WorldWideScience

Sample records for autotrophic microbial populations

  1. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    Science.gov (United States)

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  2. Microbial community and population dynamics of single-stage autotrophic nitrogen removal for dilute wastewater at the benchmark oxygen rate supply.

    Science.gov (United States)

    Huang, Yu-Tzu; Chen, Shiou-Shiou; Lee, Po-Heng; Bae, Jaeho

    2013-11-01

    Microbial communities and their kinetic performance in a single-stage autotrophic nitrogen-removal filter at an optimal oxygen supply were examined to determine the presence and activity of denitrifiers, anaerobic ammonia-oxidizing (anammox), ammonia-oxidizing, and nitrite-oxidizing bacteria. To this end, different molecular biology techniques such as real-time quantitative polymerase chain reaction (qPCR) and biomarkers such as 16S rRNA revealed a diverse microbial community along the filter. It was important to survey the specific species of anammox bacteria using a newly designed Candidatus Brocadiafulgida (BF) specific primer, as well as Candidatus Brocadia anammoxidans (BA) and Candidatus Kuenenia stuttgartiensis (KS) specific primers. An unexpected finding was that the predominant anammox species switched from KS in concentrated wastewater to BA in dilute wastewaters. The Eckenfelder model of the NH3-N transformation along the filter was Se=S0 exp(-0.192D/L(2.3217)). These results provide a foundational understanding of the microbial structure and reaction kinetics in such systems.

  3. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  4. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  5. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    Science.gov (United States)

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  6. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  7. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  8. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W

    2016-05-01

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  9. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  10. Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs.

    Science.gov (United States)

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Xu, Juan; Sheng, Guo-Ping; Sun, Yu-Jiao; Yu, Han-Qing

    2011-04-01

    In this work, the heterotrophic growth on the microbial products of autotrophs and the effecting factors were evaluated with both experimental and modeling approaches. Fluorescence in situ hybridization (FISH) analysis illustrated that ammonia oxidizers (AOB), nitrite oxidizers (NOB), and heterotrophs accounted for about 65%, 20%, and 15% of the total bacteria, respectively. The mathematical evaluation of experimental data reported in literature indicated that heterotrophic growth in nitrifying biofilm (30-50%) and granules (30%) was significantly higher than that of nitrifying sludge (15%). It was found that low influent ammonium resulted in a lower availability of soluble microbial products (SMP) and a slower heterotrophic growth, but high ammonium (>150 mg N L(-1)) feeding would lead to purely AOB dominated sludge with high biomass-associated products contained effluent, although the absolute heterotrophic growth increased. Meanwhile, the total active biomass concentration increased gradually with the increasing solids retention time, whereas the factions of active AOB, NOB, and heterotrophs varied a lot at different solids retention times. This work could be useful for better understanding of the autotrophic wastewater treatment systems.

  11. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells

    Science.gov (United States)

    Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh

    2016-08-01

    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.

  12. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application.

  13. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  14. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    Directory of Open Access Journals (Sweden)

    Jessica K Cole

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  15. Metabolic potential of microbial mats and microbialites: Autotrophic capabilities described by an in silico stoichiometric approach from shared genomic resources.

    Science.gov (United States)

    Cerqueda-García, Daniel; Falcón, Luisa I

    2016-08-01

    Microbialites and microbial mats are complex communities with high phylogenetic diversity. These communities are mostly composed of bacteria and archaea, which are the earliest living forms on Earth and relevant to biogeochemical evolution. In this study, we identified the shared metabolic pathways for uptake of inorganic C and N in microbial mats and microbialites based on metagenomic data sets. An in silico analysis for autotrophic pathways was used to trace the paths of C and N to the system, following an elementary flux modes (EFM) approach, resulting in a stoichiometric model. The fragility was analyzed by the minimal cut sets method. We found four relevant pathways for the incorporation of CO2 (Calvin cycle, reverse tricarboxylic acid cycle, reductive acetyl-CoA pathway, and dicarboxylate/4-hydroxybutyrate cycle), some of them present only in archaea, while nitrogen fixation was the most important source of N to the system. The metabolic potential to incorporate nitrate to biomass was also relevant. The fragility of the network was low, suggesting a high redundancy of the autotrophic pathways due to their broad metabolic diversity, and highlighting the relevance of reducing power source. This analysis suggests that microbial mats and microbialites are "metabolic pumps" for the incorporation of inorganic gases and formation of organic matter.

  16. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  17. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore......Multi-species biofilm modeling has been used for many years to understand the interactions between species in different biofilm systems, but the complex symbiotic relationship between species is sometimes overlooked, because models do not always include all relevant species and components...

  18. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria.

    Science.gov (United States)

    Matassa, Silvio; Verstraete, Willy; Pikaar, Ilje; Boon, Nico

    2016-09-15

    Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h(-1)) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal.

  19. Response of heterotrophic and autotrophic microbial plankton to inorganic and organic inputs along a latitudinal transect in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Martínez-García

    2010-01-01

    Full Text Available Atmospheric nutrient deposition into the open ocean increased over the past decades as a result of human activity and water-soluble organic nitrogen accounts for up to 30% of the total nitrogen inputs. The effects of inorganic and/or organic nutrient inputs on phytoplankton and heterotrophic bacteria have never been concurrently assessed in open ocean oligotrophic communities over a wide spatial gradient. We studied the effects of potentially limiting inorganic (nitrate, ammonium, phosphate, silica and organic nutrient (glucose, aminoacids inputs on microbial plankton biomass, community structure and metabolism in five microcosm experiments conducted along a latitudinal transect in the Atlantic Ocean (from 26° N to 29° S.

    Primary production rates increased up to 1.8-fold. Bacterial respiration and microbial community respiration increased up to 14.3 and 12.7-fold, respectively. Bacterial production and bacterial growth efficiency increased up to 58.8-fold and 2.5-fold, respectively. The largest increases were measured after mixed inorganic-organic nutrients additions. Changes in microbial plankton biomass were small as compared with those in metabolic rates. A north to south increase in the response of heterotrophic bacteria was observed, which could be related to a latitudinal gradient in phosphorus availability. Our results suggest that organic matter inputs associated with atmospheric deposition into the Atlantic Ocean will result in a predominantly heterotrophic versus autotrophic response and in increases in bacterial growth efficiency, particularly in the Southern Hemisphere. Subtle differences in the initial environmental and biological conditions are likely to result in differential microbial responses to inorganic and organic matter inputs.

  20. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses

    DEFF Research Database (Denmark)

    Matsumoto, S.; Katoku, M.; Saeki, G.

    2010-01-01

    the observed granule development as a result of the multiple bacteria-substrate interactions. The interaction between nitrifying and heterotrophic bacteria was evaluated by assuming three types of heterotrophic bacterial growth on soluble microbial products from nitrifying bacteria. The models described well...

  1. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils.

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A S; Wu, Jinshui

    2016-01-22

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  2. Management of microbial community composition, architecture and performance in autotrophic nitrogen removing bioreactors through aeration regimes

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem

    intensification in single-stage reactors. Single-stage reactors require biofilms or bioaggregates to provide the complementary redox niches for the aerobic and anaerobic bacteria that are required for nitritation and anaerobic ammonium oxidation (anammox), respectively. The nitritation/anammox process might...... evaluated as an approach to manipulate the microbial community structure, to reach efficient nitrogen removal performance, and to reduce nitrous oxide emissions from single-stage nitritation/anammox reactors. First, an iterative protocol was developed to diagnose reactor performance based on process...... stoichiometry and to propose actions to enhance performance based on discretized aeration parameters, restricted by an overall ratio of oxygen to ammonium loading. The protocol was successfully applied on two bioaggregate-based single-stage sequencing batch reactors during start-up; while recovering from major...

  3. Microbial diversity--insights from population genetics.

    Science.gov (United States)

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  4. Microbial populations in contaminant plumes

    Science.gov (United States)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les

  5. Modeling Approaches for Describing Microbial Population Heterogeneity

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita

    , ethanol and biomass throughout the reactor. This work has proven that the integration of CFD and population balance models, for describing the growth of a microbial population in a spatially heterogeneous reactor, is feasible, and that valuable insight on the interplay between flow and the dynamics......Although microbial populations are typically described by averaged properties, individual cells present a certain degree of variability. Indeed, initially clonal microbial populations develop into heterogeneous populations, even when growing in a homogeneous environment. A heterogeneous microbial......) to predict distributions of certain population properties including particle size, mass or volume, and molecular weight. Similarly, PBM allow for a mathematical description of distributed cell properties within microbial populations. Cell total protein content distributions (a measure of cell mass) have been...

  6. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931 Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

    Directory of Open Access Journals (Sweden)

    Manuel J. Becerra-Dórame

    2012-01-01

    Full Text Available Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control, an autotrophic system (AS based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.

  7. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems.

    Science.gov (United States)

    Becerra-Dórame, Manuel J; Martínez-Porchas, Marcel; Martínez-Córdova, Luis R; Rivas-Vega, Martha E; Lopez-Elias, José A; Porchas-Cornejo, Marco A

    2012-01-01

    Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control), an autotrophic system (AS) based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS) based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.

  8. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  9. Microbial diversity - insights from population genetics

    NARCIS (Netherlands)

    Mes, T.H.M.

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, Ne, is one of the parameters that determines population genetic

  10. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Directory of Open Access Journals (Sweden)

    O. Bonilla-Findji

    2010-11-01

    Full Text Available A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP was followed by maxima of bacterial respiration (BR and production (BP. The trophic balance (heterotrophy vs. autotrophy of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l−1 d−1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold, respiration (up to 4.5-fold and growth efficiency (up to 2.9-fold but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  11. Septic tank additive impacts on microbial populations.

    Science.gov (United States)

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  12. Interactions between Ipomoea aquatica and Microbial Populations

    Institute of Scientific and Technical Information of China (English)

    Kan; Yuanqing; Sun; Ling; Zhang; Ying

    2014-01-01

    [Objective]This paper was to research the water purification mechanism of Ipomoea aquatica and its correlation with algae and rotifer. [Methods]Taking I. aquatica as the test material,Chlorella vulgaris,Scenedesmus obliquus,Microcystis aeroginosa and rotifer Adineta vaga with different densities were added to the hydroponics nutrients solutions of I. aquatica by the hydroponic ecological simulation method. The growth characteristics of I. aquatica,changes of microbial populations and the consumption status of nutrients in the nutritional solution were determined. And the interactions between the plant and the microbial populations were researched. [Results]When I. aquatica seedlings grew to a certain stage,growth of principal root stopped; while the lateral roots emerged greatly; and the nutrition absorption efficiency enhanced. As the inoculation concentration of C. vulgaris increased,root length of I. aquatica increased relatively great due to the competition for nutrients. The competition and allelopathy of M. aeroginosa and S. obliquus restricted the development of root system of I. aquatica. The grazing pressure of Chlorella vulgaris had little effects on M. aeroginosa,but restricted the rapid growth of S. obliquus. [Conclusions]This research provided data support for the application of fish-shrimp-vegetable aquaculture system.

  13. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  14. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron...

  15. Microbial population responses in three stratified Antarctic meltwater ponds during the autumn freeze

    DEFF Research Database (Denmark)

    Safi, Karl; Hawes, Ian; Sorrell, Brian Keith

    2012-01-01

    The planktonic microbial communities of three meltwater ponds, located on the McMurdo Ice Shelf, were investigated from the end of January 2008 to early April, during which almost the entire pond volumes froze. The ponds were comprised of an upper mixed layer overlying a salt-stabilized density g...... for increasing heterotrophy within the remaining microbial communities, although all components of the food web eventually decline as the final freeze approaches....... role of autotrophic and heterotrophic microplankton within the ponds. The results showed that microbial groups responded to the onset of winter by declining in abundance, though an exception was the appearance of filamentous cyanobacteria in the water column in March. As freezing progressed, autotrophs...... declined more rapidly than heterotrophs and grazing rates and abundances of mixotrophic and heterotrophic organisms increased. Grazing pressure on bacteria and picophytoplankton also increased, in part explaining their decline over time. The results indicate that stressors imposed during freezing select...

  16. Distribution of Microbial Populations and Their Relationship with Environmental Variables in the North Yellow Sea, China

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaoge; WANG Min; LIANG Yantao; ZHANG Zhifeng; WANG Fang; JIANG Xuejiao

    2012-01-01

    In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and vireoplankton and their relationship with environmental variables in coastal and offshore waters,flow cytometry (FCM) was used to analyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea (NYS).The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer.For the surface layer,picoeukaryotes were abundant in the near-shore waters,Synechococcus was abundant in the offshore areas,and bacterial and viral abundances were high in the near-shore waters around the Liaodong peninsula.In the near-shore waters,no significant vertical variation of picophytoplankton (0.2-2μm) abundance was found.However,the nanophytoplankton abundance was higher in the upper layers (from the surface to 10m depth) than in the bottom layer.For the offshore waters,both pico- and nanophytoplankton (2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass (NYSCWM).But,for the vertical distribution of virus and bacteria abundance,no significant variation was observed in both near-shore and offshore waters.Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses.Viruses showed a positive correlation with bacterial abundance,suggesting that the bacteriophage might be prominent for virioplankton (about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.

  17. Diversity Generation in Evolving Microbial Populations

    DEFF Research Database (Denmark)

    Markussen, Trine

    in relation to chronic infection is a major concern as high population diversity has been predicted to result in survival and persistence of the infecting microbe. Therefore, understanding within-host dynamics and population diversification is necessary for optimal diagnosis and therapeutic treatment. Chronic...... diversity has been documented in contemporary respiratory specimens, it is less clear to what extent within-patient diversity contributes to the overall population structure and whether the population is geographically or homogeneously distributed throughout the airways. The focus of this thesis has been...... to get a better understanding of how bacterial populations adapt to new, complex and heterogeneous environments with multiple selective pressures over long periods, and to analyse diversification during this adaptation. Using the P. aeruginosa chronic infection as a model system, and by combining...

  18. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape

    Science.gov (United States)

    Woo, Anthony C.; Brar, Manreetpal S.; Chan, Yuki; Lau, Maggie C. Y.; Leung, Frederick C. C.; Scott, James A.; Vrijmoed, Lilian L. P.; Zawar-Reza, Peyman; Pointing, Stephen B.

    2013-08-01

    The microbial component of outdoor aerosols was assessed along a gradient of urban development from inner-city to rural in the seasonal-tropical metropolis of Hong Kong. Sampling over a continuous one-year period was conducted, with molecular analyses to characterize bacterial and eukaryal microbial populations, immuno-assays to detect microbially-derived allergens and extensive environmental and meteorological observations. The data revealed bio-aerosol populations were not significantly impacted by the level of urban development as measured by anthropogenic pollutants and human population levels, but instead exhibited a strong seasonal trend related to general climatic variables. We applied back-trajectory analysis to establish sources of air masses and this allowed further explanation of urban bio-aerosols largely in terms of summer-marine and winter-continental origins. We also evaluated bio-aerosols for the potential to detect human health threats. Many samples supported bacterial and fungal phylotypes indicative of known pathogenic taxa, together with common indicators of human presence. The occurrence of allergenic endotoxins and beta-glucans generally tracked trends in microbial populations, with levels known to induce symptoms detected during summer months when microbial loading was higher. This strengthens calls for bio-aerosols to be considered in future risk assessments and surveillance of air quality, along with existing chemical and particulate indices.

  19. 2007 Microbial Population Biology (July 22-26, 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Anthony M. Dean

    2008-04-01

    Microbial Population Biology covers a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past meetings have covered topics ranging from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. We anticipate the 2007 meeting being no exception. The final form of the 2007 meeting is yet to be decided, but the following topics are likely to be included: evolutionary emergence of infectious disease and antibiotic resistance, genetic architecture and implications for the evolution of microbial populations, ageing in bacteria, biogeography, evolution of symbioses, the role of microbes in ecosystem function, and ecological genomics.

  20. MICROBIAL POPULATION ANALYSIS AS A MEASURE OF ECOSYSTEM RESTORATION

    Science.gov (United States)

    During a controlled oil spill study in a freshwater wetland, four methods were used to track changes in microbial populations in response to in situ remediation treatments, including nutrient amendments and the removal of surface vegetation. Most probable number (MPN) esimates o...

  1. Growth dynamics and the evolution of cooperation in microbial populations

    OpenAIRE

    Jonas Cremer; Anna Melbinger; Erwin Frey

    2012-01-01

    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of c...

  2. Minimal models of growth and decline of microbial populations.

    Science.gov (United States)

    Juška, Alfonsas

    2011-01-21

    Dynamics of growth and decline of microbial populations were analysed and respective models were developed in this investigation. Analysis of the dynamics was based on general considerations concerning the main properties of microorganisms and their interactions with the environment which was supposed to be affected by the activity of the population. Those considerations were expressed mathematically by differential equations or systems of the equations containing minimal sets of parameters characterizing those properties. It has been found that: (1) the factors leading to the decline of the population have to be considered separately, namely, accumulation of metabolites (toxins) in the medium and the exhaustion of resources; the latter have to be separated again into renewable ('building materials') and non-renewable (sources of energy); (2) decline of the population is caused by the exhaustion of sources of energy but no decline is predicted by the model because of the exhaustion of renewable resources; (3) the model determined by the accumulation of metabolites (toxins) in the medium does not suggest the existence of a separate 'stationary phase'; (4) in the model determined by the exhaustion of energy resources the 'stationary' and 'decline' phases are quite discernible; and (5) there is no symmetry in microbial population dynamics, the decline being slower than the rise. Mathematical models are expected to be useful in getting insight into the process of control of the dynamics of microbial populations. The models are in agreement with the experimental data.

  3. Self-driven jamming in growing microbial populations

    Science.gov (United States)

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation, the colonization of porous media, and the invasion of biological tissues. Although mechanical forces have been characterized at the single-cell level, it remains elusive how collective pushing forces result from the combination of single-cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the micro-environment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling.

  4. Coupling autotrophic sulfide mineral weathering with dolomite dissolution in a subglacial ecosystem

    Science.gov (United States)

    Boyd, E. S.; Hamilton, T. L.; Havig, J. R.; Lange, R.; Murter, E.; Skidmore, M. L.; Peters, J.; Shock, E.

    2013-12-01

    Evidence in the rock record suggests that glaciers have been present and covered a significant portion of the Earth's surface since the putative Mozaan Glaciation (circa 2.9 Ga) and were demonstrated recently to host active microbial communities that impact local and global biogeochemical cycles. In the present study, we applied a microcosm-based radioisotopic biocarbonate tracer approach to quantify rates of inorganic carbon assimilation in sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada at 4°C. Rates of inorganic carbon assimilation were stimulated by the addition of ammonium and phosphate, suggesting that these nutrients might be of limited supply in the subglacial environment or, in the case of ammonia, might be serving as a source of reductant fueling inorganic carbon fixation. Geochemical analyses were used to assess the potential redox couples that might be fueling autotrophic activity. The difference in the concentration of sulfate (2.4 mM) in unamended microcosm fluids when compared to fluids sampled from killed controls following 180 days incubation suggests that inorganic carbon assimilation in microcosms is driven by microbial populations involved in the oxidation of mineral sulfides, most likely pyrite. Amendment of microcosms with 1 mM ammonia led to near stoichiometric production of nitrate (~890 μM) and lower production of sulfate (~1.5 mM), indicating that the enhanced activity observed in ammonia treated microcosms is likely due to the stimulation of autotrophic ammonia oxidizing populations. The isotopic composition of dissolved organic carbon in subglacial meltwaters ranged was -24.40 ‰ versus VPDB, which is consistent with a source for this organic carbon via the activity of autotrophs that use the Calvin cycle of inorganic carbon fixation. Quantification and sequencing of transcripts of Calvin cycle biomarker genes (ribulose-1,5 bisphosphate carboxylase/oxygenase, encoded by cbbL) suggest the presence of a ubiquitous

  5. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria.

    Science.gov (United States)

    Burnap, Robert L

    2015-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The "proteomic constraint" is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the

  6. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Robert L Burnap

    2015-01-01

    Full Text Available Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular, most importantly, protein expression. The ‘proteomic constraint’ is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity and cell surface to volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded the space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model (ARM, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light harvesting antennae, and the

  7. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    Directory of Open Access Journals (Sweden)

    Suzana Cláudia Silveira Martins

    2016-01-01

    Full Text Available There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.

  8. Single gene-based distinction of individual microbial genomes from a mixed population of microbial cells

    Directory of Open Access Journals (Sweden)

    Manu Valtteri Tamminen

    2015-03-01

    Full Text Available Recent progress in environmental microbiology has revealed vast populations of microbes in any given habitat that cannot be detected by conventional culturing strategies. The use of sensitive genetic detection methods such as CARD-FISH and in situ PCR have been limited by the cell wall permeabilization requirement that cannot be performed similarly on all cell types without lysing some and leaving some unpermeabilized. Furthermore, the detection of low copy targets such as genes present in single copies in the microbial genomes, has remained problematic. We describe an emulsion-based procedure to trap individual microbial cells into picoliter-volume polyacrylamide droplets that provide a rigid support for genetic material and therefore allow complete degradation of cellular material to expose the individual genomes. The polyacrylamide droplets are subsequently converted into picoliter-scale reactors for genome amplification. The amplified genomes are labelled based on the presence of a target gene and differentiated from those that do not contain the gene by flow cytometry. Using the Escherichia coli strains XL1 and MC1061, which differ with respect to the presence (XL1 or absence (MC1061 of a single copy of a tetracycline resistance gene per genome, we demonstrate that XL1 genomes present at 0.1% of MC1061 genomes can be differentiated using this method. Using a spiked sediment microbial sample, we demonstrate that the method is applicable to highly complex environmental microbial communities as a target gene-based screen for individual microbes. The method provides a novel tool for enumerating functional cell populations in complex microbial communities. We envision that the method could be optimized for fluorescence-activated cell sorting to enrich genetic material of interest from complex environmental samples.

  9. Effect of oil spill on the microbial population in Andaman Sea around Nicobar Island

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    The microbial studiees of the follow up cruise by FORV Sagar Sampada (cruise No. 113), 9 months after the oil spill in the Andaman Sea due to accident of VLCC Maersk Navigator revealed disturbance in the natural microbial population. Higher...

  10. Multi-population model of a microbial electrolysis cell.

    Science.gov (United States)

    Pinto, R P; Srinivasan, B; Escapa, A; Tartakovsky, B

    2011-06-01

    This work presents a multi-population dynamic model of a microbial electrolysis cell (MEC). The model describes the growth and metabolic activity of fermentative, electricigenic, methanogenic acetoclastic, and methanogenic hydrogenophilic microorganisms and is capable of simulating hydrogen production in a MEC fed with complex organic matter, such as wastewater. The model parameters were estimated with the experimental results obtained in continuous flow MECs fed with acetate or synthetic wastewater. Following successful model validation with an independent data set, the model was used to analyze and discuss the influence of applied voltage and organic load on hydrogen production and COD removal.

  11. Characterization of Microbial Population Shifts During Sample Storage

    Directory of Open Access Journals (Sweden)

    Heath J. Mills

    2012-02-01

    Full Text Available The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4oC for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80oC. Storage at 4oC does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a three-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below seafloor sediment samples, reverse transcribed to cDNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.

  12. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    Science.gov (United States)

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  13. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H2S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H2S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH3-N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H2S, CH4, and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems. PMID:28261160

  14. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  15. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of

  16. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    Science.gov (United States)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-01-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations. PMID:27666090

  17. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    Science.gov (United States)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  18. Effect of Lanthanum on Major Microbial Populations in Red Soil

    Institute of Scientific and Technical Information of China (English)

    CHUHAIYAN; WANGJUNHUA; 等

    2001-01-01

    Pure culture and pot culture experiments were carried out to study the effect of lanthanum(La)on bacteria,actinomyces and fungus,and some microbial physiological groups,nitrifir,azotobacter and phos-phobacteria in a red soil taken form the Ecological Experimental Station of Red Soil,the Chinese Academy of Sciences,Jiangxi Province.LaCl3 was added into media at levels of 0,25,50,100,150,200,250 and 500 mg L-1 in the pure culture experiment ,and into soil samples in porcelain pots before rice growing at levles of 0,6,30,150,300,600 and 900 mg kg-1 dry soil in the pot culture experiment.The populations of the three soil microbes in the pure cultre experiment decreased with the addition level of La,indicating that La was toxic to the soil microbes in pure culture ,and the sensitivity of the 3 major mircrobial types to La was in a decreasing order of actinomyces>bacteria>fungus.In the pot experiment,La had slightly stimulaive effect on soil bacteria and actinomyces when applied at olw concentrations while had inhibitory effect on soil bacteria,actinomyces and fungus at high concentrations.When the concentration of La Was low,soil azotobacter was stimulated slightly while soil nitrifier was stimulated strongly and the maximum increase was up to 50%.When the concentration of La was highy,both soil aztobacter and nitrifier ware inhibited ,and the inhibition of La to the nitrifier increased with La conentration,La added at all the levels had stimulative effect on soil inorgaic and organic phosphobacteria.Among the 4 physiological groups,soil nitrifier was most sensitive to La,so,it migh be reasonble to assume that soil nitrifier was a sensitive indicator for evaluating the biological and environmental effects of rare earths.

  19. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapte...... demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.......Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  20. Ileal and cecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs

    Science.gov (United States)

    Digestive microbial populations (MP) are key components for sustained healthy broiler production. Specific essential oil (EO) blends and probiotics used as feed additives have shown to promote healthy digestive microbials, resulting in improved poultry production. Two consecutive experiments were ...

  1. Microbial populations responsible for specific soil suppressiveness to plant pathogens

    NARCIS (Netherlands)

    Weller, D.M.; Raaijmakers, J.M.; McSpadden Gardener, B.B.; Thomashow, L.S.

    2002-01-01

    Agricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and i

  2. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    Science.gov (United States)

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  3. Metagenomic approach for understanding microbial population from petroleum muck.

    Science.gov (United States)

    Joshi, M N; Dhebar, S V; Dhebar, S V; Bhargava, P; Pandit, A S; Patel, R P; Saxena, A K; Bagatharia, S B

    2014-05-29

    Petroleum products play a major role in fueling the economy of the world but the pollution they create has become a critical issue. Understanding the diversity present in pipeline muck will help with the exploration of new microbial strains with better hydrocarbon degrading capacities for bioremediation of polluted sites. This study provides an analysis of petroleum muck using next generation sequencing.

  4. Metagenomic Approach for Understanding Microbial Population from Petroleum Muck

    OpenAIRE

    Joshi, M. N.; Dhebar, S. V.; Bhargava, P.; Pandit, A. S.; Patel, R. P.; A K Saxena; Bagatharia, S. B.

    2014-01-01

    Petroleum products play a major role in fueling the economy of the world but the pollution they create has become a critical issue. Understanding the diversity present in pipeline muck will help with the exploration of new microbial strains with better hydrocarbon degrading capacities for bioremediation of polluted sites. This study provides an analysis of petroleum muck using next generation sequencing.

  5. Ecological perspectives on synthetic biology: insights from microbial population biology

    Science.gov (United States)

    Escalante, Ana E.; Rebolleda-Gómez, María; Benítez, Mariana; Travisano, Michael

    2015-01-01

    The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems. PMID

  6. Oxygen Effects on Thermophilic Microbial Populations in Biofilters Treating Nitric Oxide Containing Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady Douglas; Apel, William Arnold; Smith, William Aaron

    2004-04-01

    Electricity generation from coal has increased by an average of 51 billion kWh per year over the past 3 years. For this reason cost-effective strategies to control nitrogen oxides (NOx) from coal-fired power plant combustion gases must be developed. Compost biofilters operated at 55°C at an empty bed contact time (EBCT) of 13 seconds were shown to be feasible for removal of nitric oxide (NO) from synthetic flue gas. Denitrifying microbial populations in these biofilters were shown to reduce influent NO feeds by 90 to 95% at inlet NO concentrations of 500 ppmv. Oxygen was shown to have a significant effect on the NO removal efficiency demonstrated by these biofilters. Two biofilters were set up under identical conditions for the purpose of monitoring NO removal as well as changes in the microbial population in the bed medium under anaerobic and aerobic conditions. Changes in the microbial population were monitored to determine the maximum oxygen tolerance of a denitrifying biofilter as well as methods of optimizing microbial populations capable of denitrification in the presence of low oxygen concentrations. Nitric oxide removal dropped to between 10 and 20% when oxygen was present in the influent stream. The inactive compost used to pack the biofilters may have also caused the decreased NO removal efficiency compared to previous biofiltration experiments. Analysis of the bed medium microbial population using environmental scanning electron microscopy indicated significant increases in biomass populating the surface of the compost when compared to unacclimated compost.

  7. Microbial populations causing off-flavour in recirculated aquaculture systems

    DEFF Research Database (Denmark)

    Lukassen, Mie Bech; Nielsen, Jeppe Lund; Schramm, Edward

    Microbial production of geosmin, a secondary metabolite with an earthy off-flavour is a serious economic problem in wine production, drinking water and aquaculture. Geosmin is produced by a small group of bacteria all harboring the geosmin synthetase gene (geoA). Sequencing and analyzing the dist......Microbial production of geosmin, a secondary metabolite with an earthy off-flavour is a serious economic problem in wine production, drinking water and aquaculture. Geosmin is produced by a small group of bacteria all harboring the geosmin synthetase gene (geoA). Sequencing and analyzing...... and activity. These findings are useful for the future optimization and management of full-scale aquaculture plants, and can be used as a diagnostic tool in developing strategies to limit the presence and growth of geosmin-producing bacteria....

  8. Estimation of the Number of Microbial Species Comprising a Population

    Science.gov (United States)

    2008-03-01

    and journal articles. New methods for estimation are regularly being evaluated for use. It appears from this research that parametric methods hold...Experiments,” Biometrics: 427-438 (1989). Chao, Anne and Lee, Shen-Ming. “Estimating the Number of Classes via Sample Coverage,” Journal of the...Trends in Parasitology : 568-574 (2006). Hong et al.. “Predicting Microbial Species Richness,” PNAS: 117-122 (2006). 90 91 Hughes et al

  9. Microbial populations responsible for specific soil suppressiveness to plant pathogens.

    Science.gov (United States)

    Weller, David M; Raaijmakers, Jos M; Gardener, Brian B McSpadden; Thomashow, Linda S

    2002-01-01

    Agricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and is not transferable between soils. Specific suppression owes its activity to the effects of individual or select groups of microorganisms and is transferable. The microbial basis of specific suppression to four diseases, Fusarium wilts, potato scab, apple replant disease, and take-all, is discussed. One of the best-described examples occurs in take-all decline soils. In Washington State, take-all decline results from the buildup of fluorescent Pseudomonas spp. that produce the antifungal metabolite 2,4-diacetylphloroglucinol. Producers of this metabolite may have a broader role in disease-suppressive soils worldwide. By coupling molecular technologies with traditional approaches used in plant pathology and microbiology, it is possible to dissect the microbial composition and complex interactions in suppressive soils.

  10. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa

    NARCIS (Netherlands)

    Rijgersberg, H.; Nierop Groot, M.N.; Tromp, S.O.; Franz, E.

    2013-01-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count

  11. [Formation of microbial populations on the surface of protective coatings].

    Science.gov (United States)

    Kopteva, Zh P; Zanina, V V; Piliashenko-Novokhatnyĭ, A I; Kopteva, A E; Kozlova, I A

    2001-01-01

    Formation of microbial cenosis on the surface of polyethylene-, polyurethane- and oil-bitumen-based protective coatings was studied in dynamics during 1, 3, 7, 14 and 21 days. It has been shown that the biofilm was formed on the protective materials during 14 days and consisted of ammonifying, denitrifying, hydrocarbon-oxidizing and sulphate-reducing bacteria referred to Pseudomonas, Arthrobacter, Bacillus and Kesulfovibrio genera. The bacteria which form the biofilm on coatings possess high denitrifying and sulphate-reducing activities. Corrosion inhibitors-biocydes, introduced in composition of oil-bitumen coatings suppressed growth and metabolic activity of corrosion-active bacteria.

  12. Variations of dominant microbial populations in groundwater in response to the leachate from Laogang Landfill

    Institute of Scientific and Technical Information of China (English)

    TIAN Yang-jie; YANG Hong; LI Dao-tang; LIN Zhi-xin

    2005-01-01

    Temporal changes of dominant microbial populations in groundwater in response to the leachate from Shanghai Laogang Landfill were investigated. Concentrations of dissolved redox-relevant species in groundwater suggested that the dominating redox process had changed from denitrification to methane-production/sulfate-reduction due to landfilling. Dominant microbial populations were determined using restriction fragment length polymorphism(RFLP) analyses of 16S rRNA gene libraries, which were further studied by sequencing and phylogenetic analyses. The results indicated that obvious shifts of dominant microbial populations had occurred in groundwater in response to the pollution of leachate. The closest relatives of some dominant clones are accordant with the dominating redox processes determined by hydrochemical analyses, based on the GenBank's indications on the ability to perform redox reactions.

  13. The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil.

    Science.gov (United States)

    Abbasian, Firouz; Lockington, Robin; Megharaj, Mallavarapu; Naidu, Ravi

    2016-06-01

    Crude oil spills resulting from excavation, transportation and downstream processes can cause intensive damage to living organisms and result in changes in the microbial population of that environment. In this study, we used a pyrosequencing analysis to investigate changes in the microbial population of soils contaminated with crude oil. Crude oil contamination in soil resulted in the creation of a more homogenous population of microorganisms dominated by members of the Actinomycetales, Clostridiales and Bacillales (all belonging to Gram-positive bacteria) as well as Flavobacteriales, Pseudomonadales, Burkholderiales, Rhizobiales and Sphingomonadales (all belonging to Gram-negative bacteria). These changes in the biodiversity decreased the ratios of chemoheterotrophic bacteria at higher concentrations of crude oil contamination, with these being replaced by photoheterotrophic bacteria, mainly Rhodospirillales. Several of the dominant microbial orders in the crude oil contaminated soils are able to degrade crude oil hydrocarbons and therefore are potentially useful for remediation of crude oil in contaminated sites.

  14. Strain-level microbial epidemiology and population genomics from shotgun metagenomics.

    Science.gov (United States)

    Scholz, Matthias; Ward, Doyle V; Pasolli, Edoardo; Tolio, Thomas; Zolfo, Moreno; Asnicar, Francesco; Truong, Duy Tin; Tett, Adrian; Morrow, Ardythe L; Segata, Nicola

    2016-05-01

    Identifying microbial strains and characterizing their functional potential is essential for pathogen discovery, epidemiology and population genomics. We present pangenome-based phylogenomic analysis (PanPhlAn; http://segatalab.cibio.unitn.it/tools/panphlan), a tool that uses metagenomic data to achieve strain-level microbial profiling resolution. PanPhlAn recognized outbreak strains, produced the largest strain-level population genomic study of human-associated bacteria and, in combination with metatranscriptomics, profiled the transcriptional activity of strains in complex communities.

  15. Suppression of Beneficial Mutations in Dynamic Microbial Populations

    Science.gov (United States)

    Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.

    2017-01-01

    Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.

  16. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    Science.gov (United States)

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.

  17. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids; Part I. Effects on growth performance, microbial populations and immune status

    Science.gov (United States)

    Pigs (n=88) weaned at 19 ± 2 d of age were used in a 14 d study to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on immune status, Salmonella infection and shedding, and intestinal microbial populations following a Salmonella Typhimurium challenge. Pigs were ch...

  18. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  19. Aerobic Microbial Community of Insectary Population of Phlebotomus papatasi.

    Directory of Open Access Journals (Sweden)

    Naseh Maleki-Ravasan

    2014-06-01

    Full Text Available Microbes particularly bacteria presenting in the gut of haematophagous insects may have an important role in the epidemiology of human infectious disease.The microbial flora of gut and surrounding environmental of a laboratory strain of Phlebotomus papatasi, the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL in the old world, was investigated. Biochemical reactions and 16s rDNA sequencing of the isolated bacteria against 24 sugars and amino acids were used for bacteria species identification. Common mycological media used for fungi identification as well.Most isolates belonged to the Enterobacteriaceae, a large, heterogeneous group of gram-negative rods whose natural habitat is the intestinal tract of humans and animals. Enterobacteriaceae groups included Edwardsiella, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leminorella, Pantoea, Proteus, Providencia, Rahnella, Serratia, Shigella, Tatumella, and Yersinia and non Enterobacteriaceae groups included Bacillus, Staphylococcus and Pseudomonas. The most prevalent isolates were Proteus mirabilis and P. vulgaris. These saprophytic and swarming motile bacteria were isolated from all immature, pupae, and mature fed or unfed male or female sand flies as well as from larval and adult food sources. Five fungi species were also isolated from sand flies, their food sources and colonization materials where Candida sp. was common in all mentioned sources.Midgut microbiota are increasingly seen as an important factor for modulating vector competence in insect vectors so their possible effects of the mirobiota on the biology of P. papatasi and their roles in the sandfly-Leishmania interaction are discussed.

  20. Microbial population heterogeneity versus bioreactor heterogeneity: evaluation of Redox Sensor Green as an exogenous metabolic biosensor

    DEFF Research Database (Denmark)

    Baert, Jonathan; Delepierre, Anissa; Telek, Samuel

    2016-01-01

    performances (i.e. microbial population heterogeneity). In this work, we have evaluated the relevance of Redox Sensor Green (RSG) as an exogenous biosensor of metabolic activity at the single cell level. RSG signal is proportional to the activity of the electron transport chain and its signal is strongly...

  1. In situ examination of microbial populations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, Adam Camillo; Nielsen, Alex Toftgaard; Arvin, Erik

    2002-01-01

    A flow cell set-up was used as a model drinking water distribution system to analyze the in situ microbial population. Biofilm growth was followed by transmission light microscopy for 81 days and showed a biofilm consisting of microcolonies separated by a monolayer of cells. Protozoans (ciliates...

  2. Physiological heterogeneities in microbial populations and implications for physical stress tolerance

    DEFF Research Database (Denmark)

    Carlquist, Magnus; Fernandes, Rita Lencastre; Helmark, Søren;

    2012-01-01

    may be unfavourable on the one hand (reduces yields and productivities), but also beneficial on the other hand (facilitates quick adaptation to new conditions - i.e. increases the robustness of the fermentation process). Understanding and control of microbial population heterogeneity is thus of major...

  3. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan;

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  4. STATUS OF SOIL MICROBIAL POPULATION, ENZYMATIC ACTIVITY AND BIOMASS OF SELECTED NATURAL, SECONDARY AND REHABILITATED FORESTS

    Directory of Open Access Journals (Sweden)

    K. S. Daljit Singh

    2013-01-01

    Full Text Available Substantial clearance of forests and conversion of forest into various land use types contribute to deterioration of soil fertility and associated nutrients loss. Soils from natural and rehabilitated forest in Chikus Forest Reserve and also enrichment planting forest and secondary forest of Tapah Hill Forest Reserve, Perak, Malaysia were selected in order to assess the influence of land use change on biological properties. This study was carried out to provide fundamental information on soil biological properties and also to compare the differences between natural forest, mono-rehabilitated forest, mixed planting forest and natural regenerated forest (secondary forest. Six subplots (20×20 m were established at each study plot and soil samples were collected at the depths of 0-15 cm (topsoil and 15-30 cm (subsoil. Soil microbial population was determined using spread-plate technique. Fluorescein Diacetate (FDA hydrolysis was used to assess the amount of microbial enzymatic activity for each forest plot. Soil Microbial Biomass C (MBC and N (MBN were extracted using chloroform fumigation extraction technique and the amount of MBC was determined by dichromate digestion, while MBN via Kjeldahl digestion technique. Soil acidity was determined by pH meter and moisture content was elucidated using gravimetric method. The levels of microbial population of bacterial and fungal at natural significantly exceeded the corresponding values of rehabilitated and secondary forest. However, microbial population is much higher in rehabilitated forest of Tapah Hill compared to that of secondary forest and also Chikus Forest Reserve planted forest which proves that rehabilitation activities do help increase the level of microbial community in the soils. Longer period of time after planting as in enrichment planting compared to mono planting of S. leprosula plantation showed that restoring and recovery of the planted forest needed time. Deforestation activities

  5. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    Science.gov (United States)

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  6. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA

    2014-12-01

    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  7. Effects of fertilizers on soil’s microbial growth and populations: a review

    Directory of Open Access Journals (Sweden)

    Ojo OI

    2015-07-01

    Full Text Available Soil nutrients availability and decomposition of organic matter depends on microorganism but there are little available literatures on the possible effects of nutrients fixing chemicals and substances on the survival and population distribution of various microbes. Also, because of importance of organic and inorganic fertilizers to increase the soil microorganisms needed for the growth of plants there is need for comprehensive review of existing literature on the subject. This paper reviewed the effects of fertilizers on soil’s microbial growth and populations in available literatures. Various studies agreed that low microbe population due to lack of organic matter can be easily rectified by amending the soil with fertilizers and organic matter and allowing time for microbial growth therefore jump-starting the reproduction of microbes by adding beneficial microbes along with organic matter. Microbe improves soil structure by the humus they create while digesting organic matter and also help in nitrogen fixing.

  8. Efficacy of gaseous ozone against Salmonella and microbial population on dried oregano.

    Science.gov (United States)

    Torlak, Emrah; Sert, Durmuş; Ulca, Pelin

    2013-08-01

    Interest in potential food applications of ozone has expanded in recent years in response to consumer demands for green technologies. This study was conducted to evaluate the efficacy of gaseous ozone for the microbial reduction and elimination of Salmonella on dried oregano. Ozone treatment was performed up to 120min under continuous stream of two different constant ozone concentrations (2.8 and 5.3mg/L). Significant (Poregano determined as 5.8logCFU/g decreased significantly by 2.8 and 3.7 log after ozonation at 2.8 and 5.3mg/L for 120min, respectively. Sensory evaluation results suggested that over the 2 log reduction in the microbial population can be obtained on dried oregano by gaseous ozone treatments with an acceptable taste, flavor and appearance. The results demonstrated that the gaseous ozone treatment is an effective alternative microbial reduction technique for dried oregano.

  9. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    Science.gov (United States)

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms.

  10. Monitoring the microbial populations and temperatures of fresh broccoli from harvest to retail display.

    Science.gov (United States)

    Dallaire, R; LeBlanc, D I; Tranchant, C C; Vasseur, L; Delaquis, P; Beaulieu, C

    2006-05-01

    Microbial populations and the temperature of fresh broccoli were monitored at several steps of a supply chain by sampling 33 distinct lots of locally grown produce over two seasons during harvest, storage, wholesale handling, and retail display. Imported broccoli was also sampled, but only at retail display. Microbiological analyses were conducted on the florets of 201 local and 60 imported broccoli samples to determine populations of total aerobic bacteria (aerobic colony count), fecal coliforms, Escherichia coli, and Listeria monocytogenes. All the samples had mean aerobic colony counts ranging between 4 and 6 log CFU/g, but L. monocytogenes was not detected (limit of detection =100 CFU/g). Fecal coliforms and E. coli (limit of detection =20 most probable number per 100 g) were found in 22 of 126 samples of local broccoli collected at various steps of the production and distribution system during the first season. None was found in 75 samples collected in the second season. Fecal coliforms and E. coli were found in 2 of 60 imported broccoli samples. Broccoli temperatures were relatively well controlled throughout the production and distribution system. No clear change in produce microbial populations was evident between harvest and retail display, during both sampling seasons. However, a large experimental variability was found, possibly associated with the high variability of the initial levels of microbial populations on broccoli at harvest.

  11. Milankovitch-scale correlations between deeply buried microbial populations and biogenic ooze lithology

    Science.gov (United States)

    Aiello, I.W.; Bekins, B.A.

    2010-01-01

    The recent discoveries of large, active populations of microbes in the subseafloor of the world's oceans supports the impact of the deep biosphere biota on global biogeochemical cycles and raises important questions concerning the functioning of these extreme environments for life. These investigations demonstrated that subseafloor microbes are unevenly distributed and that cell abundances and metabolic activities are often independent from sediment depths, with increased prokaryotic activity at geochemical and/or sedimentary interfaces. In this study we demonstrate that microbial populations vary at the scale of individual beds in the biogenic oozes of a drill site in the eastern equatorial Pacific (Ocean Drilling Program Leg 201, Site 1226). We relate bedding-scale changes in biogenic ooze sediment composition to organic carbon (OC) and microbial cell concentrations using high-resolution color reflectance data as proxy for lithology. Our analyses demonstrate that microbial concentrations are an order of magnitude higher in the more organic-rich diatom oozes than in the nannofossil oozes. The variations mimic small-scale variations in diatom abundance and OC, indicating that the modern distribution of microbial biomass is ultimately controlled by Milankovitch-frequency variations in past oceanographic conditions. ?? 2010 Geological Society of America.

  12. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    Science.gov (United States)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  13. Characteristics of the soil microbial population in forest land irrigated with saline water in the desert area

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highway shelter-forest,by identifying microbial fatty acids and using methods of conventional cul-tivation.The results illustrated that the amount of soil microbial activity and the diversity of soil microbial fatty acid increased significantly with the plantation age of the shelter-forest;the soil microbial population was dominated by bacteria.The fatty acids of C14︰0,C15︰0,C16︰0,C17︰0,C18︰1ω9,C18︰0,C18︰2ω6 and C21︰0 were found to be dominant soil microbial fatty acids in the shelter-forest soil.Prin-cipal analysis and regression analysis showed that(1) concentrations of fatty acids of C14︰0,C16︰0 and C18︰0 could be used as indicators of total soil microbial population;(2) soil bacteria and actinomycetes populations were closely correlated with the amount of fatty acids of C15︰0 and C17︰0;and(3) soil fungi were closely correlated with the amount of fatty acids of C18︰1ω9 and C18︰2ω6.

  14. Physiological heterogeneities in microbial populations and implications for physical stress tolerance

    DEFF Research Database (Denmark)

    Carlquist, Magnus; Fernandes, Rita Lencastre; Helmark, Søren

    2012-01-01

    may be unfavourable on the one hand (reduces yields and productivities), but also beneficial on the other hand (facilitates quick adaptation to new conditions - i.e. increases the robustness of the fermentation process). Understanding and control of microbial population heterogeneity is thus of major...... importance for improving microbial cell factory processes. Results: In this work, a dual reporter system was developed and applied to map growth and cell fitness heterogeneities within budding yeast populations during aerobic cultivation in well-mixed bioreactors. The reporter strain, which was based...... it was possible to distinguish subpopulations with high and low cell membrane robustness and hence ability to withstand freeze-thaw stress. A strong inverse correlation between growth and cell membrane robustness was observed, which further supports the hypothesis that cellular resources are limited and need...

  15. Impact of Aquifer Heterogeneities on Autotrophic Denitrification.

    Science.gov (United States)

    McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.

    2015-12-01

    Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.

  16. Seasonal Microbial Population Shifts in a Bioremediation System Treating Metal and Sulfate-Rich Seepage

    Directory of Open Access Journals (Sweden)

    Susan A. Baldwin

    2016-04-01

    Full Text Available Biochemical reactors (BCRs using complex organics for bioremediation of mine-influenced water must operate successfully year round. In cold climates, where many mines in Canada are located, survival of the important microorganisms through the winter months is a concern. In this work, broad phylogenetic surveys, using metagenomics, of the microbial populations in pulp mill biosolids used to remediate metal leachate containing As, Zn, Cd and sulfate were performed to see if the types of microorganisms present changed over the seasons of one year (August 2008 to July 2009. Despite temperature variations between 0 and 17 °C the overall structure of the microbial population was fairly consistent. A cyclical pattern in relative abundance was detected in certain taxa. These included fermenter-related groups, which were out of phase with other taxa such as Desulfobulbus that represented potential consumers of fermentation byproducts. Sulfate-reducers in the BCR biosolids were closely related to psychrotolerant species. Temperature was not a factor that shaped the microbial population structure within the BCR biosolids. Kinetics of organic matter degradation by these microbes and the rate of supply of organic carbon to sulfate-reducers would likely affect the metal removal rates at different temperatures.

  17. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    Science.gov (United States)

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge.

  18. Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach

    Science.gov (United States)

    Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro

    2013-04-01

    The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to

  19. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory.

  20. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  1. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    Science.gov (United States)

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  2. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities.

    Science.gov (United States)

    Müller, Susann; Nebe-von-Caron, Gerhard

    2010-07-01

    The still poorly explored world of microbial functioning is about to be uncovered by a combined application of old and new technologies. Bacteria, especially, are still in the dark with respect to their phylogenetic affiliations as well as their metabolic capabilities and functions. However, with the advent of sophisticated flow cytometric and cell sorting technologies in microbiological labs, there is now the possibility to gain this knowledge at the single-cell level without cumbersome cultivation approaches. Cytometry also facilitates the understanding of physiological diversity in seemingly likewise acting populations. Both individuality and diversity lead to the complex and concerted actions of microbial consortia. This review provides an overview of the state of the art in the field. It deals with the handling of microorganisms from the very beginning (i.e. sampling, and detachment and fixation procedures) and goes on to discuss the pitfalls and problems in analysing cells without any further treatment. If information cannot be gained by specific staining procedures, phylogenetic technologies, transcriptomic and proteomic approaches may be options for achieving advanced insights. All in all, flow cytometry will be a mediator technology to gain a deeper insight into the heterogeneity of populations and the functioning of microbial communities.

  3. New methods for analysis of spatial distribution and coaggregation of microbial populations in complex biofilms.

    Science.gov (United States)

    Almstrand, Robert; Daims, Holger; Persson, Frank; Sörensson, Fred; Hermansson, Malte

    2013-10-01

    In biofilms, microbial activities form gradients of substrates and electron acceptors, creating a complex landscape of microhabitats, often resulting in structured localization of the microbial populations present. To understand the dynamic interplay between and within these populations, quantitative measurements and statistical analysis of their localization patterns within the biofilms are necessary, and adequate automated tools for such analyses are needed. We have designed and applied new methods for fluorescence in situ hybridization (FISH) and digital image analysis of directionally dependent (anisotropic) multispecies biofilms. A sequential-FISH approach allowed multiple populations to be detected in a biofilm sample. This was combined with an automated tool for vertical-distribution analysis by generating in silico biofilm slices and the recently developed Inflate algorithm for coaggregation analysis of microbial populations in anisotropic biofilms. As a proof of principle, we show distinct stratification patterns of the ammonia oxidizers Nitrosomonas oligotropha subclusters I and II and the nitrite oxidizer Nitrospira sublineage I in three different types of wastewater biofilms, suggesting niche differentiation between the N. oligotropha subclusters, which could explain their coexistence in the same biofilms. Coaggregation analysis showed that N. oligotropha subcluster II aggregated closer to Nitrospira than did N. oligotropha subcluster I in a pilot plant nitrifying trickling filter (NTF) and a moving-bed biofilm reactor (MBBR), but not in a full-scale NTF, indicating important ecophysiological differences between these phylogenetically closely related subclusters. By using high-resolution quantitative methods applicable to any multispecies biofilm in general, the ecological interactions of these complex ecosystems can be understood in more detail.

  4. Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors.

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    Full Text Available Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1 bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA; (2 fungi isolated from the Chernobyl nuclear-power plant (Ukraine buildings after the accident; (3 yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s among biologically-plausible alternatives. Our analysis suggests the following: (1 Both radionuclides and co-occurring chemical contaminants (e.g. NO2 are important for explaining microbial responses to radioactive contamination. (2 Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3 The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4 Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1 the most severe effects (e.g. extinction on microbial populations may occur when unfavorable environmental

  5. Molecular Analysis of Dominant Microbial Populations in Heavily and Slightly Polluted Aquifers by a Seaside Landfill

    Institute of Scientific and Technical Information of China (English)

    TIAN Yangjie; YANG Hong; LI Daotang; WU Xiujuan

    2005-01-01

    The microbial populations were investigated in two groundwater samples, GW-H and GW-S, which represented heavily and slightly polluted aquifers by a seaside landfill. The concentrations of dissolved redox-relevant species suggested that iron-reduction/sulfate-reduction and denitrification were major redox processes for GW-H and GW-S. The dominant microbial populations were determined using restriction fragment length polymorphism analyses of 16S rRNA gene clone libraries. These microbes were then further studied by sequencing and phylogenetic analyses. The results indicate an obvious variation of the dominant populations between the two samples. The coexistence of sequences related to denitrifiers, sulfur-reducers, and methanotrophic bacteria was found in the GW-S sample, and a sequence associated with a sulfate-reducer was also found in the GW-H sample using molecular analyses. These results suggest that the molecular approach may be an important supplement to other approaches in characterizing the redox processes in polluted aquifers.

  6. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    Science.gov (United States)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  7. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.

    Science.gov (United States)

    Lladó, Salvador; Jiménez, Nuria; Viñas, Marc; Solanas, Anna Maria

    2009-09-01

    A previous bioremediation survey on a creosote-contaminated soil showed that aeration and optimal humidity promoted depletion of three-ringed polycyclic aromatic hydrocarbons (PAHs), but residual concentrations of four-ringed benzo(a)anthracene (B(a)A) and chrysene (Chry) remained. In order to explain the lack of further degradation of heavier PAHs such as four-ringed PAHs and to analyze the microbial population responsible for PAH biodegradation, a chemical and microbial molecular approach was used. Using a slurry incubation strategy, soil in liquid mineral medium with and without additional B(a)A and Chry was found to contain a powerful PAH-degrading microbial community that eliminated 89% and 53% of the added B(a)A and Chry, respectively. It is hypothesized that the lack of PAH bioavailability hampered their further biodegradation in the unspiked soil. According to the results of the culture-dependent and independent techniques Mycobacterium parmense, Pseudomonas mexicana, and Sphingobacterials group could control B(a)A and Chry degradation in combination with several microorganisms with secondary metabolic activity.

  8. Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Li, C; Moe, W M

    2004-05-01

    Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction-amplified genes coding for 16S rRNA was used to assess differences in bacterial community structure as a function of spatial location along the height of two biofilters used to treat a model waste gas stream containing methyl ethyl ketone (MEK). One of the laboratory-scale biofilters was operated as a conventional continuous-flow biofilter (CFB) and the other was operated as a sequencing batch biofilter (SBB). Both biofilters, inoculated with an identical starting culture and operated over a period lasting more than 300 days, received the same influent MEK concentration and same mass of MEK on a daily basis. The systems differed, however, in terms of the fraction of time during which contaminated air was supplied and the overall operating strategy employed. DGGE analysis indicated that microbial community structures differed as a function of height in each of the biofilters. The DGGE banding patterns also differed between the two biofilters, suggesting that operating strategies imposed on the biofilters imparted a sufficiently large selective pressure to influence microbial community structures. This may explain, in part, the superior performance of the SBB over the CFB during model transient loading conditions, and it may open new possibilities for purposely manipulating the microbial populations in biofilters treating gas-phase contaminants in a manner that leads to more favorable treatment performance.

  9. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  10. Signatures of Autotrophic and Heterotrophic Metabolic Activity in Enrichment Cultures from a Sulphur Oxidizing Acid Mine Site

    Science.gov (United States)

    Slater, G. F.; Bernier, L.; Cowie, B. R.; Warren, L. A.

    2006-12-01

    Delineating the role of microorganisms in geochemical processes of interest in natural environments requires the development of tools that provide the ability to distinguish amongst microbial activity associated with different metabolic guilds. The gap between phylogenetic characterization and phenotypic understanding remains, underscoring the need to consider alternative methods. Compound specific analysis of cellular components has the potential to differentiate between active metabolic processes supporting microbial communities and may be especially useful in extreme environments. The goal of this study was to determine whether the phospholipids fatty acid (PLFA) distribution and isotopic signatures associated with autotrophs and heterotrophs enriched from an acid mine drainage (AMD) system differed, and further whether natural consortial autotrophic isolates showed similar signatures to autotrophic pure strains of Acidithiobacillus ferrooxidans and A. thiooxidans. Two distinct initial enrichments with tetrathionate and CO2 yielded primarily autotrophic (95%) Acidithiobaccillus spp. sulphur oxidizing communities. The remaining microbial members of theses enrichments (subculture of the consortial isolates in a medium amended with glucose but without tetrathionate selectively resulted in their visible growth. PLFA profiles and δ13C signatures from autotrophic (1) natural enrichments, pure cultures of (2) A. ferrooxidans and (3) A. thiooxidans were similar, but collectively differed from those of the natural heterotrophic enrichment cultures. The PLFA profiles for the heterotrophic communities were made up of primarily (88-99%) C16:0 and two isomers of C18:1. In contrast, the autotrophic communities had high proportions of C16:1 (up to 18%) as well as cyclo C17 and cyclo C19 PLFA that combined comprised 18 to 58% of the observed PLFA. The δ13C signatures of the PLFA also differed strongly between the two trophic levels. The δ13C of the autotrophic PLFA, - 24 to

  11. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  12. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.

    Science.gov (United States)

    Umrania, Valentina V

    2006-07-01

    Investigations were carried out to isolate microbial strains from soil, mud and water samples from metallurgically polluted environment for bioremediation of toxic heavy metals. As a result of primary and secondary screening various 72 acidothermophilic autotrophic microbes were isolated and adapted for metal tolerance and biosorption potentiality. The multi-metal tolerance was developed with higher gradient of concentrations of Ag, As, Bi, Cd, Cr, Co, Cu, Hg, Li, Mo, Pb, Sn and Zn. The isolates were checked for their biosolubilization ability with copper containing metal sulfide ores. In case of chalcopyrite 85.82% and in covellite as high as 97.5% copper solubilization occurred in presence of 10(-3) M multi-heavy metals on fifth day at 55 degrees C and pH 2.5. Chemical analyses were carried out by inductively coupled plasma spectroscopy (ICP) for metal absorption. The selected highly potential isolate (ATh-14) showed maximum adsorption of Ag 73%, followed by Pb 35%, Zn 34%, As 19%, Ni 15% and Cr 9% in chalcopyrite.

  13. Root Zone Microbial Populations, Urease Activities, and Purification Efficiency for a Constructed Wetland

    Institute of Scientific and Technical Information of China (English)

    LIANG Wei; WU Zhen-Bin; ZHAN Fa-Cui; DENG Jia-Qi

    2004-01-01

    In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.

  14. Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Muyzer, G; Rietveld, L C; van Loosdrecht, M C M

    2009-01-01

    In full-scale drinking water production from groundwater, subsurface aeration is an effective means of enhancing the often troublesome process of nitrification. Until now the exact mechanism, however, has been unknown. By studying the microbial population we can improve the understanding of this process. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments of bacteria, archaea and ammonia-oxidizing bacteria was used to characterize the microbial populations in raw groundwater and trickling filters of an active nitrifying surface aerated system and an inactive non-surface aerated system. Only in the active filter were nitrifying microorganisms found above the detection limit of the method. In ammonia oxidation in this groundwater filter both bacteria and archaea played a role, while members belonging to the genus Nitrospira were the only nitrite-oxidizing species found. The subsurface aerated groundwater did not contain any of the nitrifying organisms active in the filter above the detection limit, but did contain Gallionella species that might play a major role in iron oxidation in the filter.

  15. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures

    DEFF Research Database (Denmark)

    Harper, W.F.; Terada, Akihiko; Poly, F.;

    2009-01-01

    Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically...... accelerated by a factor of 1.4-13. NH2OH addition caused a 20-40% decrease in the median aggregate size, broadened the shape of the aggregate size distribution by up to 230%, and caused some of the microcolonies to appear slightly more dispersed. Longer term NH2OH addition in fed batch bioreactors decreased...

  16. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns.

    Science.gov (United States)

    He, Ruo; Ruan, Aidong; Shen, Dong-Sheng

    2007-05-01

    A considerable fraction of methane produced in landfills is oxidized by landfill cover soils. In this work, microbial populations and oxidation rates developed in response to the presence of methane were studied in three soil columns simulated landfill cover soil environments. The population of aerobic heterotrophic bacteria was highest in the waste soil, middle in the clay soil, and lowest in the red soil. After exposure to methane-rich environments, the populations of methanotrophic bacteria showed increases in the waste and clay soils. The population of methanotrophic bacteria increased from 30.77x10(4) to 141.77x10(4) cfu g d.w.-1 in the middle layer of the waste soil column as a function of exposure to methane for 120 days. The populations of methanotrophic bacteria were correlated with the potential methane oxidation rates in the waste and clay soils, respectively. The topsoil was observed to be dried in the three soil columns. Most of methane oxidation occurred at the depth of between 10 and 20 cm in the waste soil column, while it took place mainly at the depth of between 20 and 30 cm in the clay soil column.

  17. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum.

    Directory of Open Access Journals (Sweden)

    Rodrick J Chiodini

    Full Text Available Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem

  18. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.

    Science.gov (United States)

    Kirschling, Teresa L; Gregory, Kelvin B; Minkley, Edwin G; Lowry, Gregory V; Tilton, Robert D

    2010-05-01

    Nanoscale zerovalent iron (NZVI) particles are a promising technology for reducing trichloroethylene (TCE) contamination in the subsurface. Prior to injecting large quantities of nanoparticles into the groundwater it is important to understand what impact the particles will have on the geochemistry and indigenous microbial communities. Microbial populations are important not only for nutrient cycling, but also for contaminant remediation and heavy metal immobilization. Microcosms were used to determine the effects of NZVI addition on three different aquifer materials from TCE contaminated sites in Alameda Point, CA, Mancelona, MI, and Parris Island, SC. The oxidation and reduction potential of the microcosms consistently decreased by more than 400 mV when NZVI was added at 1.5 g/L concentrations. Sulfate concentrations decreased in the two coastal aquifer materials, and methane was observed in the presence of NZVI in Alameda Point microcosms, but not in the other two materials. Denaturing gradient gel electrophoresis (DGGE) showed significant shifts in Eubacterial diversity just after the Fe(0) was exhausted, and quantitative polymerase chain reaction (qPCR) analyses showed increases of the dissimilatory sulfite reductase gene (dsrA) and Archaeal 16s rRNA genes, indicating that reducing conditions and hydrogen created by NZVI stimulate both sulfate reducer and methanogen populations. Adding NZVI had no deleterious effect on total bacterial abundance in the microcosms. NZVI with a biodegradable polyaspartate coating increased bacterial populations by an order of magnitude relative to controls. The lack of broad bactericidal effect, combined with the stimulatory effect of polyaspartate coatings, has positive implications for NZVI field applications.

  19. Effects of feed intake on composition of sheep rumen contents and their microbial population size.

    Science.gov (United States)

    Rodríguez, C A; González, J; Alvir, M R; Redondo, R; Cajarville, C

    2003-01-01

    The present study was conducted to determine the effect of feed intake on the composition of the rumen contents of sheep and on their bacterial densities. Whole rumen contents were sampled after a period of continuous inter-rumen infusion of 15NH3 from four rumen-cannulated wethers successively fed on a hay-concentrate diet (2:1, w/w on a DM basis) at two rates of feed intake: 40 and 80 g DM/kg body weight0.75. Total weight and chemical composition of rumen contents, as well as the distribution by size and chemical composition of particles, were determined. The populations of bacteria associated with the liquid (liquid-associated bacteria, LAB) and solid (solid-associated bacteria, SAB) fractions of rumen digesta and the distribution of SAB according to feed particle size were also examined. The greater feed intake caused an increase in the mass of the rumen contents, while its chemical composition did not change, except for a higher content of organic matter (P=0.023). The distribution of feed particles by size was similar at both levels of intake. The concentrations of neutral- and acid-detergent fibre in feed particles decreased and those of total, dietary, and microbial N increased, both with a quadratic response (P=0.001), as particle size decreased. The proportion of LAB in the microbial biomass of rumen digesta reached only 8.0 %. This proportion and the density of LAB were unaffected by the level of feed intake, whereas an apparent reduction (10.4 %) occurred with the SAB biomass in whole rumen contents. A systematic, but not significant, reduction (mean value 11.9 %) in the level of microbial colonisation in the different particle fractions with the increase of feed intake was also observed.

  20. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils.

    Science.gov (United States)

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-02-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated (13)C from labeled hemicellulose, analyzing (13)C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  1. Atividade e população microbiana envolvida nas transformações do enxofre em solos com diferentes vegetações Activity and microbial populations involved in sulfur cycling in soils with different vegetations

    Directory of Open Access Journals (Sweden)

    Cristiane Rêgo Oliveira Pinto

    2002-12-01

    Full Text Available O objetivo deste trabalho foi determinar as populações microbianas e suas atividades envolvidas no ciclo do S, de solos virgem e cultivado, e as suas relações com as diferentes frações de S no solo. Das populações de microrganismos pesquisados, apenas foram encontradas as bactérias autótrofas oxidantes de S0 em pH 5,0 e as heterótrofas oxidantes de tiossulfato, que representaram menos de 0,1% das bactérias totais. A média das bactérias autótrofas foi o dobro das heterótrofas. As maiores contagens de bactérias totais, autótrofas e heterótrofas foram encontradas nos solos com milho, de pastagem e de floresta integrada, respectivamente. A atividade da arilsulfatase foi maior em solo de floresta integrada e a da rodanase em solo de pastagem. A arilsulfatase correlacionou com as populações de heterotróficos, C orgânico, S total, S orgânico, matéria orgânica e umidade do solo; e a rodanase com C orgânico, S total e S orgânico. Os teores de S orgânico e sulfato foram de 94-98% e 2-6% do S total, respectivamente. Os maiores teores de S total e orgânico foram encontrados no solo de floresta integrada. O S total correlacionou com o S orgânico, umidade e matéria orgânica, e o S orgânico com a matéria orgânica.The objective of this work was to assess the microbial populations and its activities involved in the S cycle, of virgin and cultivated soils, and its relationships with the different fractions of S in the soil. The influence of soils with different vegetations on microbiological and biochemical characteristics was investigated. Out of the different populations of microorganisms examined, only the S0-oxidizing autotrophic bacteria and thiosulfate-oxidizing heterotrophs that represented less than 0.1% of the total bacteria were found. The average of autotrophs was double that of the heterotrophs. The highest counts of total bacteria, autotrophic and heterotrophic microorganisms were found in corn, pasture and forest

  2. Visualizing the population dynamics of microbial communities in the larval zebrafish gut

    Science.gov (United States)

    Parthasarathy, Raghuveer

    In each of our digestive tracts, trillions of microbes representing hundreds of different species colonize local environments, reproduce, and compete with one another. The resulting ecosystems influence many aspects their host's development and health. Little is known about how gut microbial communities vary in space and time: how they grow, fluctuate, and respond to various perturbations. To address this and investigate microbial colonization of the vertebrate gut, we apply light sheet fluorescence microscopy to a model system that combines a realistic in vivo environment with a high degree of experimental control: larval zebrafish with defined subsets of commensal bacterial species. Light sheet microscopy enables three-dimensional imaging with high resolution over the entire intestine, providing visualizations that would be difficult or impossible to achieve with other techniques. Quantitative analysis of image data enables measurement of bacterial abundances and distributions. I will describe this approach and focus especially on recent experiments in which a colonizing bacterial species is challenged by the invasion of a second species, which leads to the decline of the first group. Imaging reveals dramatic population collapses that differentially affect the two species due to their different biogeographies and morphologies. The collapses are driven by the peristaltic motion of the zebrafish intestine, indicating that the physical activity of the host environment can play a major role in mediating inter-species competition. role in mediating inter-species competition. Supported by the National Science Foundation under Grant No. 0922951 and the National Institutes of Health under Award Number 1P50GM098911.

  3. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs.

    Science.gov (United States)

    Colman, Daniel R; Feyhl-Buska, Jayme; Robinson, Kirtland J; Fecteau, Kristopher M; Xu, Huifang; Shock, Everett L; Boyd, Eric S

    2016-09-01

    Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism.

  4. 2009 MICROBIAL POPULATION BIOLOGY GORDON RESEARCH CONFERENCES JULY 19-24,2009

    Energy Technology Data Exchange (ETDEWEB)

    ANTHONY DEAN

    2009-07-24

    The 2009 Gordon Conference on Microbial Population Biology will cover a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past Conferences have covered a range of topics from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. The 2009 Conference is no exception, and will include sessions on the evolution of infectious diseases, social evolution, the evolution of symbioses, experimental evolution, adaptive landscapes, community dynamics, and the evolution of protein structure and function. While genomic approaches continue to make inroads, broadening our knowledge and encompassing new questions, the conference will also emphasize the use of experimental approaches to test hypotheses decisively. As in the past, this Conference provides young scientists and graduate students opportunities to present their work in poster format and exchange ideas with leading investigators from a broad spectrum of disciplines. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. The 2009 meeting will be no exception.

  5. Evaluation of cocomposted coal fly ash on dynamics of microbial populations and heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vallini, G.; Vaccari, F.; Pera, A.; Agnolucci, M.; Scatena, S.; Varallo, G. [University of Verona, Verona (Italy). Science and Technology Dept.

    1999-06-01

    Vicia faba, in a pot experiment with sandy and clayey soils under greenhouse conditions, was checked for growth response to different amendments with coal alkaline fly ash or cocomposted fly ash mixed with lignocellulosic residues. Soil microbial populations, pH and electrical conductivity as well as heavy metal uptake by plants were monitored. At rates of five and ten percent (on a dry matter basis) in both soils, neither fly ash alone nor cocomposted fly ash exerted any negative effect. Plant biomass production was not influenced in either clayey or sandy soil. Alkaline fly ash did not promote microbial growth when applied alone to the soils. However, cocomposted fly ash generally increased bacterial and actinomycetes counts in both soils. Fungi were not affected by ash. Due to the increase of soil pH by alkaline fly ash or cocomposted fly ash, plant uptake of heavy metals was depressed in the sandy soil. Heavy metal mobility did not cause change in the clayey soil where a high buffering capacity mitigated the effects of fly ash amendments.

  6. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations.

    Science.gov (United States)

    Zaragoza, Jose; Bendiks, Zachary; Tyler, Charlotte; Kable, Mary E; Williams, Thomas R; Luchkovska, Yelizaveta; Chow, Elaine; Boundy-Mills, Kyria; Marco, Maria L

    2017-01-01

    In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be

  7. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations

    Science.gov (United States)

    Zaragoza, Jose; Bendiks, Zachary; Tyler, Charlotte; Kable, Mary E.; Williams, Thomas R.; Luchkovska, Yelizaveta; Chow, Elaine; Boundy-Mills, Kyria

    2017-01-01

    ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can

  8. Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp.

    Science.gov (United States)

    Fukushima, Toshikazu; Whang, Liang-Ming; Chen, Po-Chun; Putri, Dyah Wulandari; Chang, Ming-Yu; Wu, Yi-Ju; Lee, Ya-Ching

    2013-08-01

    This study investigated the linkage between performance of two full-scale membrane bioreactor (MBR) systems treating thin-film transistor liquid crystal display (TFT-LCD) wastewater and the population dynamics of dimethylsulfoxide (DMSO)/dimethylsulfide (DMS) degrading bacteria. High DMSO degradation efficiencies were achieved in both MBRs, while the levels of nitrification inhibition due to DMS production from DMSO degradation were different in the two MBRs. The results of real-time PCR targeting on DMSO/DMS degrading populations, including Hyphomicrobium and Thiobacillus spp., indicated that a higher DMSO oxidation efficiency occurred at a higher Hyphomicrobium spp. abundance in the systems, suggesting that Hyphomicrobium spp. may be more important for complete DMSO oxidation to sulfate compared with Thiobacillus spp. Furthermore, Thiobacillus spp. was more abundant during poor nitrification, while Hyphomicrobium spp. was more abundant during good nitrification. It is suggested that microbial population of DMSO/DMS degrading bacteria is closely linking to both DMSO/DMS degradation efficiency and nitrification performance.

  9. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift

    Institute of Scientific and Technical Information of China (English)

    Lei Wu; Chengyao Peng; Yongzhen Peng; Lingyun Li; Shuying Wang; Yong Ma

    2012-01-01

    The effect of COD/N ratio on the granulation process and microbial population succession was investigated.Four identical sequencing batch reactors,R1,R2,R3 and R4,were operated with various initial COD/N ratios ranging from 0/200 to 800/200 (m/n).Ethanol was fed as the source of COD.Aerobic granules were successfully cultivated in R2 and R3,operating with the COD/N ratio of 200/200 and 400/200,respectively.Scanning electron microscope observations indicated that short rod-shaped and spherical bacteria were dominant in R2,while granules produced in R3 were surrounded with a large amount of filamentous bacteria.The average specific nitritation rate in R2 and R3 were 0.019 and 0.008 mg N/(mg MLVSS.hr),respectively.Fluorescence in situ hybridization results demonstrated that nitrifying bacteria population was enriched remarkably in R2.It indicated that nitrification ability and nitrifying bacteria population were enriched remarkably at low COD/N ratio.However,no granules were formed in R1and R4 which might attribute to either limited or excessive extracellular polymeric substances production.This study contributed to a better understanding of the role of COD/N ratio in nitrifying sludge granulation.

  10. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jordi Ferrer

    Full Text Available Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  11. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    Science.gov (United States)

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vidal-Mas, Jaume; Gargallo-Viola, Domingo; Guglietta, Antonio; Giró, Antoni

    2011-01-01

    Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  12. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China.

    Science.gov (United States)

    Li, Xiang-kun; Chu, Zhao-rui; Liu, Ya-jun; Zhu, Meng-ting; Yang, Liu; Zhang, Jie

    2013-11-01

    In iron and manganese-containing groundwater treatment for drinking water production, biological filter is an effective process to remove such pollutants. Until now the exact microbial mechanism of iron and manganese removal, especially coupled with other pollutants, such as ammonia, has not been clearly understood. To assess this issue, the performance of a full-scale biofilter located in Harbin, China was monitored over four months. Microbial populations in the biofilter were investigated using T-RFLP and clone library technique. Results suggested that Gallionella, Leptothrix, Nitrospira, Hyphomicrobium and Pseudomonas are dominant in the biofilter and play major roles in the removal of iron, manganese and ammonia. The spatial distribution of microbial populations along the depth of the biofilter demonstrated the stratification of the removal of iron, manganese and ammonia. Additionally, the absence of ammonia-oxidizing bacteria in the biofilter implicated that ammonia-oxidizing archaea might be responsible for the oxidation of ammonia to nitrite.

  13. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens.

    Science.gov (United States)

    Salim, H M; Kang, H K; Akter, N; Kim, D W; Kim, J H; Kim, M J; Na, J C; Jong, H B; Choi, H C; Suh, O S; Kim, W K

    2013-08-01

    An experiment was conducted to investigate the supplementation of direct-fed microbials (DFM) as an alternative to antibiotics on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. A total of 800 one-day-old male broiler chicks (Ross × Ross) were randomly allotted to 4 dietary treatments with 4 replicate pens per treatment (50 birds/replicate pen). The 4 dietary treatments fed for 35 d were a corn-soybean meal basal diet (control); control plus 0.1% virginiamycin, as an antibiotic growth promoter (AGP); control plus 0.1% direct-fed microbials that contained Lactobacillus reuteri (DFM 1); and control plus 0.1% direct-fed microbials that contained a mixture of L. reuteri, Bacillus subtilis, and Saccharomyces cerevisiae (DFM 2). Results showed that dietary AGP and DFM supplementation significantly increased (P chickens fed DFM and AGP. The ileal villus height, and width and total thickness of muscularis externa were significantly increased when birds were fed DFM compared with AGP and control. These results indicate that the dietary supplementation of DFM increases the growth performance of birds at an early age, stimulates the immune response, decreases the number of E. coli, and improves the ileal morphology of broiler chickens. Thus, DFM that contained a mixture of several beneficial microorganisms could be a viable alternative to antibiotics in the broiler diets.

  14. Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius.

    Science.gov (United States)

    Langworthy, T A

    1977-06-01

    Complex lipids from the thermoacidophilic facultative autotroph Sulfolobus acidocaldarius, as well as a strictly autotrophic isolate, were compared between cells grown on yeast extract and elemental sulfur. Lipids from both organisms grown autotrophically were nearly identical. Each contained about 15% neutral lipids, 35% glycolipids, and 50% acidic lipids. Glycolipids and acidic lipids contained C40H82-76-derived glycerol ether residues. Major glycolipids included the glycerol ether analogues of glucosyl galactosyl diglyceride (5%) and glucosyl polyol diglyceride (75%). Acidic lipids were comprised mainly of the glycerol ether analogues of phosphatidyl inositol (7%), inositolphosphoryl glucosyl polyol diglyceride (72%), and a partially characterized sulfate- and phosphate-containing derivative of glucosyl polyol diglyceride (13%). The lipids from cells grown heterotrophically were similar to those from autotrophically grown cells, except that the partially characterized acidic lipid was absent. In addition, the two glycolipids as well as the respective inositolphosphoryl derivatives were each present in nearly equal proportions.

  15. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

    Science.gov (United States)

    Hügler, Michael; Sievert, Stefan M.

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  16. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due...... of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... (qPCR) and by acetogenic and methanogenic microorganisms, shown present in the mofettes by previous studies. Combined Δ14C and δ13C isotope mass balances indicated that microbially derived carbon accounted for 8–27 % of bulk SOM in this soil layer. The findings imply that autotrophic microorganisms...

  17. Microbial ecology of four coral atolls in the Northern Line Islands.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Dinsdale

    Full Text Available Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp. and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1 oceaonographic and/or hydrographic conditions or 2 human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation

  18. Optimal resting-growth strategies of microbial populations in fluctuating environments.

    Science.gov (United States)

    Geisel, Nico; Vilar, Jose M G; Rubi, J Miguel

    2011-04-15

    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.

  19. Optimal resting-growth strategies of microbial populations in fluctuating environments.

    Directory of Open Access Journals (Sweden)

    Nico Geisel

    Full Text Available Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.

  20. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry.

    Science.gov (United States)

    Vieira, A M; Bergamasco, R; Gimenes, M L; Nakamura, C V; Dias Filho, B P

    2001-12-01

    The microbial populations of an upflow anaerobic sludge blanket reactor, used for treating wastewater from the gelatin industry, were studied by microbiological methods and phase-contrast and electron microscopy. Microscopy examination of the sludge showed a complex mixture of various rod-shaped and coccoid bacterial pluslong filaments and verymobile curved rods. In addition free-living anaerobic ciliates and flagellates were also observed. The trophic group population observed in decreasing order of dominance were hydrolytic and acetogenic at 10(6) and sulfate reducing and methanogenic at 10(5). The rate of methane production in anaerobic granular sludge cultivated in growth medium supplement with formate pressurized with H2:CO2 showed a significant increase in methane yield compared with theseed culture containingthe same substrate and atmosphere of N2:CO2. Similar rates of methane production were observed when the growth medium was supplemented with acetate pressurized either with H2:CO2 or N2:CO2. The number of total anaerobic bacteria at 10(7), fecal coliforms and total coliforms at 10(6), and fecal streptococci at 10(3) is based on colony counts on solid media. The four prevalent species of facultative anaerobic gram-negative bacteria that belong to the family of Enterobacteriaceae were identified as Escherichia coli, Esherichia fergusonii, Klebsiella oxytoca, and Citrobacter freundii. The species Aeromonas hydrophila, Aeromonas veronii, Acinetobacter iwoffi and Stenotrophomonas maltophila were the most frequently isolated glucose fermenting and nonfermenting gram-negative bacilli.

  1. Effect of Portulaca oleracea extracts on growth performance and microbial populations in ceca of broilers.

    Science.gov (United States)

    Zhao, X H; He, X; Yang, X F; Zhong, X H

    2013-05-01

    The aim of this study was to investigate the effects of Portulaca oleracea extracts on growth performance and microbial populations in the ceca of broilers. A total of 120 one-day-old broilers were randomly divided into 3 groups. Portulaca oleracea extracts were added to diets at 0.2 and 0.4% (wt/wt; POL-0.2, POL-0.4), respectively. The control (CON) group was administered with no P. oleracea extract supplementation. Body weight gain and feed conversion ratio were recorded every 2 wk. On d 28 and 42, the cecal contents were collected and assayed for Escherichia coli, Lactobacillus, and Bifidobacterium populations. Additionally, the pH of the ileum and cecum was measured. The results showed that both on d 28 and 42 BW gain of P. oleracea extract supplementation groups was significantly higher, whereas the feed conversion ratio was lower (P < 0.05) compared with CON. On d 28 and 42, significantly (P < 0.05) fewer E. coli were recovered from ceca of broilers provided with the POL-0.2 diet than from broilers provided with the control diet. The quantities of Lactobacillus and Bifidobacterium of POL-0.2 were significantly (P < 0.05) higher than CON. Results showed P. oleracea extracts have no distinct influence on intestinal pH. These data suggest that P. oleracea extract supplementation significantly altered the cecal bacterial community without affecting the intestinal pH.

  2. Soil microbial population and enzyme activity related to grazing pressure in alpine meadows of Nanda Devi Biosphere Reserve.

    Science.gov (United States)

    Singh, Sanjeeva K; Rai, J P N

    2004-01-01

    The present study aims to analyze the interaction of prevailing biotic pressure on soil environment with emphasis on its physicochemical and microbiological characteristics determining soil fertility status and thus supporting plant and animal biodiversity in Nanda Devi Biosphere Reserve (NDBR) which is located in northern part of Uttaranchal hills between 79 degrees 40'E to 80 degrees 05'E longitude and 30 degrees 17'N to 30 degrees 41'E latitude. The experimental results revealed that the physico-chemical characteristics (viz., moisture, pH, EC, C, N, P, K, CEC) of soil were maximum in moderately grazed meadow and minimum in intensively grazed meadow. Soil microbial analysis measured in terms of total viable count (TVC) exhibited grazing sensitivity trend being maximum population of bacteria > fungi > actinomycetes. The soil microbial population was positively correlated with soil respiration, dehydrogenase activity, acid phosphatase and microbial biomass, which exhibited uneven trend with grazing pressure. Soil from moderately grazed meadow showed highest microbial count and enzyme activities, whilst intensively grazed meadow showed lowest microbial count and enzyme activities. This depicts the beneficial role of prescribed grazing up to limited extent in management of soil fertility, which might have supported luxuriant growth of a variety of grasses.

  3. Combined Effect of Nutrient and Pest Managements on Substrate Utilization Pattern of Soil Microbial Population in Hybrid Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A field experiment was conducted to study the combined effect of nutrient and pest managements on soil biomass phospholipid contents, functional biodiversity and substrate utilization patterns of soil microbial populations in hybrid rice cropping system. The mineral N, P and K fertilizers (as urea, calcium superphosphate and KCl respectively) were incorporated at 100, 25, and 100 kg ha-1, respectively, and the various pesticides were applied at the recommended rates. The results of the experiment demonstrated a decline in the microbial abundance and soil microbial biomass phospholipid contents with the advancement of crop growth, and significant changes in substrate utilization pattern of soil microbial population studied were observed with different management practices and at different growth stages. The principal component analysis (PGA) using all 95-carbon sources (BIOLOG plates) gave good differentiation among the treatments, indicating that they have different patterns of carbon utilization under different habitats. The data showed that diversity in microbial community continuously changed with the progression in crop stage, particularly at physiological maturity (PM) stage that was evident from the utilization of different carbon sources at various crop stages.

  4. Microbial population dynamics and changes in main nutrients during the acidification process of pig manures

    Institute of Scientific and Technical Information of China (English)

    Dongdong Zhang; Xufeng Yuan; Peng Guo; Yali Suo; Xiaofen Wang; Weidong Wang; Zongjun Cui

    2011-01-01

    This study evaluated the impact of pig manure acidification on anaerobic treatment and composition of the fecal microbial community.According to the different chemical oxygen demand (COD) in the anaerobic treatment processes, pig manure was diluted 4 times (×4), 16 times (×l6), or 64 times (×64) and subjected to acidification.During the acidification process, pH, soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), nitrogen (N), phosphorus (P) and potassium (K) were determined along with microbial population dynamics.The pH of the three dilutions first declined, and then slowly increased.The total VFAs of ×4 and ×l6 dilutions peaked on day 15 and 20, respectively.The content of acetic acid, propanoic acid, butanoic acid and valeric acid of the × 4 dilution were 23.6, 11.4, 8.8 and 0.6 g/L respectively, and that of the ×l6 dilution was 5.6, 2.3, 0.9 and 0.2 g/L respectively.Only acetic acid was detected in the ×64 dilution, and its level peaked on day 10.The results showed that the liquid pig manure was more suitable to enter the anaerobic methanogenic bioreactors after two weeks of acidification.During the acidification process, total P concentration increased during the first ten days, then dropped sharply, and rose again to a relatively high final concentration, while total N concentration rose initially and then declined.Based on the analysis of denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library, we concluded that the acidification process reduced the number of pathogenic bacteria species in pig manure.

  5. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.

    Science.gov (United States)

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2016-10-01

    Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated

  6. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    Science.gov (United States)

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  7. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer

    DEFF Research Database (Denmark)

    de Lipthay, J.R.; Tuxen, Nina; Johnsen, Kaare

    2003-01-01

    and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (10(0) to 10(4) g(-1) sediment) was determined by most...... measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4',6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous...... of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria...

  8. 16S rRNA gene sequencing as a tool to study microbial populations in foods and process environments

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2015-01-01

    Introduction: Methodological constraints during culturing and biochemical testing have left the true microbiological diversity of foods and process environments unexplored. Culture-independent molecular methods, such as 16S rRNA gene sequencing, may provide deeper insight into microbial communities...... and their role in food safety. During method optimization, we have identified several factors which distort the characterization of microbial populations, including DNA extraction methods, DNA polymerases, and most importantly the analyzed fragment of the 16S rRNA gene. Methods: This study investigated microbial...... communities in meat and the meat process environment with special focus on the Enterobacteriaceae family as a subpopulation comprising enteropathogens including Salmonella. Samples were analyzed by a nested PCR approach combined with MiSeq® Illumina®16S DNA sequencing and standardized culture methods as cross...

  9. Autotrophic Biofilters for Oxidation of Nitric Oxide

    Institute of Scientific and Technical Information of China (English)

    陈建孟; 陈浚; LanceHershman; 王家德; DanielP.Y.Chang

    2004-01-01

    Carbon foam—a kind of new engineering material as packing material was adopted in three biofilters with different pore dimensions and adapted autotrophic nitrite nitrobacteria to investigate the purification of nitric oxide (NO) in a gas stream. The biofilm was developed on the surface of carbon foams using nitrite as its only nitric source. The moisture in the filter was maintained by ultrasonic aerosol equipment which can minimize the thickness of the liquid film. The liquid phase nitrification test was conducted to determine the variability and the potential of performance among the three carbon foam biofilters. The investigation showed that during the NO2-—N inlet concentration of 200 g·L-1·min-1 to 800 g·L-1·min-1, the 24PPC (pores per centimeter) carbon foam biofilter had the greatest potential, achieving the NO2-—N removal efficiency of 94% to 98%. The 8PPC and 18PPC carbon foam biofilters achieved the NO2-—N removal efficiency of 15% to 21% and of 30% to 40%, respectively. The potential for this system to remove NO from a gas stream was shown on the basis of a steady removal efficiency of 41% to 50% which was attained for the 24PPC carbon foam biofilter at specified NO inlet concentration of 66.97 mg·m-3 to 267.86mg·m-3 and an empty-bed residence time of 3.5 min.

  10. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.

    Science.gov (United States)

    Zaybak, Zehra; Pisciotta, John M; Tokash, Justin C; Logan, Bruce E

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34 ± 4 mA/m(2). Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs.

  11. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  12. Fermentation and microbial population dynamics during the ensiling of native grass and subsequent exposure to air.

    Science.gov (United States)

    Zhang, Qing; Wu, Baiyila; Nishino, Naoki; Wang, Xianguo; Yu, Zhu

    2016-03-01

    To study the microbial population and fermentation dynamics of large needlegrass (LN) and Chinese leymus (CL) during ensiling and subsequent exposure to air, silages were sampled and analyzed using culture-based techniques and denaturing gradient gel electrophoresis (DGGE). A total of 112 lactic acid bacteria (LAB) strains were isolated and identified using the 16S rRNA sequencing method. Lactic acid was not detected in the first 20 days in LN silage and the pH decreased to 6.13 after 45 days of ensiling. The temperature of the LN silage increased after approximately 30 h of air exposure and the CL silage showed a slight temperature variation. Enterococcus spp. were mainly present in LN silage. The proportion of Lactobacillus brevis in CL silage increased after exposure to air. LN silage with a higher proportion of Enterococcus spp. and propionic acid concentration did not show higher fermentation quality or aerobic stability than CL silage, which had a higher concentration of acetic acid, butyric acid and increased proportion of L. brevis after exposure to air.

  13. Biodegradation of 4-nitrophenol by indigenous microbial populations in Everglades soils.

    Science.gov (United States)

    Laha, S; Petrova, K P

    The Everglades in South Florida are a unique ecological system. As a result of the widespread use of pesticides and herbicides in agricultural areas upstream from these wetlands, there is a serious potential for pollution problems in the Everglades. The purpose of this study was to evaluate the ability of indigenous microbial populations to degrade xenobiotic organic compounds introduced by agricultural and other activities. Such biodegradation may facilitate the remediation of contaminated soils and water in the Everglades. The model compound selected in this study is 4-nitrophenol, a chemical commonly used in the manufacture of pesticides. The mineralization of 4-nitrophenol at various concentrations was studied in soils collected from the Everglades. At concentrations of 10 and 100 microg/g soil, considerable mineralization occurred within a week. At a higher concentration, i.e., 10 mg/g soil, however, no mineralization of 4-nitrophenol occurred over a 4-month period; such a high concentration apparently produced an inhibitory effect. The rate and extent of 4-nitrophenol mineralization was enhanced on inoculation with previously isolated nitrophenol-degrading microorganisms. The maximum mineralization extent measured, however, was less than 30% suggesting conversion to biomass and/or unidentified intermediate products. These results indicate the potential for natural mechanisms to mitigate the adverse effects of xenobiotic pollutants in a complex system such as the Everglades.

  14. Microbiota contaminante em repolho minimamente processado Microbial population in minimally processed cabbage

    Directory of Open Access Journals (Sweden)

    Elisabete Fantuzzi

    2004-06-01

    Full Text Available A microbiota contaminante de repolho minimamente processado foi avaliada durante as etapas de sanitização e estocagem sob atmosfera modificada passiva em embalagens com diferentes taxas de permeabilidade a O2 e CO2 e a 1ºC, 5ºC e 12ºC. A sanitização do repolho por 10min., à temperatura ambiente, em soluções sanitizantes de hipoclorito de sódio a 200mgL-1, de composto orgânico clorado a 200mgL-1 ou ácido acético a 1% reduziu em, no máximo, 1,8log10 UFCg-1 a população de microrganismos aeróbios mesófilos. A concentração de CO2 no interior das embalagens variou significativamente (PThe microbial populations associated with minimally processed cabbage after sanitation and storage at 1ºC, 5ºC and 12ºC under modified atmosphere was analyzed. Sanitation of cabbage for ten minutes at room temperature in 200mgL-1 sodium hypochlorite and chlorinated organic compound or 1% acetic acid resulted in the reduction of up to 1.8log10CFUg-1 in the aerobic mesophilic bacteria population (P0.05 differences in concentrations of CO2 were found in the interior of the packages during fifteen days of storage. No variation was found in the mesophilic aerobic or anaerobic counts, and psycrotrophic microorganisms during storage at 1ºC and 5ºC for the three packaging materials used. The minimally processed cabbage was in good sensorial conditions for up to 20 days of storage at 1ºC and 5ºC in the packaging materials of high O2 permeability. The samples packed in transparent plastic trays sealed with thermal-shrinking PVC presented undesirable sensorial characteristics on the twentieth day of storage at 5ºC. After five days of storage at 12ºC the fresh-cut cabbage presented evident signs of deterioration, as dark spots, slime and off odor. There was a 3log10 CFUg-1 increase in the aerobic and anaerobic mesophiles and psycrotrophic populations in these samples.

  15. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow's milk

    OpenAIRE

    Alegría, Ángel; Álvarez Martín, Pablo; Sacristán, Noelia; Fernández, Elena; Delgado, Susana; Mayo Pérez, Baltasar

    2009-01-01

    Classical culturing and denaturing gradient gel electrophoresis (DGGE) techniques have been used for studying the microbial diversity and dynamics of the traditional Spanish Casín cheese during manufacturing and ripening. As with other starter-free cheeses made from raw milk, the microbial diversity of Casín was shown to be high by both culturing and DGGE analyses. The culture technique showed that lactic acid bacteria (LAB) species constituted the majority of the microbial populations. Of th...

  16. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations.

    Science.gov (United States)

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-05-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from 86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.

  17. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web.

    Science.gov (United States)

    Lennon, Jay T; Martiny, Jennifer B H

    2008-11-01

    Predation and parasitism often regulate population dynamics, community interactions, and ecosystem functioning. The strength of these top-down pressures is variable, however, and may be influenced by both ecological and evolutionary processes. We conducted a chemostat experiment to assess the direct and indirect effects of viruses on a marine microbial food web comprised of an autotrophic host (Synechococcus) and non-target heterotrophic bacteria. Viruses dramatically altered the host population dynamics, which in turn influenced phosphorus resource availability and the stoichiometric allocation of nutrients into microbial biomass. These virus effects diminished with time, but could not be attributed to changes in the abundance or composition of heterotrophic bacteria. Instead, attenuation of the virus effects coincided with the detection of resistant host phenotypes, suggesting that rapid evolution buffered the effect of viruses on nutrient cycling. Our results demonstrate that evolutionary processes are important for community dynamics and ecosystem processes on ecologically relevant time scales.

  18. The chemical composition, fermentation profile, and microbial populations in tropical grass silages

    Directory of Open Access Journals (Sweden)

    João Paulo Sampaio Rigueira

    2013-09-01

    Full Text Available The objective of this study was to evaluate the fermentation profile, chemical composition and microbial population and losses in the silages of signalgrass and Mombasa grass fertilized with the following levels of nitrogen (N: 0, 30, 60 and 90 kg/ha. The grasses were harvested at 70 days of regrowth, chopped and then ensiled in laboratory silos that had 20 kg of capacity and a snap-top cover and were fitted with Bunsen valves. Before ensiling, samples of the plants were used for the isolation and identification of lactic acid bacteria (LAB in epiphytic microbiota. The design adopted was a 4 × 2 factorial arrangement, with four doses of N and two forage species, in a completely randomized design, with four replicates. The predominant species of LAB was Lactobacillus fermentum. The interaction between the N dose and forage species affected the dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and water soluble carbohydrates (WSC of the silages. The pH values and gas losses were influenced only by the forage species, with higher values for the Mombasa grass. For the ammonia (NH3-N levels and effluent losses, there was an effect of the interaction between the forage species and N doses, and the highest values of NH3-N and effluent losses were found in the Mombasa grass silage fertilized with 60 kg N/ha. Nitrogen fertilization reduces the levels of DM and WSC in the silages and also increases the levels of CP, NH3-N and effluent losses.

  19. Effects of butachlor on microbial populations and enzyme activities in paddy soil.

    Science.gov (United States)

    Min, H; Ye, Y F; Chen, Z Y; Wu, W X; Yufeng, D

    2001-09-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  20. Effects of Fructooligosaccharides,compared with Direct-Fed Microbial Bacteria,and Zinc Bacitracin on Cecal Microbial Populations and Performance of Broilers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experiment was conducted to determine the effects of dietary fructooligosaccharides(FOS),compared with direct-fed microbial bacteria (DFM),and zinc bacitracin ,on cecal microbial populations and performance of broiler Chickens. One hundred and ninety-two broilers (Avian) were randomly assigned to four groups,with four replicates of 12 birds each. The control group was fed with the basal diet,without any drug additive. FOS,DFM and zine bacitracin was respectively added to the basal diet at the level of 1.5% ,800 mg@kg-1 and 300 mg@ kg-1 to form the experimental diets. Body weight ,feed intake and feed efficiency were measured weekly. The feeding trial started at 1 d and ended at 21 d. At day 14 and day 21 ,four broilers per group were killed and cecum waa taken to determined microflors and pH. The results showed that dietary FOS increased bifidobactrial concentration by 1. 75-fold( P <0. 05) at 14 d of age and 1.45-fold( P <0. 05) at 21 d of age compared with control. FOS had no effect on concnetrations of E. coli and pH. There were no dietary effects of FOS,DFM,and zinc bacitracin on weight gain,feed intake,feed conversion( P >0. 05).

  1. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  2. Microbial population dynamics in an anaerobic CSTR treating a chemical synthesis-based pharmaceutical wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Ince, Orhan; Ince, Bahar Kasapgil; Akarsubasi, Alper Tunga; Eyice, Ozge

    2003-01-01

    Effects of a chemical synthesis based pharmaceutical wastewater on performance of an anaerobic completely stirred tank reactor (CSTR), activity of acetoclastic methanogens and microbial composition were evaluated under various influent compositions. Initially, the CSTR was fed with glucose up to an organic loading rate (OLR) of 6 kg COD/m3 x d corresponding to an F/M ratio of 0.43 with a hydraulic retention time (HRT) of 2.5 days. A COD removal efficiency of 92% and a methane yield of 0.32 m3 CH4/kg COD(removed) were achieved whilst specific methanogenic activity (SMA) was found to be 336mL CH4/gTVS x d. After the CSTR was fed with pre-aerated wastewater diluted by glucose in different dilution ratios of 10% (w/v), 30% (w/v), 70% (w/v), and 100% (w/v) pre-aerated wastewater, gradual decreases in COD removal efficiency to 71%, methane yield to 0.28 m3CH4/kg COD(removed) and SMA to 166 mL CH4/gTVS d occurred whilst volatile fatty acid concentration reached to 1474 mg/L. After the raw wastewater diluted with the pre-aerated wastewater was fed into the CSTR in increasing ratios of 10% (w/v), 30% (w/v), and 60% (w/v), there was a proportional deterioration in performance in terms of COD removal efficiency, methane yield and acetoclastic methanogenic activity. Epifluorescence microscopy of the seed sludge revealed that Methanococcus-like species, short, and medium rods were found to be equally dominant. The short and medium rod species remained equally dominant groups in the CSTR throughout the feeding regime whilst Methanococcus-like species and long rods were found to be in insignificant numbers at the end of the study. Changes in archael diversity were determined using molecular analyses such as polymerase chain reaction (PCR), and denaturent gradient gel electrophoresis (DGGE). Results showed that overall archeal diversity did not change much whereas changes in composition of eubacterial population occurred.

  3. Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites

    Science.gov (United States)

    Ortega, Maya C.

    2011-01-01

    Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.

  4. [Quantifying soil autotrophic microbes-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    Science.gov (United States)

    Shi, Ran; Chen, Xiao-Juan; Wu, Xiao-Hong; Jian, Yan; Yuan, Hong-Zhao; Ge, Ti-Da; Sui, Fang-Gong; Tong, Cheng-Li; Wu, Jin-Shui

    2013-07-01

    Soil autotrophic microbe has been found numerous and widespread. However, roles of microbial autotrophic processes and the mechanisms of that in the soil carbon sequestration remain poorly understood. Here, we used soils incubated for 110 days in a closed, continuously labeled 14C-CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. The allocation of 14C-labeled assimilated carbon in variable soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) were also examined over the 14C labeling span. The results showed that significant amounts of 14C-SOC were measured in paddy soils, which ranged from 69.06-133.81 mg x kg(-1), accounting for 0.58% to 0.92% of the total soil organic carbon (SOC). The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC) were dependent on the soils, ranged from 2.54 to 8.10 mg x kg(-1), 19.50 to 49.16 mg x kg(-1), respectively. There was a significantly positive linear relationship between concentrations of 14C-SOC and 14C-MBC (R2 = 0.957**, P < 0.01). The 14C-DOC and 14C-MBC as proportions of total DOC, MBC, were 5.65%-24.91% and 4.23%-20.02%, respectively. Moreover, the distribution and transformation of microbes-assimilated-derived C had a greater influence on the dynamics of DOC and MBC than that on the dynamics of SOC. These data provide new insights into the importance of microorganisms in the fixation of atmospheric CO2 and of the potentially significant contributions made by microbial autotrophy to terrestrial C cycling.

  5. Effect of untreated sewage effluent irrigation on heavy metal content, microbial population and enzymatic activities of soils in Aligarh.

    Science.gov (United States)

    Bansal, O P; Singh, Gajraj; Katiyar, Pragati

    2014-07-01

    The study pertains to the impact of domestic and industrial sewage water irrigation on the chemical, biological and enzymatic activities in alluvial soils of Aligarh District. Results showed that soil enzymatic [dehydogenase (DHA), acid and alkaline phosphatase, urease and catalase] activities in the soils increased up to 14 days of incubation and thereafter inhibited significantly. The enzymatic activity were in the order sewage effluent > partial sewage effluent > ground water irrigated soils. Increase in soil enzymatic activities up to 2nd week of incubation was due to decomposition of organic matter. Maximum inhibition of enzymatic activities, after 14 days of incubation were found in sewage effluent irrigated soils and minimum in ground water irrigated soils. Similar trend was also seen for microbial population. Soil enzymatic activities and microbial population were significantly and positively correlated with soil organic matter. Results also indicated that the microbial population and enzymatic activities in sewage irrigated soils decreased continually with irrigation period. The average concentration of total heavy metals in sewage irrigated soils and partial sewage irrigated soils increased and was 3 and 2 times higher for Zn; 4.5 and 1.7 times higher for Cu; 3.8 and 2.4 times higher for Cr; 5.7 and 3.5 times higher for Pb; 3.5 and 2.2 times higher for Cd and 2.7 and 2.0 times higher for Ni respectively than that of ground water irrigated soils. Results also showed that though total heavy metals concentration increased with period of sewage irrigation but the concentration of diethylene triamine pentaacetic acid (DTPA) extractable heavy metals in partial sewage irrigated and sewage irrigated soils remained almost same, which might be due to deposition of heavy metals in crops grown on the soils.

  6. Shifts in the Microbial Population in Relation to in situ Caries Progression

    NARCIS (Netherlands)

    Thomas, R. Z.; Zijnge, V.; Cicek, A.; de Soet, J. J.; Harmsen, H. J. M.; Huysmans, M. C. D. N. J. M.

    2012-01-01

    The shift in microbial diversity from young to mature plaque, related to caries activity on sound and restored surfaces, was studied using denaturing gradient gel electrophoresis. During a 20-week in situ study on caries progression 8 subjects wearing restored and unrestored dentin and enamel sectio

  7. In Silico Gene-Level Evolution Explains Microbial Population Diversity through Differential Gene Mobility

    NARCIS (Netherlands)

    van Dijk, Bram; Hogeweg, P.

    2016-01-01

    Microbial communities can show astonishing ecological and phylogenetic diversity. What is the role of pervasive horizontal gene transfer (HGT) in shaping this diversity in the presence of clonally expanding "killer strains"? Does HGT of antibiotic production and resistance genes erase phylogenetic s

  8. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment, sulfate-re

  9. Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations.

    Science.gov (United States)

    Bekins, B A; Cozzarelli, I M; Godsy, E M; Warren, E; Essaid, H I; Tuccillo, M E

    2001-12-15

    A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes.

  10. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H. [Ohio State University, Wooster, OH (United States). Environmental Science Graduate Programme

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  11. Soluble microbial products and their implications in mixed culture biotechnology.

    Science.gov (United States)

    Ni, Bing-Jie; Rittmann, Bruce E; Yu, Han-Qing

    2011-09-01

    Soluble microbial products (SMP) are soluble organic compounds released during normal biomass metabolism in mixed culture biotechnology. In this review, we give the up-to-date status on several essential SMP issues: mechanisms of SMP formation, differentiation between utilization-associated products (UAP) and biomass-associated products (BAP), biodegradability of the SMP components, how formation of SMP by autotrophs controls effluent quality and supports a substantial population of heterotrophs, mathematical modeling that includes SMP, and improving effluent quality by controlling SMP. We also present two timely examples that highlight our current understanding and give an indication of how SMP affects the performance of modern mixed culture biotechnology: membrane fouling of membrane bioreactors (MBRs) and the dynamics of SMP in anaerobic systems.

  12. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  13. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Rossella Briancesco

    2010-01-01

    Full Text Available Data on the occurrence of non-tuberculous mycobacteria (NTM, in parallel with those obtained for bacterial indicators and amoebae, are presented with the aim to collect information on the spread of NTM in drinking water distribution systems in Italy. Samples were collected from taps of hospitals and households in Central and Southern Italy. The concentration values obtained for the more traditional microbial parameters complied with the mandatory requirements for drinking water. Conversely, moderate-to-high microbial loads (till 300 CFU/L were observed for the NTM. Positive samples were obtained from 62% of the investigated water samples. Analogous results were observed for amoebae showing a higher percentage of positive samples (76%. In terms of public health, the presence of mycobacteria in water distribution systems may represent a potential risk especially for vulnerable people such as children, the elderly or immunocompromised individuals.

  14. Involvement of microbial populations during the composting of olive mill wastewater sludge.

    Science.gov (United States)

    Abid, N; Chamkha, M; Godon, J J; Sayadi, S

    2007-07-01

    Olive mill waste water sludge obtained by the electro-Fenton oxidation of olive mill waste water was composted in a bench scale reactor. The evolution of microbial species within the composter was investigated using a respirometric test and by means of both cultivation-dependent and independent approaches (Polymerase Chain Reaction-Single Strand Conformation Polymorphism, PCR SSCP). During the period of high respiration rate (7-24 days), cultivation method showed that thermophilic bacteria as well as actinomycetes dominated over eumycetes. During the composting process, the PCR-SSCP method showed a higher diversity of the bacterial community than the eukaryotic one. After 60 days of composting, the compost exhibited a microbial stability and a clear absence of phytotoxicity.

  15. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.

    Science.gov (United States)

    Gilichinsky, D A; Wilson, G S; Friedmann, E I; McKay, C P; Sletten, R S; Rivkina, E M; Vishnivetskaya, T A; Erokhina, L G; Ivanushkina, N E; Kochkina, G A; Shcherbakova, V A; Soina, V S; Spirina, E V; Vorobyova, E A; Fyodorov-Davydov, D G; Hallet, B; Ozerskaya, S M; Sorokovikov, V A; Laurinavichyus, K S; Shatilovich, A V; Chanton, J P; Ostroumov, V E; Tiedje, J M

    2007-04-01

    Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.

  16. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    Science.gov (United States)

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-01

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  17. Population dynamics and spatial distribution of microbial species in multispecies biofilms under the action of direct electric current

    Institute of Scientific and Technical Information of China (English)

    CAO Hongbin; LI Xingang; WU Jinchuan; ZHONG Fangli; ZHANG Yi

    2003-01-01

    The metabolism, population dynamics and spatial distribution of nitrifying bacteria and heterotrophs in biofilms under the action of direct electric current were investigated by using the micro-slicing technique. The nitrification rate of nitrifying bacteria was severely inhibited by a current over 10 Am-2 at lower C/N ratios. Compared to heterotrophs, the nitrifying bacteria in the surface biofilms were severely inhibited, resulting in a significant decrease in bacterial density. An increase in current density narrowed the less current-sensitive inner biofilm region, and in addition the density of NO2-oxidizers decreased more significantly than that of NH4-oxidizers in the surface biofilms probably due to electrochemical reactions at the anode. However, the effect of current on both the population dynamics and the spatial distribution of the microbial species was less significant at larger C/N ratios.

  18. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations.

    Directory of Open Access Journals (Sweden)

    Shi Ying

    Full Text Available Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.

  19. Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano.

    Science.gov (United States)

    Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-05-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.

  20. The assessment of land exploitation by enumerating microbial population: Case study in several locations at Dieng Plateau

    Directory of Open Access Journals (Sweden)

    Sri Sumarsih

    2013-09-01

    Full Text Available Agricultural intensification program in Indonesia which is carried out by using high yield variety, high chemicals use and soil disturbances tends to trigger land exploitation. Land exploitation, performed without considering the land’s capability can generate degradations on the land itself. Various methods have been used to determine land exploitation level, including evaluation of soil microbe resources as on soil component. This research is aimed to assess land exploitation level, based on the amount of microbial population. The result of this research is expected to add the soil quality standard criteria. In the case study performed in Dieng plateau, representative soil sampling method was used. The amount of microbial population can be enumerated using plating and MPN method. Based on nutrient availability to indicate the soil biological characteristics, the soil under the trees, shrub, and Colocasia were classified as “below normal”, and the soil under the grass, tobacco, cabbage and potato were classified as “normal”. It shows that the land exploitation at the agricultural soils were still in the range of its land capability.

  1. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.; Azadpour, A.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolution of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.

  2. Microbial population in the rumen of swamp buffalo (Bubalus bubalis) as influenced by coconut oil and mangosteen peel supplementation.

    Science.gov (United States)

    Pilajun, R; Wanapat, M

    2013-06-01

    Four, rumen fistulated swamp buffalo bulls were used to study microbial populations in the rumen when supplemented with coconut oil and mangosteen peel. Animals were randomly assigned to a 4 × 4 Latin square design. Four treatments were un-supplemented (Control), supplementation with coconut oil at 50 g/kg (CO5), supplementation with mangosteen peel at 30 g/kg (MP3) and supplementation with CO5 and MP3 (COM), of total DM intake. Animals received concentrate at 10 g/kg of BW, and rice straw was given ad libitum. Abundance of total bacteria was increased by CO5 supplementation, whereas populations of protozoa and Fibrobacter succinogenes were reduced by CO5 and COM supplementation. Dietary supplementation did not affect methanogen, Ruminococcus flavefaciens or Ruminococcus albus abundances. Dietary treatments changed denaturing gradient gel electrophoresis (DGGE) band patterns of methanogens and protozoa when compared with the control group, especially when supplemented with MP3. Supplementation of COM resulted in the greatest difference in pattern of DGGE bands for total bacteria compared with the control. Coconut oil and mangosteen peel supplementation resulted in changing of rumen microbial abundances and communities; however, combination of them could be more benefit to improve rumen fermentation of swamp buffalo fed on rice straw.

  3. Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism.

    Science.gov (United States)

    Jazmin, Lara J; O'Grady, John P; Ma, Fangfang; Allen, Doug K; Morgan, John A; Young, Jamey D

    2014-01-01

    Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbon metabolism based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary (13)C MFA (INST-MFA), which is applicable to autotrophic systems that are at metabolic steady state but are sampled during the transient period prior to achieving isotopic steady state following the introduction of (13)CO2. We describe protocols for performing the necessary isotope labeling experiments, sample collection and quenching, nonaqueous fractionation and extraction of intracellular metabolites, and mass spectrometry (MS) analysis of metabolite labeling. We also outline the steps required to perform computational flux estimation using INST-MFA. By combining several recently developed experimental and computational techniques, INST-MFA provides an important new platform for mapping carbon fluxes that is especially applicable to autotrophic organisms, which are not amenable to steady-state (13)C MFA experiments.

  4. Denitrification characteristics of a sulfur autotrophic denitrification reactor

    Directory of Open Access Journals (Sweden)

    Chenxiao ZHANG

    2016-02-01

    Full Text Available The denitrification characteristics of a sulfur autotrophic denitrification reactor are investigated. The results show that domestication of sulfur autotrophic bacteria is completed within 15 days after biofilm formation in the reactor, which is shorter than other similar researches. The nitrogen removal rate remains over than 90%, and the denitrification rate reaches 18.5 mg N/(L·h with influent NO-3-N of 70 mg/L , influent pH of 8 and HRT of 4.3 h . Thiobacillus denitrificans are observed in the whole reactor when domestication finishes, while it is more abundant in the middle and lower part. The optimal influent NO-3-N concentration for the reactor is 50 mg/L, the optimal temperature is 30~35 ℃, the optimal influent pH is 7~8, and the nitrogen removal rate is over than 90%.

  5. Autotrophic stoichiometry emerging from optimality and variable co-limitation

    Directory of Open Access Journals (Sweden)

    Kai W Wirtz

    2016-11-01

    Full Text Available Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation and co-limitation by multiple resources in autotrophs revt were in the past often described by heuristic formulations.In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects.The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1 that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2 that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s while down-regulating machineries for the

  6. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    Science.gov (United States)

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  7. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  8. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis

    Directory of Open Access Journals (Sweden)

    John P. Jakupciak

    2013-01-01

    Full Text Available Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.

  9. Comparative study on the rumen microbial populations, hydrolytic enzyme activities and dry matter degradability between different species of ruminant.

    Science.gov (United States)

    Moon, Yea Hwang; Ok, Ji Un; Lee, Shin Ja; Ha, Jong Kyu; Lee, Sung Sill

    2010-12-01

    A comparative study among Korean native cow (Hanwoo), Holstein dairy cow, Korean native goat and crossbred sheep on the population and marker concentration of ruminal microbes, the activities of carboxymethylcellulase (CMCase), xylanase and amylase, and in situ dry matter (DM) degradability were conducted. Twelve ruminally cannulated animals, three of each species, were used. Animals were fed the same diet containing 40% formula feed and 60% rice straw at the level of 2.5% of body weight. Total viable microbial populations in the rumen fluid were significantly (P < 0.01) greater for bacteria and fungi in goat than those of Holstein. The protozoan population among ruminant species was the reverse from that of bacteria. The concentrations of 2,6-diaminopimelic acid and chitin as markers for bacteria and fungi in the rumen fluid, respectively, were highest in goat, which is in accordance with the above population data. The concentration of aminoethylphosphonic acid as marker of protozoa was highest in Hanwoo and lowest in sheep (P < 0.01). Goat had the highest (P < 0.01) activities of all the enzymes investigated among ruminants. In situ effective degradation of the DM of rice straw was approximately 19% higher in the rumen of goat compared with other animals.

  10. Using populations of human and microbial genomes for organism detection in metagenomes

    Science.gov (United States)

    Ames, Sasha K.; Gardner, Shea N.; Marti, Jose Manuel; Slezak, Tom R.; Gokhale, Maya B.; Allen, Jonathan E.

    2015-01-01

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected. PMID:25926546

  11. Dynamics of Microbial Populations during Fermentation of Wines from the Utiel-Requena Region of Spain

    OpenAIRE

    Pardo, Isabel; García, María José; Zúñiga, Manuel; Uruburu, Federico

    1989-01-01

    The dynamics of fungi, yeasts, and lactic acid bacteria during fermentation of four musts were studied. Fungi disappeared quickly in the fermenting must. The lactic acid bacteria population diminished during alcoholic fermentation, then they increased and performed malolactic fermentation. Yeasts grew quickly, reaching maximum populations at different times depending on the vinification treatment.

  12. Spatial distribution of microbial populations and carbon cycle in the subsurface environment of the Horonobe area, Hokkaido, Japan

    Science.gov (United States)

    Amano, Y.; Ise, K.; Terashima, M.; Sasaki, Y.; Amamiya, H.; Yoshikawa, H.

    2014-12-01

    Microorganisms are widely distributed in the subsurface environments. However, the distribution, role and rate of metabolisms, and the source of their activity are not well known. In this study, we investigated deep groundwater samples from sedimentary rocks, containing saturated methane and CO2, using boreholes at the Horonobe Underground Research Laboratory (URL), northern Hokkaido, Japan. The hydrochemical conditions of groundwaters, such as in-situ water pressure, temperature, electric conductivity, pH, redox potential, were monitored without degassing at multiple intervals along the borehole. Groundwater samples were taken periodically and chemical composition was analyzed using ICP-MS, etc. Cell counts were in the range of 103 to 105 cells ml-1. Molecular analyses revealed the spatial distribution and heterogeneity of the microbial population. Abundant methanogens were detected in the groundwater, and 80% of them were related to either Methanoregula boonei or Methanobacterium flexile that can utilize H2/CO2 by methanogenesis. Phylotypes clustered within the phylum Firmicutes, beta-Proteobacteria, delta-Proteobacteria and candidate division TM7 were dominant in the groundwater samples. Laboratory experiments using a culture technique showed that humic substances purified from the groundwater at Horonobe area appear to be degraded by microorganisms. Our results suggest that microbial spatial distributions in the subsurface environment were correlated closely with geochemical conditions, such as redox condition and carbon sources. In addition, it is inferred that humic substances are one of the important carbon sources for the subsurface microbial redox processes in the environment. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan.

  13. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Directory of Open Access Journals (Sweden)

    Amélia Bourceret

    Full Text Available Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi, and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  14. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    Directory of Open Access Journals (Sweden)

    Esther Meersman

    Full Text Available The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts, and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts. Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  15. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status.

    Science.gov (United States)

    Branton, William G; Ellestad, Kristofor K; Maingat, Ferdinand; Wheatley, B Matt; Rud, Erling; Warren, René L; Holt, Robert A; Surette, Michael G; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1⁻/⁻ mouse brains. Intracerebral implantation of human brain homogenates into RAG1⁻/⁻ mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain's microbiome

  16. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    OpenAIRE

    2013-01-01

    Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absen...

  17. Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation.

    Science.gov (United States)

    Smirnov, A; Perez, R; Amit-Romach, E; Sklan, D; Uni, Z

    2005-02-01

    The mucous layer that covers the intestinal absorptive surface acts as a barrier against bacterial translocation. The chicken gut contains a diverse bacterial population which interacts with the mucous layer. In this report, we studied the effect of changing the intestinal microbial populations on mucin dynamics by feeding 1-d-old chicks a control diet or that diet containing either antibiotic growth promoter (AGP) or a probiotic product for 14 d. Dietary AGP increased the proportions of Bifidobacterium species in the duodenum compared with the other groups. In AGP-fed chicks, the villous surface area was increased in the jejunum, goblet cell density was greater in the jejunum and ileum, and mucin glycoprotein levels in the duodenum were lower than in the other groups (P small intestine compared with the other groups. Expression of mucin mRNA and the levels of mucin glycoprotein were greater in the jejunum of the probiotic-fed chicks compared with controls (P thickness of the mucous adherent layer. These results indicate that both probiotic and AGP altered processes of mucin biosynthesis and/or degradation mediated via changes in the intestinal bacterial populations. These modifications in mucin dynamics influence gut function and health and may change nutrient uptake.

  18. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  19. Abundance, viability and diversity of the indigenous microbial populations at different depths of the NEEM Greenland ice core

    Directory of Open Access Journals (Sweden)

    Vanya Miteva

    2015-02-01

    Full Text Available The 2537-m-deep North Greenland Eemian Ice Drilling (NEEM core provided a first-time opportunity to perform extensive microbiological analyses on selected, recently drilled ice core samples representing different depths, ages, ice structures, deposition climates and ionic compositions. Here, we applied cultivation, small subunit (SSU rRNA gene clone library construction and Illumina next-generation sequencing (NGS targeting the V4–V5 region, to examine the microbial abundance, viability and diversity in five decontaminated NEEM samples from selected depths (101.2, 633.05, 643.5, 1729.75 and 2051.5 m deposited 300–80 000 years ago. These comparisons of the indigenous glacial microbial populations in the ice samples detected significant spatial and temporal variations. Major findings include: (a different phylogenetic diversity of isolates, dominated by Actinobacteria and fungi, compared to the culture-independent diversity, in which Proteobacteria and Firmicutes were more frequent; (b cultivation of a novel alphaproteobacterium; (c dominance of Cyanobacteria among the SSU rRNA gene clones from the 1729.75-m ice; (d identification of Archaea by NGS that are rarely detected in glacial ice; (e detection of one or two dominant but different genera among the NGS sequences from each sample; (f finding dominance of Planococcaceae over Bacillaceae among Firmicutes in the brittle and the 2051.5-m ice. The overall beta diversity between the studied ice core samples examined at the phylum/class level for each approach showed that the population structure of the brittle ice was significantly different from the two deep clathrated ice samples and the shallow ice core.

  20. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2014-11-01

    The nitrogen removal performance and microbial characteristics of four completely autotrophic nitrogen removal over nitrite (CANON) biofilters were investigated. These four reactors were simultaneously seeded from a stable CANON biofilter with a seeding ratio of 1:1, which were fed with different ammonia levels. Results suggested that with the ammonia of 200-400 mg L(-1), aerobic ammonia-oxidizing bacteria (AerAOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) could perform harmonious work. The bioactivity and population of the two groups of bacteria were both high, which then resulted in excellent nitrogen removal, while too low or too high ammonia would both lead to worse performance. When ammonia was too high, the bioactivity, biodiversity and population of AerAOB all decreased and then resulted in the lowest nitrogen removal. Nitrosomonas and Candidatus Brocadia were detected as predominant functional microbes in all the four reactors. Finally, strategies for treating sewage with different ammonia levels were proposed.

  1. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    Science.gov (United States)

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  2. Soil microbial biomass and population in response to seasonal variation and age in Gmelina arborea plantations in south-western Nigeria

    Institute of Scientific and Technical Information of China (English)

    Jonathan C.Onyekwelu

    2012-01-01

    Abstract: We investigated the Effects of plantation development,seasons,and soil depth on soil microbial indices in Gmelina arborea plantations in south-western Nigeria.Soil samples were obtained from the soil depths of 0-15 and 15-30 cm from plantations of six different ages during the rainy season,dry seasons,and their transitions.We used plate count and fumigation-extraction methods to determine microbe population and microbial biomass carbon (MB-C) and nitrogen (MB-N),respectively.Plantation age did not affect microbial indices,implying a non-significant effect of plantation development on microbial communities.It could also imply that soil microbial indices had already stabilized in the sampled plantations.Seasonal variation and soil depth had significant effects on microbial indices.At 0-15 cm soil depth,mean MB-C increased from 50.74 μg·g-1 during the peak of the dry season (i.e.March) to 99.58 μg·g-1 during the peak of the rainy season (i.e.September),while it increased from 36.22 μg·g-1 to 75.31 μg·g-1 at 15-30 cm soil depth between the same seasonal periods.Bacteria populations and MB-N showed similar increasing trends.Correlations.between MB-C,MB-N,microbe populations,and rainfall were positive and linear.Significantly higher microbial activities took place in the plantations during the rainy season,increased with soil wetness,and decreased at greater soil depth.

  3. Effects of corn silage and grass silage in ruminant rations on diurnal changes of microbial populations in the rumen of dairy cows.

    Science.gov (United States)

    Lengowski, Melanie B; Witzig, Maren; Möhring, Jens; Seyfang, Gero M; Rodehutscord, Markus

    2016-12-01

    Here, we examined diurnal changes in the ruminal microbial community and fermentation characteristics of dairy cows fed total mixed rations containing either corn silage (CS) or grass silage (GS) as forage. The rations, which consisted of 52% concentrate and 48% GS or CS, were offered for ad libitum intake over 20 days to three ruminal-fistulated lactating Jersey cows during three consecutive feeding periods. Feed intake, ruminal pH, concentrations of short chain fatty acids and ammonia in rumen liquid, as well as abundance change in the microbial populations in liquid and solid fractions, were monitored in 4-h intervals on days 18 and 20. The abundance of total bacteria and Fibrobacter succinogenes increased in solids in cows fed CS instead of GS, and that of protozoa increased in both solid and liquid fractions. Feeding GS favored numbers of F. succinogenes and Selenomonas ruminantium in the liquid fraction as well as the numbers of Ruminobacter amylophilus, Prevotella bryantii and ruminococci in both fractions. Minor effects of silage were detected on populations of methanogens. Despite quantitative changes in the composition of the microbial community, fermentation characteristics were less affected by forage source. These results suggest a functional adaptability of the ruminal microbiota to total mixed rations containing either GS or CS as the source of forage. Diurnal changes in microbial populations were primarily affected by feed intake and differed between species and fractions, with fewer temporal fluctuations evident in the solid than in the liquid fraction. Interactions between forage source and sampling time were of minor importance to most of the microbial species examined. Thus, diurnal changes of microbial populations and fermentative activity were less affected by the two silages.

  4. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    Science.gov (United States)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  5. Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.

    Science.gov (United States)

    Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2007-10-01

    Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.

  6. Identification of the microbial population found in water sources in and around San Salvador Island, Bahamas

    Directory of Open Access Journals (Sweden)

    Pelletier, Michel

    2014-10-01

    Full Text Available San Salvador Island in The Bahamas is home to approximately 1,200 people, and a popular vacation destination. In order to expand our knowledge of the bacterial population found on and around the island, and to assess possible health risks, we analyzed and identified the cultivable bacterial population found in several lakes and ponds throughout the island. The sites tested were located on the northern, north-eastern, eastern, and western districts, as well as one lake located inland. Ten sites with varying salinity, levels of oxygen, visibility, and distance from the ocean were analyzed. The nature of the bacteria present in these sites was identified by microscopy, as well as a series of biochemical tests based on bacterial metabolism. Seven bacterial species, predominantly from the genera Staphylococcus and Klebsiella were identified. Most bacteria identified are part of the normal microbiota of the skin and the gastro-intestinal tract of human and mammals, and should not be considered a danger for the health of the majority of the population and tourists of the island. We also isolated bacteria capable of fixing atmospheric nitrogen, a hallmark of marine bacterial populations. Overall, this study enabled us to add to the repertoire of bacterial species isolated and identified in the diverse marine environments found on San Salvador Island.

  7. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs

    NARCIS (Netherlands)

    Winsen, van R.L.; Urlings, B.A.P.; Lipman, L.J.A.; Snijders, J.M.A.; Keuzenkamp, D.; Verheijden, J.H.M.; Knapen, van F.

    2001-01-01

    An in vivo experiment was performed with pigs to study the inhibitory effect of fermented feed on the bacterial population of the gastrointestinal tract. Results demonstrated a significant positive correlation between pH and lactobacilli in the stomach contents of pigs in dry feed as well as in the

  8. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep.

    Science.gov (United States)

    Liu, H; Vaddella, V; Zhou, D

    2011-12-01

    This study was conducted to evaluate the effects of chestnut tannins (CT) and coconut oil (CO) on growth performance, methane (CH₄) emission, ruminal fermentation, and microbial populations in sheep. A total of 48 Rideau Arcott sheep (average body weight 31.5±1.97 kg, 16 wk old) were randomly assigned into 6 treatment groups in a 3 × 2 factorial design, with CT and CO as the main effects (8 sheep per group). The treatments were control diet (CTR), 10 or 30 g of CT/kg of diet (CT10 and CT30), 25 g of CO/kg of concentrate (CO25), and 10 or 30 g of CT/kg of diet+25 g of CO/kg of concentrate (CT10CO25 and CT30CO25). After the feeding trial (60 d), all sheep were moved to respiratory chambers to measure CH₄ emission. After CH₄ emission measurements, all sheep were slaughtered to obtain rumen fluid samples. Results showed that the addition of CT, CO, and CT+CO had no significant effects on growth performance of sheep but reduced CH₄ emission. Addition of CT reduced the NH₃-N concentration in rumen fluid in CT30. Addition of CO decreased the concentration of total volatile fatty acids in rumen fluid. No significant differences were observed in pH and molar proportion of volatile fatty acids among treatments. Addition of CT, CO, and CT+CO significantly decreased methanogen and protozoa populations. Moreover, CO decreased counts of Fibrobacter succinogenes. No significant differences were observed in populations of fungi, Ruminococcus flavefaciens, or Ruminococcus albus among treatments. In conclusion, supplementation of CT and CO seemed to be a feasible means of decreasing emissions of CH₄ from sheep by reduction of methanogen and protozoa populations with no negative effect on growth performance.

  9. 施氮肥对荒漠草原土壤微生物种群及微生物量的影响%Effects of Nitrogen Fertilization on Desert Grassland Soil Microbial Population and Microbial Biomass

    Institute of Scientific and Technical Information of China (English)

    郭永盛; 李俊华; 李鲁华; 危常州; 褚贵新; 王飞; 董鹏

    2011-01-01

    [Objective] The aim of the article was set to analyze the effects of nitrogen fertilization on soil microbial population and microbial biomass in desert grassland to know their response to nitrogen fertilizer and to clarify the indication effects of microorganism on environmental qualtiy change . [ Method ] The dilution plate count chloroform and fumigation - K2SO4 extraction of nitrogen were used to study the effect of nitrogen fertilization on three different environments: the microbial population and desert grassland microbial biomass carbon, microbial biomass N ( Bc, BN) . [ Result]Soil bacteria is the main specie in the soil, followed by actinomycetes and fungi is the least ; N fertilizer can significantly increase all three populations of soil rmcrobial, the ratio was increased by 13 . 5% - 427 . 6% , 7. 8% - 88. 2% and 16. 7% - 180. 6 % , respectively; N fertilizer can significantly increas microbial biomass carbon, nitrogen, the ratio was 29 .8% - 110.8% and 51.2% - 161.7% , respectively , effect of N fercilization on soil microbial populations and microbial biomass of the extent of precipitation and fertilization in the environment is related to the precipitation,the greater precipitation, the more obvious influence, the effect of fertilization is less obvious with the deepening of the soil. [ Conclusion] Nitrogen changes in soil microbial populations and SMBc, SMBN, different fertilization environment can also lead to the difference of soil microbial populations and SMBc, SMBN .%[目的]通过分析施氮肥对土壤微生物种群及微生物量,认识荒漠草原土壤微生物种群及微生物量对氮肥的响应,明确微生物对环境质量变化的指示作用.[方法]应用稀释平板计数法和氯仿熏蒸-K2SO4提取法分别研究施氮肥对三种不同环境的荒漠草原土壤微生物种群及微生物量碳、微生物量氮(Bc,BN)之间的影响.[结果]在土壤中细菌为土壤微生物的主要种群,其次

  10. Influence of Organic Manures (Biofertilizers on Soil Microbial Population in the Rhizosphere of Mulberry (Morus Indica L.

    Directory of Open Access Journals (Sweden)

    L. Christilda Louis Mary

    2015-03-01

    Full Text Available The effect of different kinds of organic manures on soil microbial population and mulberry production was assessed. A field experiment wascarried out at Periyar EVR College, Tamil Nadu, India in basic soil to study the influence of organic manures on soil bacterial population andmulberry production. The 4 groups of mulberry plants of MR2 variety were biofertilized with FYM, Azospirillum, Phosphobacteria andVermicompost respectively. The biofertilizers lodged bacteria on the rhizosphere of mulberry plants. When the root microorganism areanalyzed Farm yard manure biofertilized mulberry plant root tips had Gluconacobacter diazotrophicus, Bacillus pumilus, Pseudomonas putida,Bacillus coagulans, Bacillus sonorensis, Azotobacter chrococcum; Azospirillum biofertilized mulberry plants root tips had Bacillus coaculans,Azotobactor chrococcum, Azotobactor vinelandii, Bacillus subtilis and Azospirillum brasilense. Phosphobacteria biofertilized mulberry plantroot tips had Pseudomonas putida, Bacillus stearothermophilus, Brevibacillus borslelansis and Streptomycies thermonitrificans andvermicompost biofertilized mulberry plant root tips had lodged bacterias like Bacillus megaterium, Bacillus subtilis, Gluconacobacterdiazotrophicus, Pseudomonas putida, Azotobacter chrococcum, Azotobacter vinelandi, Bacillus stearothermophilus, Brevibacillus borslelansisand Bacillus sonorensis. Microbiology work reveals luxuriant growth of bacteria in all the biofertizer treated rhizosphere in the order FYM

  11. Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures

    Directory of Open Access Journals (Sweden)

    V. Jerman

    2009-02-01

    Full Text Available Ljubljana marsh in Slovenia is a 16 000 ha area of partly drained fen, intended to be flooded to restore its ecological functions. The resultant water-logging may create anoxic conditions, eventually stimulating production and emission of methane, the most important greenhouse gas next to carbon dioxide. We examined the upper layer (~30 cm of Ljubljana marsh soil for microbial processes that would predominate in water-saturated conditions, focusing on the potential for iron reduction, carbon mineralization (CO2 and CH4 production, and methane emission. Methane emission from water-saturated microcosms was near minimum detectable levels even after extended periods of flooding (>5 months. Methane production in anoxic soil slurries started only after a lag period and was inversely related to iron reduction, which suggested that iron reduction out-competed methanogenesis for electron donors, such as H2 and acetate. Methane production was observed only in samples incubated at 14–38°C. At the beginning of methanogenesis, acetoclastic methanogenesis dominated. In accordance with the preferred substrate, most (91% mcrA (encoding the methyl coenzyme-M reductase, a key gene in methanogenesis clone sequences could be affiliated to the acetoclastic genus Methanosarcina. No methanogens were detected in the original soil. However, a diverse community of iron-reducing Geobacteraceae was found. Our results suggest that methane emission can remain transient and low if water-table fluctuations allow re-oxidation of ferrous iron, sustaining iron reduction as the most important process in terminal carbon mineralization.

  12. Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures

    Directory of Open Access Journals (Sweden)

    V. Jerman

    2009-06-01

    Full Text Available Ljubljana marsh in Slovenia is a 16 000 ha area of partly drained fen, intended to be flooded to restore its ecological functions. The resultant water-logging may create anoxic conditions, eventually stimulating production and emission of methane, the most important greenhouse gas next to carbon dioxide. We examined the upper layer (~30 cm of Ljubljana marsh soil for microbial processes that would predominate in water-saturated conditions, focusing on the potential for iron reduction, carbon mineralization (CO2 and CH4 production, and methane emission. Methane emission from water-saturated microcosms was near minimum detectable levels even after extended periods of flooding (>5 months. Methane production in anoxic soil slurries started only after a lag period of 84 d at 15°C and a minimum of 7 d at 37°C, the optimum temperature for methanogenesis. This lag was inversely related to iron reduction, which suggested that iron reduction out-competed methanogenesis for electron donors, such as H2 and acetate. Methane production was observed only in samples incubated at 14–38°C. At the beginning of methanogenesis, acetoclastic methanogenesis dominated. In accordance with the preferred substrate, most (91% mcrA (encoding the methyl coenzyme-M reductase, a key gene in methanogenesis clone sequences could be affiliated to the acetoclastic genus Methanosarcina. No methanogens were detected in the original soil. However, a diverse community of iron-reducing Geobacteraceae was found. Our results suggest that methane emission can remain transient and low if water-table fluctuations allow re-oxidation of ferrous iron, sustaining iron reduction as the most important process in terminal carbon mineralization.

  13. Reduction of Microbial Population in Cheese Whey by UV in a Single and Series Conventional Reactors

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2006-01-01

    Full Text Available In this study, the effectiveness of two conventional UV reactors in series for the online sterilization of cheese whey was compared to that of a single conventional reactor. The single reactor and the two reactor series were tested at eleven flow rates (5, 10, 15, 20, 25, 30, 35, 40, 50, 60 and 70 mL min-1 and five flow rates, (35, 40, 50, 60, 70 mL min-1, respectively. 100% destruction efficiency could not be achieved in the single reactor. When two reactors were connected in series, the destruction efficiency reached 100% at the flow rate of 35 mL min-1 and lasted for 25 min. The temperature of the effluent decreased with the increase in flow rate in both systems. The rate of microbial destruction in the single reactor and the two reactor series was described by an exponential equation. The maximum effluent temperatures in the single reactor and the two reactor series were 45.8 and 36.0°C, respectively. The flow in both reactors was laminar (Re=1.39 at 5mL min-1 and Re= 20.10 at 70 mL min-1. Visual observation revealed less fouling on the UV lamps of two reactor series than the single reactor. A different design in which there is no contact between the liquid and the UV lamp should be investigated. The quartz sleeve could also be replaced with fluropolymer coiled tube around the UV lamp. The smooth surface of the fluropolymer would reduce scaling and extend the effective operating time.

  14. [Study on hydrogen autotrophic denitrification of bio-ceramic reactor].

    Science.gov (United States)

    Chen, Dan; Wang, Hong-Yu; Song, Min; Yang, Kai; Liu, Chen

    2013-10-01

    Nitrate wastewater is processed in a bio-ceramic reactor based on hydrogen autotrophic denitrification. The implementation procedure of biological denitrification by hydrogen autotrophic denitrification was investigated. The effects of hydraulic retention time, influent nitrate load, influent pH, temperature and the amount of hydrogen were assessed throughout this trial. The results showed that the removal rate of NO-(3) -N was 94. 54% and 97. 47% when the hydraulic retention time was 24 h and 48 h, respectively. When the hydraulic retention time was in the range of 5-16 h, the removal rate gradually dropped with the shortening of the hydraulic retention time. When the influent NO-(3) -N concentration was low, with the increase in the influent NO-(3) -N concentration, the degradation rate also increased. The denitrification was inhibited when the NO-(3) -N concentration was higher than 110 mg.L-1. Neutral and alkaline environment was more suitable for the reactor. The reactor showed a wide range of temperature adaptation and the optimum temperature of the reactor was from 25 to 30 degrees C. When hydrogen was in short supply, the effect of denitrification was significantly reduced. These results indicated the specificity of hydrogen utilization by the denitrifying bacteria. The effluent nitrite nitrogen concentration was maintained at low levels during the operation.

  15. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H(13)CO3(-) and H(12)CO3(-) as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H(13)CO3(-), demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the (13)C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment.

  16. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of fos

  17. A study of autotrophic communities in two Victoria Land lakes (Continental Antarctica using photosynthetic pigments

    Directory of Open Access Journals (Sweden)

    Roberto BARGAGLI

    2010-08-01

    Full Text Available The composition of algal pigments and extracellular polymeric substances (EPS was determined in microbial mats from two lakes in Victoria Land (Continental Antarctica with different lithology and environmental features. The aim was to expand knowledge of benthic autotrophic communities in Antarctic lacustrine ecosystems, providing reference data for future assessment of possible changes in environmental conditions and freshwater communities. The results of chemical analyses were supported by microscopy observations. Pigment profiles showed that filamentous cyanobacteria are dominant in both lakes. Samples from the water body at Edmonson Point had greater biodiversity, fewer pigments and lower EPS ratios than those from the lake at Kar Plateau. Differences in mat composition and in pigment and EPS profile between the two lakes are discussed in terms of local environmental conditions such as lithology, ice-cover and UV radiation. The present study suggests that a chemical approach could be useful in the study of benthic communities in Antarctic lakes and their variations in space and time.

  18. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor.

    Science.gov (United States)

    De Clippeleir, Haydée; Vlaeminck, Siegfried E; Carballa, Marta; Verstraete, Willy

    2009-11-01

    Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).

  19. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic activity in late...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  20. Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations

    Institute of Scientific and Technical Information of China (English)

    CHU Xiaoqiang; FANG Hua; PAN Xuedong; WANG Xiao; SHAN Min; FENG Bo; YU Yunlong

    2008-01-01

    In practice, pesticides are usually applied simultaneously or one after another for crop protection, and this type of pesticide application often leads to a combined contamination of pesticide residues in the soil environment. A laboratory study was conducted to investigate the influence of chlorothalonil on chlorpyrifos degradation and its effects on soil bacterial, fungal, and actinomycete populations. Under the experimental conditions here, the half-lives of chlorpyrifos alone, and in combination with chlorothalonil, at the recommended and double dosages, were measured to be 3.24, 2.77, and 2.63 d, respectively. Chlorpyrifos degradation was not significantly altered by its combination with chlorothalonil. However, the inhibitory effect of chlorpyrifos on soil microorganisms was increased by its combination with chlorothalonil, and the increase was related to the levels of chlorothalonil added. Compared to those in the controls, the populations of bacteria, fungi, and actinomycetes were significantly reduced by 44.1%, 61.1%, and 72.8%, respectively, on the first day after treatment (DAT) by chlorpyrifos alone. With the addition of chlorothalonil, the inhibition was increased to 55.2%, 79.3%, and 85.8% at the recommended dosage, and 86.0%, 94.1%, and 90.8% at the double dosage, at one DAT, respectively. The results suggested that combined effects should be taken into account to assess the actual impacts of pesticide applications.

  1. Improvement in shelf life of minimally processed cilantro leaves through integration of kinetin pretreatment and packaging interventions: Studies on microbial population dynamics, biochemical characteristics and flavour retention.

    Science.gov (United States)

    Ranjitha, K; Shivashankara, K S; Sudhakar Rao, D V; Oberoi, Harinder Singh; Roy, T K; Bharathamma, H

    2017-04-15

    Effect of integrating optimized combination of pretreatment with packaging on shelf life of minimally processed cilantro leaves (MPCL) was appraised through analysis of their sensory attributes, biochemical characteristics, microbial population and flavour profile during storage. Minimally pretreated cilantro leaves pretreated with 50ppm kinetin and packed in 25μ polypropylene bags showed a shelf life of 21days. Optimized combination helped in efficiently maintaining sensory parameters, flavour profile, and retention of antioxidants in MPCL until 21days. Studies conducted on the effect of optimized combination on microbial population and flavour profile revealed that among different microorganisms, pectinolysers had a significant effect on spoilage of MPCL and their population of ⩽3.59logcfu/g was found to be acceptable. Principal component analysis of headspace volatiles revealed that (E)-2-undecenal, (E)-2-hexadecenal, (E)-2-tetradecenal & (E)-2-tetradecen-1-ol in stored samples clustered with fresh samples and therefore, could be considered as freshness indicators for MPCL.

  2. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    Science.gov (United States)

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction.

  3. Patterns in marine microbial community structure

    OpenAIRE

    2012-01-01

    Programa en Oceanografía [EN] Understanding the distribution of the different picoplankton groups represents a central tenet of marine microbial ecology. Centering our study on the three major groups constituting the bulk picoplankton community (size 0.2-3 mm), we sought to analyze the distribution of autotrophic bacteria (Synechococcus and Prochlorococcus), photosynthetic Picoeukaryotes pPeuk, and heterotrophic bacteria. [ES] La comprensión de la distribución de los distint...

  4. How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles.

    Science.gov (United States)

    Kaden, Rene; Krolla-Sidenstein, Peter

    2015-10-20

    A DNA extraction that comprises the DNA of all available taxa in an ecosystem is an essential step in population analysis, especially for next generation sequencing applications. Many nanoparticles as well as naturally occurring clay minerals contain charged surfaces or edges that capture negatively charged DNA molecules after cell lysis within DNA extraction. Depending on the methodology of DNA extraction, this phenomenon causes a shift in detection of microbial taxa in ecosystems and a possible misinterpretation of microbial interactions. With the aim to describe microbial interactions and the bio-geo-chemical reactions during a clay alteration experiment, several methods for the detection of a high number of microbial taxa were examined in this study. Altogether, 13 different methods of commercially available DNA extraction kits provided by seven companies as well as the classical phenol-chloroform DNA extraction were compared. The amount and the quality of nucleic acid extracts were determined and compared to the amplifiable amount of DNA. The 16S rRNA gene fragments of several taxa were separated using denaturing gradient gel electrophoresis (DGGE) to determine the number of different species and sequenced to get the information about what kind of species the microbial population consists of. A total number of 13 species was detected in the system. Up to nine taxa could be detected with commercially available DNA extraction kits while phenol-chloroform extraction lead to three detected species. In this paper, we describe how to combine several DNA extraction methods for the investigation of microbial community structures in clay.

  5. Microbial infections in a declining wild turkey population in Texas (USA)

    Science.gov (United States)

    Rocke, T.E.; Yuill, Thomas M.

    1987-01-01

    A survey was conducted at 5 locations in Texas for avian pathogens that might adversely affect wild turkey (Meleagris gallopavo) productivity and survival. At 1 site, the Rob and Bessie Welder Wildlife Refuge (WWR), turkeys have declined precipitously in recent years. During the winters of 1983-85, 442 wild turkeys were caught with cannon and drop nets, 161 of these on WWR. Blood samples were drawn for serologic evaluation, and cloacal and tracheal swabs were collected for isolation attempts. Salmonella spp. bacteria, Newcastle disease virus (NDV), and avian influenza virus (AIV) were not detected in any samples tested. Serologic tests for antibodies to NDV and AIV also were negative. Many mycoplasma isolates were recovered from turkeys from every location. Characterization of these isolates indicated that several species were present. None were species typically associated with mycoplasmosis in domestic turkeys, such as Mycoplasma gallisepticum (MG), M. meleagridis (MM), or M. synoviae (MS), although antibodies to these pathogens were detected in turkeys at every location sampled. There was no evidence to link any of these disease causing agents to the decline observed in the population of wild turkeys on the WWR.

  6. Impact of Fungicide Mancozeb at Different Application Rates on Soil Microbial Populations, Soil Biological Processes, and Enzyme Activities in Soil

    Directory of Open Access Journals (Sweden)

    Abhishek Walia

    2014-01-01

    Full Text Available The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0–2000 ppm at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8 collected from apple orchards of Shimla in Himachal Pradesh (India. Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required.

  7. Effect of supplemental nitrogen from urea on digestibility, rumen fermentation pattern, microbial populations and nitrogen balance in growing goats

    Directory of Open Access Journals (Sweden)

    Wanwisa Ngampongsai

    2008-08-01

    Full Text Available For this study, four Thai Native (TN x Anglo Nubian (AN crossbred growing goats with an average liveweight of 19.0+1 kg were randomly used in a 4x4 Latin square design to determine the effect of supplemental nitrogen from urea on digestibility, rumen fermentation pattern, microbial populations and nitrogen balance in growing goats. Fresh elephant grass(FEG was offered ad libitum as the roughage. Four dietary treatments with supplemental nitrogen from urea were T1 = urea at 0% cassava chip, (CC = 30%, T2 = urea at 1% (CC = 40%, T3 = urea at 2% (CC = 50% and T4 = urea at 3% (CC = 60%,respectively. Based on this experiment, it was found that there was no significant difference (p>0.05 among treatment groups regarding nutrient intake (OMI, CPI, NDFI and ADFI and digestion coefficients of nutrients (DM, OM, CP, NDF and ADF, while digestible nutrient intake of CP (g/d was affected by increasing urea levels. Ruminal volatile fatty acidprofiles were similar among treatments. Moreover, rumen microorganism populations were not affected (p>0.05 by increasing urea levels. The amount of N absorption and retention were similar among treatments, except for T4 which tended to be slightly lower in N absorption as compared to control diet, but higher N output retained (% of N intake than the control-fed goats. From the overall results, it can be concluded that a higher level of urea (3% could be used with a high level of CC (60% in concentrate when fed with FEG and it was found to be a good approach to exploiting the use of local feedresources for goat production.

  8. Targeting Autotrophic and Lithotrophic Microorganisms from Fumarolic Ice Caves of Mt. Erebus, Antarctica

    Science.gov (United States)

    Anitori, R.; Davis, R.; Connell, L.; Kelley, M.; Staudigel, H.; Tebo, B. M.

    2011-12-01

    and O2 gradient tubes. Some of the original soil isolates grown on agar without organic C grew upon subculturing into liquid medium, providing evidence for the successful enrichment of cave autotrophs. Further evidence for autotrophy was the identification of genes for the RuBisCO large subunit gene, suggesting the existence of carbon fixation via the Calvin-Benson cycle. PCR amplification was observed for the type I (cbbL) gene, but not using primers specific for the type II (cbbM) RuBisCO gene. Phylogenetic trees placed the amplified sequences in a monophyletic group deeply rooted in the 'red-like' clade within the cbbL group. Our culture-based exploration of the Mt. Erebus ice caves provides evidence for the presence of litho/autotrophic microorganisms that may be utilizing inorganic energy sources in the volcanic rocks. These results provide a novel view of life in the dark biosphere in deep volcanic settings, and augment studies of seafloor or terrestrial microbial communities in similar extreme volcanic environments.

  9. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments.

    Science.gov (United States)

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-06-01

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.

  10. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms.

    Science.gov (United States)

    Kim, Yong-Hak; Cerniglia, Carl E

    2005-07-01

    Degradation of erythromycin A was studied using two sediment samples obtained from the salmon and trout hatchery sites at Hupp Springs (HS) and Goldendale (GD), Washington, United States. The former site had been treated for 3 years with erythromycin-medicated feed prior to the experiments, and the latter site had not been treated with any antibiotic for at least 6 years. The two sediment microcosms treated with either N-[methyl-14C]erythromycin A or [1,3,5,7,9,11,13-14C]erythromycin A showed S-curves for erythromycin A mineralization with a prolonged lag time of 120 days, except for GD microcosms treated with [1,3,5,7,9,11,13-14C]erythromycin A. We proposed a simplified logistic model to interpret the mineralization curves under the assumption of the low densities of initial populations metabolizing erythromycin A. The model was helpful for knowing the biological potential for erythromycin A degradation in sediments. Although erythromycin A added to the two sediment microcosms did not significantly alter the numbers of total viable aerobic bacteria or erythromycin-resistant bacteria, it affected the bacterial composition. The influence on the bacterial composition appeared to be greater in GD microcosms without pre-exposure to antibiotics. PCR-RFLP and DNA sequence analyses of the 16S ribosomal RNA gene and the erythromycin esterase (ere) gene revealed that ereA type 2 (ereA2) was present in potentially erythromycin-degrading Pseudomonas spp. strains GD100, GD200, HS100, HS200 and HS300, isolated from erythromycin-treated and non-treated GD and HS microcosms. Erythromycin A appeared to influence the development and proliferation of strain GD200, possibly via the lateral gene transfer of ereA2.

  11. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Hak [Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)]. E-mail: yhkim660628@hotmail.com; Cerniglia, Carl E. [Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)]. E-mail: ccerniglia@nctr.fda.gov

    2005-07-01

    Degradation of erythromycin A was studied using two sediment samples obtained from the salmon and trout hatchery sites at Hupp Springs (HS) and Goldendale (GD), Washington, United States. The former site had been treated for 3 years with erythromycin-medicated feed prior to the experiments, and the latter site had not been treated with any antibiotic for at least 6 years. The two sediment microcosms treated with either N-[methyl-{sup 14}C]erythromycin A or [1,3,5,7,9,11,13-{sup 14}C]erythromycin A showed S-curves for erythromycin A mineralization with a prolonged lag time of 120 days, except for GD microcosms treated with [1,3,5,7,9,11,13-{sup 14}C]erythromycin A. We proposed a simplified logistic model to interpret the mineralization curves under the assumption of the low densities of initial populations metabolizing erythromycin A. The model was helpful for knowing the biological potential for erythromycin A degradation in sediments. Although erythromycin A added to the two sediment microcosms did not significantly alter the numbers of total viable aerobic bacteria or erythromycin-resistant bacteria, it affected the bacterial composition. The influence on the bacterial composition appeared to be greater in GD microcosms without pre-exposure to antibiotics. PCR-RFLP and DNA sequence analyses of the 16S ribosomal RNA gene and the erythromycin esterase (ere) gene revealed that ereA type 2 (ereA2) was present in potentially erythromycin-degrading Pseudomonas spp. strains GD100, GD200, HS100, HS200 and HS300, isolated from erythromycin-treated and non-treated GD and HS microcosms. Erythromycin A appeared to influence the development and proliferation of strain GD200, possibly via the lateral gene transfer of ereA2.

  12. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R

    2013-05-11

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability. 2013 The

  13. Effects of Seasonal Changes (The Spring and The Autumn on Microbial Population of the Surface Soils Planted the Various Tree Species

    Directory of Open Access Journals (Sweden)

    Hasan Hüseyin Koç

    2014-02-01

    Full Text Available Microbial population of soil and its structure is affected with chemical and biological changes such as plant-root secretions. Upper layer of the soil is exposed to mixture of stems, fruiting bodies and leaves of trees. Seven trees growing at same area were chosen. Their upper layers of the soil were collected from depth 5-10 cm as samples in spring and autumn. Their microbial populations were investigated in order to determine in terms of climate changes. In order to determine the number of the total microorganisms, gram-negative bacteria and spore-forming bacteria (cfu/g were used by the serial dilution techniques. As a result, the highest numbers of microorganisms from the soil of the apple tree were determined as the total microbial count in the autumn, although the lowest number of microorganisms was obtained from the soil of the pine tree. However, the number of the gram-negative bacteria was the highest in the soil of linden tree, although the number of gram negative bacteria was the lowest in the soil of apricot, mulberry and apple trees. For spore - forming bacterium, the highest number from the mulberry soil and the lowest number from the linden tree have been obtained. In the spring, the highest numbers of microorganisms from the soil of the apple tree were obtained as the total microbial count, although the lowest number of microorganisms was obtained from the soil of the apricot tree. For the number of the gram-negative bacteria was the highest in the soil of walnut tree, although the number of gram negative bacteria was the lowest in the soil of apricot trees. However spore - forming bacterium, the highest number from the soil of the poplar tree and the lowest number from the mulberry tree have been obtained. In general, the rich diversity of the microbial population was shown morphologically in autumn.

  14. Impacts of radiation exposure on the experimental microbial ecosystem: a particle-based model simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M.; Tanaka, N.; Fuma, S.; Kawabata, Z.

    2004-07-01

    Well-designed experimental model ecosystem could be a simple reference of the actual environment and complex ecological systems. For ecological toxicity test of radiation and other environmental toxicants, we investigated and aquatic microbial ecosystem (closed microcosm) in the test tube with initial substrates,autotroph flagellate algae (Euglena, G.), heterotroph ciliate protozoa (Tetrahymena T.) and saprotroph bacteria (E, coli). These species organizes by itself to construct the ecological system, that keeps the sustainable population dynamics for more than 2 years after inoculation only by adding light diurnally and controlling temperature at 25 degree Celsius. Objective of the study is to develop the particle-based computer simulation by reviewing interactions among microbes and environment, and analyze the ecological toxicities of radiation on the microcosm by replicating experimental results in the computer simulation. (Author) 14 refs.

  15. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.

    Science.gov (United States)

    Cabezas, Angela; Pommerenke, Bianca; Boon, Nico; Friedrich, Michael W

    2015-06-01

    Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC.

  16. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.

    Science.gov (United States)

    Martínez, M E; Ranilla, M J; Tejido, M L; Ramos, S; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate

  17. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.

    Science.gov (United States)

    Kuehn, Kevin A; Francoeur, Steven N; Findlay, Robert H; Neely, Robert K

    2014-03-01

    Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C- and 13C-bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems.

  18. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.

    Science.gov (United States)

    Patra, A K; Yu, Z

    2013-03-01

    Coconut (CO) and fish (FO) oils were previously shown to inhibit rumen methanogenesis and biohydrogenation, which mitigates methane emission and helps improve beneficial fatty acids in meat and milk. This study aimed at investigating the comparative effects of CO and FO on the methanogenesis, fermentation, and microbial abundances and diversity in vitro rumen cultures containing different doses (0, 3.1, and 6.2 mL/L) of each oil and 400mg feed substrate using rumen fluid from lactating dairy cows as inocula. Increasing doses of CO and FO quadratically decreased concentrations of methane, but hydrogen concentrations were only increased quadratically by CO. Both oils linearly decreased dry matter and neutral detergent fiber digestibility of feeds but did not affect the concentration of total volatile fatty acids. However, CO reduced acetate percentage and acetate to propionate ratio and increased the percentages of propionate and butyrate to a greater extent than FO. Ammonia concentration was greater for CO than FO. As determined by quantitative real-time PCR, FO had greater inhibition to methanogens than CO, but the opposite was true for protozoal, Ruminococcus flavefaciens, and Fibrobacter succinogenes. Ruminococcus albus was not affected by either oil. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial and archaeal community composition were changed differently by oil type. Based on Pareto-Lorenz evenness curve analysis of the DGGE profiles, CO noticeably changed the functional organization of archaea compared with FO. In conclusion, although both CO and FO decreased methane concentrations to a similar extent, the mode of reduction and the effect on abundances and diversity of archaeal and bacterial populations differed between the oils. Thus, the use of combination of CO and FO at a low dose may additively lower methanogenesis in the rumen while having little adverse effect on rumen fermentation.

  19. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers.

    Science.gov (United States)

    Ozturk, E; Coskun, I; Ocak, N; Erener, G; Dervisoglu, M; Turhan, S

    2014-01-01

    This study was conducted to examine the effect of different levels of humic substances (HS) administered in drinking water on caecal microflora and mineral composition and colour characteristics of breast and thigh meats and the growth performance, carcass and gastrointestinal tract (GIT) traits of broiler chicks. A total of 480 3-d-old broiler chickens were randomly allocated to 4 treatments with 4 cages per treatment and 30 bird (15 males and 15 females) chicks per cage. All birds were fed on commercial basal diet. The control birds (HS0) received drinking water with no additions, whereas birds in the other treatment groups received a drinking water with 7.5 (HS7.5), 15.0 (HS15.0) and 22.5 (HS22.5) g/kg HS. Mush feed were provided on an ad libitum basis. Body weight and feed intake of broilers were determined at d 0, 21, and 42, and feed conversion ratio was calculated. On d 42, 4 broilers (2 males and 2 females) from each cage were slaughtered and the breast and thigh meats were collected for mineral composition and quality measurements. Performance, carcass and GIT traits and caecal microbial population of broiler chicks at d 42 were not affected by the dietary treatments. The lightness (L*) of breast and thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water. Although the redness (a*) of breast meat increased, yellowness of thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water (P water can be applied for broiler chicks to maintain growth performance and improve meat quality without changing caecal microflora.

  20. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2015-09-01

    Full Text Available To quantify the contribution of autotrophic microorganisms to organic matter formation (OM in soils, we investigated natural CO2 vents (mofettes situated in a wetland in NW Bohemia (Czech Republic. Mofette soils had higher SOM concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C and stable carbon isotope ratios (δ13C to characterize SOM and its sources in two moffetes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in δ13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in δ13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw−1 d−1. We inferred that the negative δ13C shift was caused by the activity of chemo-lithoautotrophic microorganisms, as

  1. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  2. Effects of rumen fluid collection site on microbial population structure during in vitro fermentation of the different substrates quantified by 16S rRNA hybridisation.

    Science.gov (United States)

    Muetzel, S; Krishnamoorthy, U; Becker, K

    2001-01-01

    Rumen fluid samples from a cow were withdrawn manually from the feed mat (solid phase) or the liquid phase below this mat and incubated in vitro with wheat straw, sorghum hay and a concentrate mixture. From the inoculum and several samples collected during in vitro incubation RNA was extracted to assess microbial population size and structure. RNA content recovered from the solid phase rumen fluid was significantly higher than from the liquid phase. The composition of the microbial population in the solid phase material was characterised by a high proportion of Ruminococci. Neither the proportion of other cell wall degrading organisms (Fibrobacter and Chytridiomycetes) nor the Eukarya and Archaea populations differed between the two sampling sites. Gas production was higher when substrates were incubated with solid phase than with liquid phase rumen fluid regardless of sampling time. However, the higher level of gas production was not accompanied by a corresponding increase in true digestibility. The RNA probes showed that during in vitro incubation with liquid phase rumen fluid, the eukaryotic population was inactive no matter which substrate was used and the activity of methanogens (Archaea) was lower than with solid phase rumen fluid. The population pattern of the cell wall degrading organisms was influenced mainly by the substrate fermented, and to a smaller extent by the inoculum used for in vitro fermentation.

  3. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    Science.gov (United States)

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  4. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis

    OpenAIRE

    Huber, Harald; Gallenberger, Martin; Jahn, Ulrike; Eylert, Eva; Berg, Ivan A.; Kockelkorn, Daniel; Eisenreich, Wolfgang; Fuchs, Georg

    2008-01-01

    Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO2 acce...

  5. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote.

    Science.gov (United States)

    Urschel, Matthew R; Hamilton, Trinity L; Roden, Eric E; Boyd, Eric S

    2016-05-01

    Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments.

  6. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  7. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    Science.gov (United States)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  8. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens.

    Science.gov (United States)

    Majidi-Mosleh, A; Sadeghi, A A; Mousavi, S N; Chamani, M; Zarei, A

    2017-02-01

    1. The objective of present study was to evaluate the effects of intra-amniotic injection of different probiotic strains (Bacillus subtilis, Enterococcus faecium and Pediococcus acidilactici) on the intestinal MUC2 gene expression, microbial population, growth performance and immune response in broiler chicken. 2. In a completely randomised design, different probiotic strains were injected into the amniotic fluid of the 480 live embryos (d 18 of incubation), with 4 treatments and 5 replicates. Ileal MUC2 gene expression, microbial profile, growth performance and immune response were determined. 3. Injection of probiotic strains, especially B. subtilis, had significant effect on expression of the MUC2 on d 21 of incubation and d 3 post-hatch, but not on d 19 of incubation. 4. Injection of the probiotic strains decreased significantly the Escherichia coli population and increased the lactic acid bacteria population during the first week post-hatch. 5. Inoculation of probiotics had no significant effect on antibody titres against Newcastle disease virus, antibody titres against sheep red blood cell and cell-mediated immune response of chickens compared to control. 6. In ovo injection of the probiotic strains had no significant effect on growth performance of broiler chickens. 7. It was concluded that injection of probiotic bacteria especially B. subtilis into the amniotic fluid has a beneficial effect on ileal MUC2 gene expression and bacteria population during the first week post-hatch, but has no effect on growth performance and immune response in broiler chickens.

  9. Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant.

    Science.gov (United States)

    De Bellis, Palmira; Valerio, Francesca; Sisto, Angelo; Lonigro, Stella Lisa; Lavermicocca, Paola

    2010-05-30

    This study reports the dynamics of microbial populations adhering on the surface of debittered green olives cv. Bella di Cerignola in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in different brining conditions (4% and 8% (w/v) NaCl) at room temperature and 4 degrees C. The probiotic strain successfully colonized the olive surface dominating the natural LAB population and decreasing the pH of brines to fermentation. The dynamics of microbial populations associated with olive surface and belonging to the different groups indicated that inoculated olives held at room temperature did not host Enterobacteriaceae at the end of fermentation. Yeast populations were present in a low number (fermentation in all processes except for the one held at 4 degrees C. Also a notable incidence of Leuc. mesenteroides on olives was highlighted in this study during all fermentation. Results indicated that the human strain L. paracasei IMPC2.1 can be considered an example of a strain used in the dual role of starter and probiotic culture which allowed the control of fermentation processes and the realization of a final probiotic product with functional appeal.

  10. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  11. Effect of packaging during storage time on retail display microbial population of beef strip loins from two different production systems.

    Science.gov (United States)

    Luzardo, S; Woerner, D R; Geornaras, I; Hess, A M; Belk, K E

    2016-06-01

    Two studies were conducted to evaluate the influence of packaging during storage of strip loins (to simulate export shipment) from steers fattened on intensive grazing systems (Uruguay; UR) or on a high-concentrate diet (United States; US) on retail display life microbial growth. Four or 3 different packaging treatments were applied to UR and US strip loin roasts or steaks during 35 d of storage; treatments were applied 7 d following slaughter. After 35 d of storage, the samples were evaluated during simulated retail display for up to 6 d. In Exp. 1, the treatments were vacuum packaging (VP), low-oxygen modified atmosphere packaging (MAP) with N and CO (MAP/CO), low-oxygen MAP with N plus CO and CO, and VP plus an application of peroxyacetic acid (VP/PAA). In Exp. 2, block 1, the treatments were VP, MAP/CO, and VP with ethyl--lauroyl--arginate HCl incorporated into the film as an antimicrobial agent (VP/AM). In Exp. 2, block 2, the treatments were VP, MAP/CO, MAP/CO, and VP/AM. For retail display, VP treatments were sliced and repackaged in PVC overwrap, and MAP treatments were actually PVC overwrap trays that were removed from a master bag with the prescribed gas treatment. Regardless of production system and packaging treatment, mesophilic and psychrotrophic counts of 6.9 to 7.8 and 6.7 to 7.7 log10 CFU/cm, respectively, were obtained at the end of retail display, except for US samples in Exp. 2 (5.5 to 6.3 log CFU/cm). No differences ( > 0.05) were detected for spp. counts among packaging treatments in US steaks at the end of the display time in Exp.1, whereas, for UR steaks, both MAP treatments had lower ( retail display for Exp. 2. At the end of display time and for Exp. 1, US steaks under MAP/CO had greater ( 0.05) among packaging were detected for UR steaks. Both MAP and VP/AM treatments in the US samples for Exp. 2 had lower ( 0.05) were found among packaging treatments for the UR samples. To maximize shelf life (storage and display life) of exported fresh

  12. Effects of Neutral Detergent Soluble Fiber and Sucrose Supplementation on Ruminal Fermentation, Microbial Synthesis, and Populations of Ruminal Cellulolytic Bacteria Using the Rumen Simulation Technique (RUSITEC)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-hui; LIU Chan-juan; LI Chao-yun; YAO Jun-hu

    2013-01-01

    We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2×2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, low-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate;however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSF×sucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solid-associated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low-NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcus flavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies of R. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.

  13. Dissolved carbon dioxide and oxygen concentrations in purge of vacuum-packaged pork chops and the relationship to shelf life and models for estimating microbial populations.

    Science.gov (United States)

    Adams, K R; Niebuhr, S E; Dickson, J S

    2015-12-01

    The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment.

  14. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow's milk.

    Science.gov (United States)

    Alegría, Angel; Alvarez-Martín, Pablo; Sacristán, Noelia; Fernández, Elena; Delgado, Susana; Mayo, Baltasar

    2009-11-30

    Classical culturing and denaturing gradient gel electrophoresis (DGGE) techniques have been used for studying the microbial diversity and dynamics of the traditional Spanish Casín cheese during manufacturing and ripening. As with other starter-free cheeses made from raw milk, the microbial diversity of Casín was shown to be high by both culturing and DGGE analyses. The culture technique showed that lactic acid bacteria (LAB) species constituted the majority of the microbial populations. Of the 14 bacterial species identified, Lactococcus garvieae was predominant in the three-day-old cheese sample, although it was replaced by Lactococcus lactis subsp. lactis at day 30. As expected, the DGGE profiles obtained were complex, consisting, depending on the sample, in five to ten different amplification bands. Among these, a band corresponding to Streptococcus thermophilus was observed throughout the whole manufacturing process. This species had never been identified from traditional Spanish cheeses previously. Culturing and molecular methods showed high populations of undesirable microorganisms, arguing for a required improvement in the hygiene of Casín manufacture. Random amplification of polymorphic DNA (RAPD) profiling suggested that the L. garvieae and L. lactis populations were composed of one and five strains, respectively. In addition, only a single L. lactis RAPD pattern was stably maintained from day three to day 30, indicating high succession of strains along ripening. After a thoroughly characterisation, strains of the two Lactococcus species could be used in designing specific starter cultures for Casín. Additional species (such as Lactobacillus plantarum and Corynebacterium variabile) might be included as adjunct cultures.

  15. Deep Diversity: Novel Approach to Overcoming the PCR Bias Encountered During Environmental Analysis of Microbial Populations for Alpha-Diversity

    Science.gov (United States)

    Ramirez, Gustavo A; Vaishampayan, Parag A.

    2011-01-01

    Alpha-diversity studies are of crucial importance to environmental microbiologists. The polymerase chain reaction (PCR) method has been paramount for studies interrogating microbial environmental samples for taxon richness. Phylogenetic studies using this technique are based on the amplification and comparison of the 16S rRNA coding regions. PCR, due disproportionate distribution of microbial species in the environment, increasingly favors the amplification of the most predominant phylotypes with every subsequent reaction cycle. The genetic and chemical complexity of environmental samples are intrinsic factors that exacerbate an inherit bias in PCR-based quantitative and qualitative studies of microbial communities. We report that treatment of a genetically complex total genomic environmental DNA extract with Propidium Monoazide (PMA), a DNA intercalating molecule capable of forming a covalent cross-linkage to organic moieties upon light exposure, disproportionally inactivates predominant phylotypes and results in the exponential amplification of previously shadowed microbial ?-diversity quantified as a 19.5% increase in OUTs reported via phylogenetic screening using PhyloChip.

  16. The sociality of bioremediation: Hijacking the social lives of microbial populations to clean up heavy metal contamination

    OpenAIRE

    O'Brien, Siobhan; Buckling, Angus

    2015-01-01

    Bioremediation to remove toxic heavy metals from the environment relies on metal‐tolerant plants or microbes to do the job, but with varying degrees of success. Understanding the ecology and evolution of metal‐resistant bacterial societies could drastically improve the efficiency of microbial bioremediation.

  17. Soil Microbial Population in the Vicinity of the Bean Caper(Zygophyllum dumosum) Root Zone in a Desert System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllum dumosum) perennial desert shrub and the inter-shrub sites. Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z. dumosum shrubs than from the inter-shrub sampling sites, with no differences between the two sampling layers (0-10 and 10-20 cm) throughout the study period. However, seasonal changes were observed due to autumn dew formation, which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations.The calculated metabolic coefficient (qCO2) revealed significant differences between the two sampling sites as well as between the two soil layers, elucidating the abiotic effect between the sites throughout the study period. The substrate availability index was found to significantly demonstrate the differences between the two sites, elucidating the significant contribution of Z. dumosum in food source availability and in moderating harsh abiotic components. The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment.

  18. Decline in Performance of Biochemical Reactors for Sulphate Removal from Mine-Influenced Water is Accompanied by Changes in Organic Matter Characteristics and Microbial Population Composition

    Directory of Open Access Journals (Sweden)

    Parissa Mirjafari

    2016-03-01

    Full Text Available Successful long-term bioremediation of mining-influenced water using complex organic matter and naturally-occurring microorganisms in sub-surface flow constructed wetlands requires a balance between easily and more slowly degrading material. This can be achieved by combining different types of organic materials. To provide guidance on what mixture combinations to use, information is needed on how the ratio of labile to recalcitrant components affects the degradation rate and the types of microbial populations supported. To investigate this, different ratios of wood and hay were used in up-flow column bioreactors treating selenium- and sulphate-containing synthetic mine-influenced water. The degradation rates of crude fibre components appeared to be similar regardless of the relative amounts of wood and hay. However, the nature of the degradation products might have differed in that those produced in the hay-rich bioreactors were more biodegradable and supported high sulphate-reduction rates. Microorganisms in the sulphate-reducing and cellulose-degrading inocula persisted in the bioreactors indicating that bio-augmentation was effective. There was a shift in microbial community composition over time suggesting that different microbial groups were involved in decomposition of more recalcitrant material. When dissolved organic carbon (DOC was over-supplied, the relative abundance of sulphate-reducers was low even through high sulphate-reduction rates were achieved. As DOC diminished, sulphate-reducers become more prevalent and their relative abundance correlated with sulphate concentrations rather than sulphate-reduction rate.

  19. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    Science.gov (United States)

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  20. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes.

    Science.gov (United States)

    Buccioni, A; Pauselli, M; Viti, C; Minieri, S; Pallara, G; Roscini, V; Rapaccini, S; Marinucci, M Trabalza; Lupi, P; Conte, G; Mele, M

    2015-02-01

    The aim of the study was to evaluate milk fatty acid (FA) profile, animal performance, and rumen microbial population in response to diets containing soybean oil supplemented or not with chestnut and quebracho tannins in dairy ewes. Eighteen Comisana ewes at 122±6 d in milking were allotted into 3 experimental groups. Diets were characterized by chopped grass hay administered ad libitum and by 800 g/head and day of 3 experimental concentrates containing 84.5 g of soybean oil/kg of dry matter (DM) and 52.8 g/kg of DM of bentonite (control diet), chestnut tannin extract (CHT diet), or quebracho tannin extract (QUE diet). The trial lasted 4 wk. Milk yield was recorded daily, and milk composition and blood parameters were analyzed weekly. At the end of the experiment, samples of rumen fluid were collected to analyze pH, volatile fatty acid profile, and the relative proportions of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in the rumen microbial population. Hepatic functionality, milk yield, and gross composition were not affected by tannin extracts, whereas milk FA composition was characterized by significant changes in the concentration of linoleic acid (CHT +2.77% and QUE +9.23%), vaccenic acid (CHT +7.07% and QUE +13.88%), rumenic acid (CHT -1.88% and QUE +24.24%), stearic acid (CHT + 8.71% and QUE -11.45%), and saturated fatty acids (CHT -0.47% and QUE -3.38%). These differences were probably due to the ability of condensed versus hydrolyzable tannins to interfere with rumen microbial metabolism, as indirectly confirmed by changes in the relative proportions of B. fibrisolvens and B. proteoclasticus populations and by changes in the molar proportions of volatile fatty acids. The effect of the CHT diet on the milk FA profile and microbial species considered in this trial was intermediate between that of QUE and the control diet, suggesting a differential effect of condensed and hydrolyzable tannins on rumen microbes. Compared with control animals

  1. Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs

    DEFF Research Database (Denmark)

    Høgberg, Ann; Lindberg, Jan; Leser, Thomas;

    2004-01-01

    were collected from the ileum, via intestinal post valve T-caecum (PVTC) cannulas surgically inserted at the ileo-caecal ostium, and from the rectum. The total microbial flora of the ileal samples were analysed for by defining base pair length with terminal restriction fraction length polymorphism (T......-RFLP). The microbial diversity of the coliform flora of the ileal and rectal samples were defined by biochemical fingerprinting. It was observed that many terminal restriction fragments (TRFs) disappeared when new diets were introduced and that some characteristic TRFs were found in the high and low NSP diets......, respectively. Both the total gut microflora and the coliform flora were influenced by the dietary NSP content....

  2. Abundance, viability and diversity of the indigenous microbial populations at different depths of the NEEM Greenland ice core

    OpenAIRE

    Miteva, Vanya; Rinehold, Kaitlyn; Sowers, Todd; Sebastian, Aswathy; Brenchley, Jean

    2015-01-01

    The 2537-m-deep North Greenland Eemian Ice Drilling (NEEM) core provided a first-time opportunity to perform extensive microbiological analyses on selected, recently drilled ice core samples representing different depths, ages, ice structures, deposition climates and ionic compositions. Here, we applied cultivation, small subunit (SSU) rRNA gene clone library construction and Illumina next-generation sequencing (NGS) targeting the V4–V5 region, to examine the microbial abundance, viability an...

  3. Impact of rhizobial populations and their host legumes on microbial activity in soils of arid regions in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Fterich, A.; Mahdhi, M.; Mars, M.

    2009-07-01

    Nitrogen fixing legumes and their microsymbionts are a fundamental contributor to soil fertility and prevent their degradation in arid and semi arid ecosystems. In Tunisia, few data are available on the contribution of these legumes in microbial activity in the arid soil. In this objective, a study was undertaken on five leguminous species from different arid regions to evaluate their ability to regenerate microbiological processes of the soil: Genista saharea, Genista microcephala, Acacia tortilis sspr raddiana, Retama raetam and Prosopis stephaniana. (Author)

  4. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate.

  5. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.

    Science.gov (United States)

    Mitsumori, Makoto; Shinkai, Takumi; Takenaka, Akio; Enishi, Osamu; Higuchi, Koji; Kobayashi, Yosuke; Nonaka, Itoko; Asanuma, Narito; Denman, Stuart E; McSweeney, Christopher S

    2012-08-01

    The effects of the anti-methanogenic compound, bromochloromethane (BCM), on rumen microbial fermentation and ecology were examined in vivo. Japanese goats were fed a diet of 50 % Timothy grass and 50 % concentrate and then sequentially adapted to low, mid and high doses of BCM. The goats were placed into the respiration chambers for analysis of rumen microbial function and methane and H2 production. The levels of methane production were reduced by 5, 71 and 91 %, and H2 production was estimated at 545, 2941 and 3496 mmol/head per d, in response to low, mid and high doses of BCM, respectively, with no effect on maintenance feed intake and digestibility. Real-time PCR quantification of microbial groups showed a significant decrease relative to controls in abundance of methanogens and rumen fungi, whereas there were increases in Prevotella spp. and Fibrobacter succinogenes, a decrease in Ruminococcus albus and R. flavefaciens was unchanged. The numbers of protozoa were also unaffected. Denaturing gradient gel electrophoresis and quantitative PCR analysis revealed that several Prevotella spp. were the bacteria that increased most in response to BCM treatment. It is concluded that the methane-inhibited rumen adapts to high hydrogen levels by shifting fermentation to propionate via Prevotella spp., but the majority of metabolic hydrogen is expelled as H2 gas.

  6. Effect of levels of urea and cassava chip on feed intake, rumen fermentation, blood metabolites and microbial populations in growing goats

    Directory of Open Access Journals (Sweden)

    Metha Wanapat

    2007-01-01

    Full Text Available The study was conducted to assess effect of levels of urea and cassava chip (CC on feed intake, rumen ecology, blood metabolites and microbial populations. Four, Thai Native X Anglo Nubian crossbred growing male goats with an average liveweight 19.0+1 kg were randomly assigned according to a 4x4 Latin square design to receive one of four diets: T1=urea at 0 % (CC=30%, T2=urea at 1% (CC=40%, T3=urea at 2% (CC = 50% and T4=urea at 3%(CC=60%, of DM basis, respectively. Elephant grass (Pennisetum purpureum was offered on an ad lib basis. The results revealed that total DM intake (%BW and g/kg W0.75 and BW change were similar among treatments (p>0.05. Likewise, rumen pH, BUN, blood glucose, PCV and microbial populations were similar among treatments (p>0.05, while NH3-N increased as the urea level increased and were found highest (p<0.05 in T4 at 12.8 mg/dL. Based on this experiment, it can be concluded that a higher level of urea (3% could be used with a high level of CC in concentrate and it was good approach in exploiting the use of local feed resources for goat production.

  7. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren;

    2010-01-01

    We present a study of autotrophic and heterotrophic activities of Arctic sea ice (Malene Bight, SW Greenland) as measured by 2 different approaches: (1) standard incubation techniques (H14CO3– and [3H]thymidine incubation) on sea ice cores brought to the laboratory and (2) cores incubated in situ...... in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  8. Autotrophic and heterotrophic characteristics in a polluted tropical estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ramaiah, N.; Chandramohan, D.; Nair, V.R.

    . Scheiwer et al. (1991) emphasized that microbial heterotrophic activity and primary production play very important roles in the formation and turnover of organic matter in eutrophic estuaries. 0272-7714/95/010045+ 11 $08.00/0 © 1995 Academic Press... production were invariably very low. The in situ heterotrophic activity, particularly in the southern region, appears to be adversely affected by the input of industrial effluents which may bring about metabolic stress and inhibit growth. We believe...

  9. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b+Gr-1+cells and accelerated establishment of the CD4+T cell population in the spleen

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov; Metzdorff, Stine Broeng; Bergström, Anders;

    2015-01-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b+Gr-1+ splenocytes present perinatally was sustained for a longer period in conventionally...... event, which we suggest impacts the subsequent development of the T cell population in the murine spleen....

  10. Microbial lifestyles that enable survival in lithifying habitats

    Science.gov (United States)

    Hirst, M.; Dossing, L. N.; Tamez, P.; Ziegler, S.; Hanselmann, K.; Sessions, A. L.; Spear, J. R.; Johnson, H.; Berelson, W.; Corsetti, F. A.; Dawson, S.; de la Torre, J. R.; Usc Wrigley Institute, I.

    2010-12-01

    The precipitation of carbonates in the travertine forming Narrow Gauge hot spring in Yellowstone National Park occurs at a rapid rate, whereby microorganisms that colonize the ponds and apron facies are required to overcome lithification. CO2-fixation by autotrophic microorganisms in this cation-rich environment further promotes carbonate encapsulation. Microorganisms that alter their micro-habitat through dissimilative metabolic processes such as H2S and NH4+oxidation, can decrease acid neutralizing capacity (ANCcarb = [HCO3-] + 2[CO32-] + [OH-] - [H+] ) and locally delay CaCO3 mineralization. Genomic and geochemical approaches were combined to study the metabolic processes and microbial populations in a sulfidic hot spring emerging from a carbonate fissure ridge. Samples from locations close to the discharge vent and along its outflow channel were preserved for DNA sequencing, ATP measurements, microscopy, ion chromatographic and ICP-MS analyses of the major solutes and for ANC titration. Temperature, conductivity and pH were measured at the sampling sites. A pyrotagged 16S rRNA gene sequencing approach at both sites was used along with a publicly accessible metagenome of a similar site at the same location. The 16S rRNA gene sequence analyses reveal a great diversity of phylotypes related to species with known physiological potentials. The diversity at the vent is greater and more even than at the cooler site 6m downstream. A number of genes for C-1 fixing enzymes point to the presence of the reductive citric acid cycle, as well as to parts of the reductive acetyl-CoA pathway, the 3-hydroxypropionate cycle and the serine cycle as dominant forms of carbon metabolism. A complete set of genes for all enzymes of the reductive citric acid cycle were found, which indicates a dominance of this pathway for carbon fixation. Surprisingly, genes for RubisCo appear to be absent. Almost all genes found for enzymes that catalyze the conversion of sulfur compounds are involved

  11. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.

    Science.gov (United States)

    Hu, Yajing; Holden, James F

    2006-06-01

    The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.

  12. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones.

    Science.gov (United States)

    Li, An-Jie; Hou, Bao-Lian; Li, Mei-Xi

    2015-11-01

    In this study, six N-acyl-homoserine lactone (AHL) molecules (C6-HSL, C8-HSL, C10-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL and 3-oxo-C10-HSL) were each dosed into a bioreactor and seeded using autotrophic nitrifying sludge (ANS). The effects of the AHLs on cell adhesion, nitrification and sludge granulation were investigated. The results indicated that the efficiencies of cell adhesion and ammonia removal both had a close correlation with the side chain length and β position substituent group of the AHLs. The best-performing AHL in terms of accelerating bacterial attached-growth was 3-oxo-C6-HSL, whereas C6-HSL outperformed the others in terms of the ammonia degradation rate. The addition of 3-oxo-C6-HSL or C6-HSL increased the biomass growth rate, microbial activity, extracellular proteins and nitrifying bacteria, which can accelerate the formation of nitrifying granules. Consequently, selecting AHL molecules that could improve bacteria in attached-growth mode and nitrification efficiency simultaneously will most likely facilitate the rapid granulation of nitrifying sludge.

  13. Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD.

    Science.gov (United States)

    Tang, Kimberley; An, Shijie; Nemati, Mehdi

    2010-11-01

    Microbial cultures originated from an oil reservoir were used in three biofilm reactors and effects of sulphide and nitrate loading rates and molar loading ratio on the removal of sulphide, nitrate and acetate, and composition of end products were investigated. Application of biofilms improved sulphide and nitrate removal rates significantly when compared with freely suspended cells. Maximum sulphide and nitrate removal rates under autotrophic conditions were 30.0 and 24.4 mM h(-1), respectively (residence time: 0.5h). Oxidation of acetate occurred only at nitrate to sulphide molar loading ratios around 0.7 or higher when nitrate was present at levels higher than that required for oxidation of sulphide to sulphur. Conversion of sulphide to sulphate increased from 0% to 66% as nitrate to sulphide molar loading ratio was increased from 0.34 to 3.98. The highest nitrate and acetate removal rates in the bioreactor operated under heterotrophic conditions were 183.2 and 88.0 mM h(-1), respectively (residence time: 0.8h).

  14. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios.

    Science.gov (United States)

    Song, Weimin; Chen, Shiping; Zhou, Yadan; Wu, Bo; Zhu, Yajuan; Lu, Qi; Lin, Guanghui

    2015-11-30

    Diel hysteresis occurs often between soil CO2 efflux (R(S)) and temperature, yet, little is known if diel hysteresis occurs in the two components of R(S), i.e., autotrophic respiration (R(A)) and heterotrophic respiration (R(H)), and how diel hysteresis will respond to future rainfall change. We conducted a field experiment in a desert ecosystem in northern China simulating five different scenarios of future rain regimes. Diel variations of soil CO2 efflux and soil temperature were measured on Day 6 and Day 16 following the rain addition treatments each month during the growing season. We found contrasting responses in the diel hysteresis of R(A) and R(H) to soil temperature, with a clockwise hysteresis loop for R(H) but a counter-clockwise hysteresis loop for R(A). Rain addition significantly increased the magnitude of diel hysteresis for both R(H) and R(A) on Day 6, but had no influence on either on Day 16 when soil moisture was much lower. These findings underline the different roles of biological (i.e. plant and microbial activities) and physical-chemical (e.g. heat transport and inorganic CO2 exchange) processes in regulating the diel hysteresis of R(A) and R(H), which should be considered when estimating soil CO2 efflux in desert regions under future rainfall regime.

  15. Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria

    Science.gov (United States)

    Slobodkina, Galina B.; Mardanov, Andrey V.; Ravin, Nikolai V.; Frolova, Anastasia A.; Chernyh, Nikolay A.; Bonch-Osmolovskaya, Elizaveta A.; Slobodkin, Alexander I.

    2017-01-01

    Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle. PMID:28194142

  16. Community Characterization of Microbial Populations Found at a Cold Water Sulfidic Spring in the Canadian High Arctic

    Science.gov (United States)

    Trivedi, C.; Lau, G. E.; Templeton, A. S.; Grasby, S. E.; Spear, J. R.

    2015-12-01

    The unique environment on Europa makes it an ideal target for astrobiological investigation. One such earth-based analogue to aid in this investigation is the sulfur-dominated glacial spring system found at Borup Fiord Pass (BFP), Ellesmere Island, Nunavut, Canada. In this system, subsurface microbial sulfate reduction produces hydrogen sulfide, which is transported through the glacier along spring channels [1]. As the surface oxidation of H2S occurs, resultant deposition of elemental sulfur (S0) and other minerals becomes visible (attached image). The energy released from these reactions can support potential microbial metabolisms and may be a valuable representation of microbial processes occurring on Europa. The resulting sulfur minerals provide sensitive records of dynamic atmospheric, geological, hydrological, chemical, and biological processes on planetary surfaces. Moreover, we expect that the S0-rich deposits of this glacial spring system will serve as a mineralogical record for biological activity and will provide a valuable tool for recognizing potential sulfur-based life on Europa. During a recent collaborative expedition (2014) to BFP, samples were taken from the toe of the glacier in an area called the 'Blister Crust' (attached image). At this location, glacial channels reach the surface, representing an active interface between subsurface and surface processes. Initial geochemical characterization at the site revealed high amounts of aqueous sulfide (1.8 mM) and hydrogen (29 nM), which likely serve as the electron donation potential in the system. Furthermore, preliminary 16S rRNA gene sequencing has shown a high abundance of the genus Sulfurimonas, which is a known sulfur metabolizer. Our research seeks to further characterize microbial communities found at this interface in order to elucidate information regarding in situ sulfur cycling and the potential to tie this into subsurface/surface processes on Europa. Continued work will provide guidance

  17. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...... was followed by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic...... activity in late March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m(-2), reflecting the net result of a sea ice-related gross...

  18. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    Science.gov (United States)

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  19. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    Science.gov (United States)

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-02-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 +/- 2% and 15 +/- 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids.

  20. Balance Between Autotrophic and Heterotrophic Components and Processes in Microbenthic Communities of Sandy Sediments: A Field Study

    Science.gov (United States)

    Sundbäck, Kristina; Nilsson, Per; Nilsson, Claes; Jönsson, Benno

    1996-12-01

    The microscopic community of a microtidal sandy sediment on the Swedish west coast was studied in situat two depths (0·5 and 4 m) on four occasions (January, April, August and October). Biomass of microalgae, bacteria, ciliates and meiofauna, as well as primary and bacterial productivity, were quantified. Meiofaunal grazing on algae and bacteria was measured simultaneously by radiolabelling intact sediment cores. Autotrophic biomass dominated the microbial community at both depths and on all sampling occasions, accounting for 47-87% of the microbial biomass. Meiofauna contributed 10-47%, while bacteria and ciliates together made up less than 6%. The microflora was dominated by attached (epipsammic) diatoms, but occasional ' blooms ' of motile species occurred. Vital cells of planktonic diatoms contributed to benthic algal biomass in spring. Primary productivity exceeded bacterial productivity in April and August at both depths, while the balance was reversed in October and January. Meiofauna grazed between 2 and 12% of the algal biomass per day, and between 0·3 and 37% of the bacterial biomass. Almost an order of magnitude more algal (17-138 mg C m -2) than bacterial (0·1-33 mg C m -2) carbon was grazed daily. At the shallow site, primary productivity always exceeded grazing rates on algae, whereas at the deeper site, grazing exceeded primary productivity in October and January. Bacterial productivity exceeded grazing at both depths on all four occasions. Thus, meiofaunal grazing seasonally controlled microalgal, but not bacterial, biomass. These results suggest that, during summer, only a minor fraction (food web ' through meiofauna. During spring and autumn, however, a much larger fraction (≈30-60%) of primary production may pass through meiofauna. During winter, meiofaunal grazing is a less important link in the shallow zone, but at sublittoral depths, algal productivity may be limiting, and meiofauna depend on other food sources, such as bacteria and

  1. Dynamics and persistence of Dead Sea microbial populations as shown by high-throughput sequencing of rRNA.

    Science.gov (United States)

    Rhodes, Matthew E; Oren, Aharon; House, Christopher H

    2012-04-01

    16S rRNA amplicon libraries from a haloarchaeal bloom in the hypersaline Dead Sea in 1992 were analyzed together with the 2007 residual population and simulated blooms in experimental mesocosms. Significant population shifts were observed during the bloom, and surprisingly a signature from the bloom was retained 15 years later.

  2. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers.

    Science.gov (United States)

    Baurhoo, B; Ferket, P R; Zhao, X

    2009-11-01

    The effects of 2 levels of mannanoligosaccharide (MOS) in feed were compared with antibiotic growth promoters on growth performance, intestinal morphology, cecal and litter microbial populations, and carcass parameters in broilers raised in a sanitary environment. Dietary treatments included: 1) antibiotic growth promoter-free diet (control), 2) VIRG (diet 1 + 16.5 mg/kg of virginiamycin), 3) BACT (diet 1 + 55 mg/kg of bacitracin), 4) LMOS (diet 1 + 0.2% MOS), and 5) HMOS (diet 1 + 0.5% MOS). Birds were randomly assigned to 3 replicate pens/treatment (n = 55/pen). Body weight and feed intake were recorded weekly throughout 38 d. At d 14, 24, and 34, a 1-cm segment of duodenum, jejunum, and ileum was used in morphological analysis (n = 9 birds/d per treatment). At the same bird ages, cecal contents were assayed for lactobacilli, bifidobacteria, Salmonella, Campylobacter, and Escherichia coli, whereas litter was analyzed for Salmonella, Campylobacter, and E. coli. Carcass yields (breast fillet and tenders, thigh, drumstick, and wing) were determined at d 38. Body weight, feed conversion, and carcass yields did not differ among treatments. In contrast to birds fed VIRG or BACT, LMOS and HMOS consistently increased (P microbial ecology. But, there were no additional benefits of the higher MOS dosage.

  3. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2014-01-01

    The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...

  4. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction

    NARCIS (Netherlands)

    Pozo, Guillermo; Jourdin, Ludovic; Lu, Yang; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2016-01-01

    Recent evidence suggests that autotrophic sulfate reduction could be driven by direct and indirect electron transfer mechanisms in bioelectrochemical systems. However, much uncertainty still exists about the electron fluxes from the electrode to the final electron acceptor sulfate during autotrop

  5. Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.; Rossetti, S.

    2006-01-01

    The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effec

  6. Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal.

    Science.gov (United States)

    Ucar, Deniz; Cokgor, Emine Ubay; Sahinkaya, Erkan

    2016-01-01

    Nitrate and perchlorate were identified as significant water contaminants all over the world. This study aims at evaluating the performances of the heterotrophic-autotrophic sequential denitrification process for reductive nitrate and perchlorate removal from drinking water. The reduced nitrate concentration in the heterotrophic reactor increased with increasing methanol concentrations and the remaining nitrate/nitrite was further removed in the following autotrophic denitrifying process. The performances of the sequential process were studied under varying nitrate loads of [Formula: see text] at a fixed hydraulic retention time of 2 h. The C/N ratio in the heterotrophic reactor varied between 1.24 and 2.77 throughout the study. Nitrate and perchlorate reduced completely with maximum initial concentrations of [Formula: see text] and 1000 µg/L, respectively. The maximum denitrification rate for the heterotrophic reactor was [Formula: see text] when the bioreactor was fed with [Formula: see text] and 277 mg/L methanol. For the autotrophic reactor, the highest denitrification rate was [Formula: see text] in the first period when the heterotrophic reactor performance was low. Perchlorate reduction was initiated in the heterotrophic reactor, but completed in the following autotrophic process. Effluent sulphate concentration was below the drinking water standard level of 250 mg/L and pH was in the neutral level.

  7. Combined removal of sulfur compounds and nitrate by autotrophic denitrication in bioaugmented activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.

    2007-01-01

    An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters a

  8. [Endogenous respiration process analysis of heterotrophic biomass and autotrophic biomass based on respiration map ].

    Science.gov (United States)

    Li, Zhi-hua; Bai, Xu-li; Zhang, Qin; Liu, Yi; He, Chun-bo

    2014-09-01

    The endogenous process is an important metabolic part of the activated sludge, and the understanding of this process is still unclear. Characteristics of endogenous respiration for heterotrophic bacteria and autotrophic nitrifiers were analyzed using respirogram. Results showed that both heterotrophic and autotrophic bacteria entered the stage of endogenous respiration at almost the same time, but heterotrophic bacteria first entered the stage of dormancy i. e. , they were easier to recover a higher proportion of biomass during the dormancy stage, indicating that heterotrophic bacteria exhibited strong environmental adaptability. Autotrophic bacteria were, however, quite different. This finding confirmed that autotrophic bacteria were more vulnerable from the viewpoint of endogenous respiration. In addition, the study also found that the increase of endogenous respiration rate ratio reflected the decreased sludge activity. And the proportion of endogenous respiration was an important parameter to characterize the activity of activated sludge, which can be used as a quantitative index for the health status of activated sludge. The findings further deepened the understanding of endogenous respiration process and provided a theoretical basis for the operation and management of wastewater treatment plants.

  9. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    Science.gov (United States)

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  10. Experimental effects of grazers on autotrophic species assemblages across a nitrate gradient in Florida springs

    Science.gov (United States)

    Springs face accelerated degradation of ecosystem structure, namely in the form of autotrophic species assemblage shifts from submerged vascular macrophytes to benthic filamentous algae. Increasing nitrate concentrations have been cited as a primary driver of this shift and numeric nutrient criteria...

  11. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now, an

  12. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  13. Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage.

    Science.gov (United States)

    Kampmann, Kristina; Ratering, Stefan; Geißler-Plaum, Rita; Schmidt, Michael; Zerr, Walter; Schnell, Sylvia

    2014-12-01

    Two parallel, stable operating biogas reactors were fed with increasing amounts of maize silage to monitor microbial community changes caused by overloading. Changes of microorganisms diversity revealed by SSCP (single strand conformation polymorphism) indicating an acidification before and during the pH-value decrease. The earliest indicator was the appearance of a Methanosarcina thermophila-related species. Diversity of dominant fermenting bacteria within Bacteroidetes, Firmicutes and other Bacteria decreased upon overloading. Some species became dominant directly before and during acidification and thus could be suitable as possible indicator organisms for detection of futurity acidification. Those bacteria were related to Prolixibacter bellariivorans and Streptococcus infantarius subsp. infantarius. An early detection of community shifts will allow better feeding management for optimal biogas production.

  14. Population dynamics of transgenic strain Escherichia coli Z905/pPHL7 in freshwater and saline lake water microcosms with differing microbial community structures

    Science.gov (United States)

    Popova, L. Yu.; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.

    Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water.

  15. Effect of Scrophularia striata and Ferulago angulata, as alternatives to virginiamycin, on growth performance, intestinal microbial population, immune response, and blood constituents of broiler chickens.

    Science.gov (United States)

    Rostami, Farhad; Ghasemi, Hossein A; Taherpour, Kamran

    2015-09-01

    An experiment was conducted to investigate the comparative effect of Scrophularia striata, Ferulago angulata, and virginiamycin (VM) on performance, intestinal microbial population, immune response, and blood constituents of broilers. A total of 300 Ross 308 male broiler chickens were randomly assigned to 5 treatments, with 5 replicates/treatment (10 chickens/pen). Birds were fed either a corn-soybean meal basal diet (control) or the basal diet supplemented with 200 mg/kg VM; 4 g/kg S. striata (SS1); 8 g/kg S. striata (SS2); 4 g/kg F. angulata (FA1); or 8 g/kg F. angulata (FA2). After 6 wk, the BW, ADG, and feed-to-gain ratio (F:G) of the VM, SS1, and FA1 groups were better (Pantibiotic growth promoter. Furthermore, a high dose of both herbs (8 g/kg diet) could beneficially affect the intestinal health and immune status of broilers.

  16. Effect of Dietary Supplementation of Red Ginseng By-product on Laying Performance, Blood Biochemistry, Serum Immunoglobulin and Microbial Population in Laying Hens.

    Science.gov (United States)

    Kang, H K; Park, S-B; Kim, C H

    2016-10-01

    This study was carried out to investigate the effect of dietary supplementation of red ginseng by-product (RGB) on the laying performance, blood biochemistry, and microbial population in laying hens. A total of 120 Hy-Line Brown laying hens (75 weeks old) were randomly allotted to 1 of 3 dietary treatments with 4 replicates per treatment. A commercial-type basal diet was prepared, and 2 additional diets were prepared by supplementing 5.0 or 10.0 g/kg of RGB to the basal diet at the expense of corn. The diets were fed to hens on an ad libitum basis for 4 weeks. There were no differences in feed intake, egg weight, and feed conversion ratio during 4 weeks of the feeding trial. However, hen-day egg production was significantly greater (phen-day production, there were positive effects of dietary RGB supplementation on serum immunoglobulin and cholesterol levels in laying hens.

  17. Population dynamics of transgenic strain Escherichia coli Z905/pPHL7 in freshwater and saline lake water microcosms with differing microbial community structures

    Science.gov (United States)

    Popova, L. Yu; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.

    2005-01-01

    Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Populations of selected microbial and fungal species growing on the surface of rape seeds following treatment with desiccants or plant growth regulators.

    Science.gov (United States)

    Frac, Magdalena; Jezierska-Tys, Stefania; Tys, Jerzy

    2010-01-01

    The aim of this study was to determine the effects of desiccants and plant growth regulators on selected microbial species affecting rape seeds, with special emphasis on the growth of fungi and identification of the genus and species composition. The experimental material in the study was seeds of winter rape cv. Californium that were collected from the field during combine harvest. The chemical agents applied, both desiccants and growth regulators, generally decreased the populations of bacteria occurring on the surface of rape seeds. The responses of fungi depended upon the type of agent applied and were manifested as either stimulation or inhibition of the growth of the fungal species. The fungi isolated from the surface of rape seeds were characteristic of those found in the field environment (Cladosporium and Penicillium) and typical for those present on the surface of rape seeds (Alternaria).

  19. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform.

    Directory of Open Access Journals (Sweden)

    Si Hong Park

    Full Text Available Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1 C: control (no prebiotic, 2 T1: Biolex® MB40 with 0.2%, and 3 T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40 group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS, microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.

  20. The influence of mineral fertilizer combined with a nitrification inhibitor on microbial populations and activities in calcareous Uzbekistanian soil under cotton cultivation.

    Science.gov (United States)

    Egamberdiyeva, D; Mamiev, M; Poberejskaya, S K

    2001-10-30

    Application of fertilizers combined with nitrification inhibitors affects soil microbial biomass and activity. The objective of this research was to determine the effects of fertilizer application combined with the nitrification inhibitor potassium oxalate (PO) on soil microbial population and activities in nitrogen-poor soil under cotton cultivation in Uzbekistan. Fertilizer treatments were N as urea, P as ammophos, and K as potassium chloride. The nitrification inhibitor PO was added to urea and ammophos at the rate of 2%. Three treatments--N200 P140 K60 (T1), N200 PO P140 K60 (T2), and N200 P140 PO K60 (T3) mg kg(-1) soil--were applied for this study. The control (C) was without fertilizer and PO. The populations of oligotrophic bacteria, ammonifying bacteria, nitrifying bacteria, denitrifying bacteria, mineral assimilating bacteria, oligonitrophilic bacteria, and bacteria group Azotobacter were determined by the most probable number method. The treatments T2 and T3 increased the number of oligonitrophilic bacteria and utilization mineral forms of nitrogen on the background of reducing number of ammonifying bacteria. T2 and T3 also decreased the number of nitrifying bacteria, denitrifying bacteria, and net nitrification. In conclusion, our experiments showed that PO combined with mineral fertilizer is one of the most promising compounds for inhibiting nitrification rate, which was reflected in the increased availability and efficiency of fertilizer nitrogen to the cotton plants. PO combined with mineral fertilizer has no negative effects on nitrogen-fixing bacteria Azotobacter and oligo-nitrophilic bacteria.

  1. The Influence of Mineral Fertilizer Combined With a Nitrification Inhibitor on Microbial Populations and Activities in Calcareous Uzbekistanian Soil Under Cotton Cultivation

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdiyeva

    2001-01-01

    Full Text Available Application of fertilizers combined with nitrification inhibitors affects soil microbial biomass and activity. The objective of this research was to determine the effects of fertilizer application combined with the nitrification inhibitor potassium oxalate (PO on soil microbial population and activities in nitrogen-poor soil under cotton cultivation in Uzbekistan. Fertilizer treatments were N as urea, P as ammophos, and K as potassium chloride. The nitrification inhibitor PO was added to urea and ammophos at the rate of 2%. Three treatments—N200P140K60 (T1, N200 P140 POK60 (T2, and N200 P140 POK60 (T3 mg kg-1 soil—were applied for this study. The control (C was without fertilizer and PO. The populations of oligotrophic bacteria, ammonifying bacteria, nitrifying bacteria, denitrifying bacteria, mineral assimilating bacteria, oligonitrophilic bacteria, and bacteria group Azotobacter were determined by the most probable number method. The treatments T2 and T3 increased the number of oligonitrophilic bacteria and utilization mineral forms of nitrogen on the background of reducing number of ammonifying bacteria. T2 and T3 also decreased the number of nitrifying bacteria, denitrifying bacteria, and net nitrification. In conclusion, our experiments showed that PO combined with mineral fertilizer is one of the most promising compounds for inhibiting nitrification rate, which was reflected in the increased availability and efficiency of fertilizer nitrogen to the cotton plants. PO combined with mineral fertilizer has no negative effects on nitrogen-fixing bacteria Azotobacter and oligo-nitrophilic bacteria.

  2. Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2012-07-01

    Full Text Available Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3- into the oxic, suboxic and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx- and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139 was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.

  3. Effects of various plant protein sources in high-quality feed block on feed intake, rumen fermentation, and microbial population in swamp buffalo.

    Science.gov (United States)

    Foiklang, Suban; Wanapat, Metha; Toburan, Wetchasit

    2011-12-01

    This study was designed to determine effect of various plant protein sources in high-quality feed block (HQFB) on feed intake, rumen fermentation, and microbial population in swamp buffalo. Four rumen-fistulated swamp buffaloes (Bubalus bubalis) were randomly assigned according to a 4 × 4 Latin square design. Four kinds of plant protein sources (coarse rice bran (CRB), cassava hay (CH), Phaseolus calcaratus hay, and mulberry hay (MH)) were mixed in the HQFB. HQFBs were allowed to be licked at free choice, and urea-lime-treated rice straw (ULRS) were fed ad libitum. It was found that bacterial population and fungal zoospores in CH-fed group tended to be higher than those in other groups. Moreover, protozoal population in CH, P. calcaratus hay, and MH were lower than those in CRB supplemented group (P < 0.05). Cellulolytic bacterial population was highest in CH-fed group while proteolytic bacteria population was highest in P. calcaratus hay-fed group (P < 0.05). CH-fed group had higher ULRS intake than those in other groups (P < 0.05). Nutrient digestibility of CP, NDF, and ADF in CH-fed group was significantly higher than those in other groups (P < 0.05). Total VFA was highest in CH-fed group (P < 0.05). N absorption was highest in CH-fed group (P < 0.05). Based on this study, it could be concluded that cassava hay, P. calcaratus hay, and mulberry hay are potential to be used as protein sources in the HQFBs especially cassava hay.

  4. Direct and indirect effects of temperature on the population dynamics and ecosystem functioning of aquatic microbial ecosystems.

    Science.gov (United States)

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-11-01

    1. While much is known about the direct effect that temperature can have on aquatic communities, less is known about its indirect effect via the temperature dependence of viscosity and temperature-dependent trophic interactions. 2. We manipulated the temperature (5-20 °C) and the viscosity (equivalent to 5-20 °C) of water in laboratory-based bacteria-protist communities. Communities contained food chains with one, two or three trophic levels. Responses measured were population dynamics (consumer carrying capacity and growth rate, average species population density, and the coefficient of variation of population density through time) and ecosystem function (decomposition). 3. Temperature, viscosity and food chain length produced significant responses in population dynamics. Temperature-dependent viscosity had a significant effect on the carrying capacity and growth rates of consumers, as well as the average density of the top predator. Overall, indirect effects of temperature via changes in viscosity were subtle in comparison to the indirect effect of temperature via trophic interactions. 4. Our results highlight the importance of direct and indirect effects of temperature, mediated through trophic interactions and physical changes in the environment, both for population dynamics and ecosystem processes. Future mechanistic modelling of effects of environmental change on species will benefit from distinguishing the different mechanisms of the overall effect of temperature.

  5. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets

    Directory of Open Access Journals (Sweden)

    Kim Minseok

    2012-09-01

    Full Text Available Abstract Background The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene (rrs sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of uncultured microbes remains undetermined. The objective of this study was to assess the numeric importance of select uncultured bacteria and cultured bacteria and the impact of diets and microenvironments within cow rumen in a comparative manner. Results Liquid and adherent fractions were obtained from the rumen of Jersey cattle fed hay alone and Holstein cattle fed hay plus grain. The populations of cultured and uncultured bacteria present in each fraction were quantified using specific real-time PCR assays. The population of total bacteria was similar between fractions or diets, while total archaea was numerically higher in the hay-fed Jersey cattle than in the hay-grain-fed Holstein cattle. The population of the genus Prevotella was about one log smaller than that of total bacteria. The populations of Fibrobacter succinogenes, Ruminococcus flavefaciens, the genus Butyrivibrio, and R. albus was at least one log smaller than that of genus Prevotella. Four of the six uncultured bacteria quantified were as abundant as F. succinogenes, R. flavefaciens and the genus Butyrivibrio. In addition, the populations of several uncultured bacteria were significantly higher in the adherent fractions than in the liquid fractions. These uncultured bacteria may be associated with fiber degradation. Conclusions Some uncultured bacteria are as abundant as those of major cultured bacteria in the rumen. Uncultured bacteria may have important contribution to ruminal fermentation. Population dynamic studies of uncultured bacteria in a comparative manner can help reveal their ecological features and importance to rumen functions.

  6. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study.

    Science.gov (United States)

    Brandt, Kristian Koefoed; Krogh, Paul Henning; Sørensen, Jan

    2003-04-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH4+ availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea bioluminescence toxicity assay, however, LAS or other sludge components never accumulated to toxic levels in the soil compartments and the LAS tolerance of the indigenous microbes further remained unchanged following LAS exposure. LAS effects on the investigated microbial populations largely occurred during the first two months and were confined to soil closer than 30 mm from LAS-spiked sludge. Our results strongly suggest that disposal of LAS-contaminated sludge does not pose a major risk to the function of the soil microbial community under field conditions.

  7. Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil.

    Science.gov (United States)

    Aburto-Medina, Arturo; Adetutu, Eric M; Aleer, Sam; Weber, John; Patil, Sayali S; Sheppard, Petra J; Ball, Andrew S; Juhasz, Albert L

    2012-11-01

    In this study, a number of slurry-phase strategies were trialled over a 42 day period in order to determine the efficacy of bioremediation for long-term hydrocarbon-contaminated soil (145 g kg(-1) C(10)-C(40)). The addition of activated sludge and nutrients to slurries (bioaugmentation) resulted in enhanced hydrocarbon removal (51.6 ± 8.5 %) compared to treatments receiving only nutrients (enhanced natural attenuation [ENA]; 41.3 ± 6.4 %) or no amendments (natural attenuation; no significant hydrocarbon removal, P hydrocarbons in ENA slurries. Microbial diversity in slurries was monitored using DGGE with dominant bands excised and sequenced for identification. Applying the different bioremediation strategies resulted in the formation of four distinct community clusters associated with the activated sludge (inoculum), bioaugmentation strategy at day 0, bioaugmentation strategy at weeks 2-6 and slurries with autoclaved sludge and nutrient additions (bioaugmentation negative control). While hydrocarbon-degrading bacteria genera (e.g. Aquabacterium and Haliscomenobacter) were associated with the hydrocarbon-contaminated soil, bioaugmentation of soil slurries with activated sludge resulted in the introduction of bacteria associated with hydrocarbon degradation (Burkholderiales order and Klebsiella genera) which presumably contributed to the enhanced efficacy for this slurry strategy.

  8. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.

    Science.gov (United States)

    Bereschenko, L A; Prummel, H; Euverink, G J W; Stams, A J M; van Loosdrecht, M C M

    2011-01-01

    The impact of conventional chemical treatment on initiation and spatiotemporal development of biofilms on reverse osmosis (RO) membranes was investigated in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The flow cells got the same feed (extensively pre-treated fresh surface water) and operational conditions (temperature, pressure and membrane flux) as the full-scale installation. With regular intervals both the full-scale RO membrane modules and the flow cells were cleaned using conventional chemical treatment. For comparison some flow cells were not cleaned. Sampling was done at different time periods of flow cell operation (i.e., 1, 5, 10 and 17 days and 1, 3, 6 and 12 months). The combination of molecular (FISH, DGGE, clone libraries and sequencing) and microscopic (field emission scanning electron, epifluorescence and confocal laser scanning microscopy) techniques made it possible to thoroughly analyze the abundance, composition and 3D architecture of the emerged microbial layers. The results suggest that chemical treatment facilitates initiation and subsequent maturation of biofilm structures on the RO membrane and feed-side spacer surfaces. Biofouling control might be possible only if the cleaning procedures are adapted to effectively remove the (dead) biomass from the RO modules after chemical treatment.

  9. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    Science.gov (United States)

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  10. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.

    Science.gov (United States)

    Sahinkaya, Erkan; Kilic, Adem

    2014-03-01

    Nitrate and chromate can be present together in water resources as nitrate is a common co-contaminant in surface and ground waters. This study aims at comparatively evaluating simultaneous chromate and nitrate reduction in heterotrophic and sulfur-based autotrophic denitrifying column bioreactors. In sulfur-based autotrophic denitrification process, elemental sulfur and nitrate act as an electron donor and an acceptor, respectively, without requirement of organic supplementation. Autotrophic denitrification was complete and not adversely affected by chromate up to 0.5 mg/L. Effluent chromate concentration was water treatment due to the elimination of organic supplementation and the risk of treated effluent contamination.

  11. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    Science.gov (United States)

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.

  12. Predominant Acidilobus-like populations from geothermal environments in yellowstone national park exhibit similar metabolic potential in different hypoxic microbial communities.

    Science.gov (United States)

    Jay, Z J; Rusch, D B; Tringe, S G; Bailey, C; Jennings, R M; Inskeep, W P

    2014-01-01

    High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems.

  13. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    Science.gov (United States)

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  14. 污水处理活性污泥微生物群落多样性研究%Microbial Population Diversity of Activated Sludge for Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    金浩; 李柏林; 欧杰; 陈兰明

    2012-01-01

    为研究污水处理活性污泥微生物多样性,提取了活性污泥宏基因组DNA,并采用细菌通用引物27F和1492R扩增了上海污泥厂活性污泥细菌16S rDNA片段,构建了细菌16S rDNA克隆文库,并对该文库中的微生物群落进行了分析.共获得200条高质量序列并建立系统发育树,结果显示活性污泥主要的细菌类群为变形菌门(Proteobacteria)(91.9%)、厚壁菌门(Firmicures)(4.6%)、拟杆菌门(Bacteroidetes)(2%)、绿弯菌门(Chloroflexi)(0.5%)、硝化螺菌门(Nitrospirae)(1%).其中,明显的优势菌群为Alcaligenes feacalis(55%)、Pseudomonas aeruginosa(12.8%)和Stenotrophomonas(12.8%),优势菌的产酶能力在活性污泥中显示生态修复功能菌的作用.%In order to study the microbial diversity of activated sludge (AS) for wastewater treatment, the macro-ge-nomic DNA of the AS was extracted from a wastewater factory in Shanghai. The 16S rDNA of the AS bacteria was amplified using bacteria general primers 27F and 1492R to construct the bacterial 16S rDNA clone library, and analyzed the microbial population of the library. All together 200 bands of high quality sequences were obtained and established a phylogenetic tree. The results showed that the main bacterial population of the AS was the phyla of Proteobacteria (91.9% ) , Firmicutes (4.6% ) , Bacteroidetes (2% ) , Chloroflexi (0.5% ) , Nitrospirae (1% ). Among them Al-caligenes feacalis (55% ) , Pseudomonas aeruginosa ( 12. 8% ) , and Stenolrophomonas ( 12. 8% ) were noticeably dominant bacterial population, enzyme production capacity of the dominant bacteria showed the ecological restoration function in the AS.

  15. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    Science.gov (United States)

    Veuger, Bart; Pitcher, Angela; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Middelburg, Jack J.

    2013-04-01

    A dual stable isotope (15N and 13C) tracer approach in combination with compound-specific stable isotope analysis of bacterial and Thaumarchaeotal lipid biomarkers was used to investigate nitrification and the associated growth of autotrophic nitrifiers in the Dutch coastal North Sea. This study focusses on the stoichiometry between nitrification and DIC fixation by autotrophic nitrifiers as well as on the contributions of bacteria versus Thaumarchaeota to total autotrophic DIC-fixation by nitrifiers. Water from the dutch coastal North Sea was collected at weekly to biweekly intervals during the winter of 2007-2008. Watersamples were incubated with 15N-labeled ammonium and 15N was traced into nitrate and suspended material to quantify rates of nitrification and ammonium assimilation respectively. Growth of autotrophic nitrifiers was measured by incubating water samples with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) and subsequent analysis of 13C in bacterial phospholipid-derived fatty acids (PLFAs) and the Thaumarchaeotal biomarker crenarchaeol. Results revealed high nitrification rates with nitrification being the primary sink for ammonium. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95%). The ratio between rates of nitrification versus DIC fixation by nitrifiers was higher or even much higher than typical values for autotrophic nitrifiers, indicating that little DIC was fixed relative to the amount of energy that was generated by nitrification, and hence that other other processes for C acquisition may have been relevant as well. The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the

  16. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    Science.gov (United States)

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed.

  17. [Effects of returning straw to soil and different tillage methods on paddy field soil fertility and microbial population].

    Science.gov (United States)

    Ren, Wan-Jun; Liu, Dai-Yin; Wu, Jin-Xiu; Wu, Ju-Xian; De, Chen-Chun; Yang, Wen-Yu

    2009-04-01

    A field experiment was conducted on a paddy field to study the effects of returning straw to soil and different tillage methods (no-tillage + returning straw, no-tillage, tillage + returning straw, and tillage) on the fertility level and microbial quantities of different soil layers. The results showed that in upper soil layer, the organic matter content in treatment 'no-tillage + returning straw' was 5.33, 2.79, and 5.37 g x kg(-1) higher than that in treatments 'no-tillage', 'tillage + returning straw', and 'tillage', respectively, and the contents of total and available N, P and K in treatment 'no-tillage + returning straw' were also the highest, followed by in treatments 'no-tillage' and 'tillage + returning straw', and in treatment 'tillage'. In deeper soil layer, all the fertility indices were higher in treatment 'tillage + returning straw'. Treatments of 'returning straw to soil' had the highest quantities of soil microbes. The quantities of bacteria, fungi, and actinomycetes in upper soil layer were the highest in treatment 'no-tillage + returning straw', and thus, the cellulose decomposition intensity in this treatment at maturity period was 26.44%, 79.01%, and 98. 15% higher than that in treatments 'tillage + returning straw', 'no-tillage', and 'tillage', respectively. In deeper soil layer, the quantities of bacteria, fungi, and actinomycetes were the highest in treatment 'tillage + returning straw'. Treatment 'no-tillage + returning straw' had the features of high fertility and abundant microbes in surface soil layer. The quantities of soil bacteria and actinomycetes and the decomposition intensity of soil cellulose were significantly positively correlated with soil fertility level.

  18. Lack of correlation between Legionella colonization and microbial population quantification using heterotrophic plate count and adenosine triphosphate bioluminescence measurement.

    Science.gov (United States)

    Duda, Scott; Baron, Julianne L; Wagener, Marilyn M; Vidic, Radisav D; Stout, Janet E

    2015-07-01

    This investigation compared biological quantification of potable and non-potable (cooling) water samples using pour plate heterotrophic plate count (HPC) methods and adenosine triphosphate (ATP) concentration measurement using bioluminescence. The relationship between these measurements and the presence of Legionella spp. was also examined. HPC for potable and non-potable water were cultured on R2A and PCA, respectively. Results indicated a strong correlation between HPC and ATP measurements in potable water (R = 0.90, p ATP and HPC were much weaker but statistically significant (make-up water: R = 0.37, p = 0.005; cooling tower 1: R = 0.52, p ATP. However, ATP measurements showed higher microbial concentrations than HPC measurements. Following chlorination of the cooling towers, ATP measurements indicated very low bacterial concentrations (1000 CFU/mL) which consisted primarily of non-tuberculous mycobacteria. HPC concentrations have been suggested to be predictive of Legionella presence, although this has not been proven. Our evaluation showed that HPC or ATP demonstrated a fair predictive capacity for Legionella positivity in potable water (HPC: receiver operating characteristic (ROC) = 0.70; ATP: ROC = 0.78; p = 0.003). However, HPC or ATP correctly classified sites as positive only 64 and 62% of the time, respectively. No correlation between HPC or ATP and Legionella colonization in non-potable water samples was found (HPC: ROC = 0.28; ATP: ROC = 0.44; p = 0.193).

  19. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change.

    Directory of Open Access Journals (Sweden)

    Karlette A Fernandes

    Full Text Available The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet ("Group A"; n = 6 or pasture ("Group B"; n = 6 for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson's index of diversity > 0.8, with differences between the two groups on Day 0 (P < 0.017 adjusted for multiple comparisons. There were differences between Groups A and B in the relative abundances of four genera, BF311 (family Bacteroidaceae; P = 0.003, CF231 (family Paraprevotellaceae; P = 0.004, and currently unclassified members within the order Clostridiales (P = 0.003 and within the family Lachnospiraceae (P = 0.006. The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change.

  20. Temporal variability of the microbial food web (viruses to ciliates under the influence of the Black Sea Water inflow (N. Aegean, E. Mediterranean

    Directory of Open Access Journals (Sweden)

    A. GIANNAKOUROU

    2015-01-01

    Full Text Available Τhe entire pelagic microbial food web was studied during the winter-spring period in the frontal area of the North Aegean Sea. Abundance of viruses, heterotrophic bacteria, cyanobacteria, auto- and hetero-trophic flagellates, and ciliates, as well as bacterial production, were measured at three stations (MD1, MD2, MD3 situated along a N-S transect between the area directly influenced by the inflowing Black Sea water and the area covered by the Levantine water. Samples were collected in December 2009, and January, March, April, and May 2011. Station MD1 exhibited the highest values of abundance and integrated biomass of all microbial groups and bacterial production during all months, and MD3 the lowest. Bacteria dominated the total integrated biomass at all stations and months, followed by cyanobacteria, auto-, hetero-trophic flagellates and ciliates. On a temporal scale, the microbial food web was less important in March as all microbial parameters at all stations showed the lowest values. After the phytoplankton bloom in March, the heterotrophic part of the microbial food web (mainly strongly increased, though the intensity of the phenomenon was diminished from North to South. Pico-sized plankton was found to be heterotrophic whereas nanoplankton was autotrophic. It seems that the influence of the Black Sea water on station MD1, permanent throughout the study period of early winter to late spring, was reflected in all microbial populations studied, and produced a more productive pelagic food web system, with potential consequences for the upper trophic levels.

  1. Impact of Irradiation and Polycyclic Aromatic Hydrocarbon Spiking on Microbial Populations in Marine Sediment for Future Aging and Biodegradability Studies

    OpenAIRE

    Melcher, Rebecca J.; Apitz, Sabine E; Hemmingsen, Barbara B.

    2002-01-01

    Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders w...

  2. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea

    Directory of Open Access Journals (Sweden)

    Oluwatobi Emmanuel Oni

    2015-05-01

    Full Text Available Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR (Q-PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm. The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments.

  3. Microbial lifestyles that enable survival in lithifying habitats

    DEFF Research Database (Denmark)

    Tamez-Hidalgo, Paulina

    2010-01-01

    The precipitation of carbonates in the travertine forming Narrow Gauge hot spring in Yellowstone National Park occurs at a rapid rate, whereby microorganisms that colonize the ponds and apron facies are required to overcome lithification. CO2-fixation by autotrophic microorganisms in this cation......-rich environment further promotes carbonate encapsulation. Microorganisms that alter their micro-habitat through dissimilative metabolic processes such as H2S and NH4+oxidation, can decrease acid neutralizing capacity (ANCcarb = [HCO3-] + 2[CO32-] + [OH-] - [H+] ) and locally delay CaCO3 mineralization. Genomic...... the microbially mediated reactions of the sulfur cycle might change the conditions in the local microhabitat, this does not alter the overall mass of geochemical carbonate precipitation. The metabolic products might aid autotrophic microorganisms in colonizing and surviving, however, for some time in a strongly...

  4. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2009-01-01

    Full Text Available Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas, in a minimal mineral (oligotrophic media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the marine Antarctic soil the poorest (only one. Snow samples from Col du Midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone. The only microorganism identified in the Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  5. A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen

    Energy Technology Data Exchange (ETDEWEB)

    Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2013-02-04

    Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

  6. Autotrophic carbon sources for fish communities in a tropical coastal ecosystem (Gazi bay, Kenya)

    OpenAIRE

    Nyunja, J; Ntiba, M; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, Steven

    2009-01-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isoto...

  7. Comparison of Antibiotic, Probiotic and Great Plantain (Plantago major L. on Growth Performance, Serum Metabolites, Immune Response and Ileal Microbial Population of Broilers

    Directory of Open Access Journals (Sweden)

    Mazhari M

    2016-07-01

    Full Text Available The objective of the study was to compare the effects of antibiotic virginiamycin, probiotic Protexin® and Plantago major L. (plantain on performance, serum metabolites, immune response, and the ileal microbial population of broilers. The experiment was carried out with a total of 200 day-old male Ross 308 broiler chickens in a completely randomized design. Chickens were allocated to five groups consisting of T1: control diet (Con, T2: Con+0.02% virginiamycin, T3: Con+0.01% Protexin, T4: Con+0.5% plantain and T5: Con+1% plantain. Each group was divided into four replicates consisting of ten chicks each. In comparison with the control group, body weight gain increased in chickens fed Protexin and 0.5% plantain groups in the starter period, as well as by antibiotic in grower and finisher periods and by 1% plantain in all periods (P < 0.01. Supplementation of plantain and virginiamycin increased (P < 0.01 feed intake in the starter and finisher periods, respectively. Feed conversion ratio improved (P < 0.05 in finisher period only by virginiamycin. All treated birds showed an elevated relative weight of carcass and bursa, and plantain increased relative weight of the spleen (P < 0.01. All treatments demonstrated a hypocholesterolemic effect (P < 0.01 and higher level of plantain (1% decreased (P < 0.05 serum glucose, triglyceride and low-density lipoprotein-cholesterol as well. The inclusion of Protexin and plantain enhanced immune system with increased white and red blood cells as well as second anti-SRBC immune response and reduced heterophil/lymphocyte ratio in SRBC injected birds (P < 0.05. Virginiamycin decreased ileal microbial population of Lactobacillus while Protexin and plantain increased it (P < 0.01. Meanwhile, 1% plantain suppressed ileal E. coli counts. In conclusion, 1% Plantago major L. performed the best in this study because it led to increased body and carcass weight, lowered serum cholesterol and triglyceride, reduced

  8. Autotrophic ammonia oxidation at low pH through urea hydrolysis.

    Science.gov (United States)

    Burton, S A; Prosser, J I

    2001-07-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.

  9. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae).

    Science.gov (United States)

    Carfagna, Simona; Bottone, Claudia; Cataletto, Pia Rosa; Petriccione, Milena; Pinto, Gabriele; Salbitani, Giovanna; Vona, Vincenza; Pollio, Antonino; Ciniglia, Claudia

    2016-09-01

    In plants and algae, sulfate assimilation and cysteine synthesis are regulated by sulfur (S) accessibility from the environment. This study reports the effects of S deprivation in autotrophic and heterotrophic cultures of Galdieria phlegrea (Cyanidiophyceae), a unicellular red alga isolated in the Solfatara crater located in Campi Flegrei (Naples, Italy), where H2S is the prevalent form of gaseous S in the fumarolic fluids and S is widespread in the soils near the fumaroles. This is the first report on the effects of S deprivation on a sulfurous microalga that is also able to grow heterotrophically in the dark. The removal of S from the culture medium of illuminated cells caused a decrease in the soluble protein content and a significant decrease in the intracellular levels of glutathione. Cells from heterotrophic cultures of G. phlegrea exhibited high levels of internal proteins and high glutathione content, which did not diminish during S starvation, but rather glutathione significantly increased. The activity of O-acetylserine(thiol)lyase (OASTL), the enzyme synthesizing cysteine, was enhanced under S deprivation in a time-dependent manner in autotrophic but not in heterotrophic cells. Analysis of the transcript abundance of the OASTL gene supports the OASTL activity increase in autotrophic cultures under S deprivation.

  10. First flowering hybrid between autotrophic and mycoheterotrophic plant species: breakthrough in molecular biology of mycoheterotrophy.

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Miyoshi, Kazumitsu; Tsutsumi, Chie; Yukawa, Tomohisa

    2014-03-01

    Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.

  11. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification.

    Science.gov (United States)

    Tang, Youneng; Zhou, Chen; Ziv-El, Michal; Rittmann, Bruce E

    2011-01-01

    This work presents a model to predict the alkalinity, pH, and Langelier Saturation Index (LSI) in heterotrophic and H(2)-based autotrophic denitrification systems. The model can also be used to estimate the amount of acid, e.g. HCl, added to the influent (method 1) or the pH set point in the reactor (method 2: pH can be maintained stable by CO(2)-sparge using a pH-control loop) to prevent the pH from exceeding the optimal range for denitrification and to prevent precipitation from occurring. The model was tested with two pilot plants carrying out denitrification of groundwater with high hardness: a heterotrophic system using ethanol as the electron donor and an H(2)-based autotrophic system. The measured alkalinity, pH, and LSI were consistent with the model for both systems. This work also quantifies: (1) how the alkalinity and pH in Stage-1 significantly differ from those in Stage-2; (2) how the pH and LSI differ significantly in the two denitrification systems while the alkalinity increase is about the same; and (3) why CO(2) addition is the preferred method for autotrophic system, while HCl addition is the preferred method for the heterotrophic system.

  12. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    Directory of Open Access Journals (Sweden)

    B. Veuger

    2012-11-01

    Full Text Available Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate in combination with compound-specific stable isotope (13C analysis of bacterial- and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41–221 nmol N l−1h−1. Ammonium assimilation was always substantially lower than nitrification with nitrification on average contributing 89% (range 73–97% to total ammonium consumption.

    13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27–95%. The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance. These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance

  13. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage.

    Science.gov (United States)

    Benchaar, C; Petit, H V; Berthiaume, R; Ouellet, D R; Chiquette, J; Chouinard, P Y

    2007-02-01

    Four Holstein cows fitted with ruminal cannulas were used in a 4 x 4 Latin square design (28-d periods) with a 2 x 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH(3)-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty

  14. The microbial food web in the Doñana marshland: Influence of trophic state and hydrology

    Science.gov (United States)

    Àvila, Núria; López-Flores, Rocío; Quintana, Xavier D.; Serrano, Laura

    2016-10-01

    We investigated the composition of the microbial food web in the marshland of Doñana National Park (SW Spain). We analysed factors affecting the predominance of autotrophic (A) or heterotrophic (H) microorganisms in a set of 16 marshland water bodies that differ in their hydrological pattern. Autotrophic organisms were predominant in the Doñana marshland, with autotrophs between 0.3 and 25.3 times higher than heterotrophs in biomass. The variance partitioning analysis using the log A:H biomass ratio (A/H) as a response variable revealed that water body spatial position accounted for the largest portion of total variance (16% of unique effects), followed by environmental variables (13%), with a shared variation of 24%. Zooplankton biomass had no significant influence on A/H ratio. The two first axes of RDA analysis were related to soluble reactive phosphate (SRP) and dissolved inorganic nitrogen (DIN) concentrations respectively. Cyanobacteria were predominant in waters with high SRP, while other organisms were distributed in relation to DIN by their size, with small organisms predominating with low DIN and large ones with high DIN. Spatial effects reflect the importance of location with respect to the water source in this marshland, where flooding areas are very much dominated by autotrophs, while confined areas, which are a long way from nutrient sources, have a more balanced abundance of autotrophs and heterotrophs.

  15. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.

    Science.gov (United States)

    Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker; Kappler, Andreas

    2016-10-15

    Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3(-)reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of (14)C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments.

  16. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    Science.gov (United States)

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells.

  17. Microbially induced and microbially catalysed precipitation: two different carbonate factories

    Science.gov (United States)

    Meister, Patrick

    2016-04-01

    The landmark paper by Schlager (2003) has revealed three types of benthic carbonate production referred to as "carbonate factories", operative at different locations at different times in Earth history. The tropical or T-factory comprises the classical platforms and fringing reefs and is dominated by carbonate precipitation by autotrophic calcifying metazoans ("biotically controlled" precipitation). The cool or C-factory is also biotically controlled but via heterotrophic, calcifying metazoans in cold and deep waters at the continental margins. A further type is the mud-mound or M-factory, where carbonate precipitation is supported by microorganisms but not controlled by a specific enzymatic pathway ("biotically induced" precipitation). How exactly the microbes influence precipitation is still poorly understood. Based on recent experimental and field studies, the microbial influence on modern mud mound and microbialite growth includes two fundamentally different processes: (1) Metabolic activity of microbes may increase the saturation state with respect to a particular mineral phase, thereby indirectly driving the precipitation of the mineral phase: microbially induced precipitation. (2) In a situation, where a solution is already supersaturated but precipitation of the mineral is inhibited by a kinetic barrier, microbes may act as a catalyser, i.e. they lower the kinetic barrier: microbially catalysed precipitation. Such a catalytic effect can occur e.g. via secreted polymeric substances or specific chemical groups on the cell surface, at which the minerals nucleate or which facilitate mechanistically the bonding of new ions to the mineral surface. Based on these latest developments in microbialite formation, I propose to extend the scheme of benthic carbonate factories of Schlager et al. (2003) by introducing an additional branch distinguishing microbially induced from microbially catalysed precipitation. Although both mechanisms could be operative in a M

  18. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    Science.gov (United States)

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  19. An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Walton, M.R.; Dugan, P.R. (EG G Idaho, Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1994-11-01

    Carbon dioxide is a greenhouse gas that is believed to be a major contributor to global warming. Studies have shown that significant amounts of CO[sub 2] are released into the atmosphere as a result of fossil fuels combustion. Therefore, considerable interest exists in effective and economical technologies for the removal of CO[sub 2] from fossil fuel combustion gas streams. This work evaluated the use of autotrophic microbes for the removal of CO[sub 2] from coal fired power plant combustion gas streams. The CO[sub 2] removal rates of the following autotrophic microbes were determined: [ital Chlorella pyrenoidosa], [ital Euglena gracilis], [ital Thiobacillus ferrooxidans], [ital Aphanocapsa delicatissima], [ital Isochrysis galbana], [ital Phaodactylum tricornutum], [ital Navicula tripunctata schizonemoids], [ital Gomphonema parvulum], [ital Surirella ovata ovata], and four algal consortia. Of those tested, [ital Chlorella pyrenoidosa] exhibited the highest removal rate with 2.6 g CO[sub 2] per day per g dry weight of biomass being removed under optimized conditions. Extrapolation of these data indicated that to remove CO[sub 2] from the combustion gases of a coal fired power plant burning 2.4 x 10[sup 4] metric tons of coal per day would require a bioreactor 386 km[sup 2] x 1m deep and would result in the production of 2.13 x 10[sup 5] metric tons (wet weight) of biomass per day. Based on these calculations, it was concluded that autotrophic CO[sub 2] removal would not be feasible at most locations, and as a result, alternate technologies for CO[sub 2] removal should be explored. 14 refs., 7 figs., 2 tabs.

  20. The burden of drinking water-associated cryptosporidiosis in China: the large contribution of the immunodeficient population identified by quantitative microbial risk assessment.

    Science.gov (United States)

    Xiao, Shumin; An, Wei; Chen, Zhimin; Zhang, Dongqing; Yu, Jianwei; Yang, Min

    2012-09-01

    A comprehensive quantitative microbial risk assessment (QMRA) of Cryptosporidium infection, considering pathogen removal efficiency, different exposure pathways and different susceptible subpopulations, was performed based on the result of a survey of source water from 66 waterworks in 33 major cities across China. The Cryptosporidium concentrations in source water were 0-6 oocysts/10 L, with a mean value of 0.7 oocysts/10 L. The annual diarrhea morbidity caused by Cryptosporidium in drinking water was estimated to be 2701 (95% confidence interval (CI): 138-9381) cases per 100,000 immunodeficient persons and 148 (95% CI: 1-603) cases per 100,000 immunocompetent persons, giving an overall rate of 149.0 (95% CI: 1.3-606.4) cases per 100,000 population. The cryptosporidiosis burden associated with drinking water treated with the conventional process was calculated to be 8.31 × 10(-6) (95% CI: 0.34-30.93 × 10(-6)) disability-adjusted life years (DALYs) per person per year, which was higher than the reference risk level suggested by the World Health Organization (WHO), but lower than that suggested by the United States Environmental Protection Agency (USEPA). Sixty-six percent of the total health burden due to cryptosporidiosis that occurred in the immunodeficient subpopulation, and 90% of the total DALYs was attributed to adults aged 15-59 years. The sensitivity analysis highlighted the great importance of stability of the treatment process and the importance of watershed protection. The results of this study will be useful in better evaluating and reducing the burden of Cryptosporidium infection.

  1. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    Science.gov (United States)

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken.

  2. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  3. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...... the optimal operating conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Three control structures are obtained and benchmarked by their capacity to reject the disturbances before...... the Anammox reactor....

  4. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko;

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major......). Results indicate that the continuous inoculation strategy was more rapid and effective to achieve nitrogen removal than the sequential inoculation approach. Nitrogen loss in the reactor continuously inoculated with AnAOB was observed after 120 day operation, with an average NH4+-N and TN removal rate of 3...

  5. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem;

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...... logic diagnosis tool was developed, utilizing stoichiometric and concentration ratio measurements and removal efficiencies, along with rules derived from process knowledge. The tool could accurately determine the overall performance of the system and can therefore serve as a powerful tool to provide...

  6. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson; De Francisci, Davide; Angelidaki, Irini

    2015-01-01

    In addition to providing cheap or free mineral nutrients, wastewaters may contain organic carbon compounds that could increase productivity of algal cultures. This study defined a strategy for the addition of organic carbon to photobioreactors in order to improve their productivity compared...... to autotrophic growth. Chlorella sorokiniana was cultivated in medium supplemented with sodium acetate in concentrations equivalent to the volatile fatty acid concentration found in anaerobic digester effluent. Flat-panel photobioreactors were operated using 16:8 light:dark cycles, with different strategies...... in an increased efficiency of the photobioreactor....

  7. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2015-01-01

    A novel feedforward–feedback control strategy was developed for complete autotrophic nitrogen removal in a sequencing batch reactor. The aim of the control system was to carry out the regulation of the process while keeping the system close to the optimal operation. The controller was designed......), the controller resulted in a significant performance improvement: removal efficiency was kept at a stable high level in the presence of influent ammonium concentration disturbances, and the absolute deviation on removal efficiency was reduced by 40%. The successful validation of the controller in a lab......-scale reactor is a promising result, which brings this control strategy one step closer to full-scale implementation....

  8. Microbial Characterization of Denitrifying Sulifde Removal Sludge Using High-Throughput Amplicon Sequencing Method

    Institute of Scientific and Technical Information of China (English)

    Ma Wenjuan; Liu Chunshuang; Zhao Dongfeng; Guo Yadong; Wang Aijie; Jia Kuili

    2015-01-01

    The denitrifying sulifde removal (DSR) process has recently been studied extensively from an engineering per-spective. However, the importance of microbial communities of this process was generally underestimated. In this study, the microbial community structure of a lab-scale DSR reactor was characterized in order to provide a comprehensive insight into the key microbial groups in DSR system. Results from high-throughput sequencing analysis revealed that the frac-tion of autotrophic denitriifers increased from 2.34 % to 10.93% and 44.51% in the DSR system when the inlfuent NaCl increased from 0 g/L, to 4 g/L and 30 g/L, respectively. On the contrary, the fraction of heterotrophic denitriifers decreased from 61.74% to 39.57%, and 24.12%, respectively.Azoarcus andThiobacillus were the main autotrophic denitriifers, and Thauera was the main hetetrophic denitriifer during the whole process. This study could be useful for better understanding the interaction between autotrophs and heterotrophs in DSR system.

  9. Teaching Microbial Growth by Simulation.

    Science.gov (United States)

    Ruiz, A. Fernandez; And Others

    1989-01-01

    Presented is a simulation program for Apple II computer which assays the effects of a series of variables on bacterial growth and interactions between microbial populations. Results of evaluation of the program with students are summarized. (CW)

  10. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation.

    Science.gov (United States)

    Jabeen, Gugan; Farooq, Robina

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.

  11. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    Science.gov (United States)

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  12. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone

    Institute of Scientific and Technical Information of China (English)

    Weili Zhou; Yeiue Sun; Bingtao Wu; Yue Zhang; Min Huang; Toshiaki Miyanaga; Zhenjia Zhang

    2011-01-01

    Sulfur-limestone was used in the autotrophic denitrification process to remove the nitrate and nitrite in a lab scale upflow biofilter.Synthetic water with four levels of nitrate and nitrite concentrations of 10,40,70 and 100 mg N/L was tested.When treating the low concentration of nitrate- or nitrite-contaminated water (10,40 mg N/L),a high removal rate of about 90% was achieved at the hydraulic retention time (HRT) of 3 hr and temperature of 20-25℃.At the same HRT,50% of the nitrate or nitrite could be removed even at the low temperature of 5-10℃.For the higher concentration nitrate and nitrite (70,100 mg N/L),longer HRT was required.The batch test indicated that influent concentration,HRT and temperature are important factors affecting the denitrification efficiency.Molecular analysis implied that nitrate and nitrite were denitrified into nitrogen by the same microorganisms.The sequential two-stepreactions from nitrate to nitrite and from nitrite to the next-step product might have taken place in the same cell during the autotrophic denitrification process.

  13. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media

    Energy Technology Data Exchange (ETDEWEB)

    Dayananda, C.; Sarada, R.; Ravishankar, G.A. [Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 020 (India); Usha Rani, M.; Shamala, T.R. [Food Microbiology Department, Central Food Technological Research Institute, Mysore 570 020 (India)

    2007-01-15

    Growth of Botryococcus braunii was studied using different autotrophic media such as bold basal medium (BBM), and bold basal with ammonium carbonate (BBMa), BG11, modified Chu 13 medium. Among the different autotrophic media used, BG11 was found to be the best medium for biomass and hydrocarbon production, although B. braunii showed appreciable level of growth and biomass production in all the tested media. The culture maintained at 16:8h light and dark cycle with 1.2+/-0.2klux light intensity at 25+/-1{sup o}C temperature was found to be the best for growth (2.0 and 2.8gL{sup -1} of biomass was produced by the B. braunii strains SAG 30.81 and LB-572, respectively) and hydrocarbon production (46% and 33%, respectively, by SAG 30.81 and LB 572 strains on dry weight basis) whereas continuous illumination with agitation at 90rpm had maximum influence for the production of exopolysaccharides. The results of the present study indicate that the organism can acclimatize to different culture conditions and to a wide range of culture media with production of more than one metabolite. (author)

  14. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO_{2} for environmental remediation

    Indian Academy of Sciences (India)

    GUGAN JABEEN; ROBINA FAROOQ

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridiumljungdahlii utilize electric currents as an electron source from the cathode to reduce CO_{2} to extracellular, multicarbon,exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly fromCO_{2} is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion ofCO_{2} implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acidand hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In ourstudy, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at −400 mV by aDC power supply at 37°C, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment ofbio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in lesstime. The main aim of the research was to investigate the impact of low-cost substrate CO_{2}, and the longercathode recovery range was due to bacterial reduction of CO_{2} to multicarbon chemical commodities withelectrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energyefficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acidand hexanol being in excess of 80% proved that BES was a remarkable technology.

  15. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  16. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid.

    Science.gov (United States)

    Butler, R G; Umbreit, W W

    1966-02-01

    Butler, Richard G. (Rutgers, The State University, New Brunswick, N.J.), and Wayne W. Umbreit. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid. J. Bacteriol. 91:661-666. 1966.-The strictly autotrophic bacterium, Thiobacillus thiooxidans, can be shown to assimilate a variety of organic materials. Aspartic acid can be assimilated into protein and can be converted into CO(2), but even in the presence of sulfur it cannot serve as the sole source of carbon for growth. The reason appears to be that aspartic acid is converted into inhibitory materials.

  17. Effects of Different Rotation Modes on Microbial Population in Gravel Mulched Field%砂田轮作模式对土壤微生物区系的影响

    Institute of Scientific and Technical Information of China (English)

    赵亚慧; 吴宏亮; 康建宏; 许强; 杨金娟; 姚姗; 尹冠华

    2012-01-01

    [目的]研究砂田轮作模式对土壤微生物区系的影响,从而通过制定合理的栽培制度创造良好的土壤生态环境,为促进农业的可持续发展提供理论依据.[方法]对宁夏中卫市香山地区压砂地土壤进行取样,并进行了微生物区系的分析.[结果]西瓜(Citrullus lanatus)与绿豆(Vigna radiata)、南瓜(Cucurbita moschata)、油葵(Helianthus annuus)、西葫芦(Cucurbita pepo L.)、芝麻(Sesamum indicum)轮作,土壤微生物多样性指数均高于西瓜连作.[结论]轮作能有效调节土壤微生物区系,有利于微生物群落的多样性和稳定性的提高,最终改善了土壤的微生态环境,其中以西瓜→南瓜效果最好.%[ Objective] The purpose was to study the effects of different rotation modes on microbial population in gravel mulched field, then create good soil ecological environment by drawing up reasonable cultivation system to provide a theoretical basis for promoting agricultural sustainable development of agriculture, [Method] Soil samples were taken from gravel mulched field in Xiangshan Area, Zhongwei City, Ningxia Hui Autonomous Region and their microbial population was analyzed. [Result] Compared with the watermelon continuous crop, the microbial diversity index was higher in the planting mode of mung bean( Vigna radiata) , pumpkins( Cucurbita moschata) , oil sunflower(Helianthus arm-uus) , squash(Cucurbitapepo L. ) and sesame(Sesamum indicum) rotating with watermelon( Citrultus lanatus). [Conclusion] Rotating effectively adjusts soil microbial population, which is conducive to improving microbial population diversity and stability, and eventually improving the soil ecology environment. Among these rotation modes, squash rotation with watermelon was the best.

  18. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic g

  19. Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2012-01-01

    O2/m3/d)/(gN/m3/d), the system was influenced by mass transfer (10% impact on nitrogen removal) and performance was limited by AOB activity (75% impact on nitrogen removal), while operating above, AnAOB activity was limiting (68% impact on nitrogen removal). The negative effect of oxygen mass...... transfer had an impact of 15% on nitrogen removal. Summarizing such quantitative analyses led to formulation of an optimal operation window, which serves a valuable tool for diagnosis of performance problems and identification of optimal solutions in nitritation/anammox applications....

  20. Performance and microbial communities of Mn(II)-based autotrophic denitrification in a Moving Bed Biofilm Reactor (MBBR).

    Science.gov (United States)

    Su, Jun Feng; Luo, Xian Xin; Wei, Li; Ma, Fang; Zheng, Sheng Chen; Shao, Si Cheng

    2016-07-01

    In this study, Mn(II) as electron donor was tested for the effects on denitrification in the MBBR under the conditions of initial nitrate concentration (10mgL(-1), 30mgL(-1), 50mgL(-1)), pH (5, 6, 7) and hydraulic retention time (HRT) (4h, 8h, 12h) which conducted by response surface methodology (RSM), the results demonstrated that the highest nitrate removal efficiency was occurred under the conditions of initial nitrate concentration of 47.64mgL(-1), HRT of 11.96h and pH 5.21. Analysis of SEM and flow cytometry suggested that microorganisms were immobilized on the Yu Long plastic carrier media successfully before the reactor began to operate. Furthermore, high-throughput sequencing was employed to characterize and compare the community compositions and structures of MBBR under the optimum conditions, the results showed that Pseudomonas sp. SZF15 was the dominant contributor for effective removal of nitrate in the MBBR.

  1. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    Science.gov (United States)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the

  2. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Ryan; Whitmore, Laura M.; Moran, James J.; Kreuzer, Helen W.; Inskeep, William P.

    2014-05-01

    The fixation of inorganic carbon (as carbon dioxide) has been documented in all three domains of life and results in the biosynthesis of a diverse suite of organic compounds that support the growth of heterotrophic organisms. The primary aim of this study was to assess the importance of carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of one of the dominant Fe(II)-oxidizing organisms (Metallosphaera yellowstonensis strain MK1) present in situ. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon fixation pathway were identified in pure-cultures of M. yellowstonensis strain MK1. Metagenome sequencing from the same environments also revealed genes for the 3-HP/4-HB pathway belonging to M. yellowstonensis populations, as well as genes for a complete reductive TCA cycle from Hydrogenobaculum spp. (Aquificales). Stable isotope (13CO2) labeling was used to measure the fixation of CO2 by M. yellowstonensis strain MK1, and in ex situ assays containing live Fe(III)-oxide microbial mats. Results showed that M. yellowstonensis strain MK1 fixes CO2 via the 3-HP/4-HB pathway with a fractionation factor of ~ 2.5 ‰. Direct analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C and microbial mat C showed that mat C is comprised of both DIC and non-DIC sources. The estimated contribution of DIC carbon to biomass C (> ~ 35%) is reasonably consistent with the relative abundance of known chemolithoautotrophs and corresponding CO2 fixation pathways detected in metagenome sequence. The significance of DIC as a major source of carbon for Fe-oxide mat communities provides a foundation for examining microbial interactions in these systems that are dependent on the activity of autotrophic organisms such as Hydrogenobaculum and Metallosphaera spp.

  3. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.

    Science.gov (United States)

    Pisciotta, John M; Zaybak, Zehra; Call, Douglas F; Nam, Joo-Youn; Logan, Bruce E

    2012-08-01

    Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO(2) was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV.

  4. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings.

  5. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  6. Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process.

    Science.gov (United States)

    Chen, Shen-Yi; Lu, Li-An; Lin, Jih-Gaw

    2016-06-01

    This study conducted a completely autotrophic nitrogen removal over nitrite (CANON) process in a continuous anoxic upflow bioreactor to treat synthetic wastewater with TMAH (tetramethylammonium hydroxide) ranging from 200 to 1000mg/L. The intermediates were analyzed for understanding the metabolic pathway of TMAH biodegradation in CANON process. In addition, (15)N-labeled TMAH was used as the substrate in a batch anoxic bioreactor to confirm that TMAH was converted to nitrogen gas in CANON process. The results indicated that TMAH was almost completely biodegraded in CANON system at different influent TMAH concentrations of 200, 500, and 1000mg/L. The average removal efficiencies of total nitrogen were higher than 90% during the experiments. Trimethylamine (TMA) and methylamine (MA) were found to be the main biodegradation intermediates of TMAH in CANON process. The production of nitrogen gas with (15)N-labeled during the batch anaerobic bioreactor indicated that CANON process successfully converted TMAH into nitrogen gas.

  7. [Expression of phosphofructokinase gene from Escherichia coli K-12 in obligately autotrophic bacterium Acidithiobacillus thiooxidans].

    Science.gov (United States)

    Tian, Keli; Lin, Jianqun; Liu, Xiangmei; Liu, Ying; Zhang, Changkai

    2003-10-01

    A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 (EC 2.7.1. 11) gene (pfkA) was constructed and transferred into Acidithiobacillus thiooxidans Tt-Z2 by conjugation. The transfer frequency of plasmid from E. coli to Tt-Z2 was 2.6 x 10(-6). More than 68% of Tt-Z2 cells carried the recombinant plasmids after being cultured for 50 generations without selective pressure, which showed that pSDK-1 was maintained consistently in Tt-Z2. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (14 U/g was lower than that in E. coli (K-12: 86 U/g; DF1010 carrying plasmid pSDK-1: 97 U/g). In th presence of glucose, the Tt-Z2 transconjugant consumed glucose leading to a better growth yield.

  8. Arsenic oxidation capabilities of a chemoautotrophic bacterial population: Use for the treatment of an arsenic contaminated wastewater

    Science.gov (United States)

    Dictor, M.-C.; Battaglia-Brunet, F.; Garrido, F.; Baranger, P.

    2003-05-01

    An autotrophic bacterial population, named CAsOl, able to oxidise arsenic has been isolated from a former gold mine (Saint-Yrieix, France). This bacterial population was composed of two microorganisms: a bacterial strain close to Ralstonia picketii and the second one related to Thiomonas genus (identification by 16S rDNA sequencing). This microbial consortium was able to oxidise arsenic with CO2 as the carbon source, arsenite as electron donor and oxygen as electron accepter. A significant oxidising activity was observed in a pH range comprised between 3 to 8 (pH optimum 5 7). A laboratory experiment for the biological treatment of a synthetic effluent containing 100 mg.L^{-1} of arsenic has been carried out. A mineral support, pouzzolana, has been colonised by the population CAsOl and the column was fed continuously with a synthetic medium in order to determine the maximal arsenic oxidation rate and the optimal residence time. In our experimental conditions, the maximum arsenic oxidation rate was 3,9 g As(Ill). L^{-1}.day^{-1} with a residence time of 1 hour after 55 days of continuous running. The performance of our bacterial population for arsenite oxidation in arsenic contaminated wastewater are especially important in the case of a treatment of arsenious wastewater as it presents advantages compared to physico-chemical treatments (consumption and cost of chemicals, potential toxic by-products generation...).

  9. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis.

    Science.gov (United States)

    Huber, Harald; Gallenberger, Martin; Jahn, Ulrike; Eylert, Eva; Berg, Ivan A; Kockelkorn, Daniel; Eisenreich, Wolfgang; Fuchs, Georg

    2008-06-03

    Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO(2) fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO(2) acceptor molecule acetyl-CoA is regenerated. Oxaloacetate is reduced to succinyl-CoA by an incomplete reductive citric acid cycle lacking 2-oxoglutarate dehydrogenase or synthase. Succinyl-CoA is reduced to 4-hydroxybutyrate, which is then activated to the CoA thioester. By using the radical enzyme 4-hydroxybutyryl-CoA dehydratase, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA. Finally, beta-oxidation of crotonyl-CoA leads to two molecules of acetyl-CoA. Thus, the cyclic pathway forms an extra molecule of acetyl-CoA, with pyruvate synthase and PEP carboxylase as the carboxylating enzymes. The proposal is based on in vitro transformation of 4-hydroxybutyrate, detection of all enzyme activities, and in vivo-labeling experiments using [1-(14)C]4-hydroxybutyrate, [1,4-(13)C(2)], [U-(13)C(4)]succinate, or [1-(13)C]pyruvate as tracers. The pathway is termed the dicarboxylate/4-hydroxybutyrate cycle. It combines anaerobic metabolic modules to a straightforward and efficient CO(2) fixation mechanism.

  10. Residence time of carbon substrate for autotrophic respiration of a grassland ecosystem correlates with the carbohydrate status of its vegetation

    Science.gov (United States)

    Ostler, Ulrike; Lehmeier, Christoph A.; Schleip, Inga; Schnyder, Hans

    2016-04-01

    Ecosystem respiration is composed of two component fluxes: (1) autotrophic respiration, which comprises respiratory activity of plants and plant-associated microbes that feed on products of recent photosynthetic activity and (2) heterotrophic respiration of microbes that decompose organic matter. The mechanistic link between the availability of carbon (C) substrate for ecosystem respiration and its respiratory activity is not well understood, particularly in grasslands. Here, we explore, how the kinetic features of the supply system feeding autotrophic ecosystem respiration in a temperate humid pasture are related to the content of water-soluble carbohydrates and remobilizable protein (as potential respiratory substrates) in vegetation biomass. During each September 2006, May 2007 and September 2007, we continuously labeled 0.8 m2 pasture plots with 13CO2/12CO2 and observed ecosystem respiration and its tracer content every night during the 14-16 day long labeling periods. We analyzed the tracer kinetics with a pool model, which allowed us to precisely partition ecosystem respiration into its autotrophic and heterotrophic flux components. At the end of a labeling campaign, we harvested aboveground and belowground plant biomass and analyzed its non-structural C contents. Approximately half of ecosystem respiration did not release any significant amount of tracer during the labeling period and was hence characterized as heterotrophic. The other half of ecosystem respiration was autotrophic, with a mean residence time of C in the respiratory substrate pool between 2 and 6 d. Both the rate of autotrophic respiration and the turnover of its substrate supply pool were correlated with plant carbohydrate content, but not with plant protein content. These findings are in agreement with studies in controlled environments that revealed water-soluble carbohydrates as the main substrate and proteins as a marginal substrate for plant respiration under favorable growth conditions

  11. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  12. Connecting Metabolic Potential with Thermodynamic Reality: Lithotrophic Microbial Communities of the Frasassi Cave System

    Science.gov (United States)

    McCauley, R. L.; Macalady, J. L.; Schaperdoth, I.

    2013-12-01

    If Martian life evolved during the Noachian period, it likely would have retreated to liquid water refuges where redox chemistry provided metabolically viable substrates. Present-day Mars appears to have such a refuge with data suggesting that liquid water may persist in the subsurface, however limited data is available with regards to subsurface Martian geochemistry and hydrogeology. On Earth, we find microbial communities thriving in subsurface environments utilizing a multitude of lithoautotrophic metabolisms. The Frasassi cave system in Italy hosts many such lithotrophic microbial communities, which are isolated from surface carbon, sunlight, and oxygen similar to possible Martian microbial populations. By studying the community structure, geochemistry and thermodynamics of the system, as well as the metabolic capabilities using metagenomics, we hope to discover microbes are capable of thriving in so-called 'energy-limited' environments and inform the search for life in the solar system. Two subsurface cave lakes in the Frasassi cave system, Lago Infinito and Lago dell'Orsa, have anoxic waters that host rope-like biofilm communities dominated by Deltaproteobacteria, Chloroflexi, and Planctomycetes clades. Thermodynamic calculations based on in situ geochemistry of waters surrounding the biofilms suggest very few metabolisms are energetically-feasible including: 1) anaerobic oxidation of methane (AOM) coupled with sulfate reduction 2) anaerobic ammonia oxidation (anammox) coupled with sulfate reduction 3) methanogenesis (Lago dell'Orsa only) 4) chemotrophic sulfate reduction AOM and anammox were only recently discovered and appear to have low energy yields associated with slow growth rates. AOM coupled with sulfate reduction has been shown to occur in a syntrophy between sulfate-reducing bacteria (SRB) and methanotrophic Archaea. However, these rope-like biofilms have a small (Metagenomics and carbon isotope data verify that autotrophic SRB are important in

  13. Microbial food web contributions to bottom water hypoxia in the northern Gulf of Mexico

    Science.gov (United States)

    Dagg, Michael; Sato, Riki; Liu, Hongbin; Bianchi, Thomas S.; Green, Rebecca; Powell, Rodney

    2008-05-01

    Nutrients from the Mississippi/Atchafalaya Rivers greatly stimulate biological production in the 'classical' food web on the inner shelf of the northern Gulf of Mexico. Portions of this production, especially large diatoms and zooplankton fecal pellets, sink and decompose in the bottom water, consuming oxygen and contributing to the annual development of an extensive zone of bottom water hypoxia, typically >15,000 km 2 since 1993. The microbial food web is also active in the Mississippi River plume, but consists of small organisms that sink slowly. This 'recycling' food web has not been considered as a significant contributor to vertical flux and hypoxia. However, gelatinous zooplankton, especially pelagic appendicularians such as Oikopleura dioica, mediate the conversion of microbial web organisms to organic particles with high sinking rates. When pelagic appendicularians are abundant in coastal regions of the northern Gulf of Mexico, they stimulate the rapid vertical transfer of microbial web productivity in the surface layer, which is only 5-15 m thick in the coastal hypoxic region, to the sub-pycnocline layer that becomes hypoxic each summer. In this paper we present results from two studies examining the significance of this pathway. In both 2002 and 2004, we observed high production rates of appendicularians in coastal waters. Discarded gelatinous houses and fecal pellets from the appendicularian populations often provided more than 1 g m -2 d -1 of organic carbon for the establishment and maintenance of hypoxia in the northern Gulf of Mexico. This source of organic matter flux is especially important in regions far from the river plumes and during periods of low river discharge. Autotrophic elements of this food web are primarily supported by recycled inorganic nutrients originating in the Mississippi and Atchafalaya Rivers. Sources of dissolved organic matter (DOM) supporting the heterotrophic components of this microbial food web may include in situ

  14. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  15. Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities.

    Science.gov (United States)

    Jennings, Ryan de Montmollin; Moran, James J; Jay, Zackary J; Beam, Jacob P; Whitmore, Laura M; Kozubal, Mark A; Kreuzer, Helen W; Inskeep, William P

    2017-01-01

    Although the biological fixation of CO2 by chemolithoautotrophs provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs as a carbon and energy source, the relative amounts of autotrophic C in chemotrophic microbial communities are not well-established. The extent and mechanisms of CO2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable (13)C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous "streamer" communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeota and Aquificales observed across this habitat range. Stable (13)C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the (13)C content of microbial community samples. Isotope mixing models showed that the minimum fractions of autotrophic C in microbial biomass were >50% in the majority of communities analyzed. The significance of CO2 as a C source in these communities provides a foundation for understanding community assembly and succession, and metabolic linkages among early-branching thermophilic autotrophs and heterotrophs.

  16. Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach

    Science.gov (United States)

    Bradley, James A.; Arndt, Sandra; Šabacká, Marie; Benning, Liane G.; Barker, Gary L.; Blacker, Joshua J.; Yallop, Marian L.; Wright, Katherine E.; Bellas, Christopher M.; Telling, Jonathan; Tranter, Martyn; Anesio, Alexandre M.

    2016-10-01

    Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields) and high sensitivity of bacterial growth rates to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the glacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was simulated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory, and modelling approach demonstrates the value of integrated model-data studies to understand and quantify the functioning of the microbial community in an emerging High Arctic soil ecosystem.

  17. Invasion of a semi-arid shrubland by annual grasses increases autotrophic and heterotrophic soil respiration rates due to altered soil moisture and temperature patterns

    Science.gov (United States)

    Mauritz, M.; Hale, I.; Lipson, D.

    2010-12-01

    Shrub grassland conversions are a globally occurring phenomenon altering habitat structure, quality and nutrient cycling. Grasses and shrubs differ in their above and belowground biomass allocation, root architecture, phenology, litter quality and quantity. Conversion affects soil microbial communities, soil moisture and temperature and carbon (C) allocation patterns. However, the effect of conversion on C storage is regionally variable and there is no consistent direction of change. In Southern California invasion by annual grasses is a major threat to native shrub communities and it has been proposed that grass invasion increases NPP and ecosystem C storage (Wolkovich et al, 2009). In order to better understand how this shrub grassland conversion changes ecosystem C storage it is important to understand the partitioning of soil respiration into autotrophic and heterotrophic components. Respiration was measured in plots under shrubs and grasses from February when it was cold and wet to July when it was hot and dry, capturing seasonal transitions in temperature and water availability. Roots were excluded under shrubs and grasses with root exclusion cores to quantify heterotrophic respiration. Using total soil respiration (Rt) = autotrophic respiration (root) (Ra)+ heterotrophic respiration (microbial) (Rh) the components contributing to total soil respiration can be evaluated. Respiration, soil moisture and temperature were measured daily at four hour intervals using Licor 8100 automated chamber measurements. Throughout the measurement period, Rt under grasses exceeded Rt under shrubs. Higher Rt levels under grasses were mainly due to higher Ra in grasses rather than changes in Rh. On average grass Ra was almost double shrub Ra. Higher grass respiration levels are partially explained by differences in soil moisture and temperature between shrubs and grasses. Respiration rates responded similarly to seasonal transitions regardless of treatment although Ra had a much

  18. The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon.

    Science.gov (United States)

    Mardanov, Andrey V; Slododkina, Galina B; Slobodkin, Alexander I; Beletsky, Alexey V; Gavrilov, Sergey N; Kublanov, Ilya V; Bonch-Osmolovskaya, Elizaveta A; Skryabin, Konstantin G; Ravin, Nikolai V

    2015-02-01

    Geoglobus acetivorans is a hyperthermophilic anaerobic euryarchaeon of the order Archaeoglobales isolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genus Geoglobus is their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds, n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability of G. acetivorans to grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2 fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multiheme c-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds and n-alkanes, although an ability of G. acetivorans to grow on these substrates was not observed in laboratory experiments. Overall, our results suggest that Geoglobus species could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.

  19. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  20. Targeted Enhancement of H2 and CO2 Uptake for Autotrophic Production of Biodiesel in the Lithoautotrophic Bacterium Ralsonia Eutropha

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C. A.; Sullivan, R.; Johnson, C.; Yu, J.; Maness, P. C.

    2013-01-01

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expression and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.

  1. 广东陈香茶渥堆发酵过程中优势微生物群系的演变%The Evolution of Dominant Microbial Populations in the Guangdong Chenxiang Tea during Pile-Fermentation Process

    Institute of Scientific and Technical Information of China (English)

    方祥; 陈株; 李晶晶; 赵超艺; 李斌; 黄国资

    2011-01-01

    Guangdong Chenxiang Tea is a special black tea of Guangdong province. The dominant microbial populations in the Guangdong Chenxiang Tea were studied. The results showed Aspergillus niger, A. Gloucus, Fenicillium chrysogenum, Candida parapsilosis, Rhizopus sp. And Trichoderma sp. Were the dominant fungi species during pile-fermentation process. P. Chrysogenum accounted for 47.9%~91.9% of the total number of fungi colonies in the beginning of pile-fermentation, but A. Niger grew rapidly and become the absolutely dominant species and accounting for 83.1%~ 97.9% in the late period of fermentation process. The water content had a significant effection on the evolution of microbial populations, reasonably high levels (30%~35%) of moisture promoted the growth and reproduction of A. Niger and Candida parapsilosis, so the microbial populations can be controlled by control of water content so as to improve quality of Chenxiang tea.%对具有地方特色的黑茶品种——广东陈香茶渥堆发酵过程中的优势微生物群系演化进行研究,结果发现其优势种群为黑曲霉(A spergillus niger)、灰绿曲霉(A.gloucus)、产黄青霉(Penicillium chrysogenum)、近平滑假丝酵母(Candida parapsilosis)、根霉(Rhizopus sp.)和木霉(Trichoderma sp.).开潮渥堆开始发酵时,以产黄青霉为主,占47.9%~91.9%.黑曲霉繁殖迅速,在发酵中、后期其占绝对优势(83.1%~97.9%).开潮渥堆时茶堆的含水量对微生物种群演化有显著影响,当其含水量30%~35%时,黑曲霉和酵母的生长繁殖较含水量20%~25%时快.通过水分调控微生物群系,可以达到提高陈香茶品质的目的.

  2. The effect of SRT on nitrate formation during autotrophic nitrogen removal of anaerobically treated wastewater.

    Science.gov (United States)

    Lee, Po-Heng; Kwak, Wonji; Bae, Jeaho; McCarty, Perry L

    2013-01-01

    Autotrophic nitrogen removal, coupling nitritation (ammonium to nitrite) with anaerobic ammonium oxidation (anammox), offers a promising nitrogen-removal alternative, especially for post-treatment of anaerobically-treated wastewater. However, previous reports suggest that less than 90% total nitrogen removal should be expected with this process alone because over 10% of the ammonium removed will be converted to nitrate. This is caused because nitrite conversion to nitrate is required for reduction of carbon dioxide to cell carbon. However, recent research results suggest that more limited nitrate formation of only a few per cent sometimes occurs. It was hypothesized such lower nitrate yields may result from use of long solids retention times (SRT) where net biological yields are low, and providing that the ratio of oxygen added to influent ammonium concentrations is maintained at or below 0.75 mol/mol. Overall reaction equations were developed for each process and combined to evaluate the potential effect of SRT on process stoichiometry. The results support the use of a long SRT to reduce net cell yield, which in turn results in a small percentage conversion to nitrate during ammonium removal and high total nitrogen removals in the range of 90 to 94%.

  3. Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria

    Directory of Open Access Journals (Sweden)

    JongOh Shin

    2016-09-01

    Full Text Available Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2 to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2 or carbon monoxide (CO, via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications.

  4. Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria

    Science.gov (United States)

    Shin, Jongoh; Song, Yoseb; Jeong, Yujin; Cho, Byung-Kwan

    2016-01-01

    Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2) to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2) or carbon monoxide (CO), via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications. PMID:27733845

  5. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri.

    Science.gov (United States)

    Tang, Wang-Gang; Song, Ping; Cao, Zheng-Yu; Wang, Peng; Zhu, Guo-Ping

    2015-06-01

    In eukaryotes, NAD(+)-dependent isocitrate dehydrogenase (IDH) is strictly mitochondrial and is a key enzyme in the Krebs cycle. To date, all known NAD(+)-specific IDHs (NAD-IDHs) in the mitochondria are believed to be heteromeric in solution. Here, a unique homodimeric NAD-IDH from Ostreococcus tauri (OtIDH), the smallest autotrophic picoeukaryote, was unveiled. Active OtIDH has a molecular weight of ∼93 kDa with each subunit of 46.7 kDa. In the presence of Mn(2+) and Mg(2+), OtIDH displayed 42-fold and 51-fold preference for NAD(+) over NADP(+), respectively. Interestingly, OtIDH exhibited a sigmoidal kinetic behavior in response to isocitrate unlike other homodimeric homologs, and a remarkably high affinity for isocitrate (S0.5 < 10 μM) unlike other hetero-oligomeric homologs. Furthermore, its coenzyme specificity can be completely converted from NAD(+) (ancient trait) to NADP(+) (adaptive trait) by rational mutagenesis based on the evolutionary trace. Mutants D344R and D344R/M345H displayed a 15-fold and 72-fold preference for NADP(+) over NAD(+), respectively, indicating that D344 and M345 are the determinants of NAD(+) specificity. These findings also suggest that OtIDH may be an ancestral form of type II IDHs (all reported members are NADP(+)-linked enzymes) and may have evolved into NADP(+)-dependent IDH for adaptation to the increased demand of NADPH under carbon starvation.

  6. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  7. Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence.

    Science.gov (United States)

    Holland, Alexandra D; Wheeler, Dean R

    2011-05-01

    For non-inhibitory irradiances, the rate of algal biomass synthesis was modeled as the product of the algal autotrophic yield Φ(DW) and the flux of photons absorbed by the culture, as described using Beer-Lambert law. As a contrast to earlier attempts, the use of scatter-corrected extinction coefficients enabled the validation of such approach, which bypasses determination of photosynthesis-irradiance (PI) kinetic parameters. The broad misconception that PI curves, or the equivalent use of specific growth rate expressions independent of the biomass concentration, can be extended to adequately model biomass production under light-limitation is addressed. For inhibitory irradiances, a proposed mechanistic model, based on the photosynthetic units (PSU) concept, allows one to estimate a target speed νT across the photic zone in order to limit the flux of photons per cell to levels averting significant reductions in Φ(DW) . These modeled target speeds, on the order of 5-20 m s(-1) for high outdoor irradiances, call for fundamental changes in reactor design to optimize biomass productivity. The presented analysis enables a straightforward bioreactor parameterization, which, in-turn, guides the establishment of conditions ensuring maximum productivity and complete nutrients consumption. Additionally, solar and fluorescent lighting spectra were used to calculate energy to photon-counts conversion factors.

  8. The microbial ocean from genomes to biomes.

    Science.gov (United States)

    DeLong, Edward F

    2009-05-14

    Numerically, microbial species dominate the oceans, yet their population dynamics, metabolic complexity and synergistic interactions remain largely uncharted. A full understanding of life in the ocean requires more than knowledge of marine microbial taxa and their genome sequences. The latest experimental techniques and analytical approaches can provide a fresh perspective on the biological interactions within marine ecosystems, aiding in the construction of predictive models that can interrelate microbial dynamics with the biogeochemical matter and energy fluxes that make up the ocean ecosystem.

  9. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy......Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...

  10. Prediction of Competitive Microbial Growth.

    Science.gov (United States)

    Fujikawa, Hiroshi

    2016-01-01

     Prediction of competitive microbial growth is becoming important for microbial food safety. There would be two approaches to predict competitive microbial growth with mathematical models. The first approach is the development of a growth model for competitive microbes. Among several candidates for the competition model considered, the combination of the primary growth model of the new logistic (NL) model and the competition model of the Lotka-Vorttera (LV) model showed the best performance in predicting microbial competitive growth in the mixed culture of two species. This system further successfully predicted the growth of three competitive species in mixed culture. The second approach is the application of the secondary model especially for the parameter of the maximum cell population in the primary growth model. The combination of the NL model and a polynomial model for the maximum population successfully predicted Salmonella growth in raw ground beef. This system further successfully predicted Salmonella growth in beef at various initial concentrations and temperatures. The first approach requires microbial growth data in monoculture for analysis. The second approach to the prediction of competitive growth from the viewpoint of microbial food safety would be more suitable for practical application.

  11. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  12. 2012 Molecular Basis of Microbial One-Carbon Metabolism Gordon Research Conferences and Gordon Research Seminar, August 4-10,2012

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Thomas

    2012-08-10

    The 2012 Gordon Conference will present and discuss cutting-edge research in the field of microbial metabolism of C1 compounds. The conference will feature the roles and application of C1 metabolism in natural and synthetic systems at scales from molecules to ecosystems. The conference will stress molecular aspects of the unique metabolism exhibited by autotrophic bacteria, methanogens, methylotrophs, aerobic and anaerobic methanotrophs, and acetogens.

  13. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  14. Changes in Microbial Plankton Assemblages Induced by Mesoscale Oceanographic Features in the Northern Gulf of Mexico

    Science.gov (United States)

    Williams, Alicia K.; McInnes, Allison S.; Rooker, Jay R.; Quigg, Antonietta

    2015-01-01

    Mesoscale circulation generated by the Loop Current in the Northern Gulf of Mexico (NGOM) delivers growth-limiting nutrients to the microbial plankton of the euphotic zone. Consequences of physicochemically driven community shifts on higher order consumers and subsequent impacts on the biological carbon pump remain poorly understood. This study evaluates microbial plankton <10 μm abundance and community structure across both cyclonic and anti-cyclonic circulation features in the NGOM using flow cytometry (SYBR Green I and autofluorescence parameters). Non-parametric multivariate hierarchical cluster analyses indicated that significant spatial variability in community structure exists such that stations that clustered together were defined as having a specific ‘microbial signature’ (i.e. statistically homogeneous community structure profiles based on relative abundance of microbial groups). Salinity and a combination of sea surface height anomaly and sea surface temperature were determined by distance based linear modeling to be abiotic predictor variables significantly correlated to changes in microbial signatures. Correlations between increased microbial abundance and availability of nitrogen suggest nitrogen-limitation of microbial plankton in this open ocean area. Regions of combined coastal water entrainment and mesoscale convergence corresponded to increased heterotrophic prokaryote abundance relative to autotrophic plankton. The results provide an initial assessment of how mesoscale circulation potentially influences microbial plankton abundance and community structure in the NGOM. PMID:26375709

  15. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    Science.gov (United States)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  16. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    Science.gov (United States)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  17. Microbial ecology of a novel sulphur cycling consortia from AMD: implications for acid generation

    Science.gov (United States)

    Loiselle, L. M.; Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Recent work1 identified a novel microbial consortia consisting of two bacterial strains common to acid mine drainage (AMD) environments (autotrophic sulphur oxidizer Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp.) in an environmental enrichment from a mine tailings lake. The two strains showed a specific spatial arrangement within an EPS macrostructure or "pod" allowing linked metabolic redox cycling of sulphur. Sulphur species characterisation of the pods using scanning transmission X-ray microscopy (STXM) indicated that autotrophic tetrathionate disproportionation by A. ferrooxidans producing colloidal elemental sulphur (S0) is coupled to heterotrophic S0 reduction by Acidiphilium spp. Geochemical modelling of the microbial sulphur reactions indicated that if they are widespread in AMD environments, then global AMD-driven CO2 liberation from mineral weathering have been overestimated by 40-90%1. Given the common co-occurrence of these two bacteria in AMD settings, the purpose of this study was to evaluate if these pods could be induced in the laboratory by pure strains and if so, whether their combined sulphur geochemistry mimicked the previous findings. Laboratory batch experiments assessed the development of pods with pure strain type cultures (A. ferrooxidans ATCC 19859 with mixotroph Acidiphilium acidophilum ATCC 738 or strict heterotroph Acp. cryptum ATCC 2158) using fluorescent in situ hybridization (FISH) imaging. The microbial sulphur geochemistry was characterized under autotrophic conditions identical to those used with the environmental AMD enrichment in which the pods were discovered. Results showed that the combined pure strain A. ferrooxidans and Acp. acidophilum form pods identical in structure to the AMD enrichment. To test the hypothesis that these pods form for mutual metabolic benefit, experiments were performed amending pure strain and AMD enrichment bacterial treatments with organic carbon and/or additional sulphur to

  18. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  19. Drinking Water Denitrification using Autotrophic Denitrifying Bacteria in a Fluidized Bed Bioreactor 

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid-mohammadi

    2013-02-01

    Full Text Available Background and Objectives: Contamination of drinking water sources with nitrate may cause adverse effects on human health. Due to operational and maintenance problems of physicochemical nitrate removal processes, using biological denitrification processes have been performed. The aim of this study is to evaluate nitrate removal efficiency from drinking water using autotrophic denitrifying bacteria immobilized on sulfur impregnated activated carbon in a fluidized bed bioreactor. Materials and Methods: After impregnating activated carbon by sulfur as a microorganism carriers and enrichment and inoculation of denitrifying bacteria, a laboratory-scale fluidized bed bioreactor was operated. Nitrate removal efficiency, nitrite, turbidity, hardness and TOC in the effluent were examined during the whole experiment under various conditions including constant influent nitrate concentration as 90 mg NO3--N/l corresponding to different HRT ranging from 5.53 to 1.5 hr. Results: We found that  the denitrification rates was depended on the hydraulic retention time and the nitrate removal efficiency was up to 98%  and nitrite concentration was lower than 1mg/l at optimum HRT=2.4 hr respectively. Moreover, there was no difference in hardness between influent and effluent due to supplying sodium bicarbonate as carbon source for denitrifying bacteria.  However pH, TOC, hardness, and turbidity of the effluent met the W.H.O guidelines for drinking water.  Conclusion: This study demonstrated that an innovative carrier as sulfur impregnated activated carbon could be used as both the biofilm carrier and energy source for treating nitrate contaminated drinking water in the lab-scale fluidized bed bioreactor.

  20. Partitioning Longleaf Pine Soil Respiration into Its Heterotrophic and Autotrophic Components through Root Exclusion

    Directory of Open Access Journals (Sweden)

    Althea A. ArchMiller

    2016-02-01

    Full Text Available Rapid and accurate estimations of the heterotrophic and autotrophic components of total soil respiration (Rs are important for calculating forest carbon budgets and for understanding carbon dynamics associated with natural and management-related disturbances. The objective of this study was to use deep (60 cm root exclusion tubes and paired control (i.e., no root exclusion collars to estimate heterotrophic respiration (Rh and Rs, respectively, in three 26-year-old longleaf pine (Pinus palustris Mill. stands in western Georgia. Root biomass was measured in root exclusion tubes and control collars after 102–104 days of incubation and fine root biomass loss from root exclusion was used to quantify root decay. Mean Rs from control collars was 3.3 micromol•CO2•m−2•s−1. Root exclusion tubes decreased Rs, providing an estimate of Rh. Mean Rh was 2.7 micromol•CO2•m−2•s−1 when uncorrected by pretreatment variation, root decay, or soil moisture compared to 2.1 micromol•CO2•m−2•s−1 when Rh was corrected for root decay. The corresponding ratio of Rh to Rs ranged from 66% to 82%, depending on the estimation method. This study provides an estimate of Rh in longleaf pine forests, and demonstrates the potential for deep root exclusion tubes to provide relatively rapid assessments (i.e., ~40 days post-treatment of Rh in similar forests. The range in Rh to Rs is comparable to other reports for similar temperate coniferous ecosystems.

  1. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott D [Mississippi State Univ., Mississippi State, MS (United States)

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  2. A microbial perspective of human developmental biology.

    Science.gov (United States)

    Charbonneau, Mark R; Blanton, Laura V; DiGiulio, Daniel B; Relman, David A; Lebrilla, Carlito B; Mills, David A; Gordon, Jeffrey I

    2016-07-07

    When most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment. Given the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for the establishment of 'human microbial observatories' designed to examine microbial community development in birth cohorts representing populations with diverse anthropological characteristics, including those undergoing rapid change.

  3. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.

    Science.gov (United States)

    Hu, Qi; Guo, Xue; Liang, Yili; Hao, Xiaodong; Ma, Liyuan; Yin, Huaqun; Liu, Xueduan

    2015-01-01

    The microbial community in a biological heap leaching (BHL) system is crucial for the decomposition of ores. However, the microbial community structure and functional differentiation in different parts of a biological heap leaching system are still unknown. In this study, metagenomic sequencing was used to fully illuminate the microbial community differentiation in the pregnant leach solution (PLS) and leaching heap (LH) of a BHL system. Long-read sequences (1.3 million) were obtained for the two samples, and the MG_RAST server was used to perform further analysis. The taxa analysis results indicated that the dominant genera of PLS is autotrophic bacterium Acidithiobacillus, but heterotrophic bacterium Acidiphilium is predominant in LH. Furthermore, functional annotation and hierarchical comparison with different reference samples showed that the abundant presence of genes was involved in transposition, DNA repair and heavy metal transport. The sequences related to transposase, which is important for the survival of the organism in the hostile environment, were both mainly classified into Acidiphilium for PLS and LH. These results indicated that not only autotrophic bacteria such as Acidithiobacillus, but also heterotrophic bacteria such as Acidiphilium, were essential participants in the bioleaching process. This new meta-view research will further facilitate the effective application of bioleaching.

  4. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.

    Science.gov (United States)

    Masaki, Yusei; Tsutsumi, Katsutoshi; Hirano, Shin-Ichi; Okibe, Naoko

    2016-09-01

    Chinoike Jigoku ("Blood Pond Hell") is located in the hot spring town of Beppu on the southern island of Kyushu in Japan, and is the site of a red-colored acidic geothermal pond. This study aimed to investigate the microbial population composition in this extremely acidic environment and to isolate/characterize acidophilic microorganism with metal-reducing ability. Initially, PCR (using bacteria- and archaea-specific primers) of environmental DNA samples detected the presence of bacteria, but not archaea. This was followed by random sequencing analysis, confirming the presence of wide bacterial diversity at the site (123 clones derived from 18 bacterial and 1 archaeal genera), including those closely related to known autotrophic and heterotrophic acidophiles (Acidithiobacillus sp., Sulfobacillus sp., Alicyclobacillus sp.). Nevertheless, successive culture enrichment with Fe(III) under micro-aerobic conditions led to isolation of an unknown archaeal organism, Sulfolobus sp. GA1 (with 99.7% 16S rRNA gene sequence identity with Sulfolobus shibatae). Unlike many other known Sulfolobus spp., strain GA1 was shown to lack sulfur oxidation ability. Strain GA1 possessed only minor Fe(II) oxidation ability, but readily reduced Fe(III) during heterotrophic growth under micro-aerobic conditions. Strain GA1 was capable of reducing highly toxic Cr(VI) to less toxic/soluble Cr(III), demonstrating its potential utility in bioremediation of toxic metal species.

  5. Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities.

    Science.gov (United States)

    Huys, Geert; Vanhoutte, Tom; Joossens, Marie; Mahious, Amal S; De Brandt, Evie; Vermeire, Severine; Swings, Jean

    2008-06-01

    The main aim of this study was to evaluate the specificity of three commonly used 16S rRNA gene-based polymerase chain reaction (PCR) primer sets for bacterial community analysis of samples contaminated with eukaryotic DNA. The specificity of primer sets targeting the V3, V3-V5, and V6-V8 hypervariable regions of the 16S rRNA gene was investigated in silico and by community fingerprinting of human and fish intestinal samples. Both in silico and PCR-based analysis revealed cross-reactivity of the V3 and V3-V5 primers with the 18S rRNA gene of human and sturgeon. The consequences of this primer anomaly were illustrated by denaturing gradient gel electrophoresis (DGGE) profiling of microbial communities in human feces and mixed gut of Siberian sturgeon. DGGE profiling indicated that the cross-reactivity of 16S rRNA gene primers with nontarget eukaryotic DNA might lead to an overestimation of bacterial biodiversity. This study has confirmed previous sporadic indications in literature indicating that several commonly applied 16S rRNA gene primer sets lack specificity toward bacteria in the presence of eukaryotic DNA. The phenomenon of cross-reactivity is a potential source of systematic error in all biodiversity studies where no subsequent analysis of individual community amplicons by cloning and sequencing is performed.

  6. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers

    Science.gov (United States)

    Segata, Nicola; Baldini, Francesco; Pompon, Julien; Garrett, Wendy S.; Truong, Duy Tin; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2016-01-01

    Microbes play key roles in shaping the physiology of insects and can influence behavior, reproduction and susceptibility to pathogens. In Sub-Saharan Africa, two major malaria vectors, Anopheles gambiae and An. coluzzii, breed in distinct larval habitats characterized by different microorganisms that might affect their adult physiology and possibly Plasmodium transmission. We analyzed the reproductive microbiomes of male and female An. gambiae and An. coluzzii couples collected from natural mating swarms in Burkina Faso. 16S rRNA sequencing on dissected tissues revealed that the reproductive tracts harbor a complex microbiome characterized by a large core group of bacteria shared by both species and all reproductive tissues. Interestingly, we detected a significant enrichment of several gender-associated microbial biomarkers in specific tissues, and surprisingly, similar classes of bacteria in males captured from one mating swarm, suggesting that these males originated from the same larval breeding site. Finally, we identified several endosymbiotic bacteria, including Spiroplasma, which have the ability to manipulate insect reproductive success. Our study provides a comprehensive analysis of the reproductive microbiome of important human disease vectors, and identifies a panel of core and endosymbiotic bacteria that can be potentially exploited to interfere with the transmission of malaria parasites by the Anopheles mosquito. PMID:27086581

  7. Population Abundance of Potentially Pathogenic Organisms in Intestinal Microbiome of Jungle Crow (Corvus macrorhynchos Shown with 16S rRNA Gene-Based Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Isamu Maeda

    2013-01-01

    Full Text Available Jungle Crows (Corvus macrorhynchos prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous to Eimeria sp., which belongs to the protozoan phylum Apicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the genera Campylobacter and Brachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.

  8. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.

    Science.gov (United States)

    Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J

    2016-02-01

    Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate.

  9. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    Science.gov (United States)

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  10. Microbial ecology studies at two coal mine refuse sites in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R. M.; Cameron, R. E.

    1978-01-01

    An investigation was made of the microflora associated with coal refuse at two abandoned mines in the midwestern United States. Information was gathered for both the edaphic and the biotic composition of the refuse material. Emphasis was placed on heterotrophic and autotrophic components as to numbers, kinds, and physiological groups. The presence of chemolithotrophs was also investigated. The relationship between abiotic and biotic components in regard to distribution of bacteria, fungi, and algae is discussed. Information presented in this report will be utilized in assessing trends and changes in microbial numbers and composition related to manipulations of the edaphic and biotic ecosystem components associated with reclamation of the refuse piles.

  11. Microbial ecology on the microcosm level: Activity and population dynamics of methanotrophic bacteria during early succession in a flooded rice field soil

    Science.gov (United States)

    Krause, S.; Frenzel, P.

    2009-04-01

    Methane oxidizing bacteria (methanotrophs) play an important role in natural wetlands and rice fields preventing large amounts of methane from escaping into the atmosphere. The occurrence of both type I and type II methanotrophs in the soil surface layer has been demonstrated in many studies. However, there is no profound understanding which of them are responsible for the oxidizing activity and how they differ ecologically. Hence, a gradient microcosm system was applied simulating oxic-anoxic interfaces of water saturated soils to unravel population dynamics in early succession of methanotrophs in a flooded rice paddy. Additionally, environmental parameters were analyzed to link environment, populations, and their specific activity. We measured pmoA-based (particulate methane monooxygenase) terminal restriction fragment length polymorphism (T-RFLP) profiles both on transcription and population level. DNA T-RFLP patterns showed no major differences in the methanotrophic community structure remaining relatively constant over time. In contrast the active methanotrophic community structure as detected by pmoA mRNA T-RFLP analysis clearly demonstrated a distinct pattern from DNA T-RFLP profiles. While type II represented the most prominent group on the population level it seems to play a minor role on the transcription level. Furthermore there were no clear implications towards a link between soil parameters (e.g. NH4+ concentration) and methanotrophic community structure.

  12. Towards lag phase of microbial populations at growth-limiting conditions: The role of the variability in the growth limits of individual cells.

    Science.gov (United States)

    Aguirre, Juan S; Koutsoumanis, Konstantinos P

    2016-05-02

    The water activity (aw) growth limits of unheated and heat stressed Listeria monocytogenes individual cells were studied. The aw limits varied from 0.940 to 0.997 and 0.951 to 0.997 for unheated and heat stressed cells, respectively. Due to the above variability a decrease in aw results in the presence of a non-growing fraction in the population leading to an additional pseudo-lag in population growth. In this case the total apparent lag of the population is the sum of the physiological lag of the growing cells (time required to adjust to the new environment) and the pseudo-lag. To investigate the effect of aw on the above lag components, the growth kinetics of L. monocytogenes on tryptone soy agar with aw adjusted to values ranging from 0.997 to 0.940 was monitored. The model of B&R was fitted to the data for the estimation of the apparent lag. In order to estimate the physiological lag of the growing fraction of the inoculum, the model was refitted to the growth data using as initial population level the number of cells that were able to grow (estimated from the number of colonies formed on the agar at the end of storage) and excluding the rest data during the lag. The results showed that for the unheated cells the apparent lag was almost identical to the physiological lag for aw values ranging from 0.997 to 0.970, as the majority of the cells in the initial population was able to grow in these conditions. As the aw decreased from 0.970 to 0.940 however, the number of cells in the population which were able to grow, decreased resulting to an increase in the pseudo-lag. The maximum value of pseudo-lag was 13.1h and it was observed at aw=0.940 where 10% of the total inoculated cells were able to grow. For heat stressed populations a pseudo-lag started to increase at higher aw conditions (0.982) compared to unheated cells. In contrast to the apparent lag, a linear relation between physiological lag and aw was observed for both unheated and heat stressed cells.

  13. Advanced microscopy of microbial cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... for visualization of variation between cells in phenotypic traits such as gene expression....

  14. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    bacteria in compact reaction zones about 100 m thick separated by an intermediate zone with low or null metabolic activity. Both identified microbial communities showed a very low diversity and were dominated by halophilic and halotolerant Nitrosomonas sp. and Candidatus Brocadia anammoxidans...

  15. Influence of the Application of Sewage Sludge and Presence of Pesticides on the Development of the Microbial Population of the Soil and on the Transformation of Organic Carbon and Nutrient Elements

    Directory of Open Access Journals (Sweden)

    M. E.  Sanchez

    2005-01-01

    Full Text Available The laboratory trial consisted in incubating samples of soil and soil treated with sewage sludge, with the application of organophosphate pesticides with different active ingredients under controlled conditions of temperature and moisture. On the basis of a previous study of the influence of the application of sludge on the degradation of pesticides in the soil, a kinetic study is included of the degradation process and we concentrate on its effects on the development of the microbial population and the mineralization of organic carbon, together with the transformation of the main nutritive elements for plants: nitrogen and phosphorus. Three different active ingredients were used: fenitrothion, diazinon and dimethoate, all of them organophosphates with different chemical structures. From the results, it is to be observed that for all the conditions studied, degradation followed first-order kinetics. The presence of pesticides in the soil produces an increase in micro-organism populations in comparison with the control sample in the different matrices assayed, favouring the mineralization of organic carbon. As for available nitrogen, the predominant form, either ammonia or nitrates, depends on the active ingredient applied. On the other hand, the use of pesticides favours the process of mineralization/solubilization of phosphorus.

  16. An Autotrophic Origin for the Coded Amino Acids is Concordant with the Coevolution Theory of the Genetic Code.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-10-01

    The coevolution theory of the origin of the genetic code maintains that the biosynthetic relationships between amino acids co-evolved with the genetic code organization. In other words, the metabolism of amino acids co-evolved with the organization of the genetic code because the biosynthetic pathways of amino acids occurred on tRNA-like molecules. Thus, a heterotrophic origin of amino acids-also only of those involved in the early phase of the structuring of the genetic code-would seem to contradict the main postulate of the coevolution theory. As a matter of fact, this origin not being linked to the metabolism of amino acids in any way-being taken from a physical setting-would seem to remove the possibility that this metabolism had instead heavily contributed to the structuring of the genetic code. Therefore, I have analyzed the structure of the genetic code and mechanisms that brought to its structuring for understanding if the coevolution theory is compatible with autotrophic or heterotrophic conditions. One of the arguments was that an autotrophic origin of amino acids would have the advantage to be able to directly link their metabolism to the structure of the genetic code if-as hypothesized by the coevolution theory-the biosyntheses of amino acids occurred on tRNA-like molecules. Simultaneously, a heterotrophic origin would not have been able to link the metabolism of amino acids to the structure of the genetic code for the absence of a precise determinism of allocation of amino acids, that is to say of a clear mechanism-linked to tRNA-like molecules, for example-that would have determined the specific pattern observed in the genetic code of the biosynthetic relationships between amino acids. The conclusion is that an autotrophic origin of coded amino acids would seem to be the condition under which the genetic code originated.

  17. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  18. Microbial Sulfur Geochemistry in Mine Systems (Invited)

    Science.gov (United States)

    Warren, L. A.; Norlund, K. L.; Hitchcock, A.

    2010-12-01

    Acid mine drainage (AMD), metal laden, acidic water, is the most pressing mining environmental issue on a global scale. While it is well recognized that the activity of autotrophic Fe and S bacteria amplify the oxidation of the sulfidic wastes, thereby generating acidity and leaching metals; the underlying microbial geochemistry is not well described. This talk will highlight results revealing the importance of microbial cooperation associated with a novel sulfur-metabolizing consortium enriched from mine waters. Results generated by an integrated approach, combining field characterization, geochemical experimentation, scanning transmission X-ray microscopy (STXM), and fluorescence in situ hybridization (FISH) [1]describing the underlying ecological drivers, the functionally relevant biogeochemical architecture of the consortial macrostructure as well as the identities of this environmental sulphur redox cycling consortium will be presented. The two common mine bacterial strains involved in this consortium, Acidithiobacillus ferroxidans and Acidiphilium sp., are specifically spatially segregated within a macrostructure (pod) of extracellular polymeric substance (EPS) that enables coupled sulphur oxidation and reduction reactions despite bulk, oxygenated conditions. Identical pod formation by type culture strains was induced and linked to ecological conditions. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with implications for both AMD mitigation and AMD carbon flux modeling. We are currently investigating the implications of these sulphur-processing pods for metal dynamics in mine systems. These results demonstrate how microbes can orchestrate their geochemical environment to facilitate metabolism, and underscore the need to consider microbial interactions and ecology in constraining their geochemical impacts. [1] Norlund, Southam, Tyliszcczak, Hu, Karunakaran, Obst

  19. Microbial Metalloproteomics

    Directory of Open Access Journals (Sweden)

    Peter-Leon Hagedoorn

    2015-12-01

    Full Text Available Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer a comprehensive overview of the research involving approaches that can be categorized as inductively coupled plasma (ICP-MS based methods, X-ray absorption/fluorescence, radionuclide based methods and bioinformatics. Important discoveries in microbial proteomics will be reviewed, as well as the outlook to new emerging approaches and research areas.

  20. Microbial Ecosystems, Protection of

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Nelson, K.E.

    2014-01-01

    Synonyms Conservation of microbial diversity and ecosystem functions provided by microbes; Preservation of microbial diversity and ecosystem functions provided by microbes Definition The use, management, and conservation of ecosystems in order to preserve microbial diversity and functioning. Introdu

  1. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz; Saunders, Aaron Marc; Larsen, Poul

    2013-01-01

    ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry...... plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years...

  2. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  3. Influencia de la agricultura de conservación en la temperatura del suelo y su relación con las poblaciones microbianas Influence of conservation agriculture over soil temperature and the relation with microbial populations

    Directory of Open Access Journals (Sweden)

    A. Muñoz

    2009-01-01

    óptimos de temperatura para el crecimiento microbiano en los manejos de agricultura de conservación.The temperature of the soil is a key factor in the growth of the maize, a sensible culture to the temperature variations, with high optimal temperature for germination of the seed, growth of plant and fruition. The conservation agriculture tends to diminish the temperature of the soil, due to the stubbles that are left in surface, in whose decomposition the microorganisms of the soil play a fundamental role, and to the associated increase of humidity this type of management. For a suitable management of soils under conservation agriculture is recommendable the study of the temperature and the microbial populations in the surface horizon. For these reasons, the objective of this study has been to make a comparative study of the oscillations of temperature in different managements from agriculture of conservation as opposed to the obtained with a conventional management, and to determine how affect these variations of temperature to the microbial populations associated to the rhizosphere of the culture. Field experiences have been made in four different managements under a same soil, located in contiguous subparcels; one of direct seeding (DS, two of direct seeding with cover (DSC with different antiquity from implantation and a conventional tillage (CT. It has been made an exhaustive measurement of the temperature of the soil during three years and a monitoring of the evolution of the microbial populations. The analysis of the results allows to conclude that during the period of culture takes place a diminution of the temperature in SD and SDC with respect to LC, with smaller oscillations of temperature for the conservation agriculture. In addition, an increase in the microbial populations associated to SD and SDC with respect to LC is observed, that would indicate the existence of optimal intervals of temperature for the microbial growth in the managements of

  4. A novel high-throughput drip-flow system to grow autotrophic biofilms of contrasting diversities

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen;

    The impact of community diversity on the functioning and assembly of microbial systems remains a central questions in microbial ecology. This question is often addressed by either combining a few cultures without necessarily a history of coexistence, or by using environmental communities, which......, the effect of community composition and diversity on various ecological processes can then be rigorously examined. We hypothesize that the increased loading, resulting in thicker biofilms, will decrease the drift in the community and impose limited environmental filtering by providing more diverse niches....... Thus, thicker biofilms are likely to host greater diversity. A system with 40 replicates has been constructed using flow-through polypropylene columns housing a defined number of single-sized glass beads supported by a stainless steel mesh. Biofilms consisting primarily of ammonia oxidizing and nitrite...

  5. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    Science.gov (United States)

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.

  6. Characterization of the start-up period of single-step autotrophic nitrogen removal in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-song; QIN Yu; FANG Fang; YANG Guo-hong

    2008-01-01

    The characteristics of the start-up period of single-step autotrophic nitrogen removal process were investigated. The autotrophic nitrogen removal process used a sequencing batch reactor to treat wastewater of medium to low ammonia-nitrogen concentration, with dissolved oxygen (DO), hydraulic retention time (HRT) and temperature controlled. The experimental conditions were temperature at (30(2) (C, ammonia concentration of (60 to 120) mg/L, DO of (0.8 to 1.0) mg/L, pH from 7.8 to 8.5 and HRT of 24 h. The rates of nitrification and nitrogen removal turn out to be 77% and 40%, respectively, after a start up period going through three stages divided according to nitrite accumulation: sludge domestication, nitrifying bacteria selection and sludge adaptation. It is demonstrated that dissolved oxygen is critical to nitrite accumulation and elastic YJZH soft compound packing is superior to polyhedral hollow balls in helping the bacteria adhere to the membrane.

  7. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    Science.gov (United States)

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h).

  8. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Chang; Dong Li; Yuhai Liang; Zhuo Yang; Shaoming Cui; Tao Liu; Huiping Zeng

    2013-01-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated.The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400,300,and 200 mg N/L) but constant influent ammonia load.The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23℃).The average removal rate and removal loading of NH4 +-N and TN was 83.90%,1.26 kg N/(m3.day),and 70.14%,1.09 kg N/(m3.day),respectively.Among the influencing factors like pH,dissolved oxygen and alkalinity,it was indicated that the pH was the key parameter of the performance of the CANON system.Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way.Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria,which had low diversity in different stages,while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable.These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation,which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  9. The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance.

    Science.gov (United States)

    Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L

    2012-05-01

    The goal of this study was to evaluate the contribution of oak trees (Quercus spp.) and their associated mycorrhizal fungi to total community soil respiration in a deciduous forest (Black Rock Forest) and to explore the partitioning of autotrophic and heterotrophic respiration. Trees on twelve 75 × 75-m plots were girdled according to four treatments: girdling all the oaks on the plot (OG), girdling half of the oak trees on a plot (O50), girdling all non-oaks on a plot (NO), and a control (C). In addition, one circular plot (diameter 50 m) was created where all trees were girdled (ALL). Soil respiration was measured before and after tree girdling. A conservative estimate of the total autotrophic contribution is approximately 50%, as indicated by results on the ALL and OG plots. Rapid declines in carbon dioxide (CO(2)) flux from both the ALL and OG plots, 37 and 33%, respectively, were observed within 2 weeks following the treatment, demonstrating a fast turnover of recently fixed carbon. Responses from the NO and O50 treatments were statistically similar to the control. A non-proportional decline in respiration rates along the gradient of change in live aboveground biomass complicated partitioning of the overall rate of soil respiration and indicates that belowground carbon flux is not linearly related to aboveground disturbance. Our findings suggest that in this system there is a threshold disturbance level between 35 and 74% of live aboveground biomass loss, beyond which belowground dynamics change dramatically.

  10. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].

    Science.gov (United States)

    Mokrosnop, V M; Polishchuk, A V; Zolotareva, E K

    2016-01-01

    The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2-3 and 1.6-2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2-7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

  11. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria.

    Science.gov (United States)

    Tahon, Guillaume; Tytgat, Bjorn; Stragier, Pieter; Willems, Anne

    2016-01-01

    Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.

  12. 日粮中添加维基尼亚霉素对肉牛瘤胃微生物数量的影响%Influence of adding virginiamycin to diets of steers on ruminal microbial populations

    Institute of Scientific and Technical Information of China (English)

    郭同军; 王加启; 卜登攀; 王建平; 刘开朗; 李旦; 栾绍宇; 哈斯额尔敦

    2009-01-01

    This experiment was conducted to investigate the influence of adding virginiamycin to diets of steers on ruminal microbial populations. Four ruminally cannulated steers (559.4±30.1 kg) were utilized in a repeat crossover design. Treatment group added virginiamycin. Ruminal fluid was collected on 28 d of experimental period, starting at 8:00 prefeeding and at 12:00 and 16:00 post-feeding from the anterior, dorsal, and mid-ventral region of the rumen. The Amount of microbial was counted after culturing using roll-tube technique. We detected that adding virginiamycin to diets of steers could active suppression and regulate amylolytic bacteria populations and proteolytic bacteria populations (P<0.01). But the populations of cellulolytic bacteria, total viable bacteria and protozoon were no difference between control group and treatment group. Statistics result of virginiamycin regulated that the different sampling time showed: viginiamycin could inhibite and regulate amylolytic bacteria populations when the sampling time was at 8:00 (P<0.05). Viginiamycin could inhibite and regulate amylolytic bacteria populations and proteolytic bacteria populations when the sampling time was at 12: 00(P<0.05). But the populations of cellulolytic bacteria, total viable bacteria and protozoon were no difference between control group and treatment group at the different sampling time. But the populations of total viable bacteria and protozoon to showed a tendency that "high-low-high" with time changed between control group and treatment group. The results showed that virginiamycin could active suppression and regulate amylolytic bacteria populations and proteolytic bacteria populations on high concentration. Therefore, virginiamycin potentially could prevent ruminal acidosis.%选用4头体重为559.4±30.1 kg,健康且装有瘤胃瘘管的4岁龄杂交肉牛,进行重复交叉试验设计,处理组添加维吉尼亚霉素,旨在观察日粮中添加维基尼亚霉素对瘤胃微生物

  13. A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough.

    Science.gov (United States)

    Lhomme, Emilie; Mezaize, Sandra; Ducasse, Maren Bonnand; Chiron, Hubert; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane; Zagorec, Monique; Dousset, Xavier; Onno, Bernard

    2014-03-01

    To develop a method for organic gluten-free (GF) sourdough bread production, a long-term and original wheat sourdough was refreshed with GF flours. The dynamics of the sourdough microbiota during five months of back-slopping were analyzed by classical enumeration and molecular methods, including PCR-temporal temperature gel electrophoresis (PCR-TTGE), multiplex PCR, and pulsed field gel electrophoresis (PFGE). The results showed that the yeast counts remained constant, although Saccharomyces cerevisiae, present in the initial wheat sourdough, was no longer detected in the GF sourdough, while lactic acid bacteria (LAB) counts increased consistently. In the first phase, which was aimed at obtaining a GF sourdough from wheat sourdough, Lactobacillus sanfranciscensis, L. plantarum, and L. spicheri were the main LAB species detected. During the second phase, aimed at maintaining the GF sourdough, the L. plantarum and L. spicheri populations decreased whereas L. sanfranciscensis persisted and L. sakei became the predominant species. Multiplex PCRs also revealed the presence of several L. sakei strains in the GF sourdough. In a search for the origin of the LAB species, PCR-TTGE was performed on the flour samples but only L. sanfranciscensis was detected, suggesting a flour origin for this typical sourdough species. Thus, while replacement of the wheat flour by GF flour influenced the sourdough microbiota, some of the original sourdough LAB and yeast species remained in the GF sourdough.

  14. Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers.

    Science.gov (United States)

    Sun, Hong; Tang, Jiang-wu; Yao, Xiao-hong; Wu, Yi-fei; Wang, Xin; Feng, Jie

    2013-04-01

    Two experiments were conducted to test the feeding value of fermented cottonseed meal (FCSM) in broilers. In experiment 1, 480 1-day-old male yellow-feathered broilers were allocated into 4 dietary treatments with 6 replicates (20 birds per replicate) to examine the effects of FCSM on the growth response of chickens. Experimental feeding was performed for 6 weeks in two phases (starter, days 0 to 21; finisher, days 22 to 42). FCSM was used at 0, 40, 80, and 120 g/kg levels to replace soybean meal in the basal diet. The dietary inclusion of 40 and 80 g/kg FCSM increased (quadratic (Q): pmicrobial populations, intestinal morphology, and digestive enzyme activity of broilers. The number of lactobacilli in the cecal digesta increased at day 21 (pamylase and protease at day 21, as well as protease at day 42. In conclusion, the appropriate inclusion of FCSM improves growth, cecal microflora, intestinal morphology, and digestive enzyme activity in yellow-feathered broilers.

  15. Bioremediation of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process.

    Science.gov (United States)

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Zhang, Huiwen

    2014-06-15

    Long-term and excessive application of the herbicide chlorimuron-ethyl has led to soil degradation and crop rotation barriers. In the current study, we isolated bacterial strain Hansschlegelia sp. CHL1, which can utilize chlorimuron-ethyl as its sole carbon and energy source, and investigated its application in soil bioremediation. Indigenous microbial populations and N-cycling function in the soil were also investigated during the bioremediation process by monitoring the copy numbers of bacterial and fungal marker genes, as well as N-cycling functional genes (nifH, amoA, nirS, and nirK). Results showed that >95% of chlorimuron-ethyl could be degraded within 45 days in soils inoculated with CHL1. Inoculation at two time points resulted in a higher remediation efficiency and longer survival time than a single inoculation. At the end of the 60-day incubation, the copy numbers of most indicator genes were recovered to the level of the control, even in the single-inoculation soils. A double inoculation was necessary for recovery of nifH. However, the abundance of nirK and ammonia-oxidizing bacterial genes were significantly inhibited regardless of inoculum. The results suggested that CHL1 is effective for the remediation of chlorimuron-ethyl-contaminated soil, and could partially reduce the toxic effects of chlorimuron-ethyl on soil microorganisms.

  16. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    Science.gov (United States)

    Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2016-05-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.

  17. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): investigation at the single-cell level.

    Science.gov (United States)

    Borderie, Fabien; Denis, Michel; Barani, Aude; Alaoui-Sossé, Badr; Aleya, Lotfi

    2016-06-01

    The authors investigated the microbial composition of phototrophic biofilms proliferating in a show cave using flow cytometry for the first time in such a context. Results are based on several biofilms sampled in the Moidons Caves (France) and concern both heterotrophic prokaryotes and autotrophic microorganisms. Heterotrophic microorganisms with low nucleic acid content were dominant in biofilms, as can be expected from the oligotrophic conditions prevailing within the cave. Analysis of the biofilm autotrophic components revealed the presence of several taxa, particularly the unicellular green algae Chlorella minutissima, specifically well adapted to this cave. Relationships between flow cytometry results and environmental variables determined in the cave were established and discussed so as to better understand biofilm proliferation processes in caves.

  18. Microbial field pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  19. População microbiana total e solubilizadora de fosfato em solo submetido a diferentes sistemas de cultivo Total microbial and phosphate-solubilizing population in soil submitted to different cultivation systems

    Directory of Open Access Journals (Sweden)

    GIOVANE BARROTI

    2000-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de diferentes espécies de plantas, fontes de fósforo e calagem sobre a população microbiana total e solubilizadora de fosfato. Foram isolados fungos e bactérias capazes de solubilizar hidroxiapatita, proporcionando P solúvel. O experimento utilizado foi em blocos ao acaso com fatorial 3x3x2. E os fatores avaliados foram espécies de plantas (controle, braquiária e guandu, fertilizantes (controle, superfosfato simples e fosfato de rocha, ambos na dose de 400 kg ha-1 de P(20(5 e calagem (com e sem calcário. A população bacteriana cresceu pelo efeito da calagem, e a de fungos aumentou, independentemente da calagem, nas parcelas cultivadas com braquiária e fertilizadas com superfosfato. Foi constatado incremento de biomassa-P microbiana sobre o controle por influência da braquiária (23,9%, do superfosfato (30,9% e da calagem (46,9%. O número de bactérias solubilizadoras foi favorecido pela calagem ou pelo plantio de guandu adubado com fosfato natural ou com braquiária sem adubação. Os fungos solubilizadores aumentaram na ausência de planta ou de adubação e na presença de guandu com fosfato natural. Finalmente, a calagem favoreceumais o crescimento dos fungos solubilizadores, em comparação com o controle, nos tratamentos fosfato natural, braquiária ou guandu.The objective of the present study was to evaluate the effect of different plant species, phosphorus sources, and liming on the total microbial and phosphate-solubilizing population. In order to achieve that, bacteria and fungi capable of solubilizing hydroxyapatite providing available P were isolated. An experiment was carried out in a randomized factorial block design 3x3x2. The factors evaluated were plant species (control, Brachiaria ruziziensis and Cajanus cajan, fertilizers (control, simple superphosphate and rock phosphate, both at the dose of 400 kg ha-1 of P(20(5 and liming (with and without lime. While the bacterial

  20. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b+Gr-1+cells and accelerated establishment of the CD4+T cell population in the spleen

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov; Metzdorff, Stine Broeng; Bergström, Anders;

    2015-01-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b+Gr-1+ splenocytes present perinatally was sustained for a longer period in conventionally...

  1. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, A.P.; Jyothibabu, R.; Jagadeesan, L.; Lallu, K.R.; Karnan, C.

    , the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8×106...

  2. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan;

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from nitro...

  3. Effects of different forest stand improvement models on soil enzyme activities and microbial population%不同林分改造模式对土壤酶活性及微生物数量的影响

    Institute of Scientific and Technical Information of China (English)

    郭雄飞; 陈璇; 黎华寿; 冼丽铧; 董奇妤; 陈红跃

    2015-01-01

    以广东省佛山市南海区的4种宫胁法改造林地、传统法改造林地和不进行林分改造的对照样地为研究对象,对不同样地的土壤酶活性和土壤微生物数量进行研究,以探讨不同林分改造类型的土壤生物学特性。结果显示:不同林分改造类型的林地土壤酶活性差异显著,其中宫胁法2和传统法林地土壤酶活性显著高于其它改造类型,宫胁法2改造林地土壤脲酶、磷酸酶和过氧化氢酶活性均居最高水平,宫胁法3和宫胁法4最低;不同的林分改造措施土壤微生物各生理类群的数量差异显著,但均表现为细菌数量最多,放线菌次之,真菌最少;各改造类型中,宫胁法2在土壤细菌、真菌、放线菌数量和微生物总量中均表现最高,宫胁法1在细菌、真菌和微生物总量均表现最低,说明宫胁法2在增加土壤微生物数量上表现最为显著。因此,宫胁法2最有利于改善土壤生物学特性,从而能创造植被恢复过程中良好的微生态环境。%In order to investigate the improvement effects of soil biological characteristics in different types of forest stand in Nanhai District, Foshan city, Guangdong province (with 4 kinds of Miyawaki methods, traditional transforming method and no improved), the soil enzyme activities and microbial population of the sample plots were studied toifnd out the soil biological properties with different forest transforming types. The results show that soil enzyme activities under different stand improvement models was different, of them Miyawaki method No.2 and traditional method had signiifcantly higher soil enzyme activities than those of other improvement models; The activities of soil urease, phosphatase and catalase in the lands transformed with Miyawaki method No.2 were the highest of all, those of Miyawaki method No.3 and Miyawaki method No.4were the lowest; The soil microbial quantity of different physiological

  4. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  5. EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS

    Science.gov (United States)

    Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...

  6. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation.

    Science.gov (United States)

    Courtens, Emilie N P; Boon, Nico; De Clippeleir, Haydée; Berckmoes, Karla; Mosquera, Mariela; Seuntjens, Dries; Vlaeminck, Siegfried E

    2014-03-01

    With oxygen supply playing a crucial role in an oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor (RBC), its controlling factors were investigated in this study. Disc rotation speeds (1.8 and 3.6rpm) showed no influence on the process performance of a lab-scale RBC, although abiotic experiments showed a significant effect on the oxygenation capacity. Estimations of the biological oxygen uptake rate revealed that 85-89% of the oxygen was absorbed by the microorganisms during the air exposure of the discs. Indeed, increasing the disc immersion (50 to 75-80%) could significantly suppress undesired nitratation, on the short and long term. The presented results demonstrated that nitratation could be controlled by the immersion level and revealed that oxygen control in an OLAND RBC should be predominantly based on the atmospheric exposure percentage of the discs.

  7. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Krause-Jensen, Dorte; Dalsgaard, Tage;

    2014-01-01

    We measured net planktonic community production (NCP), community respiration (CR), and gross primary production (GPP) in September, February, and May in a subarctic Greenland fjord influenced by glacial meltwater and terrestrial runoff. Potential controls of pelagic carbon cycling, including...... the role of terrestrial carbon, were investigated by relating surface-water partial pressure of CO2 (PCO2), NCP, GPP, and CR to physicochemical conditions, chlorophyll a (Chl a) concentration, phytoplankton production, inventories of particulate (POC) and dissolved organic carbon (DOC) and vertical flux...... of POC. The planktonic community was net heterotrophic in the photic zone in September (NCP = −21 ± 45 mmol O2 m−2 d−1) and February (NCP = −17 mmol O2 m−2 d−1) but net autotrophic during a developing spring bloom in May (NCP = 129 ± 102 mmol O2 m−2 d−1). In September, higher temperatures, shorter day...

  8. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    Science.gov (United States)

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo

    2016-07-01

    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel.

  9. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".

    Science.gov (United States)

    Rasigraf, Olivia; Kool, Dorien M; Jetten, Mike S M; Sinninghe Damsté, Jaap S; Ettwig, Katharina F

    2014-04-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic

  10. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes.

    Science.gov (United States)

    Nguyen, Van Khanh; Hong, Sungsug; Park, Younghyun; Jo, Kyungmin; Lee, Taeho

    2015-02-01

    Two-chamber bioelectrochemical systems (BESs) have recently been developed for nitrate removal from nitrate-contaminated water. In this study, we compared the nitrate removal performance of biocathodes of BESs when using abiotic and biotic anodes. Acetate was used as electron donor in BESs with biotic anode, whereas a direct current power supply was used as energy source in BESs with abiotic anode. The nitrogen removal efficiency increased from 18.1% to 43.0% when the voltage supplied to the BES with abiotic anode increased from 0.7 V to 0.9 V, whereas no higher removal efficiency was obtained at a higher supplied voltage (1.1 V). The highest efficiency (78.0%) of autotrophic nitrogen removal was achieved when electron transfer from the biotic anode chamber of BESs was used. Unexpectedly, control of the cathode potential did not enhance nitrate removal in BESs with biotic anode. Special attention was paid to elucidate the differences of bacterial communities catalysing autotrophic denitrification in the biocathodes of BESs with abiotic and biotic anodes. Data from denaturing gradient gel electrophoresis and phylogenetic analysis suggested that denitrification in BESs with abiotic anode could be attributed to Nitratireductor sp., Shinella sp., and Dyella sp., whereas the dominant bacterial denitrifiers in BESs with biotic anode were found to be Pseudomonas sp., Curtobacterium sp., and Aeromonas sp. These results implied that biocathodes of BESs with biotic anode are more efficient than those of BESs with abiotic anode for nitrate removal from nitrate-contaminated water in practical applications.

  11. Universality of human microbial dynamics

    Science.gov (United States)

    Bashan, Amir; Gibson, Travis E.; Friedman, Jonathan; Carey, Vincent J.; Weiss, Scott T.; Hohmann, Elizabeth L.; Liu, Yang-Yu

    2016-06-01

    Human-associated microbial communities have a crucial role in determining our health and well-being, and this has led to the continuing development of microbiome-based therapies such as faecal microbiota transplantation. These microbial communities are very complex, dynamic and highly personalized ecosystems, exhibiting a high degree of inter-individual variability in both species assemblages and abundance profiles. It is not known whether the underlying ecological dynamics of these communities, which can be parameterized by growth rates, and intra- and inter-species interactions in population dynamics models, are largely host-independent (that is, universal) or host-specific. If the inter-individual variability reflects host-specific dynamics due to differences in host lifestyle, physiology or genetics, then generic microbiome manipulations may have unintended consequences, rendering them ineffective or even detrimental. Alternatively, microbial ecosystems of different subjects may exhibit universal dynamics, with the inter-individual variability mainly originating from differences in the sets of colonizing species. Here we develop a new computational method to characterize human microbial dynamics. By applying this method to cross-sectional data from two large-scale metagenomic studies—the Human Microbiome Project and the Student Microbiome Project—we show that gut and mouth microbiomes display pronounced universal dynamics, whereas communities associated with certain skin sites are probably shaped by differences in the host environment. Notably, the universality of gut microbial dynamics is not observed in subjects with recurrent Clostridium difficile infection but is observed in the same set of subjects after faecal microbiota transplantation. These results fundamentally improve our understanding of the processes that shape human microbial ecosystems, and pave the way to designing general microbiome-based therapies.

  12. Effects of Aluminum Phosphide on Soil Microbial Population and Enzyme Activities%磷化铝对土壤微生物数量和酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    仉欢; 朱玉坤; 乔康; 王开运

    2012-01-01

    Effects of aluminum phosphide (0.1, 1 mg·g-1 and 10 mg·g-1) on soil microbial population and enzyme activities were studied under laboratory control condition. The results indicated that, all concentrations of aluminum phosphide had inhibitory effect on soil bacteria, fungi and actinomyces and the inhibitory effect was more obvious with concentration increased. However, the effect caused by low concentration (0.1 mg·g-1) returned to the control level after a period of treatment. Aluminum phosphide had inhibitory effect on soil urease, and the inhibitory effect increased with the increasing concentration. Low concentration of aluminum phosphide had no significant inhibitory effect on soil invertase, while the treatment with the highest concentration (10 mg·g-1) had the greatest inhibition all the time. All concentrations of aluminum phosphide had inhibitory or stimulatory effect on soil hydrogen peroxidase in the early stage, while the effect returned to the control level on 30 days after treatment. The present data supported the conclusion that aluminum phosphide at the routine dose had certain effect on soil microbial population and enzyme activities, but the effect disappeared and recovered to the control level after a period.%为明确磷化铝对土壤微生物数量和酶活性的影响,采用室内培养的方法,研究了经0.1、1 mg? g4和10 mg?g-1 3个浓度磷化铝熏蒸处理后,供试土壤中微生物数量和土壤酶活性的变化.结果表明,磷化铝处理土壤后,各个浓度的磷化铝对土壤细菌、真菌和放线菌数量具有抑制作用,浓度越高,抑制作用越强,但一段时间后低浓度(0.1 mg?g-1)处理对土壤微生物数量的影响恢复至对照水平.磷化铝对土壤脲酶表现为抑制作用,并随浓度升高而增强;低浓度处理对土壤中的蔗糖酶活性抑制作用不明显,而高浓度(10mg?g-1)处理表现为强烈的抑制作用;各浓度处理初期对土壤过氧化氢酶表现为

  13. Populações microbianas em solo agrícola sob aplicação de lodos de curtume Microbial populations affected by the soil disposal of tannery sludge

    Directory of Open Access Journals (Sweden)

    Luiz Ermindo Cavallet

    2008-12-01

    estado natural.Tannery residues are potential pollution sources in several regions of Brazil, mainly in the State of Rio Grande do Sul. One of the alternatives for the final destination of the sludge resulting from the waste water treatment of tanning industries is the disposal and recycling in the soil. To evaluate the effects of two waste types originated from primary treatment of tannery residual water on soil microbial populations, an open air pot experiment was carried out in a Paleudult soil with ten percent clay from Estância Velha, Rio Grande do Sul State, Brazil, where several tannery industries are located. Mineral fertilization was compared to sludge application of 15, 30 and 60 t ha-1 of sludge originated either from tannin or Cr tanning agents. One treatment with cattle manure and a control were also included. Chromium soil, organic C concentrations, pH and bacteria, fungi and actinomyces populations were determined. Biological degradation was efficient for sludge with Cr up to 60 t ha-1 level and for tannin sludge up to 30 t ha-1 dose. Except for the sludge with Cr on the fungus population, the bacteria, fungi and actinomyces populations were stimulated by tannery sludge application. Due to the organic matter concentration in the soil, bacteria microbial populations were stimulated more than fungi and actinomyces. Chromium, pH and organic C increased as a result of the soil disposal of tannery sludges. The application of both tannery residues did not decrease the biological degradation process when compared to normal soil levels.

  14. Enhancing the microbial population within poultry

    Science.gov (United States)

    Recent research advances have led to an explosion in information on the composition and impact of the microbiome on health and productivity that is nothing short of revolutionary. The accelerating rate of discoveries is dizzying, and we see in a way that we never could before the importance of the ...

  15. Microbial conversions of terpenoids

    OpenAIRE

    Parshikov, Igor A

    2015-01-01

    The monograph describes examples of the application of microbial technology for obtaining of derivatives of terpenoids. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.

  16. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  17. Microfluidics and microbial engineering.

    Science.gov (United States)

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  18. An Economic Framework of Microbial Trade.

    Directory of Open Access Journals (Sweden)

    Joshua Tasoff

    Full Text Available A large fraction of microbial life on earth exists in complex communities where metabolic exchange is vital. Microbes trade essential resources to promote their own growth in an analogous way to countries that exchange goods in modern economic markets. Inspired by these similarities, we developed a framework based on general equilibrium theory (GET from economics to predict the population dynamics of trading microbial communities. Our biotic GET (BGET model provides an a priori theory of the growth benefits of microbial trade, yielding several novel insights relevant to understanding microbial ecology and engineering synthetic communities. We find that the economic concept of comparative advantage is a necessary condition for mutualistic trade. Our model suggests that microbial communities can grow faster when species are unable to produce essential resources that are obtained through trade, thereby promoting metabolic specialization and increased intercellular exchange. Furthermore, we find that species engaged in trade exhibit a fundamental tradeoff between growth rate and relative population abundance, and that different environments that put greater pressure on group selection versus individual selection will promote varying strategies along this growth-abundance spectrum. We experimentally tested this tradeoff using a synthetic consortium of Escherichia coli cells and found the results match the predictions of the model. This framework provides a foundation to study natural and engineered microbial communities through a new lens based on economic theories developed over the past century.

  19. An Economic Framework of Microbial Trade.

    Science.gov (United States)

    Tasoff, Joshua; Mee, Michael T; Wang, Harris H

    2015-01-01

    A large fraction of microbial life on earth exists in complex communities where metabolic exchange is vital. Microbes trade essential resources to promote their own growth in an analogous way to countries that exchange goods in modern economic markets. Inspired by these similarities, we developed a framework based on general equilibrium theory (GET) from economics to predict the population dynamics of trading microbial communities. Our biotic GET (BGET) model provides an a priori theory of the growth benefits of microbial trade, yielding several novel insights relevant to understanding microbial ecology and engineering synthetic communities. We find that the economic concept of comparative advantage is a necessary condition for mutualistic trade. Our model suggests that microbial communities can grow faster when species are unable to produce essential resources that are obtained through trade, thereby promoting metabolic specialization and increased intercellular exchange. Furthermore, we find that species engaged in trade exhibit a fundamental tradeoff between growth rate and relative population abundance, and that different environments that put greater pressure on group selection versus individual selection will promote varying strategies along this growth-abundance spectrum. We experimentally tested this tradeoff using a synthetic consortium of Escherichia coli cells and found the results match the predictions of the model. This framework provides a foundation to study natural and engineered microbial communities through a new lens based on economic theories developed over the past century.

  20. Microbial transformation of synthetic estrogen 17alpha-ethinylestradiol

    Energy Technology Data Exchange (ETDEWEB)

    Cajthaml, Tomas, E-mail: cajthaml@biomed.cas.c [Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-142 20 Prague 4 (Czech Republic); Kresinova, Zdena; Svobodova, Katerina; Sigler, Karel; Rezanka, Tomas [Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-142 20 Prague 4 (Czech Republic)

    2009-12-15

    Natural estrogens such as estrone, 17beta-estradiol, estriol, and the particularly recalcitrant synthetic estrogen 17alpha-ethinylestradiol used as oral contraceptive, accumulate in the environment and may give rise to health problems. The processes participating in their removal from soil, wastewater, water-sediments, groundwater-aquifer material, and wastewater or sewage treatment plant effluents may involve the action of bacterial and microbial consortia, and in some cases fungi and algae. This review discusses the different efficiencies of bacterial degradation of 17alpha-ethinylestradiol under aerobic and anaerobic conditions, the role of sulfate-, nitrate-, and iron-reducing conditions in anaerobic degradation, and the role of sorption. The participation of autotrophic ammonia oxidizing bacteria and heterotrophic bacteria in cometabolic degradation of estrogens, the estrogen-degrading action of ligninolytic fungi and their extracellular enzymes (lignin peroxidase, manganese-dependent peroxidase, versatile peroxidase, laccase), and of algae are discussed in detail. - Current knowledge of 17alpha-ethinylestradiol microbial transformation is summarized.

  1. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.

    Science.gov (United States)

    Koller, Martin; Maršálek, Lukáš; de Sousa Dias, Miguel Miranda; Braunegg, Gerhart

    2017-07-25

    Sustainable production of microbial polyhydroxyalkanoate (PHA) biopolyesters on a larger scale has to consider the "four magic e": economic, ethical, environmental, and engineering aspects. Moreover, sustainability of PHA production can be quantified by modern tools of Life Cycle Assessment. Economic issues are to a large extent affected by the applied production mode, downstream processing, and, most of all, by the selection of carbon-rich raw materials as feedstocks for PHA production by safe and naturally occurring wild type microorganisms. In order to comply with ethics, such raw materials should be used which do not interfere with human nutrition and animal feed supply chains, and shall be convertible towards accessible carbon feedstocks by simple methods of upstream processing. Examples were identified in carbon-rich waste materials from various industrial braches closely connected to food production. Therefore, the article shines a light on hetero-, mixo-, and autotrophic PHA production based on various industrial residues from different branches. Emphasis is devoted to the integration of PHA-production based on selected raw materials into the holistic patterns of sustainability; this encompasses the choice of new, powerful microbial production strains, non-hazardous, environmentally benign methods for PHA recovery, and reutilization of waste streams from the PHA production process itself.

  2. Microbial community dynamics in the forefield of glaciers.

    Science.gov (United States)

    Bradley, James A; Singarayer, Joy S; Anesio, Alexandre M

    2014-11-22

    Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.

  3. Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater.

    Science.gov (United States)

    Park, Jung-Hun; Choi, Okkyoung; Lee, Tae-Ho; Kim, Hyunook; Sang, Byoung-In

    2016-11-01

    Wastewaters from swine farms, nitrogen-dealing industries or side-stream processes of a wastewater treatment plant (e.g., anaerobic digesters, sludge thickening processes, etc.) are characterized by low C/N ratios and not easily treatable. In this study, a hollow fiber-membrane biofilm reactors (HF-MBfR) system consisting of an O2-based HF-MBfR and an H2-based HF-MBfR was applied for treating high-strength wastewater. The reactors were continuously operated with low supply of O2 and H2 and without any supply of organic carbon for 250 d. Gradual increase of ammonium and nitrate concentration in the influent showed stable and high nitrogen removal efficiency, and the maximum ammonium and nitrate removal rates were 0.48 kg NH4(+)-N m(-3) d(-1) and 0.55 kg NO3(-)-N m(-3) d(-1), respectively. The analysis of the microbial communities using pyrosequencing analysis indicated that Nitrosospira multiformis, ammonium-oxidizing bacteria, and Nitrobacter winogradskyi and Nitrobacter vulgaris, nitrite-oxidizing bacteria were highly enriched in the O2-based HF-MBfR. In the H2-based HF-MBfR, hydrogenotrophic denitrifying bacteria belonging to the family of Thiobacillus and Comamonadaceae were initially dominant, but were replaced to heterotrophic denitrifiers belonging to Rhodocyclaceae and Rhodobacteraceae utilizing by-products induced from autotrophic denitrifying bacteria. The pyrosequencing analysis of microbial communities indicates that the autotrophic HF-MBfRs system well developed autotrophic nitrifying and denitrifying bacteria within a relatively short period to accomplish almost complete nitrogen removal.

  4. Destiny of microbial aerosol in confined habitat

    Science.gov (United States)

    Viacheslav, Ilyin; Tikhomirov, Alexander A.; Novikova, Nataliya; Nickolay Manukovsky, D..; Kharin, Sergey; Pasanen, Pertti

    Biomodeling experiment was performed at the Institute of Biophysics in Krasnoyarsk dedicated to modeling the bacterial aerosol behavior in airtight chamber. The experiment was perform an one of workpackages of FP-7 project BIOSMHARS. Bacterial aerosol included particles of bacteria and fungi: Staphylococcus epidermidis, Bacillus licheniformis and Penicillium expansum The experiments allowed the following conclusions: 1. The major trend in air and surface contamination is permanent presence of the microbial factor throughout the time of generation. In the course of generation, level of contamination was gradually dropping except for the upward trend at the end of generation. These patterns were confirmed equally by the results of sedimentation studies and measurements using the Andersen impact 2. Sedimentation of airborne particles containing microbes went on at least two hours after the generation had been finished. However, level of this late sedimentation was approximately 10 folds less as compared with that in the course of generation. 3. Horizontal surfaces appear to be particularly vulnerable loci in airtight rooms. Their contamination was the highest. Levels of their contamination were higher than elsewhere. The closer is the source, the higher the level of contamination. 4. Walls were least contaminated. The ceiling was essentially clean. Air in the vicinity of the ceiling contained microbiota little if any. To summarize, the modeling experiments showed that the microbial component is a permanent resident of airtight rooms no matter decontamination effort (HEPA filters). The gravitational forces ensure that air cleans from microbiota by way of sedimentation. At the same time, together with microparticles microflora accumulates on horizontal surfaces which become the loci of microbes deposition and development. Therefore, despite the system of microbial control, risks of infection still raises the major concern for those who work in airtight facilities

  5. A thermodynamic theory of microbial growth.

    Science.gov (United States)

    Desmond-Le Quéméner, Elie; Bouchez, Théodore

    2014-08-01

    Our ability to model the growth of microbes only relies on empirical laws, fundamentally restricting our understanding and predictive capacity in many environmental systems. In particular, the link between energy balances and growth dynamics is still not understood. Here we demonstrate a microbial growth equation relying on an explicit theoretical ground sustained by Boltzmann statistics, thus establishing a relationship between microbial growth rate and available energy. The validity of our equation was then questioned by analyzing the microbial isotopic fractionation phenomenon, which can be viewed as a kinetic consequence of the differences in energy contents of isotopic isomers used for growth. We illustrate how the associated theoretical predictions are actually consistent with recent experimental evidences. Our work links microbial population dynamics to the thermodynamic driving forces of the ecosystem, which opens the door to many biotechnological and ecological developments.

  6. The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD(+) Oxidoreductase Essential for Autotrophic Growth

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, PL; Zhang, T; Dar, SA; Leang, C; Lovley, DR

    2012-12-26

    It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD(+) oxidoreductase which contributes to ATP synthesis by an H+-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H-2 as the electron source and CO2 as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation. IMPORTANCE Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as

  7. The Robin, Erithacus Rubecula (Passeriformes, Turdidae, As a Component of Autotrophic Consortia of Forest Cenoses, Northeast Ukraine

    Directory of Open Access Journals (Sweden)

    Chaplygina A. B.

    2016-08-01

    Full Text Available The role of the robin, Erithacus rubecula Linnaeus, 1758 as a consort of autotrophic consortia is considered. It has been found that representatives of 9 higher taxa of animals (Mammalia, Aves, Gastropoda, Insecta, Arachnida, Acarina, Malacostraca, Diplopoda, Clitellata have trophic and topical links with the robin. At the same time, the robin is a consort of determinants of autotrophic consortia, which core is represented mostly by dominating species of deciduous trees (Quercus robur Linnaeus, 1753 (24.6 %, Tilia cordata Miller, 1768 (17.5 %, Acer platanoides Linnaeus, 1753 (22.8 %, Acer campestre Linnaeus, 1753, and also by sedges (Carex sp. and grasses (Poaceae. The robin also belongs to the concentre of the second and higher orders as a component of forest biogeocenoses and forms a complex trophic system. In the diet of its nestlings, there have been found 717 objects from 32 invertebrate taxa, belonging to the phylums Arthropoda (99.2 %, 31 species and Annelida (0.8 %, 1 species. The phylum Arthropoda was represented by the most numerous class Insecta (76.9 %, in which 10 orders (Lepidoptera (46.8 % dominates and 20 families were recorded, and also by the classes Arachnida (15.0 %, Malacostraca (5.3 % and Diplopoda (1.9 %. The invertebrate species composition was dominated by representatives of a trophic group of zoophages (14 species; 43.8 %; the portion of phytophages (7 species; 21.9 %, saprophages (18.7 %, and necrophages (15.6 % was the less. The highest number of food items was represented by phytophages (N = 717; 51 %, followed by zoophages (34 %, saprophages (12 %, and necrophages (3 %. The difference among study areas according to the number of food items and the number of species in the robin nestling diet is shown. In NNP “HF”, the highest number of food items was represented by phytophages - 47 % (N = 443, whereas zoophages were the most species-rich group (43.3 %, 13 species. In NNP “H”, phytophages also prevailed in

  8. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    Energy Technology Data Exchange (ETDEWEB)

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  9. An integrated process of three-dimensional biofilm-electrode with sulfur autotrophic denitrification (3DBER-SAD) for wastewater reclamation.

    Science.gov (United States)

    Hao, Ruixia; Meng, Chengcheng; Li, Jianbing

    2016-08-01

    A three-dimensional biofilm-electrode reactor (3DBER) was integrated with sulfur autotrophic denitrification (SAD) to improve nitrogen removal performance for wastewater reclamation. The impacts of influent carbon/nitrogen (C/N) ratio, electric current, and hydraulic retention time (HRT) were evaluated. The new process, abbreviated as 3DBER-SAD, achieved a more stable denitrification compared to the recently studied 3DBER in literature. Its nitrogen removal improved by about 45 % as compared to 3DBER, especially under low C/N ratio conditions. The results also revealed that the biofilm bacteria community of 3DBER-SAD contained 21.1 % of the genus Thauera, 19.3 % of the genus Thiobacillus and Sulfuricella, as well as 5.3 % of the genus Alicycliphilus, Pseudomonas, and Paracoccus. The synergy between these heterotrophic, sulfur autotrophic, and hydrogenotrophic denitrification bacteria was believed to cause the high and stable nitrogen removal performance under various operating conditions.

  10. Effects of Herbicide 2,4-D on Soil Microbial Population%除草剂2,4-D 对土壤微生物类群的影响

    Institute of Scientific and Technical Information of China (English)

    韩丽珍; 赵德刚; 罗信旭

    2014-01-01

    为了评价除草剂2,4-D 对土壤生态系统的影响,采用构建人工微生态的方法,在42 d 内动态评估供试土壤中微生物类群的变化。结果表明:当2,4-D 使用浓度为5 mg/kg 时,对土壤细菌及放线菌均没有显著影响,对真菌的影响也可以较快地恢复;浓度为25 mg/kg 和50 mg/kg 的处理,细菌和真菌总数均表现下降,但细菌的适应性更强;放线菌总数则表现出一定的波动性。2,4-D 处理浓度越高,对真菌的抑制作用也越强。因此,建议将土壤中真菌总数作为评估除草剂2,4-D 污染土壤生态环境效应的敏感指标。%In order to assess the effects of herbicide 2,4-D on soil microecological systems,the dynamic changes of soil microbial population were evaluated during 42 days incubation times by constructing manual micro-ecology.The results showed that bacteria and actinomyces were not suffered significant effects,and the influence on fungus was recovered soon when soils were treated with 5 mg/kg 2,4-D.Whenever 25 mg/kg and 50 mg/kg of 2,4-D were added to the soils,the number of bacteria and fungus was decreased, whereas the adaptability of bacteria was stronger than fungus.Meanwhile actinomyces number was risen and fallen,too.And the inhibition on fungus was increased with the higher treated concentration of 2,4-D.It suggested that fungus number could be a sensitive indicator which assessed the ecological effect of environment herbicide 2,4-D polluted.

  11. Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Brito, Beltran; Janouškovec, Jan; Marhaver, Kristen L; Smith, Jennifer E; Keeling, Patrick; Rohwer, Forest L

    2011-05-01

    The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.

  12. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Bai, Yaohui; Qu, Jiuhui

    2015-11-15

    Sulfur-based mixotrophic denitrifying anoxic fluidized bed membrane bioreactors (AnFB-MBR) were developed for the treatment of nitrate-contaminated groundwater with minimized sulfate production. The nitrate removal rates obtained in the methanol- and ethanol-fed mixotrophic denitrifying AnFB-MBRs reached 1.44-3.84 g NO3 -N/L reactor d at a hydraulic retention time of 0.5 h, which were significantly superior to those reported in packed bed reactors. Compared to methanol, ethanol was found to be a more effective external carbon source for sulfur-based mixotrophic denitrification due to lower sulfate and total organic carbon concentrations in the effluent. Using pyrosequencing, the phylotypes of primary microbial groups in the reactor, including sulfur-oxidizing autotrophic denitrifiers, methanol- or ethanol-supported heterotrophic denitrifiers, were investigated in response to changes in electron donors. Principal component and heatmap analyses indicated that selection of electron donating substrates largely determined the microbial community structure. The abundance of Thiobacillus decreased from 45.1% in the sulfur-oxidizing autotrophic denitrifying reactor to 12.0% and 14.2% in sulfur-based methanol- and ethanol-fed mixotrophic denitrifying bioreactors, respectively. Heterotrophic Methyloversatilis and Thauera bacteria became more dominant in the mixotrophic denitrifying bioreactors, which were possibly responsible for the observed methanol- and ethanol-associated denitrification.

  13. Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus.

    Science.gov (United States)

    Tanaka, K; Ishizaki, A; Kanamaru, T; Kawano, T

    1995-02-05

    Hydrogen-oxidizing bacterium, Alcaligenes eutrophus autotrophically produces biodegradable plastic material, poly(D-3-hydroxybutyrate), P(3HB), from carbon dioxide, hydrogen, and oxygen. In autotrophic cultivation of the microorganism, it is essential to eliminate possible occurrence of gas explosions from the fermentation process. We developed a bench-plant scale, recycled-gas, closed-circuit culture system equipped wit