emission sources for PACs. In urban environments an significant source of PACs is diesel exhaust. Food cooking and cigarette smoking activities contribute to PAC occurrence in indoor environments. Chemical analysis of PACs is of great environmental and toxicological interest because many of them have been shown to be mutagens and/or potent carcinogens in laboratory animal assays. The parent homocyclic species, which contain only carbon and hydrogen, are the familiar polyaromatic hydrocarbon (PAH) compounds. In addition to the PAH compounds, there are thousands of substituted compounds that could have various substituent groups, such as alkyl, amino, chloro, cyano, hydroxy, oxy, or thio groups. In this study we investigate anthracene and pyrene as PAH model systems. A portable fiberoptic instrument capable of real-time measurements has been developed for field screening these PAHs in surface water and natural algae systems. Our preliminary studies investigated the detection limits of anthracene and pyrene and the adsorption properties of two algae using fluorescence monitoring. An exposure study of the algae to 5 ppb anthracene was performed to investigate the ability of the algae to adsorb PAHs.

  13. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].

    Science.gov (United States)

    Zheng, Hongli; Gao, Zhen; Zhang, Qi; Huang, He; Ji, Xiaojun; Sun, Honglei; Dou, Chang

    2011-03-01

    We studied the effects of three inorganic carbon sources, Na2CO3, NaHCO3 and CO2, and their initial concentrations on lipid production of Chlorella vulgaris. Chlorella vulgaris could utilize Na2CO3, NaHCO3 and CO2 to produce lipids. After 10-day cultivation with each of the three inorganic carbon sources, lipid yield of Chlorella vulgaris reached its peak with the concentration increase of the inorganic carbon source, but dropped again by further increase of the concentration. The pH value of the culture medium for Chlorella vulgaris increased after the cultivation on inorganic carbon source. The optimal concentration of both Na2CO3 and NaHCO3 was 40 mmol/L, and their corresponding biomass dry weight was 0.52 g/L and 0.67 g/L with their corresponding lipid yield 0.19 g/L and 0.22 g/L. When the concentration of CO2 was 6%, Chlorella vulgaris grew the fastest and its biomass dry weight was 2.42 g/L with the highest lipid yield of 0.72 g/L. When the concentration of CO2 was too low, the supply of inorganic carbon was insufficient and lipid yield was low. A too high concentration of CO2 caused a low pH and lipid accumulation was inhibited. Na2CO3 and NaHCO3 were more favorable for Chlorella vulgaris to accumulate unsaturated fatty acids than that of CO2.

  14. Autotrophic denitrification for treatment of wastewater with high concentration of sulphur and nitrogen compounds

    OpenAIRE

    Fajardo Ortiz, María del Carmen

    2011-01-01

    Anthropogenic activities have contributed to the imbalance of nitrogen and sulphur natural cycles which causes many negative effects in nature due to the emissions of sulphur and nitrogen compounds and their transformations, e.g. rain acid, eutrophication, bad odours etc. To avoid such negative effects on environment, effluents containing high concentrations of both nitrogen and sulphur compounds must be treated previously to their discharge. Nitrification/denitrification is the conventio...

  15. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses

    DEFF Research Database (Denmark)

    Matsumoto, S.; Katoku, M.; Saeki, G.

    2010-01-01

    the observed granule development as a result of the multiple bacteria-substrate interactions. The interaction between nitrifying and heterotrophic bacteria was evaluated by assuming three types of heterotrophic bacterial growth on soluble microbial products from nitrifying bacteria. The models described well...

  16. The stereochemical basis of the genetic code and the (mostly) autotrophic origin of life.

    Science.gov (United States)

    Fontecilla-Camps, Juan C

    2014-12-16

    Spark-tube experiments and analysis of meteorite contents have led to the widespread notion that abiotic organic molecules were the first life components. However, there is a contradiction between the abundance of simple molecules, such as the amino acids glycine and alanine, observed in these studies, and the minimal functional complexity that even the least sophisticated living system should require. I will argue that although simple abiotic molecules must have primed proto-metabolic pathways, only Darwinian evolving systems could have generated life. This condition may have been initially fulfilled by both replicating RNAs and autocatalytic reaction chains, such as the reductive citric acid cycle. The interactions between nucleotides and biotic amino acids, which conferred new functionalities to the former, also resulted in the progressive stereochemical recognition of the latter by cognate anticodons. At this point only large enough amino acids would be recognized by the primordial RNA adaptors and could polymerize forming the first peptides. The gene duplication of RNA adaptors was a crucial event. By removing one of the anticodons from the acceptor stem the new RNA adaptor liberated itself from the stereochemical constraint and could be acylated by smaller amino acids. The emergence of messenger RNA and codon capture followed.

  17. Modeling, Experimentation, and Control of Autotrophic Nitrogen Removal in Granular Sludge Systems

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine

    further be reduced by intensifying the process and performing it in a single reactor, where all processes take place simultaneously, e.g. in a granular sludge reactor, which was studied in this project. This process intensification means on the other hand an increased complexity from an operation...... and control perspective, due to the smaller number of actuators available. In this work, an integrated modeling and experimental approach was used to improve the understanding of the process, and subsequently use this understanding to design novel control strategies, providing alternatives to the current ones...... available. First, simulation studies showed that the best removal efficiency was almost linearly dependent on the volumetric oxygen to nitrogen loading ratio. This finding among others, along with experimental results from start-up of lab-scale reactors, served as the basis for development of three single...

  18. Management of microbial community composition, architecture and performance in autotrophic nitrogen removing bioreactors through aeration regimes

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem

    intensification in single-stage reactors. Single-stage reactors require biofilms or bioaggregates to provide the complementary redox niches for the aerobic and anaerobic bacteria that are required for nitritation and anaerobic ammonium oxidation (anammox), respectively. The nitritation/anammox process might...... evaluated as an approach to manipulate the microbial community structure, to reach efficient nitrogen removal performance, and to reduce nitrous oxide emissions from single-stage nitritation/anammox reactors. First, an iterative protocol was developed to diagnose reactor performance based on process...... stoichiometry and to propose actions to enhance performance based on discretized aeration parameters, restricted by an overall ratio of oxygen to ammonium loading. The protocol was successfully applied on two bioaggregate-based single-stage sequencing batch reactors during start-up; while recovering from major...

  19. Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2012-01-01

    O2/m3/d)/(gN/m3/d), the system was influenced by mass transfer (10% impact on nitrogen removal) and performance was limited by AOB activity (75% impact on nitrogen removal), while operating above, AnAOB activity was limiting (68% impact on nitrogen removal). The negative effect of oxygen mass...... transfer had an impact of 15% on nitrogen removal. Summarizing such quantitative analyses led to formulation of an optimal operation window, which serves a valuable tool for diagnosis of performance problems and identification of optimal solutions in nitritation/anammox applications....

  20. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Valverde Perez, Borja

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitri......A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing...

  1. Performance and microbial communities of Mn(II)-based autotrophic denitrification in a Moving Bed Biofilm Reactor (MBBR).

    Science.gov (United States)

    Su, Jun Feng; Luo, Xian Xin; Wei, Li; Ma, Fang; Zheng, Sheng Chen; Shao, Si Cheng

    2016-07-01

    In this study, Mn(II) as electron donor was tested for the effects on denitrification in the MBBR under the conditions of initial nitrate concentration (10mgL(-1), 30mgL(-1), 50mgL(-1)), pH (5, 6, 7) and hydraulic retention time (HRT) (4h, 8h, 12h) which conducted by response surface methodology (RSM), the results demonstrated that the highest nitrate removal efficiency was occurred under the conditions of initial nitrate concentration of 47.64mgL(-1), HRT of 11.96h and pH 5.21. Analysis of SEM and flow cytometry suggested that microorganisms were immobilized on the Yu Long plastic carrier media successfully before the reactor began to operate. Furthermore, high-throughput sequencing was employed to characterize and compare the community compositions and structures of MBBR under the optimum conditions, the results showed that Pseudomonas sp. SZF15 was the dominant contributor for effective removal of nitrate in the MBBR.

  2. Autotrophic biofilm development on superficial samples of the gold-silver mine tailings, Valenciana (Mexico): pioneers in tailings remediation?

    Science.gov (United States)

    García-Meza, Jessica Viridiana

    2008-01-01

    We report the results of long term bio-assays on microorganism colonization of mine tailings samples, taken from the Valenciana mine tailings (Guanajuato, Mexico), under stable laboratory conditions (humidity, temperature, light exposure). In order to identify the main metabolic groups of the potentially colonizing microorganisms and the implications of their growth on the main tailing's characteristics related to biological succession, organic matter (OM) content, cationic exchange capacity (CEC), and pH values were measured as the colonization took place. We observe that photosynthetic biofilms (cyanobacteria, green algae, and diatoms) successfully colonize the mine tailings samples as pioneers; moreover, bacteria, yeast and fungi were also identified. Biofilm colonization significantly improved the OM contents, whereas the pH value is not modified during the entire observed colonization process. The results suggest that biofilms are useful during the first steps of the mine tailings remediation. This is the first report of microalgae and cyanobacteria grown of on tailings samples obtained from a semiarid region.

  3. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...

  4. Faster autotrophic growth of anaerobic ammonium-oxidizing microorganisms in presence of nitrite, using inocula from Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Sanchez

    2014-06-01

    Full Text Available Título en español: Crecimiento rápido autotrófico de microorganismos anaerobios oxidadores de amonio en presencia de nitrito, usando inóculos de ColombiaShort Title: Growth from Colombian inoculated anammoxSummary: Anammox is a nitrite dependent process, catalyzed by bacteria of the order Brocadiales. Anammox bacteria oxidize ammonia under anoxic conditions, with nitrite as electron acceptor producing dinitrogen gas. Here, we demonstrated the presence of anammox bacteria by enriched them in a SBR reactor, with anaerobic samples taken from de bottom of a pond used in primary wastewater treatment. The enrichment reached nitrogen (N removal rates of nearly 1.92kg N/m3/day. (The stoichiometry of the reaction matched previous anammox studies. The enriched bacterial communities were analyzed by Fluorescence In situ Hybridization (FISH, and showed nearly a 90% of enrichment at the end of the experiment (day 90. As far as we know, this is the first time that the anammox bacteria were enriched using Colombian inocula. The enrichment was achieved in relatively short time with high yields and has an excellent potential for application in wastewater treatment opening the opportunity to treat nitrogen-rich effluents by partial nitritation and anammox, thereby decreasing operational costs with respect to aeration (nitrification and addition of organic electron donor (heterotrophic denitrification. This more sustainable treatment is a good alternative to control nutrient pollution in water bodies in tropical countries.Key words: nitrogen cycle; advanced treatment; anammox;  nitritation; nitratation; denitrification.Resumen: La oxidación anaerobia del amonio (anammox, es un proceso nitrito dependiente, catalizado por bacterias del filo planctomicetes. Estas bacterias oxidan el amonio en ausencia de oxígeno, con nitrito como aceptor de electrones produciendo nitrógeno molecular. En Colombia, demostramos la presencia de estas bacterias mediante el enriquecimiento de cultivos en reactores por lotes, con inóculos nativos, provenientes de muestras anaeróbias tomadas del fondo de una laguna para el tratamiento primario de aguas residuales. El enriquecimiento logrado alcanzó remociones de nitrógeno (N, en el orden de 1.92kg - N /m3/día (la estequiometria de la reacción estuvo acorde con estudios previos de anammox. La comunidad bacteriana enriquecida, se analizó mediante hibridación en sitio con fluorescencia (FISH, y mostró que el enriquecimiento contenía aprox. 90 % de bacterias anammox al final del experimento (Día 90. Esta es la primera vez que en Colombia se logra el enriquecimiento de estas bacterias con inóculos locales, hasta nuestro conocimiento. El enriquecimiento fue alcanzado en relativamente corto tiempo con altos rendimientos y tiene un excelente potencial de aplicación en el tratamiento de aguas residuales, abriendo oportunidades para el tratamiento de efluentes ricos en nitrógeno mediante nitritación parcial y anammox, disminuyendo los costos en los procesos de aireación (nitrificación y en la de adición de donadores orgánicos (denitrificación heterótrofa. El uso de estos tratamientos más sostenibles es una buena alternativa para el control de contaminación por nutrientes en los cuerpos de agua, en países tropicales.Palabras clave: Ciclo del Nitrógeno; Tratamiento avanzado;  anammox; nitritación; nitratación; denitrificación.

  5. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Kim, S.J.; Kim, J.G.; Sinninghe Damsté, J.S.; Jeon, C.O.; Rhee, S.K.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia- oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautot

  6. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor.

    Science.gov (United States)

    Thandar, Soe Myat; Ushiki, Norisuke; Fujitani, Hirotsugu; Sekiguchi, Yuji; Tsuneda, Satoshi

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L(-1) (2.14 mM) of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05-0.07 h(-1), which corresponded to a generation time of 10-14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70 ± 0.51 μM NH4(+) and 0.01 ± 0.002 pmol NH4(+) cells(-1) h(-1), respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were Km(O2) = 21.74 ± 4.01 μM O2 and V max(O2) = 0.06 ± 0.02 pmol O2 cells(-1) h(-1). Ms1 grew well at ammonium and NaCl concentrations of up to 100 and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM) compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current study provides a needed physiological and genomic characterization of N. mobilis-like bacteria and a better understanding of their ecophysiological properties, enabling comparison of these bacteria with other AOB in wastewater treatment systems and natural ecosystems.

  7. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    OpenAIRE

    SoeMyat Thandar; Norisuke Ushiki; Hirotsugu Fujitani; Yuji Sekiguchi; Satoshi Tsuneda

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. m...

  8. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    Directory of Open Access Journals (Sweden)

    SoeMyat Thandar

    2016-11-01

    Full Text Available Ammonia-oxidizing bacteria (AOB, which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L-1 (2.14 mM of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05–0.07 h-1, which corresponded to a generation time of 10–14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70±0.51 μM NH4+ and 0.01±0.002 pmol NH4+ cells-1 h-1, respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were K_(m(O_2= 21.74±4.01 μM O2 and V_(max⁡(O_2= 0.06±0.02 pmol O2 cells-1 h-1. Ms1 grew well at ammonium and NaCl concentrations of up to 100 mM and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current study provides a needed physiological and genomic characterization of N. mobilis-like bacteria and a better understanding of their ecophysiological properties, enabling comparison of these bacteria with other AOB in wastewater treatment systems and natural ecosystems.

  9. Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands

    Science.gov (United States)

    Balogh, János; Papp, Marianna; Pintér, Krisztina; Fóti, Szilvia; Posta, Katalin; Eugster, Werner; Nagy, Zoltán

    2016-09-01

    Summer droughts projected to increase in central Europe due to climate changes strongly influence the carbon cycle of ecosystems. Persistent respiration activities during drought periods are responsible for a significant carbon loss, which may turn the ecosystem from a sink into a source of carbon. There are still gaps in our knowledge regarding the characteristic changes taking place in the respiration of the different components of the ecosystem in response to drought events.In the present study, we combined a physical separation of soil respiration components with continuous measurements of soil CO2 efflux and its isotopic (13C) signals at a dry grassland site in Hungary. The physical separation of soil respiration components was performed by means of inox meshes and tubes inserted into the soil. The root-excluded and root- and mycorrhiza-excluded treatments served to measure the isotopic signals of the rhizospheric, mycorrhizal fungi and heterotrophic components, respectively.In the dry grassland investigated in the study the three components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest (54 ± 8 %; mean ±SE). Rhizospheric component was the most sensitive to soil drying with its relative contribution to the total soil respiration dropping from 66 ± 7 (non-stressed) to 35 ± 17 % (mean ±SE) under drought conditions. According to our results the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events in the dry grassland ecosystem studied.

  10. Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction.

    Science.gov (United States)

    Hong, Min-Eui; Hwang, Sung Kwan; Chang, Won Seok; Kim, Byung Woo; Lee, Jeewon; Sim, Sang Jun

    2015-06-01

    High temperatures (30-36 °C) inhibited astaxanthin accumulation in Haematococcus pluvialis under photoautotrophic conditions. The depression of carotenogenesis was primarily attributed to excess intracellular less reactive oxygen species (LROS; O2 (-) and H2O2) levels generated under high temperature conditions. Here, we show that the heat stress-driven inefficient astaxanthin production was improved by accelerating the iron-catalyzed Haber-Weiss reaction to convert LROS into more reactive oxygen species (MROS; O2 and OH·), thereby facilitating lipid peroxidation. As a result, during 18 days of photoautotrophic induction, the astaxanthin concentration of cells cultured in high temperatures in the presence of iron (450 μM) was dramatically increased by 75 % (30 °C) and 133 % (36 °C) compared to that of cells exposed to heat stress alone. The heat stress-driven Haber-Weiss reaction will be useful for economically producing astaxanthin by reducing energy cost and enhancing photoautotrophic astaxanthin production, particularly outdoors utilizing natural solar radiation including heat and light for photo-induction of H. pluvialis.

  11. Arabidopsis Seed Mitochondria Are Bioenergetically Active Immediately upon Imbibition and Specialize via Biogenesis in Preparation for Autotrophic Growth.

    Science.gov (United States)

    Paszkiewicz, Gaël; Gualberto, José M; Benamar, Abdelilah; Macherel, David; Logan, David C

    2017-01-01

    Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using Arabidopsis thaliana as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth.

  12. Hydrogen and thiosulfate limits for growth of a thermophilic, autotrophic Desulfurobacterium species from a deep-sea hydrothermal vent.

    Science.gov (United States)

    Stewart, Lucy C; Llewellyn, James G; Butterfield, David A; Lilley, Marvin D; Holden, James F

    2016-04-01

    Hydrothermal fluids (341°C and 19°C) were collected < 1 m apart from a black smoker chimney and a tubeworm mound on the Boardwalk edifice at the Endeavour Segment in the northeastern Pacific Ocean to study anaerobic microbial growth in hydrothermal mineral deposits. Geochemical modelling of mixed vent fluid and seawater suggests the mixture was anoxic above 55°C and that low H2 concentrations (79 μmol kg(-1) in end-member hydrothermal fluid) limit anaerobic hydrogenotrophic growth above this temperature. A thermophilic, hydrogenotrophic sulfur reducer, Desulfurobacterium strain HR11, was isolated from the 19°C fluid raising questions about its H2 -dependent growth kinetics. Strain HR11 grew at 40-77°C (Topt 72-75°C), pH 5-8.5 (pHopt 6-7) and 1-5% (wt vol(-1) ) NaCl (NaClopt 3-4%). The highest growth rates occurred when S2 O3 (2-) and S° were reduced to H2 S. Modest growth occurred by NO3 (-) reduction. Monod constants for its growth were Ks of 30 μM for H2 and Ks of 20 μM for S2 O3 (2-) with a μmax of 2.0 h(-1) . The minimum H2 and S2 O3 (2-) concentrations for growth were 3 μM and 5 μM respectively. Possible sources of S2 O3 (2-) and S° are from abiotic dissolved sulfide and pyrite oxidation by O2 .

  13. Autotrophs' challenge to Dynamic Energy Budget theory: Comment on ;Physics of metabolic organization; by Marko Jusup et al.

    Science.gov (United States)

    Geček, Sunčana

    2017-03-01

    Jusup and colleagues in the recent review on physics of metabolic organization [1] discuss in detail motivational considerations and common assumptions of Dynamic Energy Budget (DEB) theory, supply readers with a practical guide to DEB-based modeling, demonstrate the construction and dynamics of the standard DEB model, and illustrate several applications. The authors make a step forward from the existing literature by seamlessly bridging over the dichotomy between (i) thermodynamic foundations of the theory (which are often more accessible and understandable to physicists and mathematicians), and (ii) the resulting bioenergetic models (mostly used by biologists in real-world applications).

  14. Algal Lipids and Omega-3 Production via Autotrophic and Heterotrophic Pathways at Cellana?s Kona Demonstration Facility, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xuemei [Cellana LLC; Knurek, Emily [Cellana LLC; Goes, Nikki [Cellana LLC; Griswold, Lynn [Cellana LLC

    2012-05-05

    Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes are operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.

  15. Autotrophic Carbon Dioxide Fixation via the Calvin-Benson-Bassham Cycle by the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera"

    NARCIS (Netherlands)

    Rasigraf, O.; Kool, D.M.; Jetten, M.S.M.; Ettwig, K.F.; Sinninghe Damsté, J.S.

    2014-01-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a

  16. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse

    Science.gov (United States)

    Fungal endophytes associated with leaves, lateral shoots, and roots of Echinacea purpurea, a medicinal plant used by Native Americans, were evaluated for antifungal activity as well as larvicidal, adulticidal, and repellent activities against Aedes aegypti. A total of 39 fungal isolates were identif...

  17. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  18. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth.

    Science.gov (United States)

    Mattozzi, Matthew d; Ziesack, Marika; Voges, Mathias J; Silver, Pamela A; Way, Jeffrey C

    2013-03-01

    The 3-hydroxypropionate (3-HPA) bicycle is unique among CO2-fixing systems in that none of its enzymes appear to be affected by oxygen. Moreover, the bicycle includes a number of enzymes that produce novel intermediates of biotechnological interest, and the CO2-fixing steps in this pathway are relatively rapid. We expressed portions of the 3-HPA bicycle in a heterologous organism, E. coli K12. We subdivided the 3-HPA bicycle into four sub-pathways: (1) synthesis of propionyl-CoA from acetyl-CoA, (2) synthesis of succinate from propionyl-CoA, (3) glyoxylate production and regeneration of acetyl-CoA, and (4) assimilation of glyoxylate and propionyl-CoA to form pyruvate and regenerate acetyl-CoA. We expressed the novel enzymes of the 3-HPA bicycle in operon form and used phenotypic tests for activity. Sub-pathway 1 activated a propionate-specific biosensor. Sub-pathway 2, found in non-CO2-fixing bacteria, was reassembled in E. coli using genes from diverse sources. Sub-pathway 3, operating in reverse, generated succinyl-CoA sufficient to rescue a sucAD(-) double mutant of its diaminopimelic acid (DAP) auxotrophy. Sub-pathway 4 was able to reduce the toxicity of propionate and allow propionate to contribute to cell biomass in a prpC(-)(2 methylcitrate synthase) mutant strain. These results indicate that all of the sub-pathways of the 3-HPA bicycle can function to some extent in vivo in a heterologous organism, as indicated by growth tests. Overexpression of certain enzymes was deleterious to cell growth, and, in particular, expression of MMC-CoA lyase caused a mucoid phenotype. These results have implications for metabolic engineering and for bacterial evolution through horizontal gene transfer.

  19. Urease Activity in an Autotrophic Bacteria Thiobacillus thiooxidan%氧化硫硫杆菌产脲酶的研究

    Institute of Scientific and Technical Information of China (English)

    刘晓娟

    2011-01-01

    Urease activity was found in the fermentation of Thiobacillus thiooxidans. The initial concentration of sulfur and urea, and initial pH in the medium influenced urease activity, maximum urease activity crude enzyme being noted after 96h of fermentation with 24g/L initial concentration of sulfur and 0.1g/L of urea, and on nature pH 5.82. There was no relevant paper reported.%本文通过对氧化硫硫杆菌培养条件的研究,在氧化硫硫杆菌的发酵液中,发现了脲酶酶活.培养液中的初始尿素浓度、硫粉浓度以及初始pH影响脲酶活力,当培养液初始尿素浓度为0.1g/L、硫粉浓度为24g/L、初始pH为5.82,培养96小时后,可以在发酵液中测得最大脲酶酶活.本文的研究内容国内外尚未见报道.

  20. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26.

    Science.gov (United States)

    Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M; Bertin, Philippe N

    2013-01-01

    Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.

  1. 无机碳源对小球藻自养产油脂的影响%Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris

    Institute of Scientific and Technical Information of China (English)

    郑洪立; 高振; 张齐; 黄和; 纪晓俊; 孙洪磊; 窦畅

    2011-01-01

    We studied the effects of three inorganic carbon sources, Na2CO3, NaHCO3 and CO2, and their initial concentrations on lipid production of Chlorella vulgaris.Chlorella vulgaris could utilize Na2CO3, NaHCO3 and CO2 to produce lipids.After 1 0-day cultivation with each of the three inorganic carbon sources, lipid yield of Chlorella vulgaris reached its peak with the concentration increase of the inorganic carbon source, but dropped again by further increase of the concentration.The pH value of the culture medium for Chlorella vulgaris increased after the cultivation on inorganic carbon source.The optimal concentration of both Na2CO3 and NaHCO3 was 40 mmol/L, and their corresponding biomass dry weight was 0.52 g/L and 0.67 g/L with their corresponding lipid yield 0.19 g/L and 0.22 g/L.When the concentration of CO2 was 6%, Chlorella vulgaris grew the fastest and its biomass dry weight was 2.42 g/L with the highest lipid yield of 0.72 g/L.When the concentration of CO2 was too low, the supply of inorganic carbon was insufficient and lipid yield was low.A too high concentration of CO2 caused a low pH and lipid accumulation was inhibited.Na2CO3 and NaHCO3 were more favorable for Chlorella vulgaris to accumulate unsaturated fatty acids than that of CO2.%旨在研究小球藻利用无机碳自养产油脂,考察了3种无机碳源(Na2CO3、NaHCO3和CO2)及其初始浓度对小 球藻产油特性的影响.结果表明,小球藻能利用Na2CO3,NaHCO3和CO2产油;经Na2CO3、NaHCO3和CO2培养10d后,随着每种无机碳源浓度的增加,小球藻产量均先增加后减少.小球藻经3种无机碳源培养后,其培养液pH值上升.最适宜的Na2CO3和NaHCO3添加量均为40 mmol/L,其生物量分别达到0.52 g/L和0.67 g/L,产油量分别达到0.19 g/L和0.22/L.在3种无机碳源中,CO2是最佳无机碳源,当CO2浓度为6%时,小球藻生长最快,生物量达2.42 g/L,产油量最高达0.72 g/L;当CO2浓度过低时,无机碳供应不足,油脂产量低;当CO2浓度过高时,培养液pH偏低,小球藻油脂积累受到抑制.Na2CO3和NaHCO3较CO2更有利于小球藻积累不饱和脂肪酸.

  2. Comparison of membrane biofouling of autotrophic nitrifying and heterotrophic denitrifying sludge%自养硝化与异养反硝化污泥膜污染特性的对比

    Institute of Scientific and Technical Information of China (English)

    王朝朝; 李军

    2013-01-01

    Batch filtration tests were carried out to investigate the membrane biofouling characterizations of nitrifying and denitrifying sludge from a continuous-flow nitrogen and phosphorus removal bench-scale membrane bioreactor under the stable operation.Biofouling mechanisms of denitrifying sludge by using different electron donors were also analyzed and discussed.The test results show that the denitrifying rate by using the acetic acid as the electron donor is 13.8 mg/(g·h),higher than methanol 3.4 mg/(g·h),ethanol 10.2 mg/(g·h) at 25 C; compared with nitrifying sludge,the protein of soluble microbial products from denitrifying sludges increases in the range of < 1 kDa and > 100 kDa,being the main factor for the increased resistance of soluble substances in the mixed liquor,thereby increasing the pore blocking resistance of soluble substances,and denitrification process by using the methanol as the electron donor is the most obvious.It is also found that the decrease of extracellular polymeric substances produced through denitrification processes and relative hydrophobicity of carbohydrate and protein substances becomes the main factor for the decreased resistance of SS fraction in the mixed liquor; the relative molecular mass distributions of extracellular polymericsubstances becomes slightly different after denitrification,but Fourier transform infrared spectroscopy of the functional groups of extracellular polymeric substances shows that the chemical composition of extracellular polymeric substances produced by nitrifying sludge and denitrifying sludge by using three different electron donors have not changed.The modified fouling index of denitrifying sludge by using acetic as the electron donor becomes the lowest one.%以同步脱氮除磷连续流膜生物反应器小试稳定运行时的污泥为考查对象,采用序批式过滤试验对比考查硝化污泥与反硝化污泥的污染特性,并对不同电子供体下反硝化污泥的污染机理进行分析与探讨.研究结果表明:在25℃下乙酸作为电子供体下的反硝化速率(以VSS计)为13.8 mg/(g·h),高于乙醇的10.2 mg/(g·h)和甲醇的3.4mg/(g·h);反硝化污泥相对于硝化污泥溶解性微生物产物(soluble microbial product,SMP)中蛋白质类物质在<1 kDa和> 100 kDa范围内含量的增多,成为导致污泥混合液中溶解性物质阻力增大的主要因素,从而增大溶解性物质在膜孔内部的堵塞的阻力,其中以甲醇为电子供体时的反硝化过程最为明显.反硝化过程污泥产生的胞外聚合物(extracellular polymeric substances,EPS)相对于硝化过程有所降低,且EPS中糖类与蛋白质类物质的相对疏水性的降低成为混合液中悬浮颗粒物质(suspend solids,SS)阻力降低的主要因素;硝化污泥与3种电子供体下产生的EPS相对分子质量分布上略有不同,但是傅里叶红外光谱(Fourier transform infrared spectroscopy,FT-IR)对EPS官能团的监测表明硝化过程与3种电子供体在反硝化过程中产生的EPS主要化学物质组成并没有发生变化,以乙酸为电子供体下反硝化过程后污泥的修正污染指数(modified fouling index,MFI)最小.

  3. 大肠杆菌磷酸果糖激酶基因在极端嗜酸性氧化硫硫杆菌中的表达%Expression of Phosphofructokinase Gene from Escherichia coli K-12 in Obligately Autotrophic Bacterium Acidithiobacillus thiooxidans

    Institute of Scientific and Technical Information of China (English)

    田克立; 林建群; 刘相梅; 刘缨; 张长铠

    2003-01-01

    构建了含大肠杆菌磷酸果糖激酶(EC 2.7.1.11)基因pfkA的重组质粒pSDK-1,利用大肠杆菌pfk缺陷株筛选含目的基因的重组质粒,通过接合转移的方式将其导入氧化硫硫杆菌Tt-Z2中,接合转移频率达2.6×10-6.重组质粒在Tt-Z2中有较好的稳定性,在无选择压力条件下传代50次基本保持稳定(重组质粒保留68%以上).酶活性测定、SDS-PAGE及RT-PCR结果表明,pfkA基因在氧化硫硫杆菌中得到表达,但其表达水平低于大肠杆菌.葡萄糖可促进含pSDK-1的氧化硫硫杆菌Tt-Z2的生长,而对照菌株的生长则未受明显影响,说明重组菌可部分利用葡萄糖作为碳源生长.

  4. Patterns of serum carotenoid accumulation and skin colour variation in kestrel nestlings in relation to breeding conditions and different terms of carotenoid supplementation

    NARCIS (Netherlands)

    Casagrande, Stefania; Costantini, David; Fanfani, Alberto; Tagliavini, James; Dell'Omo, Giacomo

    2007-01-01

    Carotenoids are pigments synthesised by autotrophic organisms. For nestlings of raptorial species, which obtain carotenoids from the consumption of other heterotrophic species, the access to these pigments can be crucial. Carotenoids, indeed, have fundamental health maintenance functions, especially

  5. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...

  6. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    Autotrophic ammonia oxidizing microorganisms,which are responsible for the rate-limiting step of nitrification in most aquatic systems, have not been studied in tropical estuaries. Cochin estuary (CE) is one of the largest, productive, and monsoon...

  7. Fouling diatom community with reference to substratum variability in tropical marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Desai, D.V.; Khandeparker, L.; Anil, A.C.; Wagh, A.B.

    Diatoms are the earliest autotrophic colonizers and are responsible for the major input of energy in the form of reduced carbon to the surfce. However, information regarding the population structure of diatoms in theearly phases of fouling is very...

  8. Nobel Prize winners for literature as palliative for scientific English.

    Science.gov (United States)

    Sri Kantha, Sachi

    2003-02-01

    Plagiarism causes a serious concern in scientific literature. I distinguish two types of plagiarism. What is routinely highlighted and discussed is the reprehensible type of stealing another author's ideas and words. This type I categorize as "heterotrophic" plagiarism. A more prevalent and less-discussed type of plagiarism is the verbatim use of same sentences repetitively by authors in their publications. This I categorize as "autotrophic" plagiarism. Though harmless per se, autotrophic plagiarism is equally taxing on the readers. The occurrence of autotrophic plagiarism is mainly caused by the lack of proficiency in the current lingua franca of science, ie, English. The writings of 22 Nobel literature laureates who wrote in English, especially their travelogues, essays, and letters to the press can be used for benefit of improving one's own vocabulary and writing skills and style. I suggest the writings of three literati--Bernard Shaw, Bertrand Russell, and Ernest Hemingway--as palliatives for autotrophic plagiarism in scientific publishing.

  9. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode

    Science.gov (United States)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.

    2016-12-01

    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  10. The microbial food web in the Doñana marshland: Influence of trophic state and hydrology

    Science.gov (United States)

    Àvila, Núria; López-Flores, Rocío; Quintana, Xavier D.; Serrano, Laura

    2016-10-01

    We investigated the composition of the microbial food web in the marshland of Doñana National Park (SW Spain). We analysed factors affecting the predominance of autotrophic (A) or heterotrophic (H) microorganisms in a set of 16 marshland water bodies that differ in their hydrological pattern. Autotrophic organisms were predominant in the Doñana marshland, with autotrophs between 0.3 and 25.3 times higher than heterotrophs in biomass. The variance partitioning analysis using the log A:H biomass ratio (A/H) as a response variable revealed that water body spatial position accounted for the largest portion of total variance (16% of unique effects), followed by environmental variables (13%), with a shared variation of 24%. Zooplankton biomass had no significant influence on A/H ratio. The two first axes of RDA analysis were related to soluble reactive phosphate (SRP) and dissolved inorganic nitrogen (DIN) concentrations respectively. Cyanobacteria were predominant in waters with high SRP, while other organisms were distributed in relation to DIN by their size, with small organisms predominating with low DIN and large ones with high DIN. Spatial effects reflect the importance of location with respect to the water source in this marshland, where flooding areas are very much dominated by autotrophs, while confined areas, which are a long way from nutrient sources, have a more balanced abundance of autotrophs and heterotrophs.

  11. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  12. Liquid-nitrogen cryopreservation of three kinds of autotrophicbioleaching bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ling; XIN Xiao-hong; JIANG Ying; LIANG Ren-xing; YUAN Peng; FANG Cheng-xiang

    2008-01-01

    Three kinds of autotrophic bioleaching bacteria strains,including mesophilic and acidophilic ferrous ion-oxidizing bacteria Acidithiobacillus ferrooxidans (A.ferrooxidans),mesophilic and acidophilic sulfur-oxidizing bacteria Acidithiobacillus thiooxidans (A.thiooxidans),and moderately thermophilic sulfur-oxidizing bacteria Acidianus brierleyi,were cryopreserved in liquid nitrogen and their ferrous ion- or sulfur-oxidizing activities were investigated and compared with the original ones.The results revealed that ferrous ion/sulfur oxidation activities of the strains were almost equal before and after cryopreservation.Glycerin was used as cryoprotective agent.In conclusion,liquid-nitrogen cryopreservation is a simple and effective method for autotrophic bioleaching microorganisms.

  13. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth

    NARCIS (Netherlands)

    Stockar, von U.; Marison, I.; Janssen, M.G.J.; Patino, R.

    2011-01-01

    A simple stoichiometric model is proposed linking the biomass yield to the enthalpy and Gibbs energy changes in chemo-heterotrophic, mixotrophic, and photo-autotrophic microbial growth. A comparison with calorimetric experiments on the algae Chlorella vulgaris and Chlorella sorokiniana confirmed the

  14. Ecosystem metabolism in a temporary Mediterranean marsh (Donana National Park, SW Spain)

    DEFF Research Database (Denmark)

    Geertz-Hansen, O.; Montes, C.; Duarte, C.M.

    2011-01-01

    metabolic balance of the open waters supporting submerged macrophytes of the Donana marsh (SW Spain) was investigated in spring, when community production is highest. The marsh community (benthic + pelagic) was net autotrophic with net community production rates averaging 0.61 g C m(-2) d(-1), an...

  15. Nitrogen Removal from Digested Black Water by One-stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.;

    2009-01-01

    This study assessed the technical feasibility to treat digested black water from vacuum toilets (> 1000 mg NH4+-N L-1) in a lab-scale oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor. After an adaptation period of 2.5 months, a stable. nitrogen removal...

  16. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, J.E.

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  17. In Situ/On-Site Biodegradation of Refined Oils and Fuels (A Technology Review). Volume 2. Appendix A. Supplementary Text.

    Science.gov (United States)

    1992-06-01

    Ginsberg, and Wood, 1970). The photosynthetic autotrophs are pigmented anaerobic organisms that obtain energy by the utilization of radiant energy (Zinsser...nicotinamide, riboflavin , pyridoxine, thiamine, ascorbic acid) often promote the growth of the oxidizer, but high concentrations will retard the...metabolized organic compounds (peptone, calcium lactate, yeast extract, nicotinamide, riboflavin , pyridoxine, thiamine, ascorbic acid) often promote

  18. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR

    NARCIS (Netherlands)

    Meijer, W.G; van den Bergh, E.R E; Smith, L.M

    1996-01-01

    In a previous study, a gene (pgk) encoding phosphoglycerate kinase was isolated from a genomic labrid of Xanthobacter flavus. Although this gene is essential for autotrophic growth, it is not located within the cbb operon encoding other Calvin cycle enzymes. An analysis of the nucleotide sequence up

  19. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Nyunja, J.; Ntiba, M.; Onyari, J.; Mavuti, K.; Soetaert, K.E.R.; Bouillon, S.

    2009-01-01

    Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two locat

  20. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates

    DEFF Research Database (Denmark)

    Hansen, Per Juel

    2011-01-01

    Mixotrophy (i.e. combined use of photosynthesis and food uptake for growth) is widespread among marine dinoflagellates. Species with permanent chloroplasts generally display a growth response towards irradiance like an ordinary autotrophic alga. However, some species cannot grow in the light...

  1. Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…

  2. THE BIOENERGETICS OF AMMONIA AND HYDROXYLAMINE OXIDATION IN NITROSOMONAS-EUROPAEA AT ACID AND ALKALINE PH

    NARCIS (Netherlands)

    FRIJLINK, MJ; ABEE, T; LAANBROEK, HJ; DEBOER, W; KONINGS, WN

    1992-01-01

    Autotrophic ammonia oxidizers depend on alkaline or neutral conditions for optimal activity. Below pH 7 growth and metabolic activity decrease dramatically. Actively oxidizing cells of Nitrosomonas europaea do not maintain a constant internal pH when the external pH is varied from 5 to 8. Studies of

  3. Bacterial response to contrasting sediment geochemistry in the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Fernandes, C.E.G.; Naik, S.S.; Nath, B.N.; Suresh, I.; Mascarenhas-Pereira, M.B.L.; Gupta, S.M.; Khadge, N.H.; PrakashBabu, C.; Borole, D.V.; Sujith, P.P.; Valsangkar, A.B.; Mourya, B.S.; Biche, S.U.; Sharma, R.; LokaBharathi, P.A.

    uptake and higher numbers of aerobic sulphur oxidizers at the mottled zones, characterize core TVBC 26. In the carbon-poor environment of core TVBC 08, a doubling of the sup(14)C uptake, a 250 times increase in the number of autotrophic nitrifiers, a four...

  4. Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Prommer, H.; Broers, H.P.; Slomp, C.P.; Greskowiak, J.; Van Der Grift, B.; Van Cappellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  5. Physiology of Haloalkaliphilic Sulfur-oxidizing Bacteria

    NARCIS (Netherlands)

    Banciu, H.L.

    2004-01-01

    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  6. An Evaluation of Titanium Exposed to Thermophilic and Marine Biofilms

    Science.gov (United States)

    1993-01-01

    for 84 days in a culture medium (ATCC 1723) containing Sulfolobus acidocaldarius (ATCC 33909), an aerobic, gram-negative, sulfur-oxidizing organism...The medium was adjusted to a pH=3.0 and filter sterilized before inoculation. S. acidocaldarius is an acidophilic, facultative autotroph that can use

  7. PCR bias in ecological analysis: A case study for quantitative Taq nuclease assays in analyses of microbial communities

    NARCIS (Netherlands)

    Becker, S.; Boger, P.; Oehlmann, R.; Ernst, A.

    2000-01-01

    Succession of ecotypes, physiologically diverse strains with negligible rRNA sequence divergence, may explain the dominance of small, red-pigmented (phycoerythrin-rich) cyanobacteria in the autotrophic picoplankton of deep lakes (C, Postius and A. Ernst, Arch. Microbiol, 172:69-75, 1999), In order t

  8. Flavin adenine dinucleotide binding is the crucial step in alcohol oxidase assembly in the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Evers, Melchior E.; Titorenko, Vladimir; Harder, Wim; Klei, Ida van der; Veenhuis, Marten

    1996-01-01

    We have studied the role of flavin adenine dinucleotide (FAD) in the in vivo assembly of peroxisomal alcohol oxidase (AO) in the yeast Hansenula polymorpha. In previous studies, using a riboflavin (Rf) autotrophic mutant, an unequivocal judgement could not be made, since Rf-limitation led to a parti

  9. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C:N ratios

    Science.gov (United States)

    Lu, Lin; Wang, Jun; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2016-05-01

    Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for largescale mixotrophic culture of T. chuii, as a potential bait-microalga.

  10. Integrated in silico analysis of pathway designs for synthetic photo-electro-autotrophy

    NARCIS (Netherlands)

    Volpers, Michael; Claassens, Nico J.; Noor, Elad; Oost, van der John; Vos, de Willem M.; Kengen, Servé W.M.; Martins dos Santos, Vitor A.P.

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails t

  11. Solid State NMR Observation of Phenylalanine Residues in M2 Protein from Influenza a Virus

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ The M2 protein from influenza A functions as a proton channel. It has been cloned and over-expressed in Escherchia coli. Large quantities of recombinant protein are purified by Ni2 affinity chromatography. The residues in M2 have been selectively labeled with 15N in an aromatic amino acid autotroph CT19.

  12. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    Science.gov (United States)

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  13. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus

    NARCIS (Netherlands)

    van Keulen, G; Ridder, ANJA; Dijkhuizen, L; Meijer, WG; Meijer, Wim G.

    2003-01-01

    The LysR-type transcriptional regulator CbbR controls the expression of the cbb and gap-pgk operons in Xanthobacter flavus, which encode the majority of the enzymes of the Calvin cycle required for autotrophic CO2 fixation. The cbb operon promoter of this chemoautotrophic bacterium contains three po

  14. The impact of atmospheric dry deposition associated microbes on the southeastern Mediterranean Sea surface water following an intense dust storm

    Directory of Open Access Journals (Sweden)

    Eyal Rahav

    2016-07-01

    Full Text Available This study explores the potential impacts of microbes deposited into the surface seawater of the southeastern Mediterranean Sea (SEMS along with atmospheric particles on marine autotrophic and heterotrophic production. We compared in situ changes in autotrophic and heterotrophic microbial abundance and production rates before and during an intense dust storm event in early September 2015. Additionally, we measured the activity of microbes associated with atmospheric dry deposition (also referred to as airborne microbes in sterile SEMS water using the same particles collected during the dust storm. A high diversity of prokaryotes and a low diversity of autotrophic eukaryotic algae were delivered to surface SEMS waters by the storm. Autotrophic airborne microbial abundance and activity were low, contributing ~1% of natural abundance in SEMS water and accounting for 1-4% to primary production. Airborne heterotrophic bacteria comprised 30-50% of the cells and accounted for 13-42% of bacterial production. Our results demonstrate that atmospheric dry deposition may supply not only chemical constitutes but also microbes that can affect ambient microbial populations and their activity in the surface ocean. Airborne microbes may play a greater role in ocean biogeochemistry in the future in light of the expected enhancement of dust storm durations and frequencies due to climate change and desertification processes.

  15. Nitrification in acid coniferous forests: Some soils do, some soils don't

    NARCIS (Netherlands)

    Nugroho, R.A.

    2006-01-01

    Nitrification is a key process in the global nitrogen cycle. Ammonia-oxidising bacteria (AOB) were long thought to be the sole microorganisms capable of autotrophic ammonia oxidation, the rate-limited step in nitrification. This thesis elucidates the relation between the presence of AOB, environmen

  16. Hybrid Adsorption-Membrane Biological Reactors for Improved Performance and Reliability of Perchlorate Removal Processes

    Science.gov (United States)

    2008-12-01

    carbon supply for the autotrophic perchlorate reducing bacteria. The membrane used in the reactor is a hollow-fiber microfiltration membrane made from...1 HYBRID ADSORPTION- MEMBRANE BIOLOGICAL REACTORS FOR IMPROVED PERFORMANCE AND RELIABILITY OF PERCHLORATE REMOVAL PROCESSES L.C. Schideman...Center Champaign, IL 61826, USA ABSTRACT This study introduces the novel HAMBgR process (Hybrid Adsorption Membrane Biological Reactor) and

  17. Development of the trophic part of consortia’s relations of the gossamer-winged butterflies (Lepidoptera, Lycaenidae with Salvia nutans (Lamiaceae

    Directory of Open Access Journals (Sweden)

    K. K. Goloborodko

    2008-03-01

    Full Text Available On the basis of dummy individual consortia of Salvia nutans L. an important component of fertilization mechanism – the dynamics of trophic relations of antophylus agents with an entomophilous angiosperm autotroph was investigated. The dominant position in species structure of fertilizers in conditionally native steppe ecosystems is occupied by relict TomaresnogelidobrogensisCar.

  18. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C:N ratios

    Science.gov (United States)

    Lu, Lin; Wang, Jun; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2017-03-01

    Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for large-scale mixotrophic culture of T. chuii, as a potential bait-microalga.

  19. Community context mediates the top-down vs. bottom-up effects of grazers on rocky shores.

    Science.gov (United States)

    Bracken, Matthew E S; Dolecal, Renee E; Long, Jeremy D

    2014-06-01

    Interactions between grazers and autotrophs are complex, including both top-down consumptive and bottom-up facilitative effects of grazers. Thus, in addition to consuming autotrophs, herbivores can also enhance autotroph biomass by recycling limiting nutrients, thereby increasing nutrient availability. Here, we evaluated these consumptive and facilitative interactions between snails (Littorina littorea) and seaweeds (Fucus vesiculosus and Ulva lactuca) on a rocky shore. We partitioned herbivores' total effects on seaweeds into their consumptive and facilitative effects and evaluated how community context (the presence of another seaweed species) modified the effects of Littorina on a focal seaweed species. Ulva, the more palatable species, enhanced the facilitative effects of Littorina on Fucus. Ulva did not modify the consumptive effect of Littorina on Fucus. Taken together, the consumptive and facilitative effects of snails on Fucus in the presence of Ulva balanced each other, resulting in no net effect of Littorina on Fucus. In contrast, the only effect of Fucus on Ulva was to enhance consumptive effects of Littorina on Ulva. Our results highlight the necessity of considering both consumptive and facilitative effects of herbivores on multiple autotroph species in order to gain a mechanistic understanding of grazers' top-down and bottom-up roles in structuring communities.

  20. What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Trumbore, Susan E. [Max-Planck Institute for Biogeochemistry, Jena (Germany); Angert, Alon [Hebrew Univ. of Jerusalem (Israel). The Institute of Earth Sciences; Kunert, Norbert [Max-Planck Institute for Biogeochemistry, Jena (Germany); Muhr, Jan [Max-Planck Institute for Biogeochemistry, Jena (Germany); Chambers, Jeffrey Q. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Climate Sciences Dept.

    2012-12-18

    We report that the CO2 emitted from a stem is produced by physiological processes, but the challenge remains identifying what portion is produced by local tissues, which will facilitate much-needed mechanistic understanding of factors controlling autotrophic respiration.

  1. Stoichiometry, Metabolism and Nutrient Limitation Across the Periodic Table in Natural Flowing-Water Chemostats

    Science.gov (United States)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Cropper, W. P.; Martin, J. B.

    2014-12-01

    Relative supplies of macro and micronutrients (C,N,P, various metals), along with light and water, controls ecosystem metabolism, trophic energy transfer and community structure. Here we test the hypothesis, using measurements from 41 spring-fed rivers in Florida, that tissue stoichiometry indicates autotroph nutrient limitation status. Low variation in discharge, temperature and chemical composition within springs, but large variation across springs creates an ideal setting to assess the relationship between limitation and resource supply. Molar N:P ranges from 0.4 to 90, subjecting autotrophs to dramatically different nutrient supply. Over this gradient, species-specific autotroph tissue C:N:P ratios are strictly homeostatic, and with no evidence that nutrient supply affects species composition. Expanding to include 19 metals and micronutrients revealed autotrophs are more plastic in response to micronutrient variation, particularly for iron and manganese whose supply fluxes are small compared to biotic demand. Using a Droop model modified to reflect springs conditions (benthic production, light limitation, high hydraulic turnover), we show that tissue stoichiometry transitions from homeostatic to plastic with the onset of nutrient limitation, providing a potentially powerful new tool for predicting nutrient limitation and thus eutrophication in flowing waters.

  2. First Insights into the Genome Sequence of the Strictly Anaerobic Homoacetogenic Sporomusa sphaeroides Strain E (DSM 2875)

    Science.gov (United States)

    Villamizar, Genis Andrés Castillo; Daniel, Rolf

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of Sporomusa sphaeroides strain E (DSM 2875), a strict anaerobic homoacetogenic bacterium. It is able to grow autotrophically on different one-carbon compounds. The strain possesses several genes of the Wood-Ljungdahl pathway. The genome consists of a single chromosome (4.98 Mb). PMID:28336590

  3. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo;

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity on th...

  4. Biological deammonification of livestock effluents after anaerobic digestion using specialized bacterial cultures

    Science.gov (United States)

    We investigated a deammonification process for the removal of ammonia from anaerobi digestion (AD) effluents. This process is autotrophic and removes N without carbon. Instant deammonification reaction was obtained by mixing a high performance nitrifying sludge (HPNS) (NRRL B-50298) with anammox slu...

  5. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.

    Science.gov (United States)

    Volpers, Michael; Claassens, Nico J; Noor, Elad; van der Oost, John; de Vos, Willem M; Kengen, Servé W M; Martins Dos Santos, Vitor A P

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force). The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase-pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly thermodynamic favorable

  6. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.

    Directory of Open Access Journals (Sweden)

    Michael Volpers

    Full Text Available The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force. The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase-pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly

  7. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy

    Science.gov (United States)

    Noor, Elad; van der Oost, John; de Vos, Willem M.; Kengen, Servé W. M.; Martins dos Santos, Vitor A. P.

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force). The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase–pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly thermodynamic

  8. Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight.

    Science.gov (United States)

    Gérikas Ribeiro, Catherine; Lopes Dos Santos, Adriana; Marie, Dominique; Helena Pellizari, Vivian; Pereira Brandini, Frederico; Vaulot, Daniel

    2016-01-01

    Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW), the cold and nutrient rich South Atlantic Central Water (SACW) and the Coastal Water (CW), which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 10(6) cells mL(-1)) were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 10(3) cells mL(-1)). Synechococcus(up to 81 × 10(3) cells mL(-1)), as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM) layers from offshore waters, and their highest abundances were 20 × 10(3) cells mL(-1) and 5 × 10(3) cells mL(-1), respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels.

  9. Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight

    Directory of Open Access Journals (Sweden)

    Catherine Gérikas Ribeiro

    2016-11-01

    Full Text Available Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW, the cold and nutrient rich South Atlantic Central Water (SACW and the Coastal Water (CW, which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 106 cells mL−1 were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 103 cells mL−1. Synechococcus(up to 81 × 103 cells mL−1, as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM layers from offshore waters, and their highest abundances were 20 × 103 cells mL−1 and 5 × 103 cells mL−1, respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels.

  10. Controlling effects of irradiance and heterotrophy on carbon translocation in the temperate coral Cladocora caespitosa.

    Directory of Open Access Journals (Sweden)

    Pascale Tremblay

    Full Text Available Temperate symbiotic corals, such as the Mediterranean species Cladocora caespitosa, live in seasonally changing environments, where irradiance can be ten times higher in summer than winter. These corals shift from autotrophy in summer to heterotrophy in winter in response to light limitation of the symbiont's photosynthesis. In this study, we determined the autotrophic carbon budget under different conditions of irradiance (20 and 120 µmol photons m(-2 s(-1 and feeding (fed three times a week with Artemia salina nauplii, and unfed. Corals were incubated in H(13CO(3 (--enriched seawater, and the fate of (13C was followed in the symbionts and the host tissue. The total amount of carbon fixed by photosynthesis and translocated was significantly higher at high than low irradiance (ca. 13 versus 2.5-4.5 µg cm(-2 h(-1, because the rates of photosynthesis and carbon fixation were also higher. However, the percent of carbon translocation was similar under the two irradiances, and reached more than 70% of the total fixed carbon. Host feeding induced a decrease in the percentage of carbon translocated under low irradiance (from 70 to 53%, and also a decrease in the rates of carbon translocation per symbiont cell under both irradiances. The fate of autotrophic and heterotrophic carbon differed according to irradiance. At low irradiance, autotrophic carbon was mostly respired by the host and the symbionts, and heterotrophic feeding led to an increase in host biomass. Under high irradiance, autotrophic carbon was both respired and released as particulate and dissolved organic carbon, and heterotrophic feeding led to an increase in host biomass and symbiont concentration. Overall, the maintenance of high symbiont concentration and high percentage of carbon translocation under low irradiance allow this coral species to optimize its autotrophic carbon acquisition, when irradiance conditions are not favourable to photosynthesis.

  11. Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight

    Science.gov (United States)

    Lopes dos Santos, Adriana; Marie, Dominique; Helena Pellizari, Vivian; Pereira Brandini, Frederico; Vaulot, Daniel

    2016-01-01

    Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW), the cold and nutrient rich South Atlantic Central Water (SACW) and the Coastal Water (CW), which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 106 cells mL−1) were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 103 cells mL−1). Synechococcus(up to 81 × 103 cells mL−1), as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM) layers from offshore waters, and their highest abundances were 20 × 103 cells mL−1 and 5 × 103 cells mL−1, respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels. PMID:27867760

  12. Microbial thiocyanate utilization under highly alkaline conditions.

    Science.gov (United States)

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  13. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  14. Niche specialization and functional traits regulate the rarity of charophytes in the Nordic countries

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars; Iversen, Lars Lønsman; Borum, Jens;

    2015-01-01

    1. Charophytes are benthic macroalgae that live in fresh and brackish waters. Given the historic deterioration of their habitats and their competitive inferiority relative to tall rooted plants under eutrophic conditions, it is hypothesized that charophytes are among the most threatened autotrophs...... countries with other autotrophs and analysing the relationship to species niche specialization and functional traits. A value on a rarity–commonness scale was assigned to each species based on their Red List status. Niche specialization was evaluated by the Outlying Mean Index using a large Danish dataset...... while traits were derived from the literature. 3. Supporting the hypotheses, 50–87% of charophyte species were Red Listed, which is much greater than for vascular aquatic (30–35%) and terrestrial plants (18–28%). Commonness of charophytes decreased significantly with niche specialization in separate...

  15. Microbial lifestyles that enable survival in lithifying habitats

    DEFF Research Database (Denmark)

    Tamez-Hidalgo, Paulina

    2010-01-01

    The precipitation of carbonates in the travertine forming Narrow Gauge hot spring in Yellowstone National Park occurs at a rapid rate, whereby microorganisms that colonize the ponds and apron facies are required to overcome lithification. CO2-fixation by autotrophic microorganisms in this cation......-rich environment further promotes carbonate encapsulation. Microorganisms that alter their micro-habitat through dissimilative metabolic processes such as H2S and NH4+oxidation, can decrease acid neutralizing capacity (ANCcarb = [HCO3-] + 2[CO32-] + [OH-] - [H+] ) and locally delay CaCO3 mineralization. Genomic...... the microbially mediated reactions of the sulfur cycle might change the conditions in the local microhabitat, this does not alter the overall mass of geochemical carbonate precipitation. The metabolic products might aid autotrophic microorganisms in colonizing and surviving, however, for some time in a strongly...

  16. 胞外高分子物质对基质在复合生物膜内传质速率影响的测定%Evaluation of the Influence of Extracellular Polymeric Substances on the Mass Transport of Substrate within Multispecies Biofilms

    Institute of Scientific and Technical Information of China (English)

    曹宏斌; 李鑫钢; 姜斌; 孙津生; 张懿

    2004-01-01

    A model, for evaluating the effect of porosity and volume fraction of extracellular polymeric substances(EPS) within multispecies biofilms on the effective diffusivity, is developed and experimentally validated, based on the extraction of EPS from intact biofilms. The amount of EPS in biofilms significantly affects the effective diffusivity. For biofilms with porosity of 77%-95% in the top layers and 54%-58% in the bottom layers, the value of De/Dw decreases from 0.52-0.83 in the top layers to 0.23-0.31 in the bottom layers. Generally, the effective diffusivity in the heterotrophic/autotrophic biofilms is slightly lower than that in the heterotrophic biofilms, due to the lower porosity in the heterotrophic/autotrophic biofilms.

  17. Evaluation of the Influence of Extracellular Polymeric Substances on the Mass Transport of Substrate within Multispecies Biofilms

    Institute of Scientific and Technical Information of China (English)

    曹宏斌; 李鑫钢; 姜斌; 孙津生; 张懿

    2004-01-01

    A model, for evaluating the effect of porosity and volume fraction of extracellular polymeric substances (EPS) within multispecies biofilms on the effective diffusivity, is developed and experimentally validated, based on the extraction of EPS from intact biofilms. The amount of EPS in biofilms significantly affects the effective diffusivity. For biofilms with porosity of 77%—95% in the top layers and 54%—58% in the bottom layers, the value of De/Dw decreases from 0.52—0.83 in the top layers to 0.23—0.31 in the bottom layers. Generally, the effective diffusivity in the heterotrophic/autotrophic biofilms is slightly lower than that in the heterotrophic biofilms, due to the lower porosity in the heterotrophic/autotrophic biofilms.

  18. Application of Microbial Products to Promote Electrodialytic Remediation of Heavy Metal Contaminated Soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    2006-01-01

    influences the remediation-time negatively. EDR remediation of fine grained, inorganic soils was documented to be feasible when the Pb is not associated with extremely stable compounds. The potential of treating other fine-grained materials in a suspended version of EDR had at this time been demonstrated...... of the lack of relevance to treatment of Pb-contaminated soil. Autotrophic leaching, which is leaching by acidophilic, autotrophic microorganisms obtaining energy by oxidation of elemental sulfur, was shown to induce acidification of soil-fines in suspension, but removal of Pb from the treated soil...... is optimal with distilled water as solvent. Consequently addition of nitric acid is recommended in cases where the removal rate is considered important, while suspension in pure water is recommended in situations where the energy expenditure and the chemical costs are limiting factors. Considering...

  19. A consilience model to describe N2O production during biological N removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Smets, Barth F.

    2016-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, is produced during biological nitrogen conversion in wastewater treatment operations. Complex mechanisms underlie N2O production by autotrophic and heterotrophic organisms, which continue to be unravelled. Mathematical models that describe nitric oxide...... (NO) and N2O dynamics have been proposed. Here, a first comprehensive model that considers all relevant NO and N2O production and consumption mechanisms is proposed. The model describes autotrophic NO production by ammonia oxidizing bacteria associated with ammonia oxidation and with nitrite reduction......, followed by NO reduction to N2O. It also considers NO and N2O as intermediates in heterotrophic denitrification in a 4-step model. Three biological NO and N2O production pathways are accounted for, improving the capabilities of existing models while not increasing their complexity. Abiotic contributions...

  20. New Discoveries in Study on Hydrocarbons From Thermal Degradation of Heterotrophically Yellowing Algae

    Institute of Scientific and Technical Information of China (English)

    吴庆余; 殷实; 盛国英; 傅家谟

    1994-01-01

    Green autotrophic alga Chlorella protothecoides contains a very small quantity of hydrocarbons. Heterotrophic culture of this alga results in the cells yellowing, chlorophyll disappearing, protein decreasing and lipid increasing remarkably. The quantities of hydrocarbons from them directly and from the thermal degradation of the cells at or below 200℃ are very low. These hydrocarbons are characterized by predominance of high molecular weight normal alkanes with maximum at C23-C25. When these heterotrophi-cally yellowing cells are thermally degraded at 300℃ , the aliphatic hydrocarbons increase greatly, 32 times that of the green autotrophic ones at the same temperature. Meanwhile, the low molecular weight normal alkanes with C17 as the peak become predominant instead of the original ones of high molecular weight. The actual potential of microplanktonic algae in producing hydrocarbons should be much greater than what people have recognized before.

  1. Evidence of active methanogen communities in shallow sediments of the sonora margin cold seeps.

    Science.gov (United States)

    Vigneron, Adrien; L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G; Cragg, Barry A; Parkes, R John; Toffin, Laurent

    2015-05-15

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.

  2. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor

    DEFF Research Database (Denmark)

    Vázquez-Padín, Jose; Mosquera-Corral, Anuska; Campos, Jose Luis

    2010-01-01

    The application of microelectrodes to measure oxygen and nitrite concentrations inside granules operated at 20 °C in a CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) reactor and the application of the FISH (Fluorescent In Situ Hybridization) technique to cryosectioned slices of these ......The application of microelectrodes to measure oxygen and nitrite concentrations inside granules operated at 20 °C in a CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) reactor and the application of the FISH (Fluorescent In Situ Hybridization) technique to cryosectioned slices...... (Lgranule)-1 d-1. Anammox activity was registered between 400 and 1000 μm depth inside the granules. The nitrogen removal capacity of the studied sequencing batch reactor containing the granular biomass was of 0.5 g N L-1 d-1. This value is similar to the mean nitrogen removal rate obtained from...... time of the reactor....

  3. Role of nitrification in the biodegradation of selected artificial sweetening agents in biological wastewater treatment process.

    Science.gov (United States)

    Tran, N H; Nguyen, V T; Urase, T; Ngo, H H

    2014-06-01

    The biodegradation of the six artificial sweetening agents including acesulfame (ACE), aspartame (ASP), cyclamate (CYC), neohesperidindihydrochalcone (NHDC), saccharin (SAC), and sucralose (SUC) by nitrifying activated sludge was first examined. Experimental results showed that ASP and NHDC were the most easily degradable compounds even in the control tests. CYC and SAC were efficiently biodegraded by the nitrifying activated sludge, whereas ACE and SUC were poorly removed. However, the biodegradation efficiencies of the ASs were increased with the increase in initial ammonium concentrations in the bioreactors. The association between nitrification and co-metabolic degradation was investigated and a linear relationship between nitrification rate and co-metabolic biodegradation rate was observed for the target artificial sweeteners (ASs). The contribution of heterotrophic microorganisms and autotrophic ammonia oxidizers in biodegradation of the ASs was elucidated, of which autotrophic ammonia oxidizers played an important role in the biodegradation of the ASs, particularly with regards to ACE and SUC.

  4. Microbial population responses in three stratified Antarctic meltwater ponds during the autumn freeze

    DEFF Research Database (Denmark)

    Safi, Karl; Hawes, Ian; Sorrell, Brian Keith

    2012-01-01

    The planktonic microbial communities of three meltwater ponds, located on the McMurdo Ice Shelf, were investigated from the end of January 2008 to early April, during which almost the entire pond volumes froze. The ponds were comprised of an upper mixed layer overlying a salt-stabilized density g...... for increasing heterotrophy within the remaining microbial communities, although all components of the food web eventually decline as the final freeze approaches....... role of autotrophic and heterotrophic microplankton within the ponds. The results showed that microbial groups responded to the onset of winter by declining in abundance, though an exception was the appearance of filamentous cyanobacteria in the water column in March. As freezing progressed, autotrophs...... declined more rapidly than heterotrophs and grazing rates and abundances of mixotrophic and heterotrophic organisms increased. Grazing pressure on bacteria and picophytoplankton also increased, in part explaining their decline over time. The results indicate that stressors imposed during freezing select...

  5. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): investigation at the single-cell level.

    Science.gov (United States)

    Borderie, Fabien; Denis, Michel; Barani, Aude; Alaoui-Sossé, Badr; Aleya, Lotfi

    2016-06-01

    The authors investigated the microbial composition of phototrophic biofilms proliferating in a show cave using flow cytometry for the first time in such a context. Results are based on several biofilms sampled in the Moidons Caves (France) and concern both heterotrophic prokaryotes and autotrophic microorganisms. Heterotrophic microorganisms with low nucleic acid content were dominant in biofilms, as can be expected from the oligotrophic conditions prevailing within the cave. Analysis of the biofilm autotrophic components revealed the presence of several taxa, particularly the unicellular green algae Chlorella minutissima, specifically well adapted to this cave. Relationships between flow cytometry results and environmental variables determined in the cave were established and discussed so as to better understand biofilm proliferation processes in caves.

  6. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    Science.gov (United States)

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  7. An overview of dinoflagellate cysts in recent sediments along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSilva, M.S.; Anil, A.C.; DeCosta, P.M.

    . Table 1—Details of station, position, sampling period, cruise number, water depth, temperature and salinity Sampling period Cruise no./Programme Station name Station code Latitude (⁰N) Longitude (⁰E) Water depth (m) Temperature (°C... Paleontological name Species code Autotrophic Alexandrium affine (Inoue et Fukuyo) Balech* – Ale.aff Alexandrium minutum Halim* – Ale.min Alexandrium tamarense (Lebour) Balech* – Ale.tam Alexandrium spp. – Ale.sp Cochlodinium cf. polykrikoides Margalef...

  8. Do mature hydrocarbons have an influence on acid rock drainage generation?

    OpenAIRE

    Jiménez-Castañeda, Martha E.; Boothman, Christopher; Lloyd, Jonathan R.; Vaughan, David J; van Dongen, Bart E.

    2016-01-01

    The generation of acid rock drainage (ARD) is a biogeochemical process that causes severe ecological impacts, threatening human health worldwide. Microbes involved in acid drainage reactions are generally considered autotrophic but heterotrophic and mixotrophic microorganisms have often been identified at ARD sites. This raises questions about the role of organic matter naturally present at these sites, such as mature hydrocarbons, in promoting the microbial processes underpinning ARD generat...

  9. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    OpenAIRE

    Nyunja, J; Ntiba, M; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, S.

    2009-01-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isoto...

  10. 2012 Molecular Basis of Microbial One-Carbon Metabolism Gordon Research Conferences and Gordon Research Seminar, August 4-10,2012

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Thomas

    2012-08-10

    The 2012 Gordon Conference will present and discuss cutting-edge research in the field of microbial metabolism of C1 compounds. The conference will feature the roles and application of C1 metabolism in natural and synthetic systems at scales from molecules to ecosystems. The conference will stress molecular aspects of the unique metabolism exhibited by autotrophic bacteria, methanogens, methylotrophs, aerobic and anaerobic methanotrophs, and acetogens.

  11. Estimating global carbon uptake by lichens and bryophytes with a process-based model

    OpenAIRE

    Porada, P.; Weber, B.; Elbert, W.; Pöschl, U.; Kleidon, A.

    2013-01-01

    Lichens and bryophytes are abundant globally and they may even form the dominant autotrophs in (sub)polar ecosystems, in deserts and at high altitudes. Moreover, they can be found in large amounts as epiphytes in old-growth forests. Here, we present the first process-based model which estimates the net carbon uptake by these organisms at the global scale, thus assessing their significance for biogeochemical cycles. The model uses gridded climate data and key properties of th...

  12. Temperature effect on aerobic denitrification and nitrification

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-guang; ZHANG Xiao-jian; WANG Zhan-sheng

    2003-01-01

    Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affected by low temperature(below 10oC). However, nitrification rate remained high when the temperature dropped from 15oC to5oC. It seemed the autotrophic biofilm in BAF could alleviate the adverse effect of low temperature.

  13. Pyrite oxidation by thermophilic archaebacteria

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L.; Olsson, G.; Holst, O.; Karlsson, H.T. (Lund Univ. (Sweden))

    1990-03-01

    Three species of thermophilic archaebacteria of the genera Sulfolobus (Sulfolobus acidocaldarius and S. solfataricus) and Acidianus (Acidianus brierleyi) were tested for their ability to oxidize pyrite and to grow autotropbically on pyrite, to explore their potential for use in coal desulfurization. Only A. brierleyi was able to oxidize and grow autotrophically on pyrite. Jarosite was formed during the pyrite oxidation, resulting in the precipitation of sulfate and iron. The medium composition affected the extent of jarosite formation.

  14. P2M2: Physical and physiological properties of membrane-aerated and membrane-supported biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles

    layers closer to the biofilm-liquid interface displayed relatively lower cohesion forces against shear stresses, but still higher than observed in other conventional biofilms grown under similar environmental conditions. None of the biofilms tested detached completely from the substratum and proved......Autotrophic nitrogen removal has become the process of choice to treat nitrogenrich wastewaters due to its significantly lower operation costs. This technology makes use of stratified biofilm or bioaggregate structures to enrich aerobic and anaerobic ammonium oxidizing bacteria that catalyse...

  15. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva;

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and....... The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases....

  16. 脱窒細菌を固定化する架橋poly (vinyl alcohol) ゲルマイクロカプセルの調製と脱窒能力の評価

    OpenAIRE

    大久保, 一心; 吉田, 昌弘; 上村, 芳三; 幡手, 泰雄; 畑中, 千秋; オオクボ, カズヒト; ヨシダ, マサヒロ; ウエムラ, ヨシミツ; ハタテ, ヤスオ; ハタナカ, チアキ; OHKUBO, Kazuhito; Yoshida, Masahiro; Uemura, Yoshimitsu; HATATE, Yasuo; HATANAKA, Chiaki

    2004-01-01

    Recently, nitrate-nitrogen concentration in groundwater increases gradually. Drinking water including nitrate-nitrogen is possible to cause several human-and animal-health damages. Therefore, efficient denitrification methods have been investigated from all angles. In this study, autotrophic denitrifying bacteria, Paracoccus denitrificans IFO 13301 using H_2 gas as a hydrogen donor was immobilized in microcapsules composed of cross-linked poly (vinyl alcohol) gel. The efficient microencapsula...

  17. Effect of Soil Temperature and pH on Nitrification Kinetics in Soils Receiving a Low Level of Ammonium Enrichment.

    Science.gov (United States)

    1981-12-01

    terminated by the addition of chloroform. Nitrif icat ion is generally believed to be mediated by autotrophic nitrifiers. These organisms derive tile...decrease in NO2 oxidizers on day 30, and no doubt the statistical uncer- tainty inherent in the MPN technique was also a factor. In general , while...nitrification. Folia Microbiologia , vol. 7, p. 234-238. Skinner, R.A. and N. Walker (1961) Growth of Nitrosomonas europea in batch and continuous culture

  18. [Cloning and expression of a promoter function fragment from Thiobacillus thiooxidans in Escherichia coli].

    Science.gov (United States)

    Yan, W

    1990-01-01

    This paper reports a recombinant plasmid pSDR12 which is constructed through the substitution of the EcoRI-HindIII fragment of pBR322 by a specific fragment of chromosomal DNA of T. thiooxidans. After it was transformed into C600, the transformants revealed higher levels of Tc resistance. This result shows that a promoter function fragment from autotrophic bacteria is able to express in Escherichia coil.

  19. Nitrification Enhancement through pH Control with Rotating Biological Contactors

    Science.gov (United States)

    1981-09-01

    Inst. of Sew. Purif., 130 (1964). 31. Engel, M. S. and M. Alexander, " Growth and Autotrophic Metabolism of Nitrosomonas Europaea ," Jour. Bact., 76, 217...relative effectiveness of four different alkaline chemicals on enhancing the nitrifying process under optimum pH conditions was evaluated in Phase II...111 6.12 Relative RBC Heterotrophic Bacteria Growth Under pH Conditions from pH 7.0 to pH 8.5 ....... ............. .. 112 6.13 Batch Alkalinity

  20. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    OpenAIRE

    Nadin Pade; Martin Hagemann

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanis...

  1. Ecology and habitats of extremophiles.

    Science.gov (United States)

    Kristjánsson, J K; Hreggvidsson, G O

    1995-01-01

    This review describes the main natural extreme environments, characterized by high temperature, high and low pH and high salinity, that can be colonized by microorganisms. The environments covered are: freshwater alkaline hot springs; acidic solfatara fields; anaerobic geothermal mud and soils; acidic sulphur and pyrite areas; carbonate springs and alkaline soil; and soda and highly saline lakes. The community structure, in terms of available energy sources and representative autotrophic and heterotrophic microorganisms, is discussed for each type of habitat.

  2. Bacterias autótrofas y heterótrofas asociadas a nieve marina lodosa en arrecifes con escorrentía continental

    OpenAIRE

    Henao-Castro, Alejandro; Comba González, Natalia; M. Alvarado Ch, Elvira; Santamaría, Johanna

    2014-01-01

    The density of heterotrophic bacteria is greater than autotrophic in marine snow aggregates influenced by continental runoff. Four coral reef areas at different distances from the Canal del Dique served to evaluate this premise; this canal is the main source of inland resources for the coral reefs of the Nuestra Señora del Rosario archipelago in Cartagena in the Colombian Caribbean. The average density of microorganisms in marine snow aggregates was determined using epifluorescence. The resul...

  3. A stable-isotope mass spectrometry-based metabolic footprinting approach to analyze exudates from phytoplankton

    DEFF Research Database (Denmark)

    Weber, Ralf J. M.; Selander, Erik; Sommer, Ulf;

    2013-01-01

    Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological...... interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction...

  4. Ocean productivity: A personal perspective since the first Liege Colloquium

    Science.gov (United States)

    Marra, John F.

    2015-07-01

    I briefly review the changing dominant research agenda in ocean productivity over the time since the first Liege Colloquium, 44 years ago, and coincidentally, about when I started in oceanography. I then consider two lingering issues, the depth of the ocean's productive layer and the dynamics of dissolved organic carbon. These two topics are united through respiration, the former concerning autotrophic respiration, and the latter heterotrophic respiration.

  5. Environmental drivers of temporal succession in recent dinoflagellate cyst assemblages from a coastal site in the North-East Atlantic (Lisbon Bay, Portugal)

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Amorim, Ana

    2008-01-01

    the river runoff cyst signal is characterised by dominance of autotrophs forming calcareous cysts, mainly Scrippsiella spp. Lingulodinium polyedrum is suggested to be indicative of upwelling conditions in the region but reflecting an ecological niche different from the more classical heterotrophic...... assemblage and G. catenatum. Our results reinforce the applicability of dinoflagellate cysts as environmental tracers in the warm-temperate region of the NE Atlantic, and contribute to the development of palaeoenvironmental cyst-based signals....

  6. Patterns in marine microbial community structure

    OpenAIRE

    2012-01-01

    Programa en Oceanografía [EN] Understanding the distribution of the different picoplankton groups represents a central tenet of marine microbial ecology. Centering our study on the three major groups constituting the bulk picoplankton community (size 0.2-3 mm), we sought to analyze the distribution of autotrophic bacteria (Synechococcus and Prochlorococcus), photosynthetic Picoeukaryotes pPeuk, and heterotrophic bacteria. [ES] La comprensión de la distribución de los distint...

  7. Benthic Ecology from Space: Optics and Net Primary Production in Seagrass and Benthic Algae Across the Great Bahama Bank

    Science.gov (United States)

    2010-01-01

    representing the differ- ent habitats: turtle grass leaves of all ages present within a shoot were analyzed with epiphytes from Stns WS12, WS13, WS16, and WS20...the larger autotrophic community consisting of phyto- plankton, epiphytic algae, and benthic macro- and microalgae. In these clear waters, mean...Falkowski 1997), an insignificant contribution. Seagrass system- wide productivity may also be altered by epiphytic growth on the seagrass leaves

  8. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    2015-01-01

    the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... strategies to improve operation performance and to meet the new plant performance criteria such as minimization of greenhouse gas (in particular of nitrous oxide) emissions....

  9. Temporal population dynamics of dinoflagellate Prorocentrum minimum in a semi-enclosed mariculture pond and its relationship to environmental factors and protozoan grazers

    Institute of Scientific and Technical Information of China (English)

    许恒龙; MIN; Gi-Sik; CHOI; Joong-Ki; 朱明壮; 姜勇; AL-RASHEID; Khaled; A.S.

    2010-01-01

    The ecological processes and interrelationships between protists,either autotrophic or heterotrophic,and environmental factors in mariculture ponds are largely unknown.This study investigated the temporal dynamics of potentially harmful dinoflagellate,Prorocentrum minimum (Pavillard) Schiller,and its relationship to physico-chemical factors and protozoan grazers over a complete cycle in a semi-enclosed shrimp-farming pond near Qingdao,Northern China.P.minimum occurred frequently in low numbers from June to ...

  10. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  11. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse.

    Science.gov (United States)

    dos Santos, Raquel Rezende; Araújo, Ofélia de Queiroz Fernandes; de Medeiros, José Luiz; Chaloub, Ricardo Moreira

    2016-03-01

    The feasibility of sugarcane vinasse as supplement in growth medium of Spirulina maxima was investigated. The cell was cultivated under autotrophic (no vinasse, 70 μmol photons m(-2) s(-1)), heterotrophic (no light, culture medium supplemented with vinasse at 0.1% v/v and 1.0% v/v) and mixotrophic conditions (70 μmol photons m(-2) s(-1), vinasse at 0.1% v/v and 1.0% v/v). These preliminary results suggested a cyclic two-stage cultivation - CTSC, with autotrophic condition during light phase of the photoperiod (12 h, 70-200 μmol photons m(-2) s(-1)) and heterotrophic condition during dark phase (12h, 3.0% v/v vinasse). The adopted CTSC strategy consisted in three cycles with 75% withdrawal of suspension and reposition of medium containing 3.0% v/v vinasse, separated by autotrophic rest periods of few days between cycles. Results show an increase of biomass concentration between 0.495 g L(-1) and 0.609 g L(-1) at the 7th day of each cycle and high protein content (between 74.3% and 77.3% w/w).

  12. Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain

    Directory of Open Access Journals (Sweden)

    O. Geertz-Hansen

    2011-04-01

    Full Text Available The metabolic balance of the open waters supporting submerged macrophytes of the Doñana marsh (SW Spain was investigated in spring, when community production is highest. The marsh community (benthic + pelagic was net autotrophic with net community production rates averaging 0.61 g C m−2 d−1, and gross production rates exceeding community respiration rates by, on average, 43%. Net community production increased greatly with increasing irradiance, with the threshold irradiance for communities to become net autotrophic ranging from 42 to 255 μE m−2 s−1, with net heterotrophic at lower irradiance. Examination of the contributions of the benthic and the pelagic compartments showed the pelagic compartment to be strongly heterotrophic (average P/R ratio = 0.27, indicating that the metabolism of the pelagic compartment is highly subsidised by excess organic carbon produced in the strongly autotrophic benthic compartment (average P/R = 1.58.

  13. Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain

    Directory of Open Access Journals (Sweden)

    O. Geertz-Hansen

    2010-08-01

    Full Text Available The metabolic balance of the open waters supporting submerged macrophytes of the Doñana marsh (SW Spain was investigated in spring, when community production is highest. The marsh community was net autotrophic with net community production rates averaging 0.61 g C m−2 d−1, and gross production rates exceeding community respiration rates by, on average, 43%. Net community production increased greatly with increasing irradiance, with the threshold irradiance for communities to become net autotrophic being 42 to 255 μE m−2 s−1, below which communities became net heterotrophic. Examination of the contributions of the benthic and the pelagic compartments showed the pelagic compartment to be strongly heterotrophic (average P/R ratio = 0.27, indicating that the metabolism of the pelagic compartment is strongly subsidised by excess organic carbon produced in the strongly autotrophic benthic compartment (average P/R = 1.58.

  14. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics.

    Science.gov (United States)

    Hobbie, Erik A; Högberg, Peter

    2012-10-01

    In this review, we synthesize field and culture studies of the 15N/14N (expressed as δ15N) of autotrophic plants, mycoheterotrophic plants, parasitic plants, soil, and mycorrhizal fungi to assess the major controls of isotopic patterns. One major control for plants and fungi is the partitioning of nitrogen (N) into either 15N-depleted chitin, ammonia, or transfer compounds or 15N-enriched proteinaceous N. For example, parasitic plants and autotrophic hosts are similar in δ15N (with no partitioning between chitin and protein), mycoheterotrophic plants are higher in δ15 N than their fungal hosts, presumably with preferential assimilation of fungal protein, and autotrophic, mycorrhizal plants are lower in 15N than their fungal symbionts, with saprotrophic fungi intermediate, because mycorrhizal fungi transfer 15N-depleted ammonia or amino acids to plants. Similarly, nodules of N2-fixing bacteria transferring ammonia are often higher in δ15N than their plant hosts. N losses via denitrification greatly influence bulk soil δ15N, whereas δ15N patterns within soil profiles are influenced both by vertical patterns of N losses and by N transfers within the soil-plant system. Climate correlates poorly with soil δ15N; climate may primarily influence δ15N patterns in soils and plants by determining the primary loss mechanisms and which types of mycorrhizal fungi and associated vegetation dominate across climatic gradients.

  15. Microbial Characterization of Denitrifying Sulifde Removal Sludge Using High-Throughput Amplicon Sequencing Method

    Institute of Scientific and Technical Information of China (English)

    Ma Wenjuan; Liu Chunshuang; Zhao Dongfeng; Guo Yadong; Wang Aijie; Jia Kuili

    2015-01-01

    The denitrifying sulifde removal (DSR) process has recently been studied extensively from an engineering per-spective. However, the importance of microbial communities of this process was generally underestimated. In this study, the microbial community structure of a lab-scale DSR reactor was characterized in order to provide a comprehensive insight into the key microbial groups in DSR system. Results from high-throughput sequencing analysis revealed that the frac-tion of autotrophic denitriifers increased from 2.34 % to 10.93% and 44.51% in the DSR system when the inlfuent NaCl increased from 0 g/L, to 4 g/L and 30 g/L, respectively. On the contrary, the fraction of heterotrophic denitriifers decreased from 61.74% to 39.57%, and 24.12%, respectively.Azoarcus andThiobacillus were the main autotrophic denitriifers, and Thauera was the main hetetrophic denitriifer during the whole process. This study could be useful for better understanding the interaction between autotrophs and heterotrophs in DSR system.

  16. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    Science.gov (United States)

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  17. Natural Denitrification in the Saturated Zone: A Review

    Science.gov (United States)

    Korom, Scott F.

    1992-06-01

    Denitrification is increasingly recognized for its ability to eliminate or reduce nitrate concentrations in groundwater. With this awareness comes a desire to predict the rate and extent of denitrification in aquifers. The limiting factor in making predictive models, however, is our limited knowledge of the physical characteristics of this process. This review synthesizes the published literature on natural aquifer denitrification. A background section discusses denitrification requirements and dissimilatory nitrate reduction to ammonium, which occurs in environments similar to those where denitrification occurs, and gives a historical perspective on denitrification. Other sections discuss denitrification with organic carbon serving as the electron donor (heterotrophic denitrification) and with reduced inorganic compounds serving as the electron donor (autotrophic denitrification). The section on heterotrophic denitrification is structured around two tables that summarize natural aquifer denitrification rates reported by laboratory studies and natural aquifer denitrification rates reported by field studies. The section on autotrophic denitrification discusses denitrification with reduced iron and reduced sulfur. Thus far, most studies only consider a single electron donor or donor type, whether heterotrophic or autotrophic. This review demonstrates, however, that multiple electron donors may be present in a given aquifer. Future research efforts are recommended to determine the factors affecting the availability of electron donors and their denitrification rates. Additional research is also suggested on how dissolved oxygen affects denitrification rates and on the factors influencing the partitioning of nitrate reduction products to nitrous oxide, a potential contributor to the destruction of the ozone layer, and to ammonium.

  18. Biokinetic model for nitrogen removal in free water surface constructed wetlands.

    Science.gov (United States)

    Gargallo, S; Martín, M; Oliver, N; Hernández-Crespo, C

    2017-06-01

    In this article, a mechanistic biokinetic model for nitrogen removal in free water surface constructed wetlands treating eutrophic water was developed, including organic matter performance due to its importance in nitrogen removal by denitrification. Ten components and fourteen processes were introduced in order to simulate the forms of nitrogen and organic matter, the mechanisms of autotrophic and heterotrophic microorganisms in both aerobic and anoxic conditions, as well as macrophytes nitrogen uptake and release. Dissolved oxygen was introduced as an input variable with a time step of 0.5days for mimicking eutrophic environments: aerobic conditions were assigned during daylight hours and anoxic conditions during the night. The sensitivity analysis showed that the most influential parameters were those related to the growth of heterotrophic and autotrophic microorganisms. The model was properly calibrated and validated in two full scale systems working in real conditions for treating eutrophic water from Lake L'Albufera (València). In the studied systems, ammonium was mainly removed by the growth of autotrophic microorganisms (nitrification) whereas nitrate was removed by the anoxic growth of heterotrophic microorganisms (denitrification). Macrophyte uptake removed between 9 and 19% of the ammonium entering to the systems, although degradation of dead standing macrophytes returned a significant part to water column.

  19. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Synthetic Biology of Cyanobacteria: Unique Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Bertram M Berla

    2013-08-01

    Full Text Available Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria’s potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as ‘chassis’ strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a ‘green E. coli’. In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints.

  1. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.

    Science.gov (United States)

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-01

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body.

  2. Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities.

    Science.gov (United States)

    Jennings, Ryan de Montmollin; Moran, James J; Jay, Zackary J; Beam, Jacob P; Whitmore, Laura M; Kozubal, Mark A; Kreuzer, Helen W; Inskeep, William P

    2017-01-01

    Although the biological fixation of CO2 by chemolithoautotrophs provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs as a carbon and energy source, the relative amounts of autotrophic C in chemotrophic microbial communities are not well-established. The extent and mechanisms of CO2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable (13)C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous "streamer" communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeota and Aquificales observed across this habitat range. Stable (13)C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the (13)C content of microbial community samples. Isotope mixing models showed that the minimum fractions of autotrophic C in microbial biomass were >50% in the majority of communities analyzed. The significance of CO2 as a C source in these communities provides a foundation for understanding community assembly and succession, and metabolic linkages among early-branching thermophilic autotrophs and heterotrophs.

  3. Characterization and evolution of natural aquatic biofilm communities exposed in vitro to herbicides.

    Science.gov (United States)

    Bricheux, Geneviève; Le Moal, Gwenaël; Hennequin, Claire; Coffe, Gérard; Donnadieu, Florence; Portelli, Christophe; Bohatier, Jacques; Forestier, Christiane

    2013-02-01

    River biofilms are assemblies of autotrophic and heterotrophic microorganisms that can be affected by pollutants such as those found in watersheds and wastewater treatment plants. In the laboratory, experimental biofilms were formed from river water, and their overall composition was investigated. Denaturing gradient gel electrophoresis (DGGE) and cytometry were used to assess the richness and diversity of these communities. The software Cytostack (available on request) was developed to treat and analyze the cytometric data. Measurements of chlorophyll-a and carotenoids were used to assess the global composition of the photoautotrophic community, whereas proteins, polysaccharides (PS) content, and esterase activities were used to assess overall changes in the mixed communities. We evaluated the effects that 3 weeks of treatment with the herbicides diuron and glyphosate (10 μg L(-1)) had on these biofilms. Exposed to diuron, bacterial communities adapted, changing their composition. Glyphosate inhibited growth of one autotrophic community but caused no chlorophyll deficit. As a whole, the biofilm acted as a micro-ecosystem, able to regulate and maintain a constant level of photosynthetic pigment through the structural adaptation of the autotrophic community. These results are one more proof that microbial diversity of aquatic biofilms is influenced by chemical stresses, potentially leading to disturbances within the ecosystems.

  4. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.

    Science.gov (United States)

    Esparza, Mario; Jedlicki, Eugenia; Dopson, Mark; Holmes, David S

    2015-08-01

    Autotrophic fixation of carbon dioxide into cellular carbon occurs via several pathways but quantitatively, the Calvin-Benson-Bassham cycle is the most important. CbbR regulates the expression of the cbb genes involved in CO2 fixation via the Calvin-Benson-Bassham cycle in a number of autotrophic bacteria. A gene potentially encoding CbbR (cbbR(AF)) has been predicted in the genome of the chemolithoautotrophic, extreme acidophile Acidithiobacillus ferrooxidans. However, this microorganism is recalcitrant to genetic manipulation impeding the experimental validation of bioinformatic predictions. Two novel functional assays were devised to advance our understanding of cbbR(AF) function using the mutated facultative autotroph Ralstonia eutropha H14 ΔcbbR as a surrogate host to test gene function: (i) cbbR(AF) was expressed in R. eutropha and was able to complement ΔcbbR; and (ii) CbbR(AF) was able to regulate the in vivo activity of four A. ferrooxidans cbb operon promoters in R. eutropha. These results open up the use of R. eutropha as a surrogate host to explore cbbR(AF) activity.

  5. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance.

  6. Carbon and nitrogen gain during the growth of orchid seedlings in nature.

    Science.gov (United States)

    Stöckel, Marcus; Těšitelová, Tamara; Jersáková, Jana; Bidartondo, Martin I; Gebauer, Gerhard

    2014-04-01

    For germination and establishment, orchids depend on carbon (C) and nutrients supplied by mycorrhizal fungi. As adults, the majority of orchids then appear to become autotrophic. To compare the proportional C and nitrogen (N) gain from fungi in mycoheterotrophic seedlings and in adults, here we examined in the field C and N stable isotope compositions in seedlings and adults of orchids associated with ectomycorrhizal and saprotrophic fungi. Using a new highly sensitive approach, we measured the isotope compositions of seedlings and adults of four orchid species belonging to different functional groups: fully and partially mycoheterotrophic orchids associated with narrow or broad sets of ectomycorrhizal fungi, and two adult putatively autotrophic orchids associated exclusively with saprotrophic fungi. Seedlings of orchids associated with ectomycorrhizal fungi were enriched in (13) C and (15) N similarly to fully mycoheterotrophic adults. Seedlings of saprotroph-associated orchids were also enriched in (13) C and (15) N, but unexpectedly their enrichment was significantly lower, making them hardly distinguishable from their respective adult stages and neighbouring autotrophic plants. We conclude that partial mycoheterotrophy among saprotroph-associated orchids cannot be identified unequivocally based on C and N isotope compositions alone. Thus, partial mycoheterotrophy may be much more widely distributed among orchids than hitherto assumed.

  7. Soil CO2 efflux in an old-growth southern conifer forest (Agathis australis) - magnitude, components and controls

    Science.gov (United States)

    Schwendenmann, Luitgard; Macinnis-Ng, Cate

    2016-08-01

    Total soil CO2 efflux and its component fluxes, autotrophic and heterotrophic respiration, were measured in a native forest in northern Aotearoa-New Zealand. The forest is dominated by Agathis australis (kauri) and is on an acidic, clay rich soil. Soil CO2 efflux, volumetric soil water content and soil temperature were measured bi-weekly to monthly at 72 sampling points over 18 months. Trenching and regression analysis was used to partition total soil CO2 efflux into heterotrophic and autotrophic respiration. The effect of tree structure was investigated by calculating an index of local contribution (Ic, based on tree size and distance to the measurement location) followed by correlation analysis between Ic and total soil CO2 efflux, root biomass, litterfall and soil characteristics. The measured mean total soil CO2 efflux was 3.47 µmol m-2 s-1. Autotrophic respiration accounted for 25 % (trenching) or 28 % (regression analysis) of total soil CO2 efflux. Using uni- and bivariate models showed that soil temperature was a poor predictor of the temporal variation in total soil CO2 efflux (mineral soil CN ratio within 5-6 m of the sampling points. Using multiple regression analysis revealed that 97 % of the spatial variability in total soil CO2 efflux in this kauri-dominated stand was explained by root biomass and soil temperature. Our findings suggest that biotic factors such as tree structure should be investigated in soil carbon related studies.

  8. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  9. Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia

    Science.gov (United States)

    Elloumi, Jannet; Carrias, Jean-François; Ayadi, Habib; Sime-Ngando, Télesphore; Bouaïn, Abderrahmen

    2009-01-01

    The composition and distribution of the main planktonic halophilic micro-organisms (heterotrophic and autotrophic picoplankton, nanoplankton, phytoplankton, ciliates) and metazooplankton were investigated in six ponds of increasing salinity in the solar salt works of Sfax, Tunisia, from January to December 2003. Marked changes in the composition and biomass of the communities were found along the salinity gradient, especially at salinities of 150 and 350. Autotrophic picoplankton, nanoplankton, diatoms, dinoflagellates and ciliates characterized the less salted ponds. Planktonic biomass was the highest at intermediate salinity as a consequence of a bloom of Ochromonas. Species richness of phytoplankton, ciliates and zooplankton greatly decrease above a salinity of 150 and typical halophiles ( Dunaliella salina, cyanobacteria, Fabrea salina and Artemia salina) were found between 150 and 350 salinity. In this environment, F. salina appeared more adapted than the brine shrimp to survive during phytoplankton blooms. The halophilic plankton was however almost entirely composed of heterotrophic prokaryotes in the crystallizers. We thus observed a progressive disappearance of the autotrophic planktonic communities along the salinity gradient. Multivariate analysis of the communities provides evidence that ponds represent discrete aquatic ecosystems within this salt works.

  10. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Science.gov (United States)

    Dahoumane, Si Amar; Yéprémian, Claude; Djédiat, Chakib; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2016-03-01

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7-8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  11. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills.

    Science.gov (United States)

    Fang, Yuan; Du, Yao; Feng, Huan; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-04-01

    Because H2S emitted by landfill sites has seriously endangered human health, its removal is urgent. H2S removal by use of an autotrophic denitrification landfill biocover has been reported. In this process, nitrate-reducing and sulfide-oxidizing bacteria use a reduced sulfur source as electron donor when reducing nitrate to nitrogen gas and oxidizing sulfur compounds to sulfate. The research presented here was performed to investigate the possibility of endogenous mitigation of H2S by autotrophic denitrification of landfill waste. The sulfide oxidation bioprocess accompanied by nitrate reduction was observed in batch tests inoculated with mineralized refuse from a landfill site. Repeated supply of nitrate resulted in rapid oxidation of the sulfide, indicating that, to a substantial extent, the bioprocess may be driven by functional microbes. This bioprocess can be realized under conditions suitable for the autotrophic metabolic process, because the process occurred without addition of acetate. H2S emissions from landfill sites would be substantially reduced if this bioprocess was introduced.

  12. Synthetic biology of cyanobacteria: unique challenges and opportunities.

    Science.gov (United States)

    Berla, Bertram M; Saha, Rajib; Immethun, Cheryl M; Maranas, Costas D; Moon, Tae Seok; Pakrasi, Himadri B

    2013-01-01

    Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as "chassis" strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a "green E. coli." In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints.

  13. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  14. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  15. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    Science.gov (United States)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root

  16. Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater.

    Science.gov (United States)

    Park, Jung-Hun; Choi, Okkyoung; Lee, Tae-Ho; Kim, Hyunook; Sang, Byoung-In

    2016-11-01

    Wastewaters from swine farms, nitrogen-dealing industries or side-stream processes of a wastewater treatment plant (e.g., anaerobic digesters, sludge thickening processes, etc.) are characterized by low C/N ratios and not easily treatable. In this study, a hollow fiber-membrane biofilm reactors (HF-MBfR) system consisting of an O2-based HF-MBfR and an H2-based HF-MBfR was applied for treating high-strength wastewater. The reactors were continuously operated with low supply of O2 and H2 and without any supply of organic carbon for 250 d. Gradual increase of ammonium and nitrate concentration in the influent showed stable and high nitrogen removal efficiency, and the maximum ammonium and nitrate removal rates were 0.48 kg NH4(+)-N m(-3) d(-1) and 0.55 kg NO3(-)-N m(-3) d(-1), respectively. The analysis of the microbial communities using pyrosequencing analysis indicated that Nitrosospira multiformis, ammonium-oxidizing bacteria, and Nitrobacter winogradskyi and Nitrobacter vulgaris, nitrite-oxidizing bacteria were highly enriched in the O2-based HF-MBfR. In the H2-based HF-MBfR, hydrogenotrophic denitrifying bacteria belonging to the family of Thiobacillus and Comamonadaceae were initially dominant, but were replaced to heterotrophic denitrifiers belonging to Rhodocyclaceae and Rhodobacteraceae utilizing by-products induced from autotrophic denitrifying bacteria. The pyrosequencing analysis of microbial communities indicates that the autotrophic HF-MBfRs system well developed autotrophic nitrifying and denitrifying bacteria within a relatively short period to accomplish almost complete nitrogen removal.

  17. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  18. The influence of surface low-salinity waters and cold subsurface water masses on picoplankton and ultraplankton distribution in the continental shelf off Rio de Janeiro, SE Brazil

    Science.gov (United States)

    Moser, G. A. O.; Castro, N. O.; Takanohashi, R. A.; Fernandes, A. M.; Pollery, R. C. G.; Tenenbaum, D. R.; Varela-Guerra, J.; Barrera-Alba, J. J.; Ciotti, A. M.

    2016-06-01

    The smallest phytoplankton groups named picoplankton and ultraplankton can be responsible for about 50-80% of the primary production rates in oligotrophic waters, due to their high surface/volume ratios that enables them for competitive growth rates relative to bigger cells under low light and low nutrient availability. The role of picoplankton and ultraplankton in coastal dynamic regions is less clear. This work relates the spatial distribution of autotrophic and heterotrophic components of these communities to the different properties of the water masses in the Southeastern Brazilian Continental Shelf, generally considered oligotrophic. Picoplankton and ultraplankton communities were related to nutrients present in the subsurface South Atlantic Central Water and waters with salinities below 35.5 originated from different estuarine systems. The enhance of autotrophs were also associated with a near shore feature related to topographic effects of São Sebastião Island to the local currents, first reported in this article. A core of higher chlorophyll a concentration, associated with the northeastward current flow at approximately 21 m depth below the surface, was identified as a dome-like shape. This core dissipated in the subsequent days suggesting that the flow towards NE was no longer a permanent feature two days after its observation. Locally enhancement of the contribution of picoplanktonic and ultraplanktonic autotrophs was observed in the surface and at the deep chlorophyll maximum depth associated with the chlorophyll core. Heterotrophs were more abundant inside and at the mouth of Guanabara Bay as well as inside Sepetiba Bay where light levels were low.

  19. Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations

    Directory of Open Access Journals (Sweden)

    Jahangir Vajed Samiei

    2015-06-01

    Full Text Available With on-going climate change, coral susceptibility to thermal stress constitutes a central concern in reefconservation. In the Persian Gulf, coral reefs are confronted with a high seasonal variability in water temperature, and both hot and cold extremes have been associated with episodes of coral bleaching and mortality. Using physiological performance as a measure of coral health, we investigated the thermal susceptibility of the common acroporid, Acropora downingi, near Hengam Island where the temperature oscillates seasonally in the range 20.2–34.2 °C. In a series of two short-term experiments comparing coral response in summer versus winter conditions, we exposed corals during each season (1 to the corresponding seasonal average and extreme temperature levels in a static thermal environment, and (2 to a progressive temperature deviation from the annual mean toward the corresponding extreme seasonal value and beyond in a dynamic thermal environment. We monitored four indictors of coral physiological performance: net photosynthesis (Pn, dark respiration (R, autotrophic capability (Pn/R, and survival. Corals exposed to warming during summer showed a decrease in net photosynthesis and ultimately died, while corals exposed to cooling during winter were not affected in their photosynthetic performance and survival. Coral autotrophic capability Pn/R was lower at the warmer thermal level within eachseason, and during summer compared to winter. Corals exposed to the maximum temperature of summer displayed Pn/R < 1, inferring that photosynthetic performance could not support basal metabolic needs under this environment. Our results suggest that the autotrophic performance of the Persian Gulf A. downingi is sensitive to the extreme temperatures endured in summer, and therefore its populations may be impacted by future increases in water temperature.

  20. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean

    Directory of Open Access Journals (Sweden)

    F. Gazeau

    2005-01-01

    Full Text Available Planktonic and benthic incubations (bare and Posidonia oceanica vegetated sediments were performed at monthly intervals from March 2001 to October 2002 in a seagrass vegetated area of the Bay of Palma (Mallorca, Spain. Results showed a contrast between the planktonic compartment, which was on average near metabolic balance (−4.6±5.9 mmol O2 m-2 d-1 and the benthic compartment, which was autotrophic (17.6±8.5 mmol O2 m-2 d-1. During two cruises in March and June 2002, planktonic and benthic incubations were performed at several stations in the bay to estimate the whole-system metabolism and to examine its relationship with partial pressure of CO2 (pCO2 and apparent oxygen utilisation (AOU spatial patterns. Moreover, during the second cruise, when the residence time of water was long enough, net ecosystem production (NEP estimates based on incubations were compared, over the Posidonia oceanica meadow, to rates derived from dissolved inorganic carbon (DIC and oxygen (O2 mass balance budgets. These budgets provided NEP estimates in fair agreement with those derived from direct metabolic estimates based on incubated samples over the Posidonia oceanica meadow. Whereas the seagrass community was autotrophic, the excess organic carbon production therein could only balance the planktonic heterotrophy in shallow waters relative to the maximum depth of the bay (55 m. This generated a horizontal gradient from autotrophic or balanced communities in the shallow seagrass-covered areas, to strongly heterotrophic communities in deeper areas of the bay. It seems therefore that, on an annual scale in the whole bay, the organic matter production by the Posidonia oceanica may not be sufficient to fully compensate the heterotrophy of the planktonic compartment, which may require external organic carbon inputs, most likely from land.

  1. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, H; Sahin, M; Nogales, J; Latif, H; Lovley, DR; Ebrahim, A; Zengler, K

    2013-11-25

    Background: The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H-2/CO2, and more importantly on synthesis gas (H-2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results: Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions: iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels.

  2. Microbial ecology of a novel sulphur cycling consortia from AMD: implications for acid generation

    Science.gov (United States)

    Loiselle, L. M.; Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Recent work1 identified a novel microbial consortia consisting of two bacterial strains common to acid mine drainage (AMD) environments (autotrophic sulphur oxidizer Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp.) in an environmental enrichment from a mine tailings lake. The two strains showed a specific spatial arrangement within an EPS macrostructure or "pod" allowing linked metabolic redox cycling of sulphur. Sulphur species characterisation of the pods using scanning transmission X-ray microscopy (STXM) indicated that autotrophic tetrathionate disproportionation by A. ferrooxidans producing colloidal elemental sulphur (S0) is coupled to heterotrophic S0 reduction by Acidiphilium spp. Geochemical modelling of the microbial sulphur reactions indicated that if they are widespread in AMD environments, then global AMD-driven CO2 liberation from mineral weathering have been overestimated by 40-90%1. Given the common co-occurrence of these two bacteria in AMD settings, the purpose of this study was to evaluate if these pods could be induced in the laboratory by pure strains and if so, whether their combined sulphur geochemistry mimicked the previous findings. Laboratory batch experiments assessed the development of pods with pure strain type cultures (A. ferrooxidans ATCC 19859 with mixotroph Acidiphilium acidophilum ATCC 738 or strict heterotroph Acp. cryptum ATCC 2158) using fluorescent in situ hybridization (FISH) imaging. The microbial sulphur geochemistry was characterized under autotrophic conditions identical to those used with the environmental AMD enrichment in which the pods were discovered. Results showed that the combined pure strain A. ferrooxidans and Acp. acidophilum form pods identical in structure to the AMD enrichment. To test the hypothesis that these pods form for mutual metabolic benefit, experiments were performed amending pure strain and AMD enrichment bacterial treatments with organic carbon and/or additional sulphur to

  3. MIXOTROPHIC GROWTH OF THE MICROALGAE NANNOCHLOROPSIS OCULATA (EUSTIGMATALES: MONODOPSIDACEAE ON BIOLOGICAL FISH ENSILAGE MEDIUM

    Directory of Open Access Journals (Sweden)

    Sánchez-Torres, H.

    2008-07-01

    Full Text Available Nannochloropsis oculata was grown in batch culture during 12 days until stationary phase, under constant temperature and illumination 24 h per day, using three different culture media (T1 – Guillard F/2, T2 – Yashima and T3 –biological fish ensilage. We found that N. oculata reached high cellular densities in treatment T3, although it showed low chlorophyll concentrations per biomass unit, which is inconsistent with autotrophic growth. It suggests that N. oculata could growth mixotrophically in biological fish ensilage.

  4. Pollen size strongly correlates with stigma depth among Pedicularis species

    Institute of Scientific and Technical Information of China (English)

    Xiang-Ping Wang; Wen-Bin Yu; Shi-Guo Sun; Shuang-Quan Huang

    2016-01-01

    Darwin proposed that pollen size should be positively correlated with stigma depth rather than style length among species given that pollen tubes first enter the stigma autotrophically, then grow through the style heterotrophically. However, studies often show a positive relationship between pollen size and style length. Five floral traits were observed to be correlated among 42 bumblebee-pollinated Pedicularis species (Orobanchaceae) in which stigmas are distinct from styles. The phylogenetic independent contrast analysis revealed that pollen grain volume was more strongly correlated with stigma depth than with style length, consistent with Darwin’s functional hypothesis between pollen size and stigma depth.

  5. The ecological effect of CO2 on the brown algae Fucus serratus and its epibionts: From the habitat to the organismic scale.

    OpenAIRE

    Saderne, Vincent

    2012-01-01

    Carbon dioxide plays a central role in the functioning of organisms and ecosystems. For autotrophs, it is the substrate for photosynthesis while for heterotrophs it is a waste product of respiration. For two centuries Human activities, are responsible for an increase from 280 to 380 μatm of the atmospheric pCO2. A further increase up to 1000 μatm is predicted for the 21th century. The ocean surface and the atmosphere are at the equilibrium for CO2. The CO2 dissolving in seawater reduces the p...

  6. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding......). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20 and 40 cm soil depths (i.e., within and below the nominal plough layer) using the two measurement...

  7. Increase in the biomass of some green algae species in nitrate and ammonium mediums depending on auto-, mixo- or heterotrophic conditions

    Directory of Open Access Journals (Sweden)

    Stefan Gumiński

    2014-02-01

    Full Text Available The increase in total dry mass and protein in cultures of Chlorella pyrenoidosa, Scenedesmus quadricauda and Ankistrodesmus acicularis was studied. Under autotrophic conditions, increases in dry mass were, as a rule, larger in the nitrate medium than in the ammonium one, under mixotrophic conditions the situation was reversed and in the case of heterotrophy, the individual species reacted differently. The dependence ot the protein content increase on the nitrate or ammonium form of the medium was not clear. Changes in time of the pH and rH of the mediums were followed and the interdependence of these changes with the production of biomass is discussed.

  8. Proteomic analysis of the purple sulfur bacterium Candidatus “Thiodictyon syntrophicum” strain Cad16T isolated from Lake Cadagno

    Directory of Open Access Journals (Sweden)

    Nicola Storelli

    2014-03-01

    Full Text Available Lake Cadagno is characterised by a compact chemocline with high concentrations of purple sulfur bacteria (PSB. 2D-DIGE was used to monitor the global changes in the proteome of Candidatus “Thiodictyon syntrophicum” strain Cad16T both in the presence and absence of light. This study aimed to disclose details regarding the dark CO2 assimilation of the PSB, as this mechanism is often observed but is not yet sufficiently understood. Our results showed the presence of 17 protein spots that were more abundant in the dark, including three enzymes that could be part of the autotrophic dicarboxylate/4-hydroxybutyrate cycle, normally observed in archaea.

  9. Drought impact on forest carbon dynamics and fluxes in Amazonia.

    Science.gov (United States)

    Doughty, Christopher E; Metcalfe, D B; Girardin, C A J; Amézquita, F Farfán; Cabrera, D Galiano; Huasco, W Huaraca; Silva-Espejo, J E; Araujo-Murakami, A; da Costa, M C; Rocha, W; Feldpausch, T R; Mendoza, A L M; da Costa, A C L; Meir, P; Phillips, O L; Malhi, Y

    2015-03-05

    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the

  10. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong;

    2013-01-01

    For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence...... of oxygen, yielding dinitrogen gas. This process, termed anammox, accounts for over 50% of nitrogen loss in marine ecosystems1–5. However, the significance of anammox in freshwater ecosystems has remained uncertain 6,7. Here, we use molecular and isotopic techniques to monitor anammox activity in sediments...

  11. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  12. Climate change and ocean acidification effects on seagrasses and marine macroalgae.

    Science.gov (United States)

    Koch, Marguerite; Bowes, George; Ross, Cliff; Zhang, Xing-Hai

    2013-01-01

    Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2 ], and lower carbonate [CO3 (2-) ] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2 ]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3 (-) ; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2 -only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2 ] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2 ] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2 ] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2 ] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H(+) and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA

  13. [Study of the growth and development of Chlorella on "Kosmos-1887"].

    Science.gov (United States)

    Sychev, V N; Levinskikh, M A; Livanskaia, O G

    1989-01-01

    The growth, development and population characteristics of Chlorella cells flown for 13 days in space were investigated during their postflight cultivation. The growth rate of flown algae did not differ from that of ground-based controls in terms of increases in the cell number and biomass. All basic parameters of the specimens (generation time, number of developing autospores, time ratio of developmental phases) were ontogentically normal. Exposure of the algae to space flight as a component of the algobacterial cenosis--fish autotrophic-heterotrophic system produced no significant effect of the population or individual specimens during their postflight cultivation.

  14. Characterization of purple and green photosynthetic bacteria isolated from the lagoon of Agatti Atoll (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    suspende d in sucros e solution showe d marke d peak s a t 749 , 486 , 42 3 an d 380 nm. The methanoli c extracts of cells showed peaks at 666 and 435 nm. When th e character s o f thes e culture s wer e com hyphenminus pared with thos e of photosyntheti c... characters , cell size and ability for photo hyphenminus autotroph y permit the m to be tentatively identified as Chromatium violascens. The possibilit y o f identifying th e presen t strai n a s either Chr. warmingii o r Chr. buderi whic h ar e als o...

  15. AN ECOSYSTEM MODEL OF FISHERIES AND NUTRIENT ENRICHMENT

    DEFF Research Database (Denmark)

    Nguyen, Thanh Viet; Vestergaard, Niels

    2009-01-01

      Economic models of fishery largely ignore the linkages to lower trophic levels. In particular, environmental data and other bottom-up information is widely disregarded. Nor are changes in physical environment (bottom-up) alongside both exogenous and endogenous environmental effects included...... in the general ecosystem models. The objectives of this paper are modeling the impacts of nutrient enrichment on fisheries; particularly the impacts on consumer stocks and the fisheries based on these stocks are presented. We consider an aquatic ecosystem with four components: producers (autotrophs), consumers...

  16. Towards an optimal experimental design for N2O model calibration during biological nitrogen removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Valverde Pérez, Borja; Plósz, Benedek G.;

    substrates. Improving experimental designs for model calibration reduces prediction uncertainties. Moreover, the individual analysis of autotrophic and heterotrophic contribution to the total NO and N2O pool was assessed for already proposed model structures under different experimental scenarios....... The results show the need for information-rich experiemental designs to assess the predicting capabilities of N2O models. This work represents a step further in understanding the N2O production and emissions associated to conventional wastewater treatment. Moreovere, it will facilitate the development...

  17. Immobilized reactor for rapid destruction of recalcitrant organics and inorganics in tannery wastewater

    Institute of Scientific and Technical Information of China (English)

    A. Ganesh Kumar; G. Sekaran; S. Swarnalatha; B. Prasad Rao

    2005-01-01

    The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic activated carbon oxidation(CAACO) reactor, an immobilized cell reactor using chemoautotrophs for the treatment of tannery wastewater. The treatment scheme comprised of anaerobic treatment, sand filtration, and CAACO reactor, which remove COD, BOD, TOC, VFA and sulphides respectively by 86%, 95%, 81%,71% and 100%. Rice bran mesoporous activated carbon prepared indigenously and was used for immobilization of chemoautotrophs. The degradation of xenobiotic compounds by CAACO was confirmed through HPLC and FT-IR techniques.

  18. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...... metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure...

  19. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Composition of phytoplankton in the Bransfield Strait and Elephant Island during austral summer of 1999

    Directory of Open Access Journals (Sweden)

    Sonia Sánchez

    2014-06-01

    Full Text Available The authors inform about the composition and distribution of phytoplanktonic community between the first 75 m of depth in Bransfield Strait y around the Elephant island, during the ANTAR X expedition in the 1999 Austral Summer (22nd–29th January 1999. The higher cellular concentration (500 cel/mL was given by the autotrophic nanoplankton, with a high density mainly on the bay stations and down the first 25 m of depth. Among the most representative species we have Leucocryptos marina, Phaeocystis antarctica, the Monadas and the pennate diatoms.

  1. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  2. TOR signalling in plants.

    Science.gov (United States)

    Rexin, Daniel; Meyer, Christian; Robaglia, Christophe; Veit, Bruce

    2015-08-15

    Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.

  3. Coupling of dimethylsulfide oxidation to biomass production by a marine flavobacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Green, D.H.; Shenoy, D.M.; Hart, M.C.; Hatton, A

    . Gabric, A., N. Murray, L. Stone, and M. Kohl. 1993. Modelling the production of dimethylsulfide during a phytoplankton bloom. J Geophys Res 98:22,805. 11. Gomez-Pereira, P. R., B. M. Fuchs, C. Alonso, M. J. Oliver, J. E. E. van Beusekom, and R. Amann... sulfidophilus: A bacterium which grows autotrophically with dimethylsulphide as electron donor. Microbiology 140:1953-1958. 15. Hatton, A. D. 2002. Influence of photochemistry on the marine biogeochemical cycle of dimethylsulphide in the northern North Sea...

  4. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, L.G.; Wiegel, J.; Peck, H.D. Jr.; Mortenson, L.E.

    1993-08-31

    This report focuses on the bioconversion of cellulose to methane by various anaerobes. The structure and enzymatic activity of cellulosome and polycellulosome was studied in Clostridium thermocellum. The extracellular enzymes involved in the degradation of plant material and the physiology of fermentation was investigated in anaerobic fungi. Enzymes dealing with CO, CO{sub 2}, H{sub 2}, CH{sub 3}OH, as well as electron transport and energy generation coupled to the acetyl-CoA autotrophic pathway was studied in acetogenic clostridia.

  5. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes

    Directory of Open Access Journals (Sweden)

    J. Elster

    2007-06-01

    Full Text Available Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves, micro-fungi (hyphae and spores, bacteria (rod, cocci and red clusters, yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area, Andean snow (Illimani, Bolivia, Antarctic aerosol filters (Dumont d'Urville, Terre Adélie, and Antarctic inland ice (Terre Adélie. Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation. Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and

  6. Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments.

    Directory of Open Access Journals (Sweden)

    Thomas eAullo

    2013-12-01

    Full Text Available Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2 and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review.

  7. Microbial ecology studies at two coal mine refuse sites in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R. M.; Cameron, R. E.

    1978-01-01

    An investigation was made of the microflora associated with coal refuse at two abandoned mines in the midwestern United States. Information was gathered for both the edaphic and the biotic composition of the refuse material. Emphasis was placed on heterotrophic and autotrophic components as to numbers, kinds, and physiological groups. The presence of chemolithotrophs was also investigated. The relationship between abiotic and biotic components in regard to distribution of bacteria, fungi, and algae is discussed. Information presented in this report will be utilized in assessing trends and changes in microbial numbers and composition related to manipulations of the edaphic and biotic ecosystem components associated with reclamation of the refuse piles.

  8. Reactor-Scale Cultivation of the Hyperthermophilic Methanarchaeon Methanococcus jannaschii to High Cell Densities

    OpenAIRE

    Mukhopadhyay, Biswarup; Johnson, Eric F.; Wolfe, Ralph S.

    1999-01-01

    For the hyperthermophilic and barophilic methanarchaeon Methanococcus jannaschii, we have developed a medium and protocols for reactor-scale cultivation that improved the final cell yield per liter from ∼0.5 to ∼7.5 g of packed wet cells (∼1.8 g dry cell mass) under autotrophic growth conditions and to ∼8.5 g of packed wet cells (∼2 g dry cell mass) with yeast extract (2 g liter−1) and tryptone (2 g liter−1) as medium supplements. For growth in a sealed bottle it was necessary to add Se to th...

  9. Bioprocess Engineering Aspects of Biopolymer Production by the Cyanobacterium Spirulina Strain LEB 18

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Martins

    2014-01-01

    Full Text Available Microbial biopolymers can replace environmentally damaging plastics derived from petrochemicals. We investigated biopolymer synthesis by the cyanobacterium Spirulina strain LEB 18. Autotrophic culture used unmodified Zarrouk medium or modified Zarrouk medium in which the NaNO3 content was reduced to 0.25 g L−1 and the NaHCO3 content reduced to 8.4 g L−1 or increased to 25.2 g L−1. Heterotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 with the NaHCO3 replaced by 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose (C6H12O6 or sodium acetate (CH3COONa. Mixotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 plus 16.8 g L−1 NaHCO3 with the addition of 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose or sodium acetate. The highest biopolymer yield was 44% when LEB 18 was growing autotrophically in media containing 0.25 g L−1 NaNO3 and 8.4 g L−1 NaHCO3.

  10. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2016-10-01

    Full Text Available To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC fixation, community composition (16S rRNA sequencing and community gene expression (metatranscriptomics in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e. pyruvate plus acetate were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates —assumed to be related to autotrophic metabolisms— were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  11. Hydrogen consumption by methanogens on the early Earth

    Science.gov (United States)

    Kral, T. A.; Brink, K. M.; Miller, S. L.; McKay, C. P.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is possible that the first autotroph used chemical energy rather than light. This could have been the main source of primary production after the initial inventory of abiotic organic material had been depleted. The electron acceptor most readily available for use by this first chemoautotroph would have been CO2. The most abundant electron donor may have been H2 that would have been outgassing from volcanoes at a rate estimated to be as large as 10(12) moles yr-1, as well as from photo-oxidation of Fe+2. We report here that certain methanogens will consume H2 down to partial pressures as low as 4 Pa (4 x 10(-5) atm) with CO2 as the sole carbon source at a rate of 0.7 ng H2 min-1 microgram-1 cell protein. The lower limit of pH2 for growth of methanogens can be understood on the basis that the pH2 needs to be high enough for one ATP to be synthesized per CO2 reduced. The pH2 values needed for growth measured here are consistent with those measured by Stevens and McKinley for growth of methanogens in deep basalt aquifers. H2-consuming autotrophs are likely to have had a profound effect on the chemistry of the early atmosphere and to have been a dominant sink for H2 on the early Earth after life began rather than escape from the Earth's atmosphere to space.

  12. Synthetic biology for CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Cai, Zhen; Li, Yin

    2016-11-01

    Recycling of carbon dioxide (CO2) into fuels and chemicals is a potential approach to reduce CO2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO2-derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO2-fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO2-fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO2-fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO2.

  13. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    Directory of Open Access Journals (Sweden)

    Adarme-Vega T

    2012-07-01

    Full Text Available Abstract Omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5 and DHA (C22:6 and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.

  14. Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms.

    Science.gov (United States)

    Morsy, Fatthy Mohamed

    2011-01-01

    This work was devoted to separate acetate role in creating anaerobiosis from that of sulfur deprivation. Chlamydomonas reinhardtii grown in TAP (Tris-acetate-phosphate) medium was resuspended in sulfur-replete or -deprived medium in sealed or nonsealed cultures. Sulfur deprivation was substantial for starch accumulation and hydrogen evolution; however, acetate induced anaerobiosis in the presence or absence of sulfur in only sealed cultures. In nonsealed cultures, Chlamydomonas did not lose its photosynthetic activity; however, it was arrested in anoxia with no photosynthetic activity as long as the culture was sealed. The sealed cultures resumed photosynthesis upon unsealing overnight unless the cells died by anoxia at late stage of the experiment. These results indicate that the enhanced oxygen consumption for the enormous acetate respiration and inhibition of the external oxygen supply in sealed cultures of Chlamydomonas are the main reasons for the steady anaerobic conditions. Although acetate was substantial for creating anaerobiosis in Chlamydomonas, sulfur deprivation alone could create anaerobiosis in Spirulina platensis grown autotrophically. Hydrogen evolution and glycogen accumulation were induced under such conditions. Severely reduced phycocyanin, chlorophyll and photosynthesis, while respiration had increased, induced anaerobiosis in Spirulina. This study reports for the first time anaerobiosis under autotrophic conditions in a cyanobacterium.

  15. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data.

    Science.gov (United States)

    Mangiapia, Mary; Scott, Kathleen

    2016-04-01

    The factors driving the dominance of the Calvin-Benson-Bassham cycle (CBB) or reductive citric acid cycle (rCAC) in autotrophic microorganisms in different habitats are debated. Based on costs for synthesizing a few metabolic intermediates, it has been suggested that the CBB poses a disadvantage due to higher metabolic cost. The purpose of this study was to extend this estimate of cost from metabolite synthesis to biomass synthesis. For 12 gammaproteobacteria (CBB) and five epsilonproteobacteria (rCAC), the amount of ATP to synthesize a gram of biomass from CO2 was calculated from genome sequences via metabolic maps. The eleven central carbon metabolites needed to synthesize biomass were all less expensive to synthesize via the rCAC (66%-89% of the ATP needed to synthesize them via CBB). Differences in cell compositions did result in differing demands for metabolites among the organisms, but the differences in cost to synthesize biomass were small among organisms that used a particular pathway (e.g. rCAC), compared to the difference between pathways (rCAC versus CBB). The rCAC autotrophs averaged 0.195 moles ATP per g biomass, while their CBB counterparts averaged 0.238. This is the first in silico estimate of the relative expense of both pathways to generate biomass.

  16. Picoplankton Community Composition by CARD-FISH and Flow Cytometric Techniques: A Preliminary Study in Central Adriatic Sea Water

    Directory of Open Access Journals (Sweden)

    Anita Manti

    2012-01-01

    Full Text Available Data concerning picoplanktonic community composition and abundance in the Central Adriatic Sea are presented in an effort to improve the knowledge of bacterioplankton and autotrophic picoplankton and their seasonal changes. Flow cytometry analyses revealed the presence of two distinct bacteria populations: HNA and LNA cells. HNA cells showed an explicit correlation with viable and actively respiring cells. The study of viability and activity may increase our knowledge of the part that contributes really to the remineralization and bacterial biomass production. Authotrophic picoplankton abundance, especially picocyanobacteria, was strongly influenced by seasonality, indicating that light availability and water temperature are very important regulating factors. In terms of total carbon biomass, the main contribution came from heterotrophic bacteria with a lower contribution from autotrophic picoplankton. CARD-FISH evidenced, within the Eubacteria domain, the dominance of members of the phyla Alphaproteobacteria, with a strong contribution from SAR11clade, followed by Cytophaga-Flavobacterium and Gammaproteobacteria. The bacterial groups detected contributed differently depending when the sample was taken, suggesting possible seasonal patterns. This study documents for the first time picoplankton community composition in the Central Adriatic Sea using two different approaches, FCM and CARD-FISH, and could provide preliminary data for future studies.

  17. The Temporal Dynamics of Coastal Phytoplankton and Bacterioplankton in the Eastern Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Ofrat Raveh

    Full Text Available This study considers variability in phytoplankton and heterotrophic bacterial abundances and production rates, in one of the most oligotrophic marine regions in the world-the Levantine Basin. The temporal dynamics of these planktonic groups were studied in the coastal waters of the southeastern Mediterranean Sea approximately every two weeks for a total of two years. Heterotrophic bacteria were abundant mostly during late summer and midwinter, and were positively correlated with bacterial production and with N2 fixation. Based on size fractionating, picophytoplankton was abundant during the summer, whereas nano-microphytoplankton predominated during the winter and early spring, which were also evident in the size-fractionated primary production rates. Autotrophic abundance and production correlated negatively with temperature, but did not correlate with inorganic nutrients. Furthermore, a comparison of our results with results from the open Levantine Basin demonstrates that autotrophic and heterotrophic production, as well as N2 fixation rates, are considerably higher in the coastal habitat than in the open sea, while nutrient levels or cell abundance are not different. These findings have important ecological implications for food web dynamics and for biological carbon sequestration in this understudied region.

  18. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi

    2016-11-01

    A combined process between micro-electrolysis and biological denitrification (MEBD) using iron scraps and an activated carbon-based micro-electrolysis carrier was developed for nitrogen removal under a microaerobic condition. The process provided NH4(+)-N and total nitrogen (TN) removal efficiencies of 92.6% and 95.3%, respectively, and TN removal rate of 0.373±0.11kgN/(m(3)d) at corresponding DO of 1.0±0.1mg/L and HRT of 3h, and the optimal pH of 7.6-8.4. High-throughput sequencing analysis verified that dominant classes belonged to β-, α-, and γ-Proteobacteria, and Nitrospira. The dominant genera Hydrogenophaga and Sphaerotilus significantly increased during the operation, covering 13.2% and 6.1% in biofilms attached to the carrier in the middle of the reactor, respectively. Autotrophic denitrification contributed to >80% of the TN removal. The developed MEBD achieved efficient simultaneous nitrification and autotrophic denitrification, presenting significant potential for application in practical low organic carbon water treatment.

  19. Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Brito, Beltran; Janouškovec, Jan; Marhaver, Kristen L; Smith, Jennifer E; Keeling, Patrick; Rohwer, Forest L

    2011-05-01

    The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.

  20. Investigations into the transfer of cesium 137 and strontium 90 in selected exposure pathways. Final report; Untersuchungen ueber den Transfer von Caesium 137 und Strontium 90 in ausgewaehlten Belastungspfaden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roemmelt, R.; Hiersche, L.; Wirth, E.

    1991-12-01

    This research project investigates the behaviour of radiocesium and strontium 90 in natural conifer forest sites and derives corresponding transfer factors for radioecological calculations. As a point of particular interest the question was investigated in how far the requirements of the different mushroom species and the properties of the forest soil bear on the dynamics and transfer rate of radiocesium and strontium 90. To complement the investigations, autotrophic plants were included. The results of these studies are compared with the behaviour of the same radionuclides on farmland. The differences are discussed. (orig./HP). [Deutsch] Im Forschungsvorhaben wurde das Verhalten von Radiocaesium und Strontium 90 in den natuerlichen Nadelstandorten untersucht und entsprechende Transferfaktoren fuer radiooekologische Berechnungen abgeleitet. Besondere Aufmerksamkeit galt der Frage, inwieweit die Lebensweise der verschiedenen Pilzspezies und die Waldbodeneigenschaften die Dynamik und die Transferrate von Radiocaesium und Strontium 90 beeinflussen. Als Ergaenzung wurden autotrophe Pflanzen in die Untersuchungen einbezogen. Die Ergebnisse dieser Untersuchungen werden mit dem Verhalten dieser Radionuklide auf landwirtschaftlich genutzten Flaechen verglichen und die Unterschiede diskutiert. (orig./HP).

  1. Bacterial carbonatogenesis; La carbonatogenese bacterienne

    Energy Technology Data Exchange (ETDEWEB)

    Castanier, S. [Angers Univ., 49 (France). Faculte des Sciences; Le Metayer-Levrel, G.; Perthuisot, J.P. [Nantes Univ., 44 (France). Laboratoire de Biogeologie, Faculte des Sciences et des Techniques

    1998-12-31

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The `passive` carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The `active` carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author) 43 refs.

  2. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, C.; Garcia-Figueres, F.; Lovato, P.; Camprubi, A.

    2015-07-01

    Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr) P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72) and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5) media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment. (Author)

  3. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    Science.gov (United States)

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pHnitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  4. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  5. Energetics and Application of Heterotrophy in Acetogenic Bacteria.

    Science.gov (United States)

    Schuchmann, Kai; Müller, Volker

    2016-07-15

    Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens.

  6. Investigation of the Prebiotic Synthesis of Amino Acids and RNA Bases from CO2 using FeS/H2S as a Reducing Agent

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey

    1995-01-01

    An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purines, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role in the origin of metabolism or the origin of life.

  7. Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions.

    Science.gov (United States)

    Zhang, Zhen; Zheng, Guanyu; Lo, Irene M C

    2015-06-01

    The effect of microemulsion on the biodegradation of total petroleum hydrocarbons (TPH) in nitrate-induced bioremediation of marine sediment was investigated in this study. It was shown that the microemulsion formed with non-ionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), 1-pentanol, linseed oil, and either deionized water or seawater was stable when subjected to dilution by seawater. Desorption tests revealed that microemulsion was more effective than the Tween 80 solution or the solution containing Tween 80 and 1-pentanol to desorb TPH from marine sediment. In 3 weeks of bioremediation treatment, the injection of microemulsion and NO3 (-) seems to have delayed the autotrophic denitrification between NO3 (-) and acid volatile sulfide (AVS) in sediment compared to the control with NO3 (-) injection alone. However, after 6 weeks of treatment, the delaying effect of microemulsion on the autotrophic denitrification process was no longer observed. In the meantime, the four injections of microemulsion and NO3 (-) resulted in as high as 29.73 % of TPH degradation efficiency, higher than that of two injections of microemulsion and NO3 (-) or that of four or two injections of NO3 (-) alone. These results suggest that microemulsion can be potentially applied to enhance TPH degradation in the nitrate-induced bioremediation of marine sediment.

  8. Filamentous cyanobacteria fossils and their significance in the Permian-Triassic boundary section at Laolongdong, Chongqing

    Institute of Scientific and Technical Information of China (English)

    JIANG HongXia; WU YaSheng; CAI ChunFang

    2008-01-01

    The microbial communities blooming immediately after the end-Permian mass extinction represent abnormally extreme environments, and vary in different areas. In this study, filamentous cyanobacterial biota was found in the strata after the extinction in the famous Permian-Triassic boundary section at Laolongdong, Chongqing, southwest China. In thin sections, the filamentous cyanobacterial fossils are below 1 mm in length, and generally taper to one end, with the widest diameter up to 0.08 mm. Some of them are curved, indicating that they are soft in life. Their walls are composed of cryptocrystalline to microcrystalline calcites. The filaments have round cross section, and are internally filled with micrites and fine sparry calcites, which indicate that the filaments are originally empty. They are randomly dis-tributed in the rocks, but in some places, they tend to be distributed in radial pattern. The filamentous organisms are morphologically similar to Rivularia of Rivulariaceae, Cyanobacteria Phylum, but with calcified sheaths, and are tentatively regarded as an indeterminate new species in Rivularia: Rivularia sp. Cyanobacteria are photosynthetic autotrophic, and can survive in dysoxic condition. The blooming of this organism and the absence of other organisms may indicate that the environment was oxygen-deficient and shallow, since this photosynthetic autotrophic organism needed to live within photic zone.

  9. The Genome of the Epsilonproteobacterial Chemolithoautotroph Sulfurimonas dentrificans

    Energy Technology Data Exchange (ETDEWEB)

    USF Genomics Class; Sievert, Stefan M.; Scott, Kathleen M.; Klotz, Martin G.; Chain, Patrick S.G.; Hauser, Loren J.; Hemp, James; Hugler, Michael; Land, Miriam; Lapidus, Alla; Larimer, Frank W.; Lucas, Susan; Malfatti, Stephanie A.; Meyer, Folker; Paulsen, Ian T.; Ren, Qinghu; Simon, Jorg

    2007-08-08

    Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.

  10. Population dynamics of an algal bacterial cenosis in closed ecological system

    Science.gov (United States)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  11. Ecological role of algobacterial cenosis links (chlorella - associated microflora or associated bacteria)

    Science.gov (United States)

    Pechurkin, N. S.

    The problems of interrelation of microalgae and bacteria in the "autotroph - heterotroph" aquatic biotic cycle are discussed. The cause and mechanisms of algobacterial cenosis formation still have been explained contradictorily. This work views the results of experimental and theoretical study of algobacterial cenosis functioning by the example of microalga Chlorella vulgaris and associated microflora. The representatives of Pseudomonas mainly predominate in the Chlorella microbial complex. The experiment at non-sterile batch cultivation of Chlorella on Tamya medium showed that the biomass of microorganisms increases simultaneously with the increase of microalgal biomass. Microflora of Chlorella can use organic materials evolved by Chlorella after photosynthesis for reproduction. Moreover, microorganisms can use dying cells of Chlorella, i.e. form the "producer - reducer" biocycle. To understand the cenosis-forming role of microalgae the mathematical model of the "autotroph - heterotroph" aquatic biotic cycle was constructed taking into consideration the opportunities for microorganisms of using Chlorella photosynthates, dying cells and contribution of links to the nitrogen cycle. The theoretical investigation showed that the biomass of associated bacteria growing on glucose and detritus exceeds the biomass of bacteria using only microalgal photosynthates, which is comparable with experimental data.

  12. Significance of different microalgal species for growth of moon jellyfish ephyrae, Aurelia sp.1

    Science.gov (United States)

    Zheng, Shan; Sun, Xiaoxia; Wang, Yantao; Sun, Song

    2015-10-01

    The scyphozoan Aurelia aurita (Linnaeus) sp. l., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp.1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus Artemia nauplii for 12-24 d at 18°C. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no significant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.

  13. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  14. Consequences of respiration in the light on the determination of production in pelagic systems

    Directory of Open Access Journals (Sweden)

    O. Pringault

    2007-01-01

    Full Text Available Oxygen microprobes were used to estimate Community Respiration (R, Net Community Production (NCP and Gross Primary Production (GPP in coastal seawater samples. Using this highly stable and reproducible technique to measure oxygen change during alternating dark and light periods, we show that respiration in the light could account for up to 640% of respiration in the dark. The light enhanced dark respiration can remain elevated for several hours following a 12 h period of illumination. Not including Rlight into calculations of production leads to an underestimation of GPP, which can reach up to 650% in net heterotrophic systems. The production: respiration (P:R ratio is in turn affected by the higher respiration rates and by the underestimation of GPP. While the integration of Rlight into the calculation of P:R ratio does not change the metabolic balance of the system, it decreases the observed tendency, thus net autotrophic systems become less autotrophic and net heterotrophic systems become less heterotrophic. As a consequence, we propose that efforts have to be focused on the estimation and the integration of Rlight into the determination of GPP and R for a better understanding of the aquatic carbon cycle.

  15. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil

    Science.gov (United States)

    Souza, Marcelo F. L.; Kjerfve, Björn; Knoppers, Bastiaan; Landim de Souza, Weber F.; Damasceno, Raimundo N.

    2003-08-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m -2 yr -1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.

  16. Plankton respiration in the Eastern Atlantic Ocean

    Science.gov (United States)

    Robinson, Carol; Serret, Pablo; Tilstone, Gavin; Teira, Eva; Zubkov, Mikhail V.; Rees, Andrew P.; Woodward, E. Malcolm S.

    2002-05-01

    Concurrent measurements of dark community respiration (DCR), gross production (GP), size fractionated primary production ( 14C PP), nitrogen uptake, nutrients, chlorophyll a concentration, and heterotrophic and autotrophic bacterial abundance were collected from the upper 200 m of a latitudinal (32°S-48°N) transect in the Eastern Atlantic Ocean during May/June 1998. The mean mixed layer respiration rate was 2.5±2.1 mmol O 2 m -3 d -1 ( n=119) for the whole transect, 2.2±1.1 mmol O 2 m -3 d -1 ( n=32) in areas where chlorophyll a was dissolved oxygen consumption, was 0.8 ( n=11). At the time of the study, plankton community respiration exceeded GP in the picoautotroph dominated oligotrophic regions (Eastern Tropical Atlantic [15.5°S-14.2°N] and North Atlantic Subtropical Gyre [21.5-42.5°N]), which amounted to 50% of the stations sampled along the 12,100 km transect. These regions also exhibited high heterotrophic: autotrophic biomass ratios, higher turnover rates of phytoplankton than of bacteria and low f ratios. However, the carbon supply mechanisms required to sustain the rates of respiration higher than GP could not be fully quantified. Future research should aim to determine the temporal balance of respiration and GP together with substrate supply mechanisms in these ocean regions.

  17. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  18. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem.

    Science.gov (United States)

    Mueller, Derek R; Vincent, Warwick F; Bonilla, Sylvia; Laurion, Isabelle

    2005-06-01

    Remnant ice shelves along the northern coast of Ellesmere Island, Nunavut, Canada ( approximately 83 degrees N) provide a habitat for cryo-tolerant microbial mat communities. Bioassays of bacterial and primary production were undertaken to quantify the short-term physiological response of the mats to changes in key variables that characterize this cryo-ecosystem (salinity, irradiance and temperature). The heterotrophic versus autotrophic community responses to these stressors differed markedly. The heterotrophic bacteria were extremophilic and specifically adapted to ambient conditions on the ice shelf, whereas the autotrophic community had broader tolerance ranges and optima outside the ambient range. This latter, extremotrophic response may be partly due to a diverse suite of pigments including oligosaccharide mycosporine-like amino acids, scytonemins, carotenoids, phycobiliproteins and chlorophylls that absorb from the near UV-B to red wavelengths. These pigments provide a comprehensive broadband strategy for coping with the multiple stressors of high irradiance, variable salinity and low temperatures in this extreme cryo-environment.

  19. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    Science.gov (United States)

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  20. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Bai, Yaohui; Qu, Jiuhui

    2015-11-15

    Sulfur-based mixotrophic denitrifying anoxic fluidized bed membrane bioreactors (AnFB-MBR) were developed for the treatment of nitrate-contaminated groundwater with minimized sulfate production. The nitrate removal rates obtained in the methanol- and ethanol-fed mixotrophic denitrifying AnFB-MBRs reached 1.44-3.84 g NO3 -N/L reactor d at a hydraulic retention time of 0.5 h, which were significantly superior to those reported in packed bed reactors. Compared to methanol, ethanol was found to be a more effective external carbon source for sulfur-based mixotrophic denitrification due to lower sulfate and total organic carbon concentrations in the effluent. Using pyrosequencing, the phylotypes of primary microbial groups in the reactor, including sulfur-oxidizing autotrophic denitrifiers, methanol- or ethanol-supported heterotrophic denitrifiers, were investigated in response to changes in electron donors. Principal component and heatmap analyses indicated that selection of electron donating substrates largely determined the microbial community structure. The abundance of Thiobacillus decreased from 45.1% in the sulfur-oxidizing autotrophic denitrifying reactor to 12.0% and 14.2% in sulfur-based methanol- and ethanol-fed mixotrophic denitrifying bioreactors, respectively. Heterotrophic Methyloversatilis and Thauera bacteria became more dominant in the mixotrophic denitrifying bioreactors, which were possibly responsible for the observed methanol- and ethanol-associated denitrification.

  1. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    Science.gov (United States)

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation.

  2. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.

    Science.gov (United States)

    Kuehn, Kevin A; Francoeur, Steven N; Findlay, Robert H; Neely, Robert K

    2014-03-01

    Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C- and 13C-bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems.

  3. Experimental Analysis of Grazing by the Mayfly Meridialaris chiloeensis on Different Successional Stages of Stream Periphyton

    Science.gov (United States)

    Díaz Villanueva, Verónica; Modenutti, Beatriz

    2004-07-01

    In this study we determined grazing effects of the South Andean endemic mayfly Meridialaris chiloeensis on periphyton at different stages of successional development. Grazing effects were studied through a two-factor experimental design (colonization stages X grazer density) in a stream-side channel in spring and winter. Our results showed an absence of proportionality between grazer density and periphyton decline in response to grazers at low and intermediate levels of periphytic biomass; however, when periphyton biomass was high a direct inverse relationship was observed between post-grazing biomass and grazer density. The relationship between periphytic algae (chlorophyll a concentration) and periphyton (total periphytic ash-free dry mass) (C/OM index) was used as an estimation of the autotrophic fraction in the total periphyton matrix. Grazing did not alter the C/OM index indicating that both autotrophic and heterotrophic fractions of the periphyton components were reduced in the same proportion. Ordination of samples using the relative abundance of diatom species showed that herbivore effect was less evident at intermediate and late stage of colonization than at early one. These results support the statement that the outcome of the herbivore-periphyton interaction may depend on the successional stage of the periphyton community. In spring Fragilaria pinnata relative abundance, on the basis of cell counts, was reduced by grazing and Nitzschia palea was enhanced. In the winter experiment, grazing decreased Achnanthes minutissima relative abundance. (

  4. Changes in biogenic carbon flow in response to sea surface warming.

    Science.gov (United States)

    Wohlers, Julia; Engel, Anja; Zöllner, Eckart; Breithaupt, Petra; Jürgens, Klaus; Hoppe, Hans-Georg; Sommer, Ulrich; Riebesell, Ulf

    2009-04-28

    The pelagic ocean harbors one of the largest ecosystems on Earth. It is responsible for approximately half of global primary production, sustains worldwide fisheries, and plays an important role in the global carbon cycle. Ocean warming caused by anthropogenic climate change is already starting to impact the marine biota, with possible consequences for ocean productivity and ecosystem services. Because temperature sensitivities of marine autotrophic and heterotrophic processes differ greatly, ocean warming is expected to cause major shifts in the flow of carbon and energy through the pelagic system. Attempts to integrate such biological responses into marine ecosystem and biogeochemical models suffer from a lack of empirical data. Here, we show, using an indoor-mesocosm approach, that rising temperature accelerates respiratory consumption of organic carbon relative to autotrophic production in a natural plankton community. Increasing temperature by 2-6 degrees C hence decreased the biological drawdown of dissolved inorganic carbon in the surface layer by up to 31%. Moreover, warming shifted the partitioning between particulate and dissolved organic carbon toward an enhanced accumulation of dissolved compounds. In line with these findings, the loss of organic carbon through sinking was significantly reduced at elevated temperatures. The observed changes in biogenic carbon flow have the potential to reduce the transfer of primary produced organic matter to higher trophic levels, weaken the ocean's biological carbon pump, and hence provide a positive feedback to rising atmospheric CO(2).

  5. Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation.

    Science.gov (United States)

    Prathima Devi, M; Swamy, Y V; Venkata Mohan, S

    2013-08-01

    Effect of nutritional mode viz., photoautotrophic, photoheterotrophic and photomixotrophic on the biomass growth and lipid productivity of microalgae was studied. Experiments were designed and operated in biphasic mode i.e., growth phase (GP) followed by stress induced starvation phase (SP). Nutritional mode documented marked influence on biomass growth and subsequent lipid productivity. Mixotrophic mode of operation showed higher biomass growth (4.45 mg/ml) during growth phase while higher lipid productivity was observed with nitrogen deprived autotrophic mode (28.2%) followed by heterotrophic (26.1%) and mixotrophic (19.6%) operations. Relative increments in lipid productivities were noticed in SP operation from GP in mixotrophic operation (2.45) followed by autotrophic (2.2) and heterotrophic (2.14) mode of operations. Higher concentrations of chlorophyll b and presence of lipid accumulating species supported the lipid biosynthesis. Algal fatty acid composition varied with function of nutritional modes and depicted eighteen types of saturated (SFA) and unsaturated fatty acids (USFA) with wide fuel and food characteristics.

  6. Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: Implications for CBM regeneration

    Science.gov (United States)

    Klein, Donald A.; Flores, Romeo M.; Venot, Christophe; Gabbert, Kendra; Schmidt, Raleigh; Stricker, Gary D.; Pruden, Amy; Mandernack, Kevin

    2008-01-01

    Coalbed methane regeneration is of increasing interest, and is gaining global attention with respect to enhancement of gas recovery. The objective of this study is to determine if there are differences in methanogen nucleic acid sequences associated with low rank coals from the Powder River Basin, Wyoming, in comparison with sequences that can be recovered from coal bed-associated produced waters. Based on results obtained to date, the sequences from the coals appear to be associated with putatively deep-rooted thermophilic autotrophic methanogens, whereas the sequences from the waters are associated with thermophilic autotrophic and heterotrophic methanogens. The recovered sequences associated with coal thus appear to be both phylogenetically and functionally distinct from those that are more closely associated with the produced water. To be able to relate such recovered sequences to organisms that might be present and possibly active in these environments, it is suggested that direct observation, followed by isolation and single cell-based physiological/molecular analyses, be used to characterize methanogenic consortia possibly associated with coals and/or produced waters. It is also important to characterize the microenvironment where these microbes might be found, in both ecological and geological contexts, to be able to develop effective, ecologically relevant coalbed methane regeneration processes.

  7. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.

    Science.gov (United States)

    Mehrotra, Akanksha; Sreekrishnan, T R

    2017-01-10

    Simultaneous sludge digestion and metal leaching (SSDML) have been reported at mesophilic temperature. It is generally perceived that while sludge stabilization is effected by heterotrophs at neutral pH, metal bioleaching is done by acidophilic autotrophs. However, little information is available on the microbial communities involved in the process. This study carried out SSDML in a single-stage reactor using sludge indigenous microorganisms and looked at the bacterial communities responsible for the process. Volatile suspended solids were reduced by more than 40%. The concentration of zinc, copper, chromium, cadmium and nickel decreased by more than 45% in the dry sludge. Acidophilic species of Alicyclobacillus genus were the dominant heterotrophs. A few heterotrophic bacteria were detected which can oxidize iron (Alicyclobacillus ferrooxydans, Alicyclobacillus ferripilum and Ferrimicrobium acidiphilum). Acidithiobacillus ferrooxidans (autotroph) was responsible for the oxidation of both iron and sulfur which lead to a change in the pH from neutral to acidic. The presence of acidophilic heterotrophs, which can oxidize either iron or sulfur, enhanced the efficiency of SSDML process with respect to sludge stabilization and metal leaching. This study shows that it is possible to carry out the SSDML in a single-stage reactor with indigenous microorganisms.

  8. Match/mismatch between the Mytilus edulis larval supply and seston quality: effect on recruitment.

    Science.gov (United States)

    Toupoint, Nicolas; Gilmore-Solomon, Lisandre; Bourque, François; Myrand, Bruno; Pernet, Fabrice; Olivier, Frédéric; Tremblay, Réjean

    2012-08-01

    We considered Cushing's match/mismatch theory in a heterotrophic environment and hypothesized that settlement and recruitment success in blue mussel are higher when the food supply is rich in polyunsaturated and essential fatty acids (PUFA/EFA). To test this hypothesis, we monitored larval development as well as fatty acid composition in trophic resources during two successive reproductive seasons. The decoupling we found between the presence of competent larvae in the water column and settlement rates strongly suggests that metamorphosis is delayed until conditions are suitable. In both years, the major mussel settlement peak was synchronized with a phytoplanktonic pulse rich in EFA, consisting of a large autotrophic bloom in 2007 and a short but substantial peak of picoeukaryotes in 2008. These results suggest a "trophic settlement trigger" that indirectly affects recruitment by strongly improving the settlement rate. Despite similar larval settlement rates during both years, the lower 2007 recruitment likely resulted from a mismatch with a high lipid-quality trophic resource. The seasonal trophic conditions differed greatly between the two years, with fatty acids profiles reflecting heterotrophic plankton production in 2007 and mostly autotrophic production in 2008. In agreement with Cushing's theory, our results highlight a match/mismatch, related to the food lipid quality rather than food quantity. For the first time, we show that the recruitment in marine bivalves may be dependent on phytoplanktonic pulses characterized by high levels of PUFA.

  9. Impact of heavy metals and PCBs on marine picoplankton.

    Science.gov (United States)

    Caroppo, Carmela; Stabili, Loredana; Aresta, Michele; Corinaldesi, Cinzia; Danovaro, Roberto

    2006-12-01

    Synergistic/antagonistic effects of multiple contaminants in marine environments are almost completely unexplored. In the present study, we investigated the effects of heavy metals (Zn and Pb) and PCBs on picoplankton abundance, biomass, cell size distribution, and bacterial C production. Natural picoplankton assemblages were exposed to heavy metals (Zn or Pb), organic contaminants (PCBs, Aroclor 1260), and to a mixture of different contaminants. The results of the present study indicate that Zn addition stimulated heterotrophic growth, whereas Pb has a negative impact on heterotrophic picoplankton, particularly significant in the first 24 h. Heavy metals had no effects on the autotrophic component. The addition of Aroclor 1260 had a significant impact on abundance, biomass, and cell size of autotrophic and heterotrophic picoplankton, and reduced significantly bacterial secondary production. Three weeks after PCB treatment, heterotrophic bacteria displayed a clear resilience, both in terms of abundance and biomass, reaching values comparable to those of the controls, but not in terms of bacterial C production. Our results indicate that picoplankton can be sensitive indicators of impact determined by heavy metals and PCBs in coastal marine systems.

  10. [Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill].

    Science.gov (United States)

    Li, Wei-Hua; Sun, Ying-Jie; Liu, Zi-Liang; Ma, Qiang; Yang, Qiang

    2016-01-15

    A denitrification functional microorganism gene clone library (amoA, nosZ) and the PCR-RFLP technology was constructed to investigate the microbial diversity of denitrifying microorganisms in the late period of stabilization of sequential batch bioreactor landfill. The results indicated that: the bacterial diversity of ammonia oxidizing bacteria in the aged refuse reactor was very high, and most of them were unknown groups, also, all bacteria were unculturable or had not been isolated. The phylogenetic analysis suggested that the dominant ammonia oxidizing bacteria were presumably Nitrosomonas of 6-Proteobacteria. The diversity of denitrifying bacteria in fresh refuse reactor was abundant, which mainly included Thauera and Thiobacillus of 6-Proteobacteria. As Thauera sp. has the denitrification characteristics under the condition of aerobic while Thiobacillus denitrificans has the autotrophic denitrification characteristics, it was speculated that aerobic denitrification and autotrophic denitrification might be the main pathways for nitrogen removal in the fresh refuse reactor at the late period of stabilization. Additionally, another group in the gene clone library of denitrifying bacteria may be classified as Bradyrhizobiaceae of alpha-Proteobacteria.

  11. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... of melting CaCO3-free sea ice. There was a considerable spatial and temporal variability of CaCO3 and the other biogeochemical parameters measured (dissolved organic and inorganic nutrients).......Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...

  12. Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND

    DEFF Research Database (Denmark)

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela;

    2012-01-01

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can.......86 ± 0.04 kg N m–3 biofilter d–1 and an empty bed residence time of 14 s. After 45 days of operation a stable nitrogen removal rate of 0.67 ± 0.06 kg N m–3 biofilter d–1, an ammonia removal efficiency of 99%, a removal of 75–80% of the total nitrogen, and negligible NO/N2O productions were obtained...... at water flow rates of 1.3 ± 0.4 m3 m–2 biofilter section d–1. Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter...

  13. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean

    Directory of Open Access Journals (Sweden)

    A. V. Borges

    2004-10-01

    Full Text Available The relationship between whole-system metabolism estimates based on planktonic and benthic incubations (bare sediments and seagrass, Posidonia oceanica meadows, and CO2 fluxes across the air-sea interface were examined in the Bay of Palma (Mallorca, Spain during two cruises in March and June 2002. Moreover, planktonic and benthic incubations were performed at monthly intervals from March 2001 to October 2002 in a seagrass vegetated area of the bay. From the annual study, results showed a contrast between the planktonic compartment, which was heterotrophic during most of the year, except for occasional bloom episodes, and the benthic compartment, which was slightly autotrophic. Whereas the seagrass community was autotrophic, the excess organic carbon production therein could only balance the excess respiration of the planktonic compartment in shallow waters (2 fields and fluxes across the bay observed during the two extensive cruises in 2002. Finally, dissolved inorganic carbon and oxygen budgets provided NEP estimates in fair agreement with those derived from direct metabolic estimates based on incubated samples over the Posidonia oceanica meadow.

  14. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.

    Science.gov (United States)

    Offre, Pierre; Prosser, James I; Nicol, Graeme W

    2009-10-01

    Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 degrees C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.

  15. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.

    Science.gov (United States)

    Hu, Qi; Guo, Xue; Liang, Yili; Hao, Xiaodong; Ma, Liyuan; Yin, Huaqun; Liu, Xueduan

    2015-01-01

    The microbial community in a biological heap leaching (BHL) system is crucial for the decomposition of ores. However, the microbial community structure and functional differentiation in different parts of a biological heap leaching system are still unknown. In this study, metagenomic sequencing was used to fully illuminate the microbial community differentiation in the pregnant leach solution (PLS) and leaching heap (LH) of a BHL system. Long-read sequences (1.3 million) were obtained for the two samples, and the MG_RAST server was used to perform further analysis. The taxa analysis results indicated that the dominant genera of PLS is autotrophic bacterium Acidithiobacillus, but heterotrophic bacterium Acidiphilium is predominant in LH. Furthermore, functional annotation and hierarchical comparison with different reference samples showed that the abundant presence of genes was involved in transposition, DNA repair and heavy metal transport. The sequences related to transposase, which is important for the survival of the organism in the hostile environment, were both mainly classified into Acidiphilium for PLS and LH. These results indicated that not only autotrophic bacteria such as Acidithiobacillus, but also heterotrophic bacteria such as Acidiphilium, were essential participants in the bioleaching process. This new meta-view research will further facilitate the effective application of bioleaching.

  16. 'Candidatus Tenderia electrophaga', an uncultivated electroautotroph from a biocathode enrichment.

    Science.gov (United States)

    Eddie, Brian J; Wang, Zheng; Malanoski, Anthony P; Hall, Richard J; Oh, Steve D; Heiner, Cheryl; Lin, Baochuan; Strycharz-Glaven, Sarah M

    2016-06-01

    Biocathode communities are of interest for a variety of applications, including electrosynthesis, bioremediation, and biosensors, yet much remains to be understood about the biological processes that occur to enable these communities to grow. One major difficulty in understanding these communities is that the critical autotrophic organisms are difficult to cultivate. An uncultivated, electroautotrophic bacterium previously identified as an uncultivated member of the family Chromatiaceae appears to be a key organism in an autotrophic biocathode microbial community. Metagenomic, metaproteomic and metatranscriptomic characterization of this community indicates that there is likely a single organism that utilizes electrons from the cathode to fix CO2, yet this organism has not been obtained in pure culture. Fluorescence in situ hybridization reveals that the organism grows as rod-shaped cells approximately 1.8 × 0.6 µm, and forms large clumps on the cathode. The genomic DNA G+C content was 59.2 mol%. Here we identify the key features of this organism and propose 'Candidatus Tenderia electrophaga', within the Gammaproteobacteria on the basis of low nucleotide and predicted protein sequence identity to known members of the orders Chromatiales and Thiotrichales.

  17. Influence of sludge retention time at constant food to microorganisms ratio on membrane bioreactor performances under stable and unstable state conditions.

    Science.gov (United States)

    Villain, Maud; Marrot, Benoît

    2013-01-01

    Food to microorganisms ratio (F/M) and sludge retention time (SRT) are known to affect in different ways biomass growth, bioactivities and foulants characteristics. Thus the aim of this study was to dissociate the effects of SRT from those of F/M ratio on lab-scale membrane bioreactors performances during stable and unstable state. Two acclimations were stabilized at a SRT of either 20 or 50 d with a constant F/M ratio of 0.2 kg(COD)kg(MLVSS)(-1) d(-1). During stable state, a higher N-NH(4)(+) removal rate (78%) was obtained at SRT of 50 d as an easier autotroph development was observed. Soluble microbial products (SMPs) release was double at 50 d with a majority of polysaccharides (49% of total SMP). The unstable conditions consisted in F/M ratio changes and operation without air and nutrient. Autotrophs were highly affected by the tested disturbances and SMP retention on membrane surface exhibited consistent changes during the performed stresses.

  18. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  19. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Medina-Sánchez

    Full Text Available The responses of heterotrophic microbial food webs (HMFW to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  20. Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.; Beam, Jacob P.; Whitmore, Laura M.; Kozubal, Mark A.; Kreuzer, Helen W.; Inskeep, William P.

    2017-02-03

    Biological fixation of CO2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeota and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. The significance of CO2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.

  1. Comparative analysis of food webs based on flow networks: effects of nutrient supply on structure and function of coastal plankton communities

    Science.gov (United States)

    Olsen, Yngvar; Reinertsen, Helge; Vadstein, Olav; Andersen, Tom; Gismervik, Ingrid; Duarte, Carlos; Agusti, Susana; Stibor, Herwig; Sommer, Ulrich; Lignell, Risto; Tamminen, Timo; Lancelot, Christiane; Rousseau, Veronique; Hoell, Espen; Sanderud, Knut Arvid

    2001-12-01

    The objective of COMWEB was to develop efficient analytical, numerical and experimental methods for assessing and predicting the effects of nutrient (N, P, Si) supply on the stability and persistence of pelagic food web structure and function in coastal waters. The experimental comparative work included a geographic gradient covering Baltic, Mediterranean, and NE Atlantic waters and a NE Atlantic gradient in state of eutrophication. COMWEB has been an experimental approach to coastal eutrophication, studying effects of enhanced nutrient supply on components and flows of the entire lower pelagic food web. Flow network representations of pelagic food webs has been a framework of data reduction and flows were established by sophisticated inverse modelling. Fundamental information on physiological properties of functional key species in the pelagic food web was used to constrain flow estimations. A main conclusion derived from the flow networks was that very little energy and materials were transferred from the microbial food web to the main food chain. The lower food web could therefore be described as two parallel food chains with relatively limited interaction between heterotrophic groups. Short-term effects of nutrient perturbations were examined in mesocosms along the geographic gradient. The response was comparable in all systems, with a stronger effect on the activity and biomass of autotrophic groups than those of heterotrophic ones. Mediterranean waters showed much lower autotrophic biomass response than Baltic and NE Atlantic waters, which responded almost equally. The response of primary production was, however, more comparable. High phytoplankton lysis rate explained this low accumulation of biomass in Mediterranean waters. The study of Atlantic coastal waters of different eutrophic states revealed that the ecological response was higher in the closed nutrient perturbed mesocosms than in open systems exposed for >4 summer months (summer/autumn season). The

  2. Nitrification and nitrifying bacterial communities in coniferous forest soils. Effects of liming and clear-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Baeckman, Jenny

    2003-05-01

    This thesis deals with the effects of liming and clear-cutting on nitrification in hemi-boreal and northern temperate coniferous forest soils. The approach has been to study both the potential nitrification and the community structure of the ammonia-oxidising bacteria, which carry out the first step of autotrophic nitrification. The potential nitrification was measured over short time incubations at optimal conditions for acid-sensitive, autotrophic nitrification. This method yields the potential nitrification of the actual nitrifying community. I studied the autotrophic ammonia-oxidising community at gene level (16S rRNA gene) using molecular methods, such as polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), single-strand conformation polymorphism (SSCP), and DNA sequencing. The results illustrate that both liming and clear-cutting may increase the potential nitrification by stimulating the growth of ammonia-oxidisers. Both these forest practises seem to favour the growth of Nitrosospira cluster 4-affiliated ammonia-oxidisers, although Nitrosospira cluster 2-affiliated bacteria also was present. The stimulated growth of the ammonia-oxidisers is caused by increased ammonia availability and more favourable pH (i.e. higher and more stable pH over time). The results also show that clear-cutting causes more intense growth of the ammonia-oxidisers and thereby larger potential nitrification than liming does. When forests that have previously been limed are clear-cut, nitrification responses more rapidly and the rates are larger compared to non-limed forests, since the ammonia-oxidising communities in limed soils seem better adapted to the conditions after the cutting. Liming does, however, not always increase nitrification. Although it may increase nitrogen mineralisation, it seems like the nitrogen status of the soil prior to liming is the most important factor, since liming caused the greatest response in potential nitrification in areas

  3. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    Science.gov (United States)

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  4. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  5. Microbial food web in an oligotrophic high mountain lake (Jöri Lake III, Switzerland

    Directory of Open Access Journals (Sweden)

    Ferdinand SCHANZ

    1999-08-01

    Full Text Available Jöri Lake III (2512 m a.s.l., zm = 22 m, A = 57.81 ´ 103 m2, V = 601.1 ´ 103 m3 is situated in the Vereina region in the eastern part of the Swiss Alps. We studied microbial grazing on bacteria and bacterial productivity during the ice-free period. The lake normally gets thermally stratified for two months between July and September. In 1996, chlorophyll-a concentrations varied from 0.5 to 2.0 μg l-1 with maximum values just below the thermocline (6 m depth, in 1997, they were between 0.6 and 5.0 μg l-1 with maximum values at 10 m depth – several meters below the thermocline. Bacterial densities varied between 0.7 and 1.7 ´ 106 ml-1 with maxima in the thermocline, one to two meters above the chlorophyll maximum. The areal bacterial biomass (volume beneath 1 m2 to a depth of 8 m was 10 μg C l-1 which remained more or less constant for the periods investigated. In 1997, bacterial growth rate and production rates were determined using [3H]-thymidine incorporation. The rates were as low as 0.002 to 0.006 h-1 and 0.01 to 0.03 μg C l-1 h-1, respectively. We found a carbon ratio of bacteria, phytoplankton, and autotrophic picoplancton (APP of 1.5:1.1:1 which shows a rather high abundance of bacteria and autotrophic picoplankton (APP compared to larger phytoplankton. Bacterial growth followed a temperature dependence similar to the one observed for bacteria from Lake Zürich, a prealpine and mesotrophic lake which was studied for comparison. Microbial food web in Jöri Lake III was not top down controlled during the periods of our study and mixotrophic algae like Dinobryon cylindricum var. alpinum and autotrophic nanoflagellates (ANF were the dominant bacterial grazers observed.

  6. δ 13C of ecosystem-respired CO2 along a gradient of C3 woody-plant encroachment into C4 grassland

    Science.gov (United States)

    Sun, W.; Scott, R. L.; Resco, V.; Cable, J. M.; Huxman, T. E.; Williams, D. G.

    2006-12-01

    Woody plant encroachment into grassland has the potential to affect net primary production, in part by changing the sensitivities of photosynthesis and respiration to precipitation. Encroachment of mesquite (Prosopis) into floodplain sacaton (Sporobolus) grassland along the San Pedro River in southeastern Arizona has altered the magnitude and seasonal pattern of net ecosystem carbon exchange and ecosystem respiration. We hypothesized that because mesquite accesses ground water in these floodplain environments, its advancement and dominance in former grassland reduces the sensitivities of photosynthesis and autotrophic respiration to inputs of growing season precipitation. The observed elevated rates of ecosystem respiration following rainfall inputs are likely to result from microbial decomposition of labile organic matter derived from the highly productive mesquite trees. We used the Keeling plot method to monitor carbon-13 composition of nocturnal ecosystem-respired CO2 (δ 13CR) during the growing seasons of 2005 and 2006 at three sites spanning a gradient of mesquite invasion: C4 sacaton grassland, mixed mesquite/grass shrubland and C3 mesquite woodland. δ 13CR in the C4 grassland increased from -18.8‰ during the dry premonsoon period to -16.7‰ after the onset of summer rains, whereas δ 13CR in the mixed shrub/grass and woodland ecosystems declined from -20.9‰ to - 24‰ and from -20.8‰ to -24.7‰, respectively, following the onset of summer rains. The δ 13CR of respired CO2 was collected separately from soil, roots, leaves and surface litter to evaluate the contribution of each of these components to ecosystem respiration. Partitioning of ecosystem respiration using these isotope end-members and responses to short-term (days) changes in shallow (0-5cm) soil moisture content suggest that in former grassland now occupied by mesquite woodland, rainfall inputs primarily stimulate microbial decomposition and have little effect on autotrophic respiration

  7. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

    Directory of Open Access Journals (Sweden)

    Esparza Mario

    2010-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2. Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4 in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39 and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19. Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II Rubis

  8. In-Situ Incubation of Iron-Sulfide Mineral in Seawater Reveals Colonization by Iron-Oxidizing Gammaproteobacteria and Zetaproteobacteria.

    Science.gov (United States)

    Barco, R. A.; Ramírez, G. A.; Sylvan, J. B.; Edwards, K. J.

    2015-12-01

    Sulfide mineral precipitation occurs at mid-ocean ridge (MOR) spreading centers, both in the form of plume particles and massive sulfide structures. A common constituent of MOR sulfide mineral is pyrrhotite (Fe1-xS). This mineral was chosen as a substrate for in-situ incubation studies in the shallow waters of Catalina Islands, CA to investigate the colonization of iron-oxidizing bacteria. Gammaproteobacteria and Alphaproteobacteria largely dominated the bacterial community on pyrrhotite samples incubated in the water column. Pyrrhotite samples incubated at the sediment/water column interface showed more even dominance by Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria and Bacteroidetes. Cultivations that originated from these pyrrhotite samples resulted in the enrichment of Zetaproteobacteria with either twisted-stalks (Mariprofundus) or sheath structures. Additionally, a candidate novel Gammaproteobacterium was isolated and shown to grow autotrophically via the oxidation of iron.

  9. Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production.

    Science.gov (United States)

    Ji, Fang; Hao, Rui; Liu, Ying; Li, Gang; Zhou, Yuguang; Dong, Renjie

    2013-11-01

    A novel strain of unicellular green algae was isolated from fresh water samples collected from Yesanpo National Geopark, Laishui County of Hebei Province, China. The morphological and genomic identification of this strain was carried out using 18s rRNA analysis. This novel strain was identified as Desmodesmus sp. named as EJ15-2. Environmental factors for biomass production of Desmodesmus sp. EJ15-2 grown under autotrophic condition (BG11 medium) was optimized using response surface methodology (RSM). A high correlation coefficient (R(2)=0.923, p ≤ 0.01) indicated the adaptability of the second-order equation matched well with the growth condition of this strain. The optimal conditions for a relatively high biomass production (up to 0.758 g/L) were at 30°C, 98 μmol/m(2)/s and 14:10 (L:D), respectively.

  10. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Univ. of Arizona, Tucson, AZ (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Univ. of Arizona, Tucson, AZ (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem

  11. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  12. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Kalff, J.; Christoffersen, Kirsten Seestern

    2006-01-01

    Quantifying periphyton (attached algal) contributions to autotrophic production in lakes is confounded by properties of substratum that affect community biomass (as chlorophyll content) and productivity. We compared chlorophyll content and productivity of natural algal communities (phytoplankton......, epipelon, epilithon, epixylon, and epiphyton) experiencing high (>10%) incident radiation in lakes in the US, Greenland, and Quebec, Canada. Chlorophyll content and productivity differed significantly among regions, but they also differed consistently among communities independent of region. Chlorophyll...... content of periphyton on hard substrata (rocks and wood) was positively related to water-column total P (TP), whereas chlorophyll content of algae on sediment (epipelon) and TP were not significantly related. Chlorophyll content was up to 100× higher on sediments than on hard substrata. Within regions...

  13. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web.

    Science.gov (United States)

    Lennon, Jay T; Martiny, Jennifer B H

    2008-11-01

    Predation and parasitism often regulate population dynamics, community interactions, and ecosystem functioning. The strength of these top-down pressures is variable, however, and may be influenced by both ecological and evolutionary processes. We conducted a chemostat experiment to assess the direct and indirect effects of viruses on a marine microbial food web comprised of an autotrophic host (Synechococcus) and non-target heterotrophic bacteria. Viruses dramatically altered the host population dynamics, which in turn influenced phosphorus resource availability and the stoichiometric allocation of nutrients into microbial biomass. These virus effects diminished with time, but could not be attributed to changes in the abundance or composition of heterotrophic bacteria. Instead, attenuation of the virus effects coincided with the detection of resistant host phenotypes, suggesting that rapid evolution buffered the effect of viruses on nutrient cycling. Our results demonstrate that evolutionary processes are important for community dynamics and ecosystem processes on ecologically relevant time scales.

  14. Culture and selection of somatic hybrids using an auxotrophic cell line.

    Science.gov (United States)

    Hein, T; Przewoźny, T; Schieder, O

    1983-01-01

    Protoplast fusions between Nicotiana tabacum and N. paniculata and between N. tabacum and N. sylvestris were obtained by polyethylene glycol and Ca(NO3)2 treatment. The protoplasts of one parent originated from cell suspensions, while the protoplasts of the other originated from leaf mesophyll. The heterokaryons were detectable by their intermediate phenotype, namely the green chloroplasts from mesophyll and the dense cytoplasm from suspension cells. They were isolated with micropipettes immediately after fusion using a micromanipulator and were transferred into a protoplast suspension of an auxotrophic cell line serving as a nursery. This mutant is not able to utilize nitrate and had to be supplemented with amino acids. The somatic hybrids were selected by a stepwise reduction of the supplements, which caused the death of the mutant cell colonies, while the autotrophic somatic hybrids continued to grow. The hybrid character of the selected colonies was confirmed by isoenzyme investigations.

  15. A Tyrosine-Dependent Riboswitch Controls the Expression of a Tyrosyl-tRNA Synthetase from Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Paula Bustamante

    2016-06-01

    Full Text Available Expression of aminoacyl-tRNA synthetases is regulated by a variety of mechanisms at the level of transcription or translation. A T-box dependent transcription termination / antitermination riboswitch system that responds to charged / uncharged tRNA regulates expression of aminoacyl tRNA synthetase genes in Gram-positive bacteria. TyrZ, the gene encoding tyrosyl-tRNA synthetase from Acidithiobacillus ferrooxidans, a Gram-negative acidophilic bacterium that participates in bioleaching of minerals, resembles the gene from Bacillus subtilis including the 5´-untranslated region encoding the riboswitch. Transcription of A. ferrooxidans tyrZ is induced by the presence of tyrosine by a mechanism involving antitermination of transcription. This mechanism is probably adapted to the low supply of amino acids of acidic environments of autotrophic bioleaching microorganisms. This work is licensed under a Creative Commons Attribution 4.0 International License.

  16. A proposal concerning the origin of life on the planet earth

    Science.gov (United States)

    Woese, C. R.

    1979-01-01

    It is proposed that, contrary to the widely accepted Oparin thesis, life on earth arose not in the oceans but in the earth's atmosphere. Difficulties of the Oparin thesis relating to the nonbiological nature of prebiotic evolution are discussed, and autotrophic, photosynthetic cells are proposed as the first living organisms to emerge, thus avoiding these difficulties. Recent developments in the geology of the earth at the time of the emergence of life are interpreted as requiring the absence of liquid surface water, with water partitioned between a molten crust and a dense, CO2-rich atmosphere, similar to the present state of Venus. Biochemistry in such an atmosphere would be primarily membrane chemistry on the interfaces of atmospheric salt water droplets, proceeding at normal temperatures without the absorption of electrical discharges or UV light. Areas not sufficiently accounted for by this scenario include the development of genetic organization and the breaking of the runaway greenhouse condition assumed.

  17. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the ge-nus, which until recently was the only genus within the actinobacterial family Acidimicrobia-ceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first complete genome sequence of the order Acidomi-crobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Photosynthetic machineries in nano-systems.

    Science.gov (United States)

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field.

  19. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    DEFF Research Database (Denmark)

    Inskeep, William P; Jay, Zackary J; Herrgard, Markus

    2013-01-01

    from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.......4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40-45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and....../or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed...

  20. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

    Directory of Open Access Journals (Sweden)

    Julián Triana

    2014-08-01

    Full Text Available The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942.

  1. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

    Science.gov (United States)

    Triana, Julián; Montagud†, Arnau; Siurana, Maria; Fuente, David; Urchueguía, Arantxa; Gamermann, Daniel; Torres, Javier; Tena, Jose; de Córdoba, Pedro Fernández; Urchueguía, Javier F.

    2014-01-01

    The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942. PMID:25141288

  2. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond.

    Science.gov (United States)

    He, Qiaoning; Yang, Haijian; Hu, Chunxiang

    2016-10-01

    Cultivation modes of autotrophic microalgae for biodiesel production utilizing open raceway pond were analyzed in this study. Five before screened good microalgae were tested their lipid productivity and biodiesel quality again in outdoor 1000L ORP. Then, Chlorella sp. L1 and Monoraphidium dybowskii Y2 were selected due to their stronger environmental adaptability, higher lipid productivity and better biodiesel properties. Further scale up cultivation for two species with batch and semi-continuous culture was conducted. In 40,000L ORP, higher lipid productivity (5.15 versus 4.06gm(-2)d(-1) for Chlorella sp. L1, 5.35 versus 3.00gm(-2)d(-1) for M. dybowskii Y2) was achieved in semi-continuous mode. Moreover, the financial costs of 14.18$gal(-1) and 13.31$gal(-1) for crude biodiesel in two microalgae with semi-continuous mode were more economically feasible for commercial production on large scale outdoors.

  3. Effects of mutation and some environmental factors on the physiology and pathogenicity of selected bacteria

    Science.gov (United States)

    Decicco, B. T.

    1974-01-01

    Studies with mutants of Staphylococcus aureus lacking some virulence factors suggest that the presence of deoxyribonuclease correlates with mouse pathogenicity of S. aureus, while the ability to ferment mannitol or the possession of coagulases are not required for virulence. Autotrophy investigations on mycobacteria demonstrate a complete correlation between the ability to grow with hydrogen and the species of scotochromogenic mycobacterium tested. All tested strains of M. gordonae, a saprophyte, could grow autotrophically while none of the tested strains of M. scrofulaceum, a clinically important species, possessed this ability. A series of heat tolerant mutants of Pseudomonas fluorescences were obtained which can grow at temperatures up to 54 C, in contrast to a maximum growth temperature of 37 C for the wild type.

  4. Tentative Study on a New Way of Simultaneous Desulfurization and Denitrification%一种利用脱氮硫杆菌的同步脱硫反硝化新工艺研究

    Institute of Scientific and Technical Information of China (English)

    王爱杰; 杜大仲; 任南琪; 程翔; 刘春爽

    2005-01-01

    Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource under anoxic or anaerobic environment. In this way, nitrate is converted into nitrogen. In addition, Thiobacillus denitrificans can accumulate sulfur extracellularly. In this study, in a process of simultaneous desulfurization and denitrification, a strain of Thiobacillus denitrificans is employed as sulfur-producer in the treatment of wastewater containing sulfide and nitrate. The key factors affecting this process are investigated through batch tests. The experimental results indicate that the sulfide concentration and the ratio of sulfide to nitrate (S2-/NO-3) in the respectively, in order to achieve high conversion of sulfur.

  5. Tentative Study on a New Way of Simultaneous Desulfurization and Denitrification

    Institute of Scientific and Technical Information of China (English)

    王爱杰; 杜大仲; 任南琪; 程翔; 刘春爽

    2005-01-01

    Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource under anoxic or anaerobic environment. In this way, nitrate is converted into nitrogen. In addition, Thiobacillus denitrificans can accumulate sulfur extracellularly. In this study, in a process of simultaneous desulfurization and denitrification, a strain of Thiobacillus denitrificans is employed as sulfur-producer in the treatment of wastewater containing sulfide and nitrate. The key factors affecting this process are investigated through batch tests. The experimental results indicate that the sulfide concentration and the ratio of sulfide to nitrate (S2-/NO3-) in the influent are the key factors, and their suitable values are suggested to be 5/3 and no more than 300mg·L-1, respectively, in order to achieve high conversion of sulfur.

  6. Enhanced Performance of Denitrifying Sulifde Removal Process by 1,2-Naphthoquinone-4-Sulphonate

    Institute of Scientific and Technical Information of China (English)

    Liu Chunshuang; Han Kang; Zhao Dongfeng; Guo Yadonag; Liu Lihong; Liu Fang; Zhao Chaocheng

    2016-01-01

    The denitrifying sulifde removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitriifers can simultaneously convert nitrate, sulifde and acetate species into di-nitrogen gas, elemental sulfur and carbon dioxide, respectively, at high loading rates. This study has determined that the reaction rate of sulifde oxidized into sulfur could be enhanced in the presence of 1,2-naphthoquinone-4-sulphonate (NQS). The presence of NQS mitigated the inhibi-tion effects of sulifde species on denitriifcation. Furthermore, the reaction rates of nitrate and acetate to nitrogen gas and CO2, respectively, were also promoted in the presence of NQS, thereby enhancing the performance of DSR granules. The advantages and disadvantages of applying the NQS-DSR process are discussed.

  7. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    Science.gov (United States)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  8. Anammox transited from denitrification in upflow biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2004-01-01

    Anammox was successfully transited from heterotrophic denitrification and autotrophic denitrification in two upflow biofilm reactors, respectively. The results showed that the volumetric loading rate and nitrogen removal efficiency in the reactor transited from heterotrophic denitrification were higher than that in its counterpart. When the hydraulic retention time was 12 h or so, the total nitrogen loading rate was about 0.609 kg N/(m3·d), and the effluent ammonia and nitrite concentrations were less than 8.5 mg/L and 2.5 mg/L, respectively. The upflow anammox biofilm reactor was capable of keeping and accumulating the slow-growing bacteria efficiently. During operation of the reactor, the biomass color was gradually turned from brownish to red, and the ratio of ammonia consumption, nitrite consumption and nitrate production approached the theoretical one. These changes could be used as an indicator for working state of the reactor.

  9. Soluble microbial products and their implications in mixed culture biotechnology.

    Science.gov (United States)

    Ni, Bing-Jie; Rittmann, Bruce E; Yu, Han-Qing

    2011-09-01

    Soluble microbial products (SMP) are soluble organic compounds released during normal biomass metabolism in mixed culture biotechnology. In this review, we give the up-to-date status on several essential SMP issues: mechanisms of SMP formation, differentiation between utilization-associated products (UAP) and biomass-associated products (BAP), biodegradability of the SMP components, how formation of SMP by autotrophs controls effluent quality and supports a substantial population of heterotrophs, mathematical modeling that includes SMP, and improving effluent quality by controlling SMP. We also present two timely examples that highlight our current understanding and give an indication of how SMP affects the performance of modern mixed culture biotechnology: membrane fouling of membrane bioreactors (MBRs) and the dynamics of SMP in anaerobic systems.

  10. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2014-11-01

    The nitrogen removal performance and microbial characteristics of four completely autotrophic nitrogen removal over nitrite (CANON) biofilters were investigated. These four reactors were simultaneously seeded from a stable CANON biofilter with a seeding ratio of 1:1, which were fed with different ammonia levels. Results suggested that with the ammonia of 200-400 mg L(-1), aerobic ammonia-oxidizing bacteria (AerAOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) could perform harmonious work. The bioactivity and population of the two groups of bacteria were both high, which then resulted in excellent nitrogen removal, while too low or too high ammonia would both lead to worse performance. When ammonia was too high, the bioactivity, biodiversity and population of AerAOB all decreased and then resulted in the lowest nitrogen removal. Nitrosomonas and Candidatus Brocadia were detected as predominant functional microbes in all the four reactors. Finally, strategies for treating sewage with different ammonia levels were proposed.

  11. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material.

    Science.gov (United States)

    Walters, Evelyn; Hille, Andrea; He, Mei; Ochmann, Clemens; Horn, Harald

    2009-10-01

    Simultaneous nitrification and denitrification in one reactor has been realized with different methods in the past. The usage of biodegradable biocompounds as biofilm carriers is new. The biocompounds were designed out of two polymers having different degradability. Together with suspended autotrophic biomass the biocompound particles were fluidized in an airlift reactor. Process water from sludge dewatering with a mean ammonium nitrogen concentration of 1150 mg L(-1) was treated in a two stage system which achieved a nitrogen removal of 75%. Batch experiments clearly indicate that nitrification can be localized in the suspended biomass and denitrification in the pore structure of the slowly degraded biocompounds. Images taken with CLSM prove the concept of the pore structure within the biocompounds, which provide both a heterotrophic biofilm and carbon source.

  12. COUPLED PHYSICAL-ECOLOGICAL MODELLING IN THE CENTRAL PART OF JIAOZHOU BAY Ⅱ. COUPLED WITH AN ECOLOGICAL MODEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sharples' 1-D physical model employing tide-wind driven turbulence closure and surface heating-cooling physics, was coupled with an ecological model with 9-biochemical components: phytoplankton, zooplankton, shellfish, autotrophic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the annual evolution of ecosystem in the central part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effect could reduce seawater temperature by 2℃, so that photosynthesis efficiency should be less than 8%; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the outside of the Bay; that the incident irradiance intensity could be the most important factor for phytoplankton growth rate; and that it was the bacterial secondary production that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that the microbial food loop was extremely important for ecosystem study of Jiaozhou Bay.

  13. Towards closing the remaining gaps in photorespiration--the essential but unexplored role of transport proteins.

    Science.gov (United States)

    Eisenhut, M; Pick, T R; Bordych, C; Weber, A P M

    2013-07-01

    Photorespiration is an essential prerequisite for all autotrophic organisms performing oxygenic photosynthesis. In contrast to the well-characterised enzymes accomplishing photorespiratory metabolism, current knowledge on the involved transport processes and the respective proteins is still quite limited. In this review, we focus on the status quo of translocators involved in photorespiratory metabolism. Although the transport of some of the photorespiratory intermediates could be characterised biochemically, using isolated organelles, the genes encoding these transporters have to date not been identified in most cases. Here, we describe the postulated transport processes, present information on established or hypothetical photorespiratory transporters, depict strategies on how to identify the transport proteins on the molecular level and, finally, discuss strategies for how to find the remaining candidates.

  14. Opposite metabolic responses of shoots and roots to drought

    Science.gov (United States)

    Gargallo-Garriga, Albert; Sardans, Jordi; Pérez-Trujillo, Míriam; Rivas-Ubach, Albert; Oravec, Michal; Vecerova, Kristyna; Urban, Otmar; Jentsch, Anke; Kreyling, Juergen; Beierkuhnlein, Carl; Parella, Teodor; Peñuelas, Josep

    2014-10-01

    Shoots and roots are autotrophic and heterotrophic organs of plants with different physiological functions. Do they have different metabolomes? Do their metabolisms respond differently to environmental changes such as drought? We used metabolomics and elemental analyses to answer these questions. First, we show that shoots and roots have different metabolomes and nutrient and elemental stoichiometries. Second, we show that the shoot metabolome is much more variable among species and seasons than is the root metabolome. Third, we show that the metabolic response of shoots to drought contrasts with that of roots; shoots decrease their growth metabolism (lower concentrations of sugars, amino acids, nucleosides, N, P, and K), and roots increase it in a mirrored response. Shoots are metabolically deactivated during drought to reduce the consumption of water and nutrients, whereas roots are metabolically activated to enhance the uptake of water and nutrients, together buffering the effects of drought, at least at the short term.

  15. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    Directory of Open Access Journals (Sweden)

    Nadin Pade

    2014-12-01

    Full Text Available The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.

  16. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The OUR (oxygen uptake rate) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads was prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4+-N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.

  17. Feasibility of an innovative integrated process of simultaneous desulfurization and denitrification for high strength wastewater

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-jie; LIU Chun-shuang; REN Nan-qi; DENG Xu-liang; WAN Chun-li; YU Zhen-guo; XU Xin

    2008-01-01

    An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative inte-grated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the re-actor, beterotrophic bacteria (including sulfate reducing bacterium and denitrifying bacteria) and autotrophic bacteria (including Thiobacillus denitrificans) cooperated together by incubating and enriching functional bac-teria on different carriers in the anaerobic activated sludge. Synthetic wastewater with high concentrations of sul-fate and nitrate was employed. The experimental results showed that the removal efficiency of sulfate and nitrate was above 85%, elemental sulfur was observed while nitrate was absent in effluent. The balance of sulfur, ni-trogen and electron was discussed respectively, which indicated that the integrated SDD process could be actual-ized. These results might provide a guidance to further investigate the key factors affecting the integrated SDD process and to improve the efficiency of desulfurization and denitrification in wastewater treatment.

  18. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  19. Complete genome sequence of Desulfarculus baarsii type strain (2st14T)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Christine [University of California, Berkeley; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [Joint Genome Institute, Walnut Creek, California; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Han, Cliff [Los Alamos National Laboratory (LANL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL

    2010-01-01

    Desulfarculus baarsii (Widdel 1981) Kuever et al. 2006 is the type and only species of the genus Desulfarculus, which represents the family Desulfarculaceae and the order Desulfarculales. This species is a mesophilic sulfate-reducing bacterium with the capability to oxidize acetate and fatty acids of up to 18 carbon atoms completely to CO2. The acetyl-CoA/CODH (Wood-Ljungdahl) pathway is used by this species for the complete oxidation of carbon sources and autotrophic growth on formate. The type strain 2st14T was isolated from a ditch sediment collected near the University of Konstanz, Germany. This is the first completed genome sequence of a member of the order Desulfarculales. The 3,655,731 bp long single replicon genome with its 3,303 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment.

    Science.gov (United States)

    Junier, Pilar; Molina, Verónica; Dorador, Cristina; Hadas, Ora; Kim, Ok-Sun; Junier, Thomas; Witzel, Jean-Paul; Imhoff, Johannes F

    2010-01-01

    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.

  1. Effects on vegetable seeds due to non ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Acri, G.; Oliva, A.; Falcone, G. [Universita della Calabria, Dipt. di Fisica, Cosenza (Italy); Acri, G.; Testagrossa, B.; Vermiglio, G.; Tripepi, M.G. [Universita della Calabria, Dipt. di Ecologia, Cosenza (Italy); Bitonti, M.B.; Chiappetta, A. [Universita di Messina, Dipt. di Protezionistica Ambientale, Sanitaria, Sociale ed Industriale, Messina (Italy)

    2006-07-01

    Based on the tightly relationship between light and plants growth and development, the present work aims to obtain some further insight into the effects of non ionizing radiation the photo-autotrophic organisms, due to the relevant implications for both scientific knowledge and economical and social effects. In this context, a set of experiments was conducted to investigate the influence of a long-lasting exposition to both RF at 1850 MHz and polarized light source on roots elongation of corn kernels. The radical apparatus was chosen as a sensible parameter and the elongation of the roots was monitored as a function of time. Mitotic index and length of meta-xylem cells were estimated in root apex as an index of cell proliferation and cell expansion activity, respectively. (N.C.)

  2. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    Science.gov (United States)

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  3. Bacterial Microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Kerfeld, Cheryl A.; Heinhorst, Sabine; Cannon, Gordon C.

    2010-06-05

    Bacterialmicrocompartments (BMCs) are organelles composed entirely of protein. They promote specific metabolic processes by encapsulatingand colocalizing enzymes with their substrates and cofactors, by protecting vulnerable enzymes in a defined microenvironment, and bysequestering toxic or volatile intermediates. Prototypes of the BMCsare the carboxysomes of autotrophic bacteria. However, structures of similarpolyhedral shape are being discovered in an ever-increasing number of heterotrophic bacteria, where they participate in the utilization ofspecialty carbon and energy sources.Comparative genomics reveals that the potential for this type of compartmentalization is widespread acrossbacterial phyla and suggests that genetic modules encoding BMCs are frequently laterally transferred among bacteria. The diverse functionsof these BMCs suggest that they contribute to metabolic innovation in bacteria in a broad range of environments.

  4. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Park, Ji-Yeon; Lee, Jin-Suk; Lee, Young-Chul; Oh, You-Kwan

    2014-11-01

    Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers.

  5. Vanadium removal from LD converter slag using bacteria and fungi.

    Science.gov (United States)

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days.

  6. Metalloproteins and the Pyrite-based Origin of Life: A Critical Assessment

    Science.gov (United States)

    Rivas, Mario; Becerra, Arturo; Peretó, Juli; Bada, Jeffrey L.; Lazcano, Antonio

    2011-08-01

    We critically examine the proposal by Wächtershäuser (Prokaryotes 1:275-283, 2006a, Philos Trans R Soc Lond B Biol Sci 361: 787-1808, 2006b) that putative transition metal binding sites in protein components of the translation machinery of hyperthermophiles provide evidence of a direct relationship with the FeS clusters of pyrite and thus indicate an autotrophic origin of life in volcanic environments. Analysis of completely sequenced cellular genomes of Bacteria, Archaea and Eucarya does not support the suggestion by Wächtershäuser (Prokaryotes 1:275-283, 2006a, Philos Trans R Soc Lond B Biol Sci 361: 787-1808, 2006b) that aminoacyl-tRNA synthetases and ribosomal proteins bear sequence signatures typical of strong covalent metal bonding whose absence in mesophilic species reveals a process of adaptation towards less extreme environments.

  7. Salt acclimation of cyanobacteria and their application in biotechnology.

    Science.gov (United States)

    Pade, Nadin; Hagemann, Martin

    2014-12-29

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.

  8. Distribution and genetic diversity of functional microorganisms in different CANON reactors.

    Science.gov (United States)

    Liu, Tao; Li, Dong; Zeng, Huiping; Li, Xiangkun; Liang, Yuhai; Chang, Xiaoyan; Zhang, Jie

    2012-11-01

    Completely autotrophic nitrogen removal over nitrite (CANON) has been regarded as an efficient and economical process for nitrogen removal from wastewater. The distribution and genetic diversity of the functional microorganisms in five lab-scale CANON reactors have been investigated by using some molecular biology methods. Nitrosomonas-like aerobic ammonium oxidizing bacteria (AerAOB) and Candidatus Brocadia-related anaerobic ammonium oxidizing bacteria (AnAOB) were detected as predominant functional microbes in the five reactors while Nitrobacter-like nitrite oxidizing bacteria (NOB) existed only in the systems operated at ambient temperature. Communities of AerAOB and AnAOB were almost similar among the five reactors while the distribution of the functional microbes was either scattered or densely packed. Meanwhile, this study has demonstrated the feasibility of starting up CANON by inoculating conventional activated sludge in low ammonium content at ambient temperature.

  9. Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects.

    Science.gov (United States)

    Tobler, Dominique J; Benning, Liane G

    2011-07-01

    The microbial ecology associated with siliceous sinters was studied in five geochemically diverse Icelandic geothermal systems. Bacterial 16S rRNA clone libraries were constructed from water-saturated precipitates from each site resulting in a total of 342 bacterial clone sequences and 43 species level phylotypes. In near-neutral, saline (2.6-4.7% salinity) geothermal waters where sinter growth varied between 10 and ~300 kg year(-1) m(-2), 16S rRNA gene analyses revealed very low (no OTUs could be detected) to medium (9 OTUs) microbial activity. The most dominant phylotypes found in these waters belong to marine genera of the Proteobacteria. In contrast, in alkaline (pH = 9-10), meteoric geothermal waters with temperature = 66-96°C and geothermal waters; alkaliphilic thermophilic microbial communities with phylotypes related to heterotrophic and autotrophic microorganisms developed in alkaline high temperature waters, whereas halophilic mesophilic communities dominated coastal geothermal waters.

  10. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    Science.gov (United States)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  11. Hydrogen production employing Spirulina maxima 2342: A chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Juantorena, A.U.; Santoyo, E.; Gamboa, S.A.; Lastres, O.D. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Cuerpo Academico de Energia, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Sanchez-Escamilla, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Bustos, A. [Centro de Ciencias Fisicas, UNAM, Ave. Universidad, Cuernavaca, Morelos (Mexico); Eapen, D. [Investigacion y Desarrollo en Agroindustria, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    The biomass of the cyanobacteria, Spirulina maxima 2342, was autotrophically obtained in a 20 l bioreactor under illumination and air bubbling and analyzed for its photobiological hydrogen production capability. A volume of 250 ml of Spirulina sp. taken from the reactor was used as culture sample for performing the experiments. An illumination-agitation process was employed to induce the hydrogen photoproduction reaction. The hydrogen produced in this process was quantified by gas chromatography technique using Molesieve 5 A(16ft x (1)/(8)in) column and a thermal conductivity detector (with a detector temperature of 110{sup o}C and a column temperature of 60{sup o}C). The culture samples were finally observed in an electron microscope to evaluate the effect of vacuum on the Spirulina sp. cells. (author)

  12. Profiling of microbial communities in a bioreactor for treating hydrocarbon-sulfide-containing wastewater

    Institute of Scientific and Technical Information of China (English)

    LIAO Bo; JI Guodong; CHENG Liqiu

    2008-01-01

    A technology of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to profile the structure and dynamic changes of microbial communities in a bioreactor for treating hydrocarbon-sulfide-containing (HSC) wastewater. The results showed that the heterotrophic genus of Acinetobacter and the autotrophic genera of Thiobacillus and Thiomonas could survive well in all of three operating conditions. Some special genera were also observed with changes of micro-ecoenvironment in the reactor, such as the halophilic genus of Nesterenkonia. Further, a new genus was found in the reactor, which was likely to have the ability to degrade sulfide and hydrocarbon at the same time. All of these detected and the new found genera have widely applicable potential in the treatment of HSC wastewater.

  13. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  14. Effects of an oil spill on benthic community production and respiration on subtropical intertidal sandflats.

    Science.gov (United States)

    Lee, Li-Hua; Lin, Hsing-Juh

    2013-08-15

    This study determined effects of an oil spill on subtropical benthic community production and respiration by monitoring CO2 fluxes in benthic chambers on intertidal sandflats during emersion before and after an accidental spill. The oil spill decreased sediment chlorophyll a concentrations, altered benthic macrofaunal community, and affected ecological functioning by suppressing or even stopping microalgal production, increasing bacterial respiration, and causing a shift from an autotrophic system to a heterotrophic system. Effects of the oil spill on the macrofauna were more severe than on benthic microalgae, and affected sedentary infauna more than motile epifauna. Despite the oil spill's impact on the benthic community and carbon metabolism, the affected area appeared to return to normal in about 23 days. Our results suggest that the prompt response of benthic metabolism to exposure to petroleum hydrocarbons can serve as a useful indicator of the impact of an oil spill.

  15. Nutrient flows between ecosystems can destabilize simple food chains.

    Science.gov (United States)

    Marleau, Justin N; Guichard, Frédéric; Mallard, François; Loreau, Michel

    2010-09-07

    Dispersal of organisms has large effects on the dynamics and stability of populations and communities. However, current metacommunity theory largely ignores how the flows of limiting nutrients across ecosystems can influence communities. We studied a meta-ecosystem model where two autotroph-consumer communities are spatially coupled through the diffusion of the limiting nutrient. We analyzed regional and local stability, as well as spatial and temporal synchrony to elucidate the impacts of nutrient recycling and diffusion on trophic dynamics. We show that nutrient diffusion is capable of inducing asynchronous local destabilization of biotic compartments through a diffusion-induced spatiotemporal bifurcation. Nutrient recycling interacts with nutrient diffusion and influences the susceptibility of the meta-ecosystem to diffusion-induced instabilities. This interaction between nutrient recycling and transport is further shown to depend on ecosystem enrichment. It more generally emphasizes the importance of meta-ecosystem theory for predicting species persistence and distribution in managed ecosystems.

  16. Climate variance influence on the non-stationary plankton dynamics.

    Science.gov (United States)

    Molinero, Juan Carlos; Reygondeau, Gabriel; Bonnet, Delphine

    2013-08-01

    We examined plankton responses to climate variance by using high temporal resolution data from 1988 to 2007 in the Western English Channel. Climate variability modified both the magnitude and length of the seasonal signal of sea surface temperature, as well as the timing and depth of the thermocline. These changes permeated the pelagic system yielding conspicuous modifications in the phenology of autotroph communities and zooplankton. The climate variance envelope, thus far little considered in climate-plankton studies, is closely coupled with the non-stationary dynamics of plankton, and sheds light on impending ecological shifts and plankton structural changes. Our study calls for the integration of the non-stationary relationship between climate and plankton in prognostic models on the productivity of marine ecosystems.

  17. 不同营养方式对普通小球藻生长特性和细胞组成的影响%The Effects of Different Nutrition Modes on Growth Characteristics and Cell Components of Chlorella vulgaris

    Institute of Scientific and Technical Information of China (English)

    曹云涛; 孔维宝; 葸玉琴; 李龙囡; 夏春谷

    2011-01-01

    The growth curves, specific growth rates and productivities of Chlorella vulgaris were analyzed under autotrophic, heterotrophic and mixotrophic cultivation, as well as the changes of pH values and glucose consumption in medium, the contents and productivities of photosynthetic pigment, protein and lipid were investigated. The results indicated that the specific growth rate of C. vulgaris under mixotrophic was to 4.25 -4.43times than autotrophic and 0.78 - 1.00 times than heterotrophic, the productivity of C. vulgaris in mixotrophic was to 5.79 - 6.27 times than autotrophic, and 1.11 - 1.31 times than heterotrophic cultivation. The values of C. vulgaris productivities for photo- synthetic pigment (3.62 mg! L. d), protein (53.41 mg/ L. d) and lipid (44.65 mg/ L. d) were obtained under mixotrophic cultivation in per liters culture liquid, all kinds of value more than autotrophic and heterotrophic. The present paper showed that the mixotrophy be more fit for the physical environments of the microalgae growth conditions, and be suited to microalgae cultivation with high density and high content of bioactive substances.%采用自养、异养和混合培养3种营养方式对普通小球藻进行了培养,分析了3种培养方式下小球藻的生长曲线、比生长速率和产率、培养基中pH和葡萄糖的变化,测定了藻细胞的光合色素、蛋白质和油脂含量及其产率。结果表明:混合营养条件下小球藻的比生长速率为自养的4.25—4.43倍、异养的0.78—1.00倍,产率为自养的5.79~6.27倍、异养的1.11—1.31倍;混合营养条件下,单位体积小球藻培养液中总叶绿素、蛋白质和油脂的产率分别为3.62mg/(L·d)、53.41mg/(L·d)和44.65mg/(L·d),均高于自养和异养培养。研究认为,混合营养方式更加符合微藻生长的实际环境,是高密度、高含量活性物质培养微藻的理想方式,具有潜在的应用价值。

  18. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    Science.gov (United States)

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth).

  19. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    Science.gov (United States)

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-10-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology.

  20. Application of remote sensing in regional scale estimates of vegetation carbon budgets: The Belfix project

    Science.gov (United States)

    Veroustraete, Frank; Patyn, Johan; Myneni, R. B.

    1994-01-01

    A concept for coupling the remote sensing derived fraction of the absorbed photosynthetic active radiation (FAPAR) with a functional ecosystem model was developed. The study was named the Belfix procedure. The quantification of changes in carbon dynamics at the ecosystem level is a key issue in studies of global climatic change effects at the vegetation atmosphere interface. An operational procedure, for the determination of carbon fluxes at the regional scale (Belgian territory), is presented. The approach allows for the determination of the sink function of vegetation for carbon (dioxide). The phyto- and litter mass, photosynthetic assimilation, autotroph and heterotroph carbon fluxes and net ecosystem exchange (NEE) of carbon, were evaluated. The results suggest that a single solution can be obtained for ecosystem rates and states, applying an iterative procedure, based on minimizing the change in maximal seasonal green phytomass in function of yearly FAPAR temporal profiles. Total phytomass values obtained are in close range with those obtained by ground sampling.