WorldWideScience

Sample records for autosomal recessive retinitis

  1. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  2. Evidence for nonallelic genetic heterogeneity in autosomal recessive retinitis pigmentosa

    NARCIS (Netherlands)

    Bleeker-Wagemakers, L. M.; Gal, A.; Kumar-Singh, R.; van den Born, L. I.; Li, Y.; Schwinger, E.; Sandkuijl, L. A.; Bergen, A. A.; Kenna, P.; Humphries, P.

    1992-01-01

    Recent evidence suggesting the involvement of mutant rhodopsin proteins in the pathogenesis of autosomal recessive retinitis pigmentosa has prompted us to investigate whether this form of the disease shows non-allelic genetic heterogeneity, as has previously been shown to be the case in autosomal

  3. A novel NR2E3 gene mutation in autosomal recessive retinitis pigmentosa with cystic maculopathy

    OpenAIRE

    Mahajan, D.; Votruba, Marcela

    2017-01-01

    NR2E3 is a gene that encodes for photoreceptor cell specific nuclear receptor, which is involved in cone proliferation. The splice site mutation 119-2A>C in NR2E3 (15q23) has been previously reported to underlie recessive enhanced cone S sensitivity syndrome, clumped pigmentary retinal degeneration, Goldman-Favre syndrome and also autosomal dominant and autosomal recessive retinitis pigmentosa (RP). However, the mutation c 571 + 2 T > C in NR2E3 has not been previously reported with retinal d...

  4. Autosomal recessive retinitis pigmentosa with RP1 mutations is associated with myopia

    NARCIS (Netherlands)

    Chassine, T.; Bocquet, B.; Daien, V.; Avila-Fernandez, A.; Ayuso, C.; Collin, R.W.J.; Corton, M.; Hejtmancik, J.F.; Born, L.I. van den; Klevering, B.J.; Riazuddin, S.A.; Sendon, N.; Lacroux, A.; Meunier, I.; Hamel, C.P.

    2015-01-01

    OBJECTIVE: To determine the refractive error in patients with autosomal recessive retinitis pigmentosa (arRP) caused by RP1 mutations and to compare it with that of other genetic subtypes of RP. METHODS: Twenty-six individuals had arRP with RP1 mutations, 25 had autosomal dominant RP (adRP) with RP1

  5. Fine mapping of the autosomal recessive retinitis pigmentosa locus (RP12) on chromosome 1q; exclusion of the phosducin gene (PDC)

    NARCIS (Netherlands)

    van Soest, S.; te Nijenhuis, S.; van den Born, L. I.; Bleeker-Wagemakers, E. M.; Sharp, E.; Sandkuijl, L. A.; Westerveld, A.; Bergen, A. A.

    1996-01-01

    In a previous study on a large pedigree from a genetically isolated population in the Netherlands, we localized a gene for autosomal recessive retinitis pigmentosa with paraarteriolar preservation of the retinal pigment epithelium (PPRPE) on the long arm of chromosome 1. In this study, we present an

  6. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa.

    Science.gov (United States)

    Arno, Gavin; Agrawal, Smriti A; Eblimit, Aiden; Bellingham, James; Xu, Mingchu; Wang, Feng; Chakarova, Christina; Parfitt, David A; Lane, Amelia; Burgoyne, Thomas; Hull, Sarah; Carss, Keren J; Fiorentino, Alessia; Hayes, Matthew J; Munro, Peter M; Nicols, Ralph; Pontikos, Nikolas; Holder, Graham E; Asomugha, Chinwe; Raymond, F Lucy; Moore, Anthony T; Plagnol, Vincent; Michaelides, Michel; Hardcastle, Alison J; Li, Yumei; Cukras, Catherine; Webster, Andrew R; Cheetham, Michael E; Chen, Rui

    2016-12-01

    Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    NARCIS (Netherlands)

    Klevering, B.J.; Ijzer, S.; Rohrschneider, K.; Zonneveld-Vrieling, M.N.; Allikmets, R.; Born, L.I. van den; Maugeri, A.; Hoyng, C.B.; Cremers, F.P.M.

    2004-01-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or

  8. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene.

    Science.gov (United States)

    Stone, Edwin M; Luo, Xunda; Héon, Elise; Lam, Byron L; Weleber, Richard G; Halder, Jennifer A; Affatigato, Louisa M; Goldberg, Jacqueline B; Sumaroka, Alexander; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G

    2011-12-28

    To determine the disease expression in autosomal recessive (ar) retinitis pigmentosa (RP) caused by mutations in the MAK (male germ cell-associated kinase) gene. Patients with RP and MAK gene mutations (n = 24; age, 32-77 years at first visit) were studied by ocular examination, perimetry, and optical coherence tomography (OCT). All but one MAK patient were homozygous for an identical truncating mutation in exon 9 and had Ashkenazi Jewish heritage. The carrier frequency of this mutation among 1207 unrelated Ashkenazi control subjects was 1 in 55, making it the most common cause of heritable retinal disease in this population and MAK-associated RP the sixth most common Mendelian disease overall in this group. Visual acuities could be normal into the eighth decade of life. Kinetic fields showed early loss in the superior-temporal quadrant. With more advanced disease, superior and midperipheral function was lost, but the nasal field remained. Only a central island was present at late stages. Pigmentary retinopathy was less prominent in the superior nasal quadrant. Rod-mediated vision was abnormal but detectable in the residual field; all patients had rod>cone dysfunction. Photoreceptor layer thickness was normal centrally but decreased with eccentricity. At the stages studied, there was no evidence of photoreceptor ciliary elongation. The patterns of disease expression in the MAK form of arRP showed some resemblance to patterns described in autosomal dominant RP, especially the form caused by RP1 mutations. The similarity in phenotypes is of interest, considering that there is experimental evidence of interaction between Mak and RP1 in the photoreceptor cilium.

  9. A Nonsense Mutation in FAM161A Is a Recurrent Founder Allele in Dutch and Belgian Individuals With Autosomal Recessive Retinitis Pigmentosa

    NARCIS (Netherlands)

    Van Schil, Kristof; Klevering, B. Jeroen; Leroy, Bart P.; Pott, Jan Willem R.; Bandah-Rozenfeld, Dikla; Zonneveld-Vrieling, Marijke N.; Sharon, Dror; den Hollander, Anneke I.; Cremers, Frans P. M.; De Baere, Elfride; Collin, Rob W. J.; van den Born, L. Ingeborgh

    PURPOSE. To identify mutations in FAM161A underlying autosomal recessive retinitis pigmentosa (arRP) in the Dutch and Belgian populations and to investigate whether common FAM161A-associated phenotypic features could be identified. METHODS. Homozygosity mapping, amplification-refractory mutation

  10. Molecular diagnostic in two families affected with Autosomic Recessive Pigmentary Retinitis

    International Nuclear Information System (INIS)

    Leal Esquivel, A.

    1996-01-01

    This study included two Costa Rican families with members affected by Recessive Pigmentary Autosomic Retinitis (RPAR). The first family (C1) from the province of San Jose, has 10 alive affected members, and 14 obligatory carriers. They present an Early Appearance Degeneration, RPAR tipe1 (cane-cone). The author used polymorphic markers (STRPs) to discard some related regions, with the RP in the literature. He also used the Linkage program, for the analysis of ligaments. The second family (P1), proceeding from Acosta (situated in the province of Alajuela), has 13 alive affected members and 23 obligatory carriers and they present numerous consanguineous unions. This case is a RPAR with Early Appearance (Night Blindness, fat ERG), but with a shower degeneration. The author concludes that, with studies such as this one, there will be a capacity to offer RP molecular diagnostic, and also advance in its knowledge and treatment. (S. Grainger)

  11. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    NARCIS (Netherlands)

    Klevering, B.J.; Blankenagel, A.; Maugeri, A.; Cremers, F.P.M.; Hoyng, C.B.; Rohrschneider, K.

    2002-01-01

    PURPOSE: To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. METHODS: The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were

  12. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression

    Directory of Open Access Journals (Sweden)

    David B. McGuigan

    2017-07-01

    Full Text Available Mutations in the EYS (eyes shut homolog gene are a common cause of autosomal recessive (ar retinitis pigmentosa (RP. Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT, and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit, some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.

  13. An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    OpenAIRE

    Bouhouche Ahmed; Benomar Ali; Errguig Leila; Lachhab Lamiae; Bouslam Naima; Aasfara Jehanne; Sefiani Sanaa; Chabraoui Layachi; El Fahime Elmostafa; El Quessar Abdeljalil; Jiddane Mohamed; Yahyaoui Mohamed

    2012-01-01

    Abstract Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurologic...

  14. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice

    Science.gov (United States)

    van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.

    2015-01-01

    Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674

  15. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    Science.gov (United States)

    Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M

    2004-12-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.

  16. Autosomal recessive Oliver-McFarlane syndrome: retinitis pigmentosa, short stature (GH deficiency), trichomegaly, and hair anomalies or CPD syndrome (chorioretinopathy-pituitary dysfunction).

    Science.gov (United States)

    Haimi, Motti; Gershoni-Baruch, Ruth

    2005-10-15

    We describe a brother and sister with retinitis pigmentosa (RP), growth failure, long eyelashes, and sparse hair. They were born to young healthy consanguineous parents and presented at birth with IUGR. Evolving pigmentary retinopathy was diagnosed at the age of 5 years. A similar condition (Oliver-McFarlane) syndrome was reported previously. Our two sibs confirm the existence of this autosomal recessive syndrome.

  17. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations

    Science.gov (United States)

    Marzouka, Nour al Dain; Hebrard, Maxime; Manes, Gaël; Sénéchal, Audrey; Meunier, Isabelle; Hamel, Christian P.

    2013-01-01

    Purpose Autosomal recessive retinitis pigmentosa (arRP) is a genetically heterogeneous disease resulting in progressive loss of photoreceptors that leads to blindness. To date, 36 genes are known to cause arRP, rendering the molecular diagnosis a challenge. The aim of this study was to use homozygosity mapping to identify the causative mutation in a series of inbred families with arRP. Methods arRP patients underwent standard ophthalmic examination, Goldman perimetry, fundus examination, retinal OCT, autofluorescence measurement, and full-field electroretinogram. Fifteen consanguineous families with arRP excluded for USH2A and EYS were genotyped on 250 K SNP arrays. Homozygous regions were listed, and known genes within these regions were PCR sequenced. Familial segregation and mutation analyzes were performed. Results We found ten mutations, seven of which were novel mutations in eight known genes, including RP1, IMPG2, NR2E3, PDE6A, PDE6B, RLBP1, CNGB1, and C2ORF71, in ten out of 15 families. The patients carrying RP1, C2ORF71, and IMPG2 mutations presented with severe RP, while those with PDE6A, PDE6B, and CNGB1 mutations were less severely affected. The five families without mutations in known genes could be a source of identification of novel genes. Conclusions Homozygosity mapping combined with systematic screening of known genes results in a positive molecular diagnosis in 66.7% of families. PMID:24339724

  18. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family.

    Science.gov (United States)

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression

  19. Autosomal recessive retinitis pigmentosa with RP1 mutations is associated with myopia.

    Science.gov (United States)

    Chassine, Thomas; Bocquet, Béatrice; Daien, Vincent; Avila-Fernandez, Almudena; Ayuso, Carmen; Collin, Rob Wj; Corton, Marta; Hejtmancik, J Fielding; van den Born, L Ingeborgh; Klevering, B Jeroen; Riazuddin, S Amer; Sendon, Nathacha; Lacroux, Annie; Meunier, Isabelle; Hamel, Christian P

    2015-10-01

    To determine the refractive error in patients with autosomal recessive retinitis pigmentosa (arRP) caused by RP1 mutations and to compare it with that of other genetic subtypes of RP. Twenty-six individuals had arRP with RP1 mutations, 25 had autosomal dominant RP (adRP) with RP1 mutation, 8 and 33 had X-linked RP (xlRP) with RP2 and RPGR mutations, respectively, 198 and 93 had Usher syndrome and arRP without RP1 mutations, respectively. The median of the spherical equivalent (SE) and the IQR (Q25-Q75) was determined and multiple comparisons were performed. arRP patients with RP1 mutations had SE median at -4.0 dioptres (D) OD (Ocula Dextra); -3.88 D OS (Ocula Sinistra), whereas arRP patients without RP1 mutations (-0.50 D OD; -0.75 D OS) and Usher syndrome patients (-0.50 D OD; -0.38 D OS) were significantly less myopic (pUsher syndrome and adRP with RP1 mutation had a narrow IQR (-9.06 to -1.13 D), whereas arRP with RP1 mutations and xlRP with RP2 or RPGR mutations had a larger range (-9.06; -1.13 D). arRP patients with RP1 mutations have myopia not different from patients with xlRP with RP2 or RPGR mutations, while RP patients from other genetic subgroups were emmetropic or mildly myopic. We suggest that arRP patients with high myopic refractive error should be preferentially analysed for RP1 mutations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A gene.

    Science.gov (United States)

    Sandberg, Michael A; Rosner, Bernard; Weigel-DiFranco, Carol; McGee, Terri L; Dryja, Thaddeus P; Berson, Eliot L

    2008-12-01

    To estimate the mean rates of ocular function loss in patients with autosomal recessive retinitis pigmentosa due to USH2A mutations. In 125 patients with USH2A mutations, longitudinal regression was used to estimate mean rates of change in Snellen visual acuity, Goldmann visual field area (V4e white test light), and 30-Hz (cone) full-field electroretinogram amplitude. These rates were compared with those of previously studied cohorts with dominant retinitis pigmentosa due to RHO mutations and with X-linked retinitis pigmentosa due to RPGR mutations. Rates of change in patients with the Cys759Phe mutation, the USH2A mutation associated with nonsyndromic disease, were compared with rates of change in patients with the Glu767fs mutation, the most common USH2A mutation associated with Usher syndrome type II (i.e., retinitis pigmentosa and hearing loss). Mean annual exponential rates of decline for the USH2A patients were 2.6% for visual acuity, 7.0% for visual field area, and 13.2% for electroretinogram amplitude. The rate of acuity loss fell between the corresponding rates for the RHO and RPGR patients, whereas the rates for field and ERG amplitude loss were faster than those for the RHO and RPGR patients. No significant differences were found for patients with the Cys759Phe mutation versus patients with the Glu767fs mutation. On average, USH2A patients lose visual acuity faster than RHO patients and slower than RPGR patients. USH2A patients lose visual field and cone electroretinogram amplitude faster than patients with RHO or RPGR mutations. Patients with a nonsyndromic USH2A mutation have the same retinal disease course as patients with syndromic USH2A disease.

  1. Autosomal recessive anhidrotic ectodermal dysplasia: A rare entity

    Directory of Open Access Journals (Sweden)

    Sangita Ghosh

    2014-01-01

    Full Text Available We describe a case of anhidrotic ectodermal dysplasia (AED with an autosomal recessive mode of inheritance, a very rare entity, in a 2-year-old female child of two asymptomatic, consanguineous parents. Their previous child also had a similar condition. Autosomal recessive AED (AR-AED can have its full expression both in males and females and it is clinically indistinguishable from the x-linked recessive AED (XL-AED, which is the most common type of ectodermal dysplasia. Unlike the partially symptomatic carriers of XL-AED, the heterozygotes of AR-AED are phenotypically asymptomatic.

  2. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    Science.gov (United States)

    Klevering, B Jeroen; Blankenagel, Anita; Maugeri, Alessandra; Cremers, Frans P M; Hoyng, Carel B; Rohrschneider, Klaus

    2002-06-01

    To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were reviewed after molecular analysis revealed mutations in the ABCA4 gene. In two of the patients both the photopic and scotopic electroretinogram were nonrecordable. In the remainder, the photopic cone b-wave amplitudes appeared to be more seriously affected than the scotopic rod b-wave amplitudes. Although the clinical presentation was heterogeneous, all patients experienced visual loss early in life, impaired color vision, and a central scotoma. Fundoscopy revealed evidence of early-onset maculopathy, sometimes accompanied by involvement of the retinal periphery in the later stages of the disease. Mutations in the ABCA4 gene are the pathologic cause of the CRD-like dystrophy in these patients, and the resultant clinical pictures are complex and heterogeneous. Given this wide clinical spectrum of CRD-like phenotypes associated with ABCA4 mutations, detailed clinical subclassifications are difficult and may not be very useful.

  4. Andhidrotic ectodermal dysplasia-autosomal recessive form

    Directory of Open Access Journals (Sweden)

    Inamadar Arun

    1994-01-01

    Full Text Available Anhidrotic ectodermal dysplasia with classical features in 2 sisters is reported. The mode of inheritance in these seems to be autosomal recessive; which is a very rare occurrence.

  5. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene.

    Science.gov (United States)

    Shaibani, Aziz; Wong, Lee-Jun; Wei Zhang, Victor; Lewis, Richard Alan; Shinawi, Marwan

    2015-01-01

    Posterior column ataxia with retinitis pigmentosa (PCARP) is an autosomal recessive disorder characterized by severe sensory ataxia, muscle weakness and atrophy, and progressive pigmentary retinopathy. Recently, mutations in the FLVCR1 gene were described in four families with this condition. We investigated the molecular basis and studied the phenotype of PCARP in a new family. The proband is a 33-year-old woman presented with sensory polyneuropathy and retinitis pigmentosa (RP). The constellation of clinical findings with normal metabolic and genetic evaluation, including mitochondrial DNA (mtDNA) analysis and normal levels of phytanic acid and vitamin E, prompted us to seek other causes of our patient's condition. Sequencing of FLVCR1 in the proband and targeted mutation testing in her two affected siblings revealed two novel variants, c.1547G > A (p.R516Q) and c.1593+5_+8delGTAA predicted, respectively, to be highly conserved throughout evolution and affecting the normal splicing, therefore, deleterious. This study supports the pathogenic role of FLVCR1 in PCARP and expands the molecular and clinical spectra of PCARP. We show for the first time that nontransmembrane domain (TMD) mutations in the FLVCR1 can cause PCARP, suggesting different mechanisms for pathogenicity. Our clinical data reveal that impaired sensation can be part of the phenotypic spectrum of PCARP. This study along with previously reported cases suggests that targeted sequencing of the FLVCR1 gene should be considered in patients with severe sensory ataxia, RP, and peripheral sensory neuropathy.

  6. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    NARCIS (Netherlands)

    Avila-Fernandez, A.; Cantalapiedra, D.; Aller, E.; Vallespin, E.; Aguirre-Lamban, J.; Blanco-Kelly, F.; Corton, M.; Riveiro-Alvarez, R.; Allikmets, R.; Trujillo-Tiebas, M.J.; Millan, J.M.; Cremers, F.P.M.; Ayuso, C.

    2010-01-01

    PURPOSE: Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. METHODS: 272 unrelated Spanish families, 107 with autosomal

  7. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis

    OpenAIRE

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P.; Rogaeva, Ekaterina A.; St George-Hyslop, Peter H.; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-01-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite ...

  8. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    Science.gov (United States)

    Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen

    2010-12-03

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.

  9. Autosomal Recessive Polycystic Kidney Disease: Antenatal Diagnosis and Histopathological Correlation

    Directory of Open Access Journals (Sweden)

    Dayananda Kumar Rajanna

    2013-01-01

    Full Text Available Autosomal recessive polycystic kidney disease (ARPKD is one of the most common inheritable disease manifesting in infancy and childhood with a frequency of 1:6,000 to 1:55,000 births. The patient in her second trimester presented with a history of amenorrhea. Ultrasound examination revealed bilateral, enlarged, hyperechogenic kidneys, placentomegaly, and severe oligohydramnios. The pregnancy was terminated. An autopsy was performed on the fetus. Both the kidneys were found to be enlarged and the cut surface showed numerous cysts. The liver sections showed changes due to fibrosis. The final diagnosis of autosomal recessive polycystic kidney disease was made based on these findings. In this article, we correlate the ante-natal ultrasound and histopathological findings in autosomal recessive polycystic kidney disease.

  10. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  11. Unilateral Autosomal Recessive Anophthalmia in a Patient with Cystic Craniopharyngioma

    Science.gov (United States)

    Kumar, Amandeep; Bansal, Ankit; Garg, Ajay; Sharma, Bhawani S.

    2014-01-01

    Abstract Anophthalmia is a rare ocular malformation. It is a genetically determined disorder and is typically associated with syndromes. However, sporadic nonsyndromic familial as well as non-familial cases of anophthalmia have also been reported. Non-syndromic familial cases are usually bilateral and have been attributed to autosomal recessive, autosomal dominant, and X-linked inheritance patterns. The authors hereby report a rare case of autosomal recessive unilateral anophthalmia in a patient with no other associated congenital anomaly. Patient was operated for craniopharyngioma. The clinical, radiological and intraoperative findings are discussed. PMID:27928292

  12. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis.

    Science.gov (United States)

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P; Rogaeva, Ekaterina A; St George-Hyslop, Peter H; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-02-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite amyotrophic lateral sclerosis according to the revised El Escorial criteria. The exclusion criterion was a diagnosis of hereditary spastic paraplegia with thin corpus callosum in line with an established protocol. Additional pathological and genetic evaluations were also performed. Surprisingly, 12 sequence alterations in the spatacsin gene (one of which is novel, IVS30 + 1 G > A) were identified in 10 unrelated pedigrees with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival. The countries of origin of these families were Italy, Brazil, Canada, Japan and Turkey. The variants seemed to be pathogenic since they co-segregated with the disease in all pedigrees, were absent in controls and were associated with amyotrophic lateral sclerosis neuropathology in one member of one of these families for whom central nervous system tissue was available. Our study indicates that mutations in the spatascin gene could cause a much wider spectrum of clinical features than previously recognized, including autosomal recessive juvenile amyotrophic lateral sclerosis.

  13. Autosomal recessive mode of inheritance of a Coffin-Siris like syndrome.

    Science.gov (United States)

    Bonioli, E; Palmieri, A; Bertola, A; Bellini, C

    1995-01-01

    Autosomal recessive mode of inheritance of a Coffin-Siris like syndrome: Coffin-Siris syndrome is a rare mental retardation/multiple congenital anomalies syndrome; so far its pattern of inheritance is under debate. We report a child affected by this syndrome, the pedigree of which is consistent with autosomal recessive inheritance.

  14. Novel compound heterozygous MYO7A mutations in Moroccan families with autosomal recessive non-syndromic hearing loss.

    Directory of Open Access Journals (Sweden)

    Amina Bakhchane

    Full Text Available The MYO7A gene encodes a protein belonging to the unconventional myosin super family. Mutations within MYO7A can lead to either non syndromic hearing loss or to the Usher syndrome type 1B (USH1B. Here, we report the results of genetic analyses performed on Moroccan families with autosomal recessive non syndromic hearing loss that identified two families with compound heterozygous MYO7A mutations. Five mutations (c.6025delG, c.6229T>A, c.3500T>A, c.5617C>T and c.4487C>A were identified in these families, the latter presenting two differently affected branches. Multiple bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. In conclusion, the absence of vestibular and retinal symptom in the affected patients suggests that these families have the isolated non-syndromic hearing loss DFNB2 (nonsyndromic autosomal recessive hearing loss presentation, instead of USH1B.

  15. Whole exome analysis identifies frequent CNGA1 mutations in Japanese population with autosomal recessive retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    Full Text Available OBJECTIVE: The purpose of this study was to investigate frequent disease-causing gene mutations in autosomal recessive retinitis pigmentosa (arRP in the Japanese population. METHODS: In total, 99 Japanese patients with non-syndromic and unrelated arRP or sporadic RP (spRP were recruited in this study and ophthalmic examinations were conducted for the diagnosis of RP. Among these patients, whole exome sequencing analysis of 30 RP patients and direct sequencing screening of all CNGA1 exons of the other 69 RP patients were performed. RESULTS: Whole exome sequencing of 30 arRP/spRP patients identified disease-causing gene mutations of CNGA1 (four patients, EYS (three patients and SAG (one patient in eight patients and potential disease-causing gene variants of USH2A (two patients, EYS (one patient, TULP1 (one patient and C2orf71 (one patient in five patients. Screening of an additional 69 arRP/spRP patients for the CNGA1 gene mutation revealed one patient with a homozygous mutation. CONCLUSIONS: This is the first identification of CNGA1 mutations in arRP Japanese patients. The frequency of CNGA1 gene mutation was 5.1% (5/99 patients. CNGA1 mutations are one of the most frequent arRP-causing mutations in Japanese patients.

  16. [From gene to disease: from the ABCA4 gene to Stargardt disease, cone-rod dystrophy and retinitis pigmentosa

    NARCIS (Netherlands)

    Cremers, F.P.M.; Maugeri, A.; Klevering, B.J.; Hoefsloot, L.H.; Hoyng, C.B.

    2002-01-01

    Autosomal recessive Stargardt disease is caused by mutations in the ABCA4 gene. Mutations in ABCA4 are also found in two-thirds of cases with autosomal recessive cone-rod dystrophy, and a small fraction of patients with autosomal recessive retinitis pigmentosa. Patients with autosomal recessive

  17. Autosomal recessive Charcot-Marie-Tooth neuropathy.

    Science.gov (United States)

    Espinós, Carmen; Calpena, Eduardo; Martínez-Rubio, Dolores; Lupo, Vincenzo

    2012-01-01

    Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.

  18. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy

    OpenAIRE

    Maugeri, Alessandra; Klevering, B. Jeroen; Rohrschneider, Klaus; Blankenagel, Anita; Brunner, Han G.; Deutman, August F.; Hoyng, Carel B.; Cremers, Frans P. M.

    2000-01-01

    The photoreceptor cell–specific ATP-binding cassette transporter gene (ABCA4; previously denoted “ABCR”) is mutated in most patients with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients with isolated CRD, all fro...

  19. Autosomal recessive type II hereditary motor and sensory neuropathy with acrodystrophy.

    Science.gov (United States)

    Thomas, P K; Claus, D; King, R H

    1999-02-01

    A family is described with presumed autosomal recessive inheritance in which three siblings developed a progressive neuropathy that combined limb weakness and severe distal sensory loss leading to prominent mutilating changes. Electrophysiological and nerve biopsy findings indicated an axonopathy. The disorder is therefore classifiable as type II hereditary motor and sensory neuropathy (HMSN II). The clinical features differ from those reported in previously described cases of autosomal recessive HMSN II. This disorder may therefore represent a new variant.

  20. Outcome of ABCA4 disease-associated alleles in autosomal recessive retinal dystrophies: retrospective analysis in 420 Spanish families.

    Science.gov (United States)

    Riveiro-Alvarez, Rosa; Lopez-Martinez, Miguel-Angel; Zernant, Jana; Aguirre-Lamban, Jana; Cantalapiedra, Diego; Avila-Fernandez, Almudena; Gimenez, Ascension; Lopez-Molina, Maria-Isabel; Garcia-Sandoval, Blanca; Blanco-Kelly, Fiona; Corton, Marta; Tatu, Sorina; Fernandez-San Jose, Patricia; Trujillo-Tiebas, Maria-Jose; Ramos, Carmen; Allikmets, Rando; Ayuso, Carmen

    2013-11-01

    To provide a comprehensive overview of all detected mutations in the ABCA4 gene in Spanish families with autosomal recessive retinal disorders, including Stargardt's disease (arSTGD), cone-rod dystrophy (arCRD), and retinitis pigmentosa (arRP), and to assess genotype-phenotype correlation and disease progression in 10 years by considering the type of variants and age at onset. Case series. A total of 420 unrelated Spanish families: 259 arSTGD, 86 arCRD, and 75 arRP. Spanish families were analyzed through a combination of ABCR400 genotyping microarray, denaturing high-performance liquid chromatography, and high-resolution melting scanning. Direct sequencing was used as a confirmation technique for the identified variants. Screening by multiple ligation probe analysis was used to detect possible large deletions or insertions in the ABCA4 gene. Selected families were analyzed further by next generation sequencing. DNA sequence variants, mutation detection rates, haplotypes, age at onset, central or peripheral vision loss, and night blindness. Overall, we detected 70.5% and 36.6% of all expected ABCA4 mutations in arSTGD and arCRD patient cohorts, respectively. In the fraction of the cohort where the ABCA4 gene was sequenced completely, the detection rates reached 73.6% for arSTGD and 66.7% for arCRD. However, the frequency of possibly pathogenic ABCA4 alleles in arRP families was only slightly higher than that in the general population. Moreover, in some families, mutations in other known arRP genes segregated with the disease phenotype. An increasing understanding of causal ABCA4 alleles in arSTGD and arCRD facilitates disease diagnosis and prognosis and also is paramount in selecting patients for emerging clinical trials of therapeutic interventions. Because ABCA4-associated diseases are evolving retinal dystrophies, assessment of age at onset, accurate clinical diagnosis, and genetic testing are crucial. We suggest that ABCA4 mutations may be associated with a

  1. Autosomal recessive osteopetrosis with a unique imaging finding: multiple encephaloceles

    Energy Technology Data Exchange (ETDEWEB)

    Saglam, Dilek; Bilgici, Meltem Ceyhan; Bekci, Tuemay [Ondokuz Mayis University, Department of Radiology, School of Medicine, Kurupelit, Samsun (Turkey); Albayrak, Canan; Albayrak, Davut [Ondokuz Mayis University, Department of Pediatrics, School of Medicine, Kurupelit, Samsun (Turkey)

    2017-05-15

    Osteopetrosis is a hereditary form of sclerosing bone dysplasia with various radiological and clinical presentations. The autosomal recessive type, also known as malignant osteopetrosis, is the most severe type, with the early onset of manifestations. A 5-month-old infant was admitted to our hospital with recurrent respiratory tract infections. Chest X-ray and skeletal survey revealed the classic findings of osteopetrosis, including diffuse osteosclerosis and bone within a bone appearance. At follow-up, the patient presented with, thickened calvarium, multiple prominent encephaloceles, and dural calcifications leading to the intracranial clinical manifestations with bilateral hearing and sight loss. Autosomal recessive osteopetrosis is one of the causes of encephaloceles and this finding may become dramatic if untreated. (orig.)

  2. Autosomal recessive osteopetrosis with a unique imaging finding: multiple encephaloceles

    International Nuclear Information System (INIS)

    Saglam, Dilek; Bilgici, Meltem Ceyhan; Bekci, Tuemay; Albayrak, Canan; Albayrak, Davut

    2017-01-01

    Osteopetrosis is a hereditary form of sclerosing bone dysplasia with various radiological and clinical presentations. The autosomal recessive type, also known as malignant osteopetrosis, is the most severe type, with the early onset of manifestations. A 5-month-old infant was admitted to our hospital with recurrent respiratory tract infections. Chest X-ray and skeletal survey revealed the classic findings of osteopetrosis, including diffuse osteosclerosis and bone within a bone appearance. At follow-up, the patient presented with, thickened calvarium, multiple prominent encephaloceles, and dural calcifications leading to the intracranial clinical manifestations with bilateral hearing and sight loss. Autosomal recessive osteopetrosis is one of the causes of encephaloceles and this finding may become dramatic if untreated. (orig.)

  3. An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    Directory of Open Access Journals (Sweden)

    Bouhouche Ahmed

    2012-03-01

    Full Text Available Abstract Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurological and radiological examinations. A genome wide search was conducted in this family using the ABI PRISM linkage mapping set version 2.5 from Applied Biosystems. Six candidate genes within the region linked to the disease were screened for mutations by direct sequencing. Results Evidence of linkage was obtained on chromosome 17q24.2-25.3. Analysis of recombination events and LOD score calculation suggests linkage of the responsible gene in a genetic interval of 11 Mb located between D17S789 and D17S1806 with a maximal multipoint LOD score of 2.90. Sequencing of seven candidate genes in this locus, ATP5H, FDXR, SLC25A19, MCT8, CYGB, KCNJ16 and GRIN2C, identified three missense mutations in the FDXR gene which were also found in a homozygous state in three healthy controls, suggesting that these variants are not disease-causing mutations in the family. Conclusion A novel locus for leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa has been mapped to chromosome 17q24.2-25.3 in a consanguineous Moroccan family.

  4. LONG-TERM FOLLOW-UP OF PATIENTS WITH RETINITIS PIGMENTOSA TYPE 12 CAUSED BY CRB1 MUTATIONS : A Severe Phenotype With Considerable Interindividual Variability

    NARCIS (Netherlands)

    Mathijssen, Inge B; Florijn, Ralph J; van den Born, L Ingeborgh; Zekveld-Vroon, Renate C; Ten Brink, Jacoline B; Plomp, Astrid S; Baas, Frank; Meijers-Heijboer, Hanne; Bergen, Arthur A B; van Schooneveld, Mary J

    2017-01-01

    PURPOSE: To examine the long-term clinical course and variability in a large pedigree segregating CRB1 type autosomal recessive retinitis pigmentosa. METHODS: An observational case study of 30 patients with CRB1 type autosomal recessive retinitis pigmentosa, homozygous for the CRB1 c.3122T > C;

  5. Genetics Home Reference: autosomal recessive congenital stationary night blindness

    Science.gov (United States)

    ... collapse boxes. Description Autosomal recessive congenital stationary night blindness is a disorder of the retina , which is the specialized tissue at the back of the eye that detects light and color. People with this condition typically have difficulty seeing ...

  6. Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia

    NARCIS (Netherlands)

    Stitziel, Nathan O.; Fouchier, Sigrid W.; Sjouke, Barbara; Peloso, Gina M.; Moscoso, Alessa M.; Auer, Paul L.; Goel, Anuj; Gigante, Bruna; Barnes, Timothy A.; Melander, Olle; Orho-Melander, Marju; Duga, Stefano; Sivapalaratnam, Suthesh; Nikpay, Majid; Martinelli, Nicola; Girelli, Domenico; Jackson, Rebecca D.; Kooperberg, Charles; Lange, Leslie A.; Ardissino, Diego; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Reilly, Muredach P.; Rader, Daniel J.; de Faire, Ulf; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J.; Charnas, Lawrence; Altshuler, David; Gabriel, Stacey; Kastelein, John J. P.; Defesche, Joep C.; Nederveen, Aart J.; Kathiresan, Sekar; Hovingh, G. Kees

    2013-01-01

    Objective Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not

  7. Low Vision Rehabilitation of Retinitis Pigmentosa. Practice Report

    Science.gov (United States)

    Rundquist, John

    2004-01-01

    Retinitis pigmentosa is a rod-cone dystrophy, commonly genetic in nature. Approximately 60-80% of those with retinitis pigmentosa inherit it by an autosomal recessive transmission (Brilliant, 1999). There have been some reported cases with no known family history. The symptoms of retinitis pigmentosa are decreased acuity, photophobia, night…

  8. ALS5/SPG11/ KIAA1840 mutations cause autosomal recessive axonal Charcot–Marie–Tooth disease

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L.; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H.; Barsottini, Orlando G. P.; Kawarai, Toshitaka

    2016-01-01

    Abstract Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/ KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/ KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/ MFN2 , CMT2B1/ LMNA , CMT2B2/ MED25 , CMT2B5/ NEFL , ARCMT2F/dHMN2B/ HSPB1 , CMT2K/ GDAP1 , CMT2P/ LRSAM1 , CMT2R/ TRIM2 , CMT2S/ IGHMBP2 , CMT2T/ HSJ1 , CMTRID/ COX6A1 , ARAN-NM/ HINT and GAN/ GAN ), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/ PGN , SPG15/ ZFYVE26, SPG21/ ACP33 , SPG35/ FA2H , SPG46/ GBA2 , SPG55/ C12orf65 and SPG56/ CYP2U1 ), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum ( SLC12A6 ) . Mitochondrial disorders related to Charcot–Marie–Tooth disease type 2 were also excluded by sequencing POLG and

  9. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  10. Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis.

    Science.gov (United States)

    Ferlazzo, Edoardo; Striano, Pasquale; Italiano, Domenico; Calarese, Tiziana; Gasparini, Sara; Vanni, Nicola; Fruscione, Floriana; Genton, Pierre; Zara, Federico

    2016-09-01

    Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis is an extremely rare condition, so far reported in a single family of Algerian origin presenting an unusual, severe form of progressive myoclonus epilepsy characterized by myoclonus, generalized tonic-clonic seizures and moderate to severe cognitive impairment, with probable autosomal recessive inheritance. Disease onset was between 6 and 16 years of age. Genetic study allowed to identify a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. The mutation decreased C18-ceramide levels. In addition, downregulation of CerS1 in neuroblastoma cell line showed activation of ER stress response and induction of proapoptotic pathways. This observation demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.

  11. Estimation of prognosis and prevalence of retinitis pigmentosa and Usher syndrome in Norway.

    Science.gov (United States)

    Grøndahl, J

    1987-04-01

    Retinitis pigmentosa was diagnosed in 101 persons from 53 families. The prognosis for visual function was most favourable for the autosomal dominant group (38 patients from 8 families). The autosomal recessive group (40 patients from 25 families) and the 19 solitary cases were very heterogeneous, with prognosis ranging from favourable to very bad. There was a higher intrafamiliar correlation in the autosomal recessive than in the autosomal dominant group. In 28 patients from 18 families with Usher syndrome, almost all had good visual function until 30 years of age, and few had useful visual function after the age of 50. The age when the patients were registered varied between the different genetic types of retinitis pigmentosa, reflecting differences in prognosis. Therefore, ascertainment probability and prevalence were calculated for each genetic group separately. The prevalence of retinitis pigmentosa in Norway, all genetic groups included, was calculated to be 1/4440, the autosomal dominant type of the disease being the most frequent. The prevalence of Usher syndrome was calculated to be 3.6/100,000. Both retinitis pigmentosa and Usher syndrome were more prevalent in Laps.

  12. Autosomal recessive hypophosphataemic rickets with hypercalciuria is not caused by mutations in the type II renal sodium/phosphate cotransporter gene.

    NARCIS (Netherlands)

    Heuvel, L.P.W.J. van den; Koul, K. Op de; Knots, E.; Knoers, N.V.A.M.; Monnens, L.A.H.

    2001-01-01

    BACKGROUND: At present the genetic defect for autosomal recessive and autosomal dominant hypophosphataemic rickets with hypercalciuria (HHRH) is unknown. Type II sodium/phosphate cotransporter (NPT2) gene is a serious candidate for being the causative gene in either or both autosomal recessive and

  13. NDST1 missense mutations in autosomal recessive intellectual disability.

    Science.gov (United States)

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  14. Infantile variant of Bartter syndrome and sensorineural deafness: A new autosomal recessive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Landau, D.; Shalev, H.; Carmi, Rivka; Ohaly, M. [Univ. of the Negev, Ashkelon (Israel)

    1995-12-04

    The infantile variant of Bartter syndrome (IBS) is usually associated with maternal polyhydramnios, premature birth, postnatal polyuria and hypokalemic hypochloremic metabolic alkalosis and a typical appearance. IBS is thought to be an autosomal recessive trait. Several congenital tubular defects are associated with sensorineural deafness (SND). However, an association between the IBS and SND has not been reported so far. Here we describe 5 children of an extended consanguineous Bedouin family with IBS and SND. In 3 of the cases, the typical electrolyte imbalance and facial appearance were detected neonatally. SND was detected as early as age 1 month, suggesting either coincidental homozygotization of 2 recessive genes or a pleiotropic effect of one autosomal recessive gene. This association suggests that evaluation of SND is warranted in every case of IBS. 35 refs., 2 figs., 2 tabs.

  15. A Dutch family with autosomal recessively inherited lower motor neuron predominant motor neuron disease due to optineurin mutations

    NARCIS (Netherlands)

    Beeldman, Emma; van der Kooi, Anneke J.; de Visser, Marianne; van Maarle, Merel C.; van Ruissen, Fred; Baas, Frank

    2015-01-01

    Approximately 10% of motor neuron disease (MND) patients report a familial predisposition for MND. Autosomal recessively inherited MND is less common and is most often caused by mutations in the superoxide dismutase 1 (SOD1) gene. In 2010, autosomal recessively inherited mutations in the optineurin

  16. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia.

    Science.gov (United States)

    Hamza, Wahiba; Ali Pacha, Lamia; Hamadouche, Tarik; Muller, Jean; Drouot, Nathalie; Ferrat, Farida; Makri, Samira; Chaouch, Malika; Tazir, Meriem; Koenig, Michel; Benhassine, Traki

    2015-06-12

    Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be

  17. Two novel mutations in the EYS gene are possible major causes of autosomal recessive retinitis pigmentosa in the Japanese population.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Hosono

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic disease including autosomal recessive (ar, autosomal dominant (ad, and X-linked inheritance. Recently, arRP has been associated with mutations in EYS (Eyes shut homolog, which is a major causative gene for this disease. This study was conducted to determine the spectrum and frequency of EYS mutations in 100 Japanese arRP patients. To determine the prevalence of EYS mutations, all EYS exons were screened for mutations by polymerase chain reaction amplification, and sequence analysis was performed. We detected 67 sequence alterations in EYS, of which 21 were novel. Of these, 7 were very likely pathogenic mutations, 6 were possible pathogenic mutations, and 54 were predicted non-pathogenic sequence alterations. The minimum observed prevalence of distinct EYS mutations in our study was 18% (18/100, comprising 9 patients with 2 very likely pathogenic mutations and the remaining 9 with only one such mutation. Among these mutations, 2 novel truncating mutations, c.4957_4958insA (p.S1653KfsX2 and c.8868C>A (p.Y2956X, were identified in 16 patients and accounted for 57.1% (20/35 alleles of the mutated alleles. Although these 2 truncating mutations were not detected in Japanese patients with adRP or Leber's congenital amaurosis, we detected them in Korean arRP patients. Similar to Japanese arRP results, the c.4957_4958insA mutation was more frequently detected than the c.8868C>A mutation. The 18% estimated prevalence of very likely pathogenic mutations in our study suggests a major involvement of EYS in the pathogenesis of arRP in the Japanese population. Mutation spectrum of EYS in 100 Japanese patients, including 13 distinct very likely and possible pathogenic mutations, was largely different from the previously reported spectrum in patients from non-Asian populations. Screening for c.4957_4958insA and c.8868C>A mutations in the EYS gene may therefore be very effective for the genetic testing

  18. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    Science.gov (United States)

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  19. Two novel mutations in ILDR1 gene cause autosomal recessive ...

    Indian Academy of Sciences (India)

    In a recent screening programme on hearing loss (HL), we examined 17 common autosomal recessive nonsyndromic hearing loss (ARNSHL) genes in every consanguineous Ira- nian family with ARNSHL that was referred to our centre. We first screened GJB2 mutations and then utilized a panel of three to four short ...

  20. Progeria (Hutchison - Gilford syndrome in siblings: In an autosomal recessive pattern of inheritance

    Directory of Open Access Journals (Sweden)

    Raghu Tanjore

    2001-09-01

    Full Text Available Progeria is an autosomal dominant, premature aging syndrome. Six and three year old female siblings had sclcrodermatous changes over the extremities, alopecia, beaked nose, prominent veins and bird-like facies. Radiological features were consistent with features of progeria. The present case highlights rarity of progeria in siblings with a possible autosomal recessive pattern.

  1. Genetic Causes of Putative Autosomal Recessive Intellectual Disability Cases in Hamedan Province

    Directory of Open Access Journals (Sweden)

    Milad Bastami

    2012-04-01

    Full Text Available Objective: The aim of this study was to investigate the genetic causes of autosomal recessive intellectual disabilities (AR-ID in Hamadan province of Iran. Materials & Methods: In this descriptive-analytical cross-sectional study, 25 families with more than one affected with putative autosomal recessive intellectual disability were chosen with collaboration of Welfare Organization of Hamadan province. Families were included a total of 60 patients (39 male and 21 female whose intellectual disability had been confirmed by Raven IQ test. Each family was asked for clinical examination and getting consent form. Blood sample was collected from each family. One proband from each family was tested for CGG repeat expansion in FMR1 gene, chromosomal abnormalities and inborn errors of metabolism. We also performed homozygosity mapping based on STR markers for seven known MCPH loci in families with primary microcephaly and AR-ID. Results: Five families had full mutation of Fragile X syndrome. No chromosomal abnormalities were identified. Metabolic screening revealed one family with Medium Chain Acyl CoA Dehydrogenase deficiency. None of three families with primary microcephaly and AR-ID showed linkage to any of known seven MCPH loci. Conclusion: The main causes of ID in Hamadan province were Fragile X syndrome and Autosomal Recessive Primary Microcephaly with the frequencies of 20% and 12%, respectively.

  2. Autosomal recessive ichthyosis with hypotrichosis syndrome: further delineation of the phenotype

    NARCIS (Netherlands)

    Avrahami, L.; Maas, S.; Pasmanik-Chor, M.; Rainshtein, L.; Magal, N.; Smitt, J. H. S.; van Marle, J.; Shohat, M.; Basel-Vanagaite, L.

    2008-01-01

    Autosomal recessive ichthyosis with hypotrichosis (ARIH) syndrome, which is characterized by congenital ichthyosis, abnormal hair and corneal involvement, has recently been shown in one consanguineous Israeli Arab family to be caused by a mutation in the ST14 gene, which encodes serine protease

  3. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants.

    Science.gov (United States)

    Johnston, Jennifer J; van der Smagt, Jasper J; Rosenfeld, Jill A; Pagnamenta, Alistair T; Alswaid, Abdulrahman; Baker, Eva H; Blair, Edward; Borck, Guntram; Brinkmann, Julia; Craigen, William; Dung, Vu Chi; Emrick, Lisa; Everman, David B; van Gassen, Koen L; Gulsuner, Suleyman; Harr, Margaret H; Jain, Mahim; Kuechler, Alma; Leppig, Kathleen A; McDonald-McGinn, Donna M; Can, Ngoc Thi Bich; Peleg, Amir; Roeder, Elizabeth R; Rogers, R Curtis; Sagi-Dain, Lena; Sapp, Julie C; Schäffer, Alejandro A; Schanze, Denny; Stewart, Helen; Taylor, Jenny C; Verbeek, Nienke E; Walkiewicz, Magdalena A; Zackai, Elaine H; Zweier, Christiane; Zenker, Martin; Lee, Brendan; Biesecker, Leslie G

    2018-02-22

    PurposeTo characterize the molecular genetics of autosomal recessive Noonan syndrome.MethodsFamilies underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction.ResultsTwelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings.ConclusionThese clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.Genet Med advance online publication, 22 February 2018; doi:10.1038/gim.2017.249.

  4. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

    NARCIS (Netherlands)

    Lesage, S.; Drouet, V.; Majounie, E.; Deramecourt, V.; Jacoupy, M.; Nicolas, A.; Cormier-Dequaire, F.; Hassoun, S.M.; Pujol, C.; Ciura, S.; Erpapazoglou, Z.; Usenko, T.; Maurage, C.A.; Sahbatou, M.; Liebau, S.; Ding, J.; Bilgic, B.; Emre, M.; Erginel-Unaltuna, N.; Guven, G.; Tison, F.; Tranchant, C.; Vidailhet, M.; Corvol, J.C.; Krack, P.; Leutenegger, A.L.; Nalls, M.A.; Hernandez, D.G.; Heutink, P.; Gibbs, J.R.; Hardy, J.; Wood, N.W.; Gasser, T.; Durr, A.; Deleuze, J.F.; Tazir, M.; Destee, A.; Lohmann, E.; Kabashi, E.; Singleton, A.; Corti, O.; Brice, A.; Scheffer, H.; Bloem, B.R.; et al.,

    2016-01-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with

  5. Genetic Counselors' Experiences Regarding Communication of Reproductive Risks with Autosomal Recessive Conditions found on Cancer Panels.

    Science.gov (United States)

    Mets, Sarah; Tryon, Rebecca; Veach, Patricia McCarthy; Zierhut, Heather A

    2016-04-01

    The development of hereditary cancer genetic testing panels has altered genetic counseling practice. Mutations within certain genes on cancer panels pose not only a cancer risk, but also a reproductive risk for autosomal recessive conditions such as Fanconi anemia, constitutional mismatch repair deficiency syndrome, and ataxia telangiectasia. This study aimed to determine if genetic counselors discuss reproductive risks for autosomal recessive conditions associated with genes included on cancer panels, and if so, under what circumstances these risks are discussed. An on-line survey was emailed through the NSGC list-serv. The survey assessed 189 cancer genetic counselors' experiences discussing reproductive risks with patients at risk to carry a mutation or variant of uncertain significance (VUS) in a gene associated with both an autosomal dominant cancer risk and an autosomal recessive syndrome. Over half (n = 82, 55 %) reported having discussed reproductive risks; the remainder (n = 66, 45 %) had not. Genetic counselors who reported discussing reproductive risks primarily did so when patients had a positive result and were of reproductive age. Reasons for not discussing these risks included when a patient had completed childbearing or when a VUS was identified. Most counselors discussed reproductive risk after obtaining results and not during the informed consent process. There is inconsistency as to if and when the discussion of reproductive risks is taking place. The wide variation in responses suggests a need to develop professional guidelines for when and how discussions of reproductive risk for autosomal recessive conditions identified through cancer panels should occur with patients.

  6. Microcephaly-chorioretinopathy syndrome, autosomal recessive form. A case report

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    Full Text Available CONTEXT: The autosomal recessive form of microcephaly-chorioretinopathy syndrome is a rare genetic condition that is considered to be an important differential diagnosis with congenital toxoplasmosis.CASE REPORT: Our patient was a seven-year-old white boy who was initially diagnosed with congenital toxoplasmosis. However, his serological tests for congenital infections, including toxoplasmosis, were negative. He was the first child of young, healthy and consanguineous parents (fourth-degree relatives. The parents had normal head circumferences and intelligence. The patient presented microcephaly and specific abnormalities of the retina, with multiple diffuse oval areas of pigmentation and patches of chorioretinal atrophy associated with diffuse pigmentation of the fundus. Ophthalmological evaluations on the parents were normal. A computed tomography scan of the child's head showed slight dilation of lateral ventricles and basal cisterns without evidence of calcifications. We did not find any lymphedema in his hands and feet. He had postnatal growth retardation, severe mental retardation and cerebral palsy.CONCLUSIONS: The finding of chorioretinal lesions in a child with microcephaly should raise suspicions of the autosomal recessive form of microcephaly-chorioretinopathy syndrome, especially in cases with an atypical pattern of eye fundus and consanguinity. A specific diagnosis is essential for an appropriate clinical evaluation and for genetic counseling for the patients and their families.

  7. Autofluorescence Imaging and Spectral-Domain Optical Coherence Tomography in Incomplete Congenital Stationary Night Blindness and Comparison with Retinitis Pigmentosa

    Science.gov (United States)

    CHEN, ROYCE W. S.; GREENBERG, JONATHAN P.; LAZOW, MARGOT A.; RAMACHANDRAN, RITHU; LIMA, LUIZ H.; HWANG, JOHN C.; SCHUBERT, CARL; BRAUNSTEIN, ALEXANDRA; ALLIKMETS, RANDO; TSANG, STEPHEN H.

    2015-01-01

    PURPOSE To test the hypothesis that the evaluation of retinal structure can have diagnostic value in differentiating between incomplete congenital stationary night blindness (CSNB2) and retinitis pigmentosa (RP). To compare retinal thickness differences between patients with CSNB2 and myopic controls. DESIGN Prospective cross-sectional study. METHODS Ten eyes of 5 patients diagnosed with CSNB2 (4 X-linked recessive, 1 autosomal recessive) and 6 eyes of 3 patients with RP (2 autosomal dominant, 1 autosomal recessive) were evaluated with spectral-domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF). Diagnoses of CSNB2 and RP were confirmed by full-field electroretinography (ERG). Manual segmentation of retinal layers, aided by a computer program, was performed by 2 professional segmenters on SD OCT images of all CSNB2 patients and 4 age-similar, normal myopic controls. Seven patients were screened for mutations with congenital stationary night blindness and RP genotyping arrays. RESULTS Patients with CSNB2 had specific findings on SD OCT and FAF that were distinct from those found in RP. CSNB2 patients showed qualitatively normal SD OCT results with preserved photoreceptor inner segment/outer segment junction, whereas this junction was lost in RP patients. In addition, CSNB2 patients had normal FAF images, whereas patients with RP demonstrated a ring of increased autofluorescence around the macula. On SD OCT segmentation, the inner and outer retinal layers of both X-linked recessive and autosomal recessive CSNB2 patients were thinner compared with those of normal myopic controls, with means generally outside of normal 95% confidence intervals. The only layers that demonstrated similar thickness between CSNB2 patients and the controls were the retinal nerve fiber layer and, temporal to the fovea, the combined outer segment layer and retinal pigment epithelium. A proband and his 2 affected brothers from a family segregating X-linked recessive

  8. CLRN1 mutations cause nonsyndromic retinitis pigmentosa

    NARCIS (Netherlands)

    Khan, M.I.; Kersten, F.F.J.; Azam, M.; Collin, R.W.J.; Hussain, A.; Shah, S.T.; Keunen, J.E.E.; Kremer, J.M.J.; Cremers, F.P.M.; Qamar, R.; Hollander, A.I. den

    2011-01-01

    OBJECTIVE: To describe the mutations in the CLRN1 gene in patients from 2 consanguineous Pakistani families diagnosed with autosomal recessive retinitis pigmentosa (arRP). DESIGN: Case-series study. PARTICIPANTS: Affected and unaffected individuals of 2 consanguineous Pakistani families and 90

  9. Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Bo Gong

    2015-01-01

    Full Text Available Retinitis pigmentosa (RP is the most important hereditary retinal disease caused by progressive degeneration of the photoreceptor cells. This study is to identify gene mutations responsible for autosomal recessive retinitis pigmentosa (arRP in a Chinese family using next-generation sequencing technology. A Chinese family with 7 members including two individuals affected with severe early-onset RP was studied. All patients underwent a complete ophthalmic examination. Exome sequencing was performed on a single RP patient (the proband of this family and direct Sanger sequencing on other family members and normal controls was followed to confirm the causal mutations. A homozygous mutation c.437Tretinal reductase, was identified as being related to the phenotype of this arRP family. This homozygous mutation was detected in the two affected patients, but not present in other family members and 600 normal controls. Another three normal members in the family were found to carry this heterozygous missense mutation. Our results emphasize the importance of c.437T

  10. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  11. Genotype-phenotype correlation in FMF patients: A "non classic" recessive autosomal or "atypical" dominant autosomal inheritance?

    Science.gov (United States)

    Procopio, V; Manti, S; Bianco, G; Conti, G; Romeo, A; Maimone, F; Arrigo, T; Cutrupi, M C; Salpietro, C; Cuppari, C

    2018-01-30

    Uncertainty remains on the pathogenetic mechanisms, model of inheritance as well as genotype-phenotype correlation of FMF disease. To investigate the impact of genetic factors on the FMF phenotype and the disease inheritance model. A total of 107 FMF patients were enrolled. Patients were diagnosed clinically. All patients underwent genetic analysis of the FMF locus on 16p13.3. 9 distinct mutations were detected. Specifically, the 85.98% of patients showed a heterozygous genotype. The most common genotypes were p.Met680Ile/wt and p.Met694Val/wt. The most frequent clinical findings were fever, abdominal pain, joint pain, thoracic pain, and erysipelas-like erythema. Analysis of clinical data did not detect any significant difference in clinical phenotype among heterozygous, homozygous as well as compound homozygous subjects, further supporting the evidence that, contrary to the recessive autosomal inheritance, heterozygous patients fulfilled the criteria of clinical FMF. Moreover, subjects with p.Met694Val/wt and p.Met680Ile/wt genotype reported the most severe clinical phenotype. p.Ala744Ser/wt, p.Glu148Gln/Met680Ile, p.Met680Ile/Met680Ile, p.Met680Ile/Met694Val, p.Pro369Ser/wt, p.Met694Ile/wt, p.Glu148Gln/Glu148Gln, p.Lys695Arg/wt resulted in 100% pathogenicity. The existence of a "non classic" autosomal recessive inheritance as well as of an "atypical" dominant autosomal inheritance with incomplete penetrance and variable expressivity cannot be excluded in FMF. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. New parkin mutations and atypical phenotypes in families with autosomal recessive parkinsonism.

    NARCIS (Netherlands)

    Rawal, N.; Periquet, M.; Lohmann, E.; Lucking, C.B.; Teive, H.; Ambrosio, G.; Raskin, S.; Lincoln, S.; Hattori, N.; Guimaraes, J.; Horstink, M.W.I.M.; Santos Bele, W. Dos; Brousolle, E.; Destee, A.; Mizuno, Y.; Farrer, M.; Deleuze, J.F.; Michele, G. de; Agid, Y.; Durr, A.; Brice, A.

    2003-01-01

    The frequency of parkin mutations was evaluated in 30 families of highly diverse geographic origin with early-onset autosomal recessive parkinsonism. Twelve different mutations, six of which were new, were found in 10 families from Europe and Brazil. Patients with parkin mutations had significantly

  13. A novel HSF4 gene mutation (p.R405X causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan

    Directory of Open Access Journals (Sweden)

    Cheema Abdul

    2008-11-01

    Full Text Available Abstract Background Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667. Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene. Methods A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438 was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4 were sequenced. A mutation-specific restriction enzyme digest (HphI was performed for all family members and unrelated controls. Results The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X. Conclusion We identified the first nonsense mutation (p.R405X in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.

  14. Congenital myotonic myopathy in the miniature schnauzer: an autosomal recessive trait.

    Science.gov (United States)

    Vite, C H; Melniczek, J; Patterson, D; Giger, U

    1999-01-01

    Myotonia is a clinical sign characterized by a delay in skeletal muscle relaxation following electrical or mechanical stimulation. A series of related miniature schnauzer dogs with congenital myotonic myopathy were studied. A composite pedigree of six affected litters and the results of a planned breeding between two affected animals are consistent with an autosomal recessive mode of inheritance.

  15. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa

    NARCIS (Netherlands)

    Alves, Celso Henrique; Pellissier, Lucie P; Vos, Rogier M; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Seide, Christina; Beck, Susanne C; Klooster, J.; Furukawa, Takahisa; Flannery, John G; Verhaagen, J.; Seeliger, Mathias W; Wijnholds, J.

    2014-01-01

    In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and

  16. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa

    Science.gov (United States)

    Daiger, Stephen P.; Bowne, Sara J.; Sullivan, Lori S.

    2015-01-01

    Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%–30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families. PMID:25304133

  17. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation

    International Nuclear Information System (INIS)

    Salceda, V.M.; Pimentel, P.A.E.; Cruces, M.P.

    2006-01-01

    The chlorophyllin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the chlorophyllin

  18. Enfermedad poliquística autosómica recesiva Recessive autosomal polycystic disease

    Directory of Open Access Journals (Sweden)

    Sandalio Durán Álvarez

    2007-06-01

    Full Text Available Como enfermedades renales poliquísticas hereditarias se describen clásicamente la autosómica recesiva y la autosómica dominante, mal llamadas enfermedad poliquística de tipo infantily de;tipo adulto, respectivamente, pues ambas pueden verse tanto en una como en otra edad. Los conceptos cambiantes en cuanto a la enfermedad autosómica recesiva, dados por los progresos en el tratamiento de los recién nacidos con la enfermedad, y la localización del gen, que por su mutación la produce, nos motivan hacer esta breve revisión con la finalidad de contribuir a la comprensión de la enfermedad por los estudiantes de medicina y el médico general básico.Recessive autosomal and dominant autosomal polycystic kidney diseases are classically described as hereditary illnesses; they are also called polycystic disease of child type” and of adult typerespectively since both may be seen in any of these two life stages. The changing concepts of recessive autosomal disease, given the advances made in the treatment of newborns with this disease, and the location of the gen, the mutation of which causes it, encouraged us to make a brief literature review to help medical students and general practitioners to understand this disease.

  19. Evidence for autosomal recessive inheritance in cerebral gigantism

    Science.gov (United States)

    Nevo, S.; Zeltzer, M.; Benderly, A.; Levy, J.

    1974-01-01

    Three cases of cerebral gigantism, two sibs and their double first cousin, are described in a large inbred family from Israel. Two of the three were observed and diagnosed at birth and two were followed for two years. They all presented the signs and symptoms considered typical of this syndrome, as well as some of the less frequent findings. Generalized oedema and flexion contractures of the feet were observed in two of the three at birth. This has not hitherto been reported in cases of cerebral gigantism, of whom only a few have been observed and diagnosed at birth. Autosomal recessive inheritance is clearly implied in this family. Images PMID:4841084

  20. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  1. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis.

    Science.gov (United States)

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis.

  2. [Tapeto-retinal degeneration combined with incomplete general albinism (author's transl)].

    Science.gov (United States)

    Ivandić, T

    1975-05-01

    Report on a family, which presented the rare autosomal dominant transmitted, incomplete general albinism associated with autosomal recessive inherited, diffuse tapeto-retinal degeneration "sine pigmento". hypopigmentation of skin, eyebrows and hair, blue iris and fundus albinoticus with hypoplasia of the macula. In 3 cases additionally appeared: waxy pallor of optic disc, vascular narrowing, reflexless hypoplastic macula, pigmentless periphery, acquired blue-yellow blindness, concentric limitation of the visual field, reduced darkadaptation, abolished electroretinogram and myopic astigmatism.

  3. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  4. Hereditary motor and sensory neuropathy-russe: new autosomal recessive neuropathy in Balkan Gypsies.

    Science.gov (United States)

    Thomas, P K; Kalaydjieva, L; Youl, B; Rogers, T; Angelicheva, D; King, R H; Guergueltcheva, V; Colomer, J; Lupu, C; Corches, A; Popa, G; Merlini, L; Shmarov, A; Muddle, J R; Nourallah, M; Tournev, I

    2001-10-01

    A novel peripheral neuropathy of autosomal recessive inheritance has been identified in Balkan Gypsies and termed hereditary motor and sensory neuropathy-Russe (HMSN-R). We investigated 21 affected individuals from 10 families. Distal lower limb weakness began between the ages of 8 and 16 years, upper limb involvement beginning between 10 and 43 years, with an average of 22 years. This progressive disorder led to severe weakness of the lower limbs, generalized in the oldest subject (aged 57 years), and marked distal upper limb weakness. Prominent distal sensory loss involved all modalities, resulting in neuropathic joint degeneration in two instances. All patients showed foot deformity, and most showed hand deformity. Motor nerve conduction velocity was moderately reduced in the upper limbs but unobtainable in the legs. Sensory nerve action potentials were absent. There was loss of larger myelinated nerve fibers and profuse regenerative activity in the sural nerve. HMSN-R is a new form of autosomal recessive inherited HMSN caused by a single founder mutation in a 1 Mb interval on chromosome 10q.

  5. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.

    Science.gov (United States)

    Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi

    2017-08-01

    Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.

  6. Proprotein Convertase Subtilisin Kexin Type 9 Inhibition for Autosomal Recessive Hypercholesterolemia-Brief Report.

    Science.gov (United States)

    Thedrez, Aurélie; Sjouke, Barbara; Passard, Maxime; Prampart-Fauvet, Simon; Guédon, Alexis; Croyal, Mikael; Dallinga-Thie, Geesje; Peter, Jorge; Blom, Dirk; Ciccarese, Milco; Cefalù, Angelo B; Pisciotta, Livia; Santos, Raul D; Averna, Maurizio; Raal, Frederick; Pintus, Paolo; Cossu, Maria; Hovingh, Kees; Lambert, Gilles

    2016-08-01

    Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein (LDL) cholesterol in the vast majority of patients with autosomal dominant familial hypercholesterolemia. Will PCSK9 inhibition with monoclonal antibodies, in particular alirocumab, be of therapeutic value for patients with autosomal recessive hypercholesterolemia (ARH)? Primary lymphocytes were obtained from 28 genetically characterized ARH patients and 11 controls. ARH lymphocytes treated with mevastatin were incubated with increasing doses of recombinant PCSK9 with or without saturating concentrations of alirocumab. Cell surface LDL receptor expression measured by flow cytometry and confocal microscopy was higher in ARH than in control lymphocytes. PCSK9 significantly reduced LDL receptor expression in ARH lymphocytes albeit to a lower extent than in control lymphocytes (25% versus 76%, respectively), an effect reversed by alirocumab. Fluorescent LDL cellular uptake, also measured by flow cytometry, was reduced in ARH lymphocytes compared with control lymphocytes. PCSK9 significantly lowered LDL cellular uptake in ARH lymphocytes, on average by 18%, compared with a 46% reduction observed in control lymphocytes, an effect also reversed by alirocumab. Overall, the effects of recombinant PCSK9, and hence of alirocumab, on LDL receptor expression and function were significantly less pronounced in ARH than in control cells. PCSK9 inhibition with alirocumab on top of statin treatment has the potential to lower LDL cholesterol in some autosomal recessive hypercholesterolemia patients. © 2016 American Heart Association, Inc.

  7. Application of a high-throughput genotyping method for loci exclusion in non-consanguineous Australian pedigrees with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Paterson, Rachel L; De Roach, John N; McLaren, Terri L; Hewitt, Alex W; Hoffmann, Ling; Lamey, Tina M

    2012-01-01

    Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous Australian families affected by arRP. DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were not excluded with cosegregation analyses. Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or 89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was identified using a multivariate regression model (pA) and USH2A in two families (c.2276 G>T). This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is effective only when DNA samples are

  8. [Genetic study of the autosomal recessive form of Charcot-Marie-Tooth in an Algerian family].

    Science.gov (United States)

    Hamadouche, T; Tazir-Melboucy, M; Benhassine, T

    1998-01-01

    Charcot-Marie-Tooth disease (CMT) is a hereditary neuropathy characterized by muscular atrophy and progressive sensitive alterations that affect limbs. The CMT is one of the most heterogenous diseases, clinically as well as genetically. At least twelve loci are responsible for the CMT phenotype, four of them for the autosomal recessive form. The aim of our work was to determinate the implication/exclusion of these four loci in an Algerian family by linkage analysis using microsatellites markers. We have tested the four loci on 8q13-21.1 (CMT4A), 11q23 (CMT4B), 5q23-33 (CMT4C) 8q24 (CMTAR). The haplotype reconstruction allowed us to exclude all the loci in this family, suggesting that the locus (gene) responsible for this form of CMT is localized elsewhere in the genome, thus providing an other observation of the great heterogeneity of the CMT, particularly autosomal recessive.

  9. [Autosomal-recessive renal cystic disease and congenital hepatic fibrosis: clinico-anatomic case].

    Science.gov (United States)

    Rostol'tsev, K V; Burenkov, R A; Kuz'micheva, I A

    2012-01-01

    Clinico-anatomic observation of autosomal-recessive renal cystic disease and congenital hepatic fibrosis at two fetuses from the same family was done. Mutation of His3124Tyr in 58 exon of PKHD1 gene in heterozygous state was found out. The same pathomorphological changes in the epithelium of cystic renal tubules and bile ducts of the liver were noted. We suggest that the autopsy research of fetuses with congenital abnormalities, detected after prenatal ultrasonic screening, has high diagnostic importance.

  10. Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa

    NARCIS (Netherlands)

    Booij, J. C.; Florijn, R. J.; ten Brink, J. B.; Loves, W.; Meire, F.; van Schooneveld, M. J.; de Jong, P. T. V. M.; Bergen, A. A. B.

    2005-01-01

    OBJECTIVE: To identify mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. METHODS: Mutation analysis was carried out in a group of 35 unrelated patients with juvenile autosomal recessive retinitis pigmentosa (ARRP), Leber's congenital

  11. Molecular and phenotypic analysis of a family with autosomal recessive cone-rod dystrophy and Stargardt disease.

    NARCIS (Netherlands)

    Ijzer, Suzanne; Born, L.I. van den; Zonneveld, M.N.; Lopez, I.; Ayyagari, R.; Teye-Botchway, L.; Mota-Vieira, L.; Cremers, F.P.M.; Koenekoop, R.K.

    2007-01-01

    PURPOSE: To identify the causative gene mutations in three siblings with severe progressive autosomal recessive cone-rod dystrophy (arCRD) and their fifth paternal cousin with Stargardt disease (STGD1) and to specify the phenotypes. METHODS: We evaluated eight sibs of one family, three family

  12. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M

    2004-10-01

    To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.

  13. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation.

    Directory of Open Access Journals (Sweden)

    Dirk J Lefeber

    2011-12-01

    Full Text Available Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years with a predominant presentation of dilated cardiomyopathy (DCM. Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG. Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.

  14. A Defect in NIPAL4 Is Associated with Autosomal Recessive Congenital Ichthyosis in American Bulldogs.

    Directory of Open Access Journals (Sweden)

    Margret L Casal

    Full Text Available Autosomal recessive congenital ichthyosis in the American bulldog is characterized by generalized scaling and erythema with adherent scale on the glabrous skin. We had previously linked this disorder to NIPAL4, which encodes the protein ichthyin. Sequencing of NIPAL4 revealed a homozygous single base deletion (CanFam3.1 canine reference genome sequence NC_06586.3 g.52737379del, the 157th base (cytosine in exon 6 of NIPAL4 as the most likely causative variant in affected dogs. This frameshift deletion results in a premature stop codon producing a truncated and defective NIPAL4 (ichthyin protein of 248 amino acids instead of the wild-type length of 404. Obligate carriers were confirmed to be heterozygous for this variant, and 150 clinically non-affected dogs of other breeds were homozygous for the wild-type gene. Among 800 American bulldogs tested, 34% of clinically healthy dogs were discovered to be heterozygous for the defective allele. More importantly, the development of this canine model of autosomal recessive congenital ichthyosis will provide insight into the development of new treatments across species.

  15. Inherited retinal dysplasia and persistent hyperplastic primary vitreous in Miniature Schnauzer dogs.

    Science.gov (United States)

    Grahn, Bruce H; Storey, Eric S; McMillan, Catherine

    2004-01-01

    The objectives of this study were to define the clinical syndrome of retinal dysplasia and persistent primary vitreous in Miniature Schnauzer dogs and determine the etiology. We examined 106 Miniature Schnauzers using a biomicroscope and indirect ophthalmoscope. The anterior and posterior segments of affected dogs were photographed. Four enucleated eyes were examined using routine light microscopy and scanning electron microscopy. A pedigree was constructed and related dogs were test-bred to define the mode of inheritance of this syndrome. Congenital retinal dysplasia was confirmed in 24 of 106 related Miniature Schnauzer dogs. Physical and postmortem examinations revealed that congenital abnormalities were limited to the eyes. Biomicroscopic, indirect ophthalmoscopic, and neuro-ophthalmic examinations confirmed that some of these dogs were blind secondary to bilateral retinal dysplasia and detachment (nonattachment) (n = 13), and the remainder had generalized retinal dysplasia (n = 11). Fifteen of these dogs were also diagnosed with unilateral (n = 9) or bilateral (n = 6) persistent hyperplastic primary vitreous. Nutritional, infectious, or toxic etiologies were not evident on physical, postmortem, light microscopic, or transmitting and scanning electron microscopic examination of four affected Miniature Schnauzers. We examined the pedigree and determined that an autosomal recessive mode of inheritance was most likely. Three test-bred litters including those from affected parents, carrier and affected parents, and carrier parents confirmed this mode of inheritance. This study confirms that retinal dysplasia and persistent hyperplastic primary vitreous is a congenital abnormality that is inherited as an autosomal recessive condition in Miniature Schnauzers.

  16. Retinitis pigmentosa: genes and disease mechanisms.

    Science.gov (United States)

    Ferrari, Stefano; Di Iorio, Enzo; Barbaro, Vanessa; Ponzin, Diego; Sorrentino, Francesco S; Parmeggiani, Francesco

    2011-06-01

    Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.

  17. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. (Harvard Medical School, Boston, MA (United States)); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya (National Inst. of Neuroscience, Tokyo (Japan))

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  18. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-03

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Birth prevalence and mutation spectrum in danish patients with autosomal recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Ek, Jakob; Sand, Annie

    2009-01-01

    PURPOSE: The study was initiated to investigate the mutation spectrum of four OCA genes and to calculate the birth prevalence in patients with autosomal recessive albinism. METHODS: Mutation analysis using dHPLC or direct DNA sequencing of TYR, OCA2, TYRP1, and MATP was performed in 62 patients....... Two mutations in one OCA gene explained oculocutaneous albinism (OCA) in 44% of the patients. Mutations in TYR were found in 26% of patients, while OCA2 and MATP caused OCA in 15% and 3%, respectively. No mutations were found in TYRP1. Of the remaining 56% of patients, 29% were heterozygous...... for a mutation in either TYR or OCA2, and 27% were without mutations in any of the four genes. Exclusive expression of the mutant allele was found in four heterozygous patients. A minimum birth prevalence of 1 in 14,000 was calculated, based on register data on 218 patients. The proportion of OCA to autosomal...

  20. Autozygosity mapping of a large consanguineous Pakistani family reveals a novel non-syndromic autosomal recessive mental retardation locus on 11p15-tel

    DEFF Research Database (Denmark)

    Rehman, Shoaib ur; Baig, Shahid Mahmood; Eiberg, Hans

    2011-01-01

    done in all sampled individuals in the family. The nuclear central loop in the five generation family showed homozygosity for a 6-Mb telomeric region on 11p15, whereas all other linkage regions were excluded by calculation of logarithm of odds (LOD) for the SNP microarray data. A maximum LOD score of Z......Autosomal recessive inherited mental retardation is an extremely heterogeneous disease and accounts for approximately 25% of all non-syndromic mental retardation cases. Autozygosity mapping of a large consanguineous Pakistani family revealed a novel locus for non-syndromic autosomal recessive...

  1. A genetic analysis of retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Shanker Jayashree

    1993-01-01

    Full Text Available The data consists of sixty probands affected with Retinitis pigmentosa. Syndromic cases were found in five percent of the RP probands. Segregation analysis was carried out on proband sibship data. The ascertainment probability was estimated at 0.5517. Analysis of the data by parental mating types of proband sibships indicated the presence of dominant forms of RP (2.05%. Analysis of proband sibships indicated the presence of low risk families in the Normal x Normal matings (45% and in the consanguineous matings (40%. The hypothesis of recessive inheritance could be confirmed only in multiplex sibships (p = 0.383 +/- 0.0793. Data on proband matings though incomplete conformed in general to autosomal recessive gene hypothesis.

  2. Retinitis pigmentosa in Spain. The Spanish Multicentric and Multidisciplinary Group for Research into Retinitis Pigmentosa.

    Science.gov (United States)

    Ayuso, C; Garcia-Sandoval, B; Najera, C; Valverde, D; Carballo, M; Antiñolo, G

    1995-09-01

    Retinitis pigmentosa is a term commonly given to a group of inherited and progressive disorders which affect the photoreceptors of the retina. As part of an ongoing research programme throughout Spain, clinical, epidemiological, and genetic studies have been carried out on these diseases. Here, we report the relative frequencies of the different genetic types in 503 non-syndromic and 89 syndromic RP families of Spanish origin. The most frequent syndromic RP forms were Usher syndrome type 1 (20/89 families = 30%) and Usher syndrome type 2 (44 families = 49%). Among non-syndromic RP forms, 12% were autosomal dominant, 39% autosomal recessive and 4% X-linked. Forty-one percent were isolated or simplex cases and in 4% the genetic type could not be established.

  3. Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum

    Science.gov (United States)

    2011-01-01

    Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder. PMID:21668957

  4. Identification of Mutations in SDR9C7 in 6 Families with Autosomal Recessive Congenital Ichthyosis

    DEFF Research Database (Denmark)

    Hotz, A; Fagerberg, C; Vahlquist, A

    2018-01-01

    Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of disorders of keratinization. To date, ARCI has been associated with following genes: ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, TGM1, PNPLA1 and recently SDR9C7 and SULT2B1.(1-6) Furthermore, seven patients from...

  5. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone- shaped epiphyses in hands and hips

    NARCIS (Netherlands)

    Hellemans, J; Coucke, PJ; Giedion, A; De Paepe, A; Kramer, P; Beemer, F; Mortier, GR

    Acrocapitofemoral dysplasia is a recently delineated autosomal recessive skeletal dysplasia, characterized clinically by short stature with short limbs and radiographically by cone-shaped epiphyses, mainly in hands and hips. Genome-wide homozygosity mapping in two consanguineous families linked the

  6. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    DEFF Research Database (Denmark)

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been ...

  7. Spectrum of Autosomal Recessive Congenital Ichthyosis in Scandinavia

    DEFF Research Database (Denmark)

    Hellström Pigg, Maritta; Bygum, Anette; Gånemo, Agneta

    2016-01-01

    Autosomal recessive congenital ichthyosis (ARCI) represents a heterogeneous group of rare disorders of cornification with 3 major subtypes: harlequin ichthyosis (HI), lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). A 4th subtype has also been proposed: pleomorphic...... ichthyosis (PI), characterized by marked skin changes at birth and subsequently mild symptoms. In nationwide screenings of suspected cases of ARCI in Denmark and Sweden, we identified 132 patients (age range 0.1-86 years) classified as HI (n = 7), LI (n = 70), CIE (n = 17) and PI (n = 38). At birth......-100%). A scoring (0-4) of ichthyosis/ery-thema past infancy showed widely different mean values in the subgroups: HI (3.2/3.1), LI (2.4/0.6), CIE (1.8/1.6), PI (1.1/0.3). Novel or recurrent mutations were found in 113 patients: TGM1 (n = 56), NIPAL4 (n = 15), ALOX12B (n = 15), ABCA12 (n = 8), ALOXE3 (n = 9), SLC27...

  8. Localization of A Novel Autosomal Recessive Non-Syndromic Hearing Impairment Locus (DFNB38) to 6q26–q27 in a Consanguineous Kindred from Pakistan

    OpenAIRE

    Ansar, Muhammad; Ramzan, Mohammad; Pham, Thanh L.; Yan, Kai; Jamal, Syed Muhammad; Haque, Sayedul; Ahmad, Wasim; Leal, Suzanne M.

    2003-01-01

    For autosomal recessive nonsyndromic hearing impairment over 30 loci have been mapped and 19 genes have been identified. DFNB38, a novel locus for autosomal recessive nonsyndromic hearing impairment, was localized in a consanguineous Pakistani kindred to 6q26–q27. The affected family members present with profound prelingual sensorineural hearing impairment and use sign language for communications. Linkage was established to microsatellite markers located on chromosome 6q26–q27 (Multipoint lod...

  9. Pregnancy in autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Banks, Nicole; Bryant, Joy; Fischer, Roxanne; Huizing, Marjan; Gahl, William A; Gunay-Aygun, Meral

    2015-03-01

    Autosomal recessive polycystic kidney disease (ARPKD) is the most common childhood-onset ciliopathy. As treatments improve, more women are reaching reproductive age, but little is known about ARPKD and pregnancy. In our ongoing study on ARPKD and other ciliopathies, 12 females over 18 years of age were identified and systematically evaluated. Six had children; four carried pregnancies and delivered, one used assisted reproductive technology and had a surrogate carry the pregnancy, and one adopted. We report the outcomes of four pregnancies with live birth deliveries and two women who chose alternate family building options. Patient one was diagnosed at 6 months, and at age 21 had a pregnancy complicated by transient worsening of renal function (creatinine increase from 1.15 to 1.78 mg/dL). Patient two was diagnosed with ARPKD at age seven and had an uncomplicated pregnancy at age 23. Patient three was diagnosed incidentally with ARPKD at age 23, 3 months after completion of an uncomplicated pregnancy. Patient four who had an uncomplicated pregnancy at age 33 was diagnosed with ARPKD at age 46. Women with ARPKD face reproductive decisions largely bereft of information about the pregnancies of other ARPKD patients. We report four cases of pregnancy and ARPKD to expand current knowledge and encourage further research.

  10. Retinitis pigmentosa caused by mutations in the ciliary MAK gene is relatively mild and is not associated with apparent extra-ocular features

    NARCIS (Netherlands)

    Huet, R.A.C. van; Siemiatkowska, A.M.; Ozgul, R.K.; Yucel, D.; Hoyng, C.B.; Banin, E.; Blumenfeld, A.; Rotenstreich, Y.; Riemslag, F.C.; Hollander, A.I. den; Theelen, T.; Collin, R.W.J.; Born, L.I. van den; Klevering, B.J.

    2015-01-01

    PURPOSE: Defects in MAK, encoding a protein localized to the photoreceptor connecting cilium, have recently been associated with autosomal recessive retinitis pigmentosa (RP). The aim of this study is to describe our detailed clinical observations in patients with MAK-associated RP, including an

  11. A Novel Mutation in the Transglutaminase-1 Gene in an Autosomal Recessive Congenital Ichthyosis Patient

    Directory of Open Access Journals (Sweden)

    D. Vaigundan

    2014-01-01

    Full Text Available Structure-function implication on a novel homozygous Trp250/Gly mutation of transglutaminase-1 (TGM1 observed in a patient of autosomal recessive congenital ichthyosis is invoked from a bioinformatics analysis. Structural consequences of this mutation are hypothesized in comparison to homologous enzyme human factor XIIIA accepted as valid in similar structural analysis and are projected as guidelines for future studies at an experimental level on TGM1 thus mutated.

  12. Macroepiphyseal dysplasia with symptomatic osteoporosis, wrinkled skin, and aged appearance: A presumed autosomal recessive condition

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, W.H.; Coe, J.D.; Whyte, M.P.

    1986-01-01

    We report our detailed investigation of a 7-1/2-year-old girl with short stature, aged appearance, decreased subcutaneous fat and muscle mass, dry coarse hair, foot deformities, macroepiphyses with prominent but lax joints, and osteoporosis with recurrent fractures who is the offspring of first cousins. This constellation of abnormalities differs from previously reported cases where macroepiphyses were a prominent finding. Our patient appears, therefore, to have a new, autosomal recessively inherited, syndrome.

  13. Macroepiphyseal dysplasia with symptomatic osteoporosis, wrinkled skin, and aged appearance: A presumed autosomal recessive condition

    International Nuclear Information System (INIS)

    McAlister, W.H.; Coe, J.D.; Whyte, M.P.; Shriners Hospital for Crippled Children, St. Louis, MO

    1986-01-01

    We report our detailed investigation of a 7-1/2-year-old girl with short stature, aged appearance, decreased subcutaneous fat and muscle mass, dry coarse hair, foot deformities, macroepiphyses with prominent but lax joints, and osteoporosis with recurrent fractures who is the offspring of first cousins. This constellation of abnormalities differs from previously reported cases where macroepiphyses were a prominent finding. Our patient appears, therefore, to have a new, autosomal recessively inherited, syndrome. (orig.)

  14. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  15. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation.

    Science.gov (United States)

    Basel-Vanagaite, L; Attia, R; Yahav, M; Ferland, R J; Anteki, L; Walsh, C A; Olender, T; Straussberg, R; Magal, N; Taub, E; Drasinover, V; Alkelai, A; Bercovich, D; Rechavi, G; Simon, A J; Shohat, M

    2006-03-01

    The molecular basis of autosomal recessive non-syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I-kappaB kinase/NFkappaB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. A previously unknown signal transduction pathway is important in human cognitive development.

  16. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    OpenAIRE

    Iqbal, Zafar; P?ttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein

    2015-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenti...

  17. A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability

    OpenAIRE

    Larti, Farzaneh; Kahrizi, Kimia; Musante, Luciana; Hu, Hao; Papari, Elahe; Fattahi, Zohreh; Bazazzadegan, Niloofar; Liu, Zhe; Banan, Mehdi; Garshasbi, Masoud; Wienker, Thomas F; Hilger Ropers, H; Galjart, Niels; Najmabadi, Hossein

    2015-01-01

    In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score=3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which ...

  18. Clinical and genetic characteristics of autosomal recessive axonal neuropathy with neuromyotonia in Russian patients

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2017-01-01

    Full Text Available Introduction. Hereditary motor and sensory neuropathies are genetically heterogeneous group of disorders characterized by a progressive muscle weakness, atrophy of hand and leg muscles often associated with deformations, and mild to moderate sensory loss. Axonal neuropathy with neuromyotonia (AR-ANM is one of the rarest autosomal recessive hereditary neuropathies. Materials and methods. Six (6 patients (4 men, 2 women aged 14–40 years from unrelated families with suspicion of HMSN were examined clinically, neurophysiologically and using DNA analysis. Results. Neurophysiological examination revealed motor and sensory neuropathy with neuromyotonia signs in all patients. In all cases homozygous variant of recessive mutations с.110G/C (р.Arg37Pro in the gene encoding the histidine triad nucleotide binding protein 1 (HINT1 has been revealed. Conclusion. There is the first description of the clinical and neurophysiological features of six patients with AR-ANM in Russia. 

  19. POLYMORPHISMS OF DOPAMINE RECEPTORS IN PATIENTS WITH RETINITIS PIGMENTOSA

    Directory of Open Access Journals (Sweden)

    Melita T. Kermavnar

    2002-12-01

    Full Text Available Background. Dopamine (DA has a specific role in modulation of retinal function, renewal and phagocytosis of shed discs by the retinal pigment epithelium. Animal model of RCS (Royal College of Surgeons rats which have impaired retinal phagocytosis has shown an appearance similar to the clinical picture seen in patients with advanced retinitis pigmentosa (RP. Based on RCS rats’ studies and the fact that DA has an important role in retinal renewal we assume that certain DA receptor polymorphisms might play a role in pathogenesis of RP.Materials and methods. We compared a group of 65 RP patients and 80 healthy individuals. Using PCR method and restriction with DdeI, TaqI or MspI restriction enzymes (DRD1, DRD2, DRD3 respectively we determined the polymorphisms of DRD1, DRD2 and DRD3. Three models of expression (codominant, dominant, recessive were statistically compared with χ 2-test.Results. We found an evidence for association between DRD2 TaqI RFLP, OR = 1.9 (95% CI: 1.7–2.3, p = 0.08, under autosome recessive model of inheritance. Other models for any of the DRD polymorphisms did not show a significant association with RP.Conclusions. A potential association was found between RP and DRD2 polymorphism. Further investigation is needed to confirm potential implication of DRD2 in the pathogenesis of RP.

  20. Mutation in LIM2 Is Responsible for Autosomal Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Bushra Irum

    Full Text Available To identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC in a consanguineous family.All family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2, was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model.Ophthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19 compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15 (E15

  1. Congenital non-syndromal autosomal recessive deafness in Bengkala, an isolated Balinese village.

    Science.gov (United States)

    Winata, S; Arhya, I N; Moeljopawiro, S; Hinnant, J T; Liang, Y; Friedman, T B; Asher, J H

    1995-01-01

    Bengkala is an Indonesian village located on the north shore of Bali that has existed for over 700 years. Currently, 2.2% of the 2185 people in this village have profound congenital deafness. In response to the high incidence of deafness, the people of Bengkala have developed a village specific sign language which is used by many of the hearing and deaf people. Deafness in Bengkala is congenital, sensorineural, non-syndromal, and caused by a fully penetrant autosomal recessive mutation at the DFNB3 locus. The frequency of the DFNB3 mutation is estimated to be 9.4% among hearing people who have a 17.2% chance of being heterozygous for DFNB3. PMID:7616538

  2. Normal central retinal function and structure preserved in retinitis pigmentosa.

    Science.gov (United States)

    Jacobson, Samuel G; Roman, Alejandro J; Aleman, Tomas S; Sumaroka, Alexander; Herrera, Waldo; Windsor, Elizabeth A M; Atkinson, Lori A; Schwartz, Sharon B; Steinberg, Janet D; Cideciyan, Artur V

    2010-02-01

    To determine whether normal function and structure, as recently found in forms of Usher syndrome, also occur in a population of patients with nonsyndromic retinitis pigmentosa (RP). Patients with simplex, multiplex, or autosomal recessive RP (n = 238; ages 9-82 years) were studied with static chromatic perimetry. A subset was evaluated with optical coherence tomography (OCT). Co-localized visual sensitivity and photoreceptor nuclear layer thickness were measured across the central retina to establish the relationship of function and structure. Comparisons were made to patients with Usher syndrome (n = 83, ages 10-69 years). Cross-sectional psychophysical data identified patients with RP who had normal rod- and cone-mediated function in the central retina. There were two other patterns with greater dysfunction, and longitudinal data confirmed that progression can occur from normal rod and cone function to cone-only central islands. The retinal extent of normal laminar architecture by OCT corresponded to the extent of normal visual function in patients with RP. Central retinal preservation of normal function and structure did not show a relationship with age or retained peripheral function. Usher syndrome results were like those in nonsyndromic RP. Regional disease variation is a well-known finding in RP. Unexpected was the observation that patients with presumed recessive RP can have regions with functionally and structurally normal retina. Such patients will require special consideration in future clinical trials of either focal or systemic treatment. Whether there is a common molecular mechanism shared by forms of RP with normal regions of retina warrants further study.

  3. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    Science.gov (United States)

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa.

    NARCIS (Netherlands)

    Collin, R.W.J.; Littink, K.W.; Klevering, B.J.; Born, L.I. van den; Koenekoop, R.K.; Zonneveld-Vrieling, M.N.; Blokland, E.A.W.; Strom, T.M.; Hoyng, C.B.; Hollander, A.I. den; Cremers, F.P.M.

    2008-01-01

    In patients with autosomal-recessive retinitis pigmentosa (arRP), homozygosity mapping was performed for detection of regions harboring genes that might be causative for RP. In one affected sib pair, a shared homozygous region of 5.0 Mb was identified on chromosome 6, within the RP25 locus. One of

  5. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non‐syndromic mental retardation

    Science.gov (United States)

    Basel‐Vanagaite, L; Attia, R; Yahav, M; Ferland, R J; Anteki, L; Walsh, C A; Olender, T; Straussberg, R; Magal, N; Taub, E; Drasinover, V; Alkelai, A; Bercovich, D; Rechavi, G; Simon, A J; Shohat, M

    2006-01-01

    Background The molecular basis of autosomal recessive non‐syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. Objective To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. Results The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I‐κB kinase/NFκB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. Conclusions A previously unknown signal transduction pathway is important in human cognitive development. PMID:16033914

  6. SACS gene-related autosomal recessive spastic ataxia of Charlevoix-Saguenay from South India

    Directory of Open Access Journals (Sweden)

    M Suraj Menon

    2016-01-01

    Full Text Available Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS is a neurodegenerative disorder characterized by late infantile onset spastic ataxia and other neurological features. Initially described in the Charlevoix-Saguenay region of Quebec, Canada, it is being increasingly reported from many other countries. Here, we present the case of a 20-year-old male from South India, who presented with progressive ataxia, spasticity, and peripheral neuropathy with imaging features and genetic testing suggestive of SACS gene-related ARSACS. The phenotypic variability from other cases and occurrence in a geographically distinct region is stressed upon to alert the clinicians to consider ARSACS in progressive ataxias.

  7. Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa.

    Science.gov (United States)

    Lam, Byron L; Züchner, Stephan L; Dallman, Julia; Wen, Rong; Alfonso, Eduardo C; Vance, Jeffery M; Peričak-Vance, Margaret A

    2014-01-01

    A single-nucleotide mutation in the gene that encodes DHDDS has been identified by whole exome sequencing as the cause of the non-syndromic recessive retinitis pigmentosa (RP) in a family of Ashkenazi Jewish origin in which three of the four siblings have early onset retinal degeneration. The peripheral retinal degeneration in the affected siblings was evident in the initial examination in 1992 and only one had detectable electroretinogram (ERG) that suggested cone-rod dysfunction. The pigmentary retinal degeneration subsequently progressed rapidly. The identified mutation changes the highly conserved residue Lys42 to Glu, resulting in lower catalytic efficiency. Patterns of plasma transferrin isoelectric focusing gel were normal in all family members, indicating no significant abnormality in protein glycosylation. Dolichols have been shown to influence the fluidity and of the membrane and promote vesicle fusion. Considering that photoreceptor outer segments contain stacks of membrane discs, we believe that the mutation may lead to low dolichol levels in photoreceptor outer segments, resulting in unstable membrane structure that leads to photoreceptor degeneration.

  8. Autosomal-dominant osteopetrosis: An incidental finding

    Directory of Open Access Journals (Sweden)

    Rajathi Maria

    2010-01-01

    Full Text Available Osteopetrosis is a descriptive term that refers to a group of rare, heritable disorders of the skeleton. Osteopetrotic conditions vary greatly in their presentation and severity, from just as an incidental finding on radiographs to causing life-threatening complications such as bone marrow suppression. It is caused by failure of osteoclast development and function. Osteopetrosis can be inherited as autosomal-recessive, autosomal-dominant or as X-linked traits, with the most severe forms being the autosomal-recessive ones. The severity of the disease is mild to moderate in the autosomal-dominant forms, with normal life expectancy. Diagnosis is largely based on clinical and radiographic evaluation. The present paper reports a case of autosomal-dominant osteopetrosis complicated by osteomyelitis with a short review of the condition.

  9. A Challenging Case of Hepatoblastoma Concomitant with Autosomal Recessive Polycystic Kidney Disease and Caroli Syndrome—Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nevil Kadakia

    2017-06-01

    Full Text Available We report a rare case of an 18-month-old female with autosomal recessive polycystic kidney disease, Caroli syndrome, and pure fetal type hepatoblastoma. The liver tumor was surgically resected with no chemotherapy given. Now 9 years post resection she demonstrates no local or distant recurrence and stable renal function.

  10. Cerebro-retinal microangiopathy with calcifications and cysts due to recessive mutations in the CTC1 gene.

    Science.gov (United States)

    Bisserbe, A; Tertian, G; Buffet, C; Turhan, A; Lambotte, O; Nasser, G; Alvin, P; Tardieu, M; Riant, F; Bergametti, F; Tournier-Lasserve, E; Denier, C

    2015-05-01

    Cerebro-retinal microangiopathy with calcifications and cysts (CRMCC) or Coats plus syndrome is a pleiotropic disorder affecting the eyes, brain, bone and gastrointestinal tract. Its primary pathogenesis involves small vessel obliterative microangiopathy. Recently, autosomal recessively inherited mutations in CTC1 have been reported in CRMCC patients. We herein report an adolescent referred to our hospital following new seizures in a context of an undefined multisystem disorder. Cerebral imaging disclosed asymmetrical leukopathy, intracranial calcifications and cysts. In addition, he presented other typical CRMCC features i.e. a history of intrauterine growth retardation, skeletal demineralization and osteopenia, bilateral exudative vitreo-retinopathy reminiscent of Coats disease, recurrent gastrointestinal hemorrhages secondary to watermelon stomach and variceal bleeding of the esophagus due to idiopathic portal hypertension and telangiectatic and angiodysplasic changes in the small intestine and colon, and anemia due to recurrent bleeding and bone marrow abnormalities. The patient was diagnosed with Coats plus syndrome. CTC1 gene screening confirmed the diagnosis with the identification of heterozygous deleterious mutations. CRMCC due to CTC1 mutations has a broad clinical expressivity. Our case report illustrates the main possible associated phenotypes and their complications, demonstrating the need for a careful etiological search in order to initiate appropriate therapeutic and preventive measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population.

    Science.gov (United States)

    Schindler, Emily I; Nylen, Erik L; Ko, Audrey C; Affatigato, Louisa M; Heggen, Andrew C; Wang, Kai; Sheffield, Val C; Stone, Edwin M

    2010-10-01

    Accurate prediction of the pathogenic effects of specific genotypes is important for the design and execution of clinical trials as well as for meaningful counseling of individual patients. However, for many autosomal recessive diseases, it can be difficult to deduce the relative pathogenic contribution of individual alleles because relatively few affected individuals share the same two disease-causing variations. In this study, we used multiple regression analysis to estimate the pathogenicity of specific alleles of ABCA4 in patients with retinal phenotypes ranging from Stargardt disease to retinitis pigmentosa. This analysis revealed quantitative allelic effects on two aspects of the visual phenotype, visual acuity (P disease and will also aid in the optimal selection of subjects for clinical trials of new therapies.

  12. C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy

    NARCIS (Netherlands)

    Richards, Anna; van den Maagdenberg, Arn M. J. M.; Jen, Joanna C.; Kavanagh, David; Bertram, Paula; Spitzer, Dirk; Liszewski, M. Kathryn; Barilla-LaBarca, Maria-Louise; Terwindt, Gisela M.; Kasai, Yumi; McLellan, Mike; Grand, Mark Gilbert; Vanmolkot, Kaate R. J.; de Vries, Boukje; Wan, Jijun; Kane, Michael J.; Mamsa, Hafsa; Schäfer, Ruth; Stam, Anine H.; Haan, Joost; de Jong, Paulus T. V. M.; Storimans, Caroline W.; van Schooneveld, Mary J.; Oosterhuis, Jendo A.; Gschwendter, Andreas; Dichgans, Martin; Kotschet, Katya E.; Hodgkinson, Suzanne; Hardy, Todd A.; Delatycki, Martin B.; Hajj-Ali, Rula A.; Kothari, Parul H.; Nelson, Stanley F.; Frants, Rune R.; Baloh, Robert W.; Ferrari, Michel D.; Atkinson, John P.

    2007-01-01

    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle-age onset. In nine families, we identified heterozygous C-terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease

  13. C-terminal truncations in human 3 '-5 ' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy

    NARCIS (Netherlands)

    Richards, Anna; van den Maagdenberg, Arn M. J. M.; Jen, Joanna C.; Kavanagh, David; Bertram, Paula; Spitzer, Dirk; Liszewski, M. Kathryn; Barilla-LaBarca, Maria-Louise; Terwindt, Gisela M.; Kasai, Yumi; McLellan, Mike; Grand, Mark Gilbert; Vanmolkot, Kaate R. J.; de Vries, Boukje; Wan, Jijun; Kane, Michael J.; Mamsa, Hafsa; Schaefer, Ruth; Stam, Anine H.; Haan, Joost; Paulus, T. V. M. de Jong; Storimans, Caroline W.; van Schooneveld, Mary J.; Oosterhuis, Jendo A.; Gschwendter, Andreas; Dichgans, Martin; Kotschet, Katya E.; Hodgkinson, Suzanne; Hardy, Todd A.; Delatycki, Martin B.; Hajj-Ali, Rula A.; Kothari, Parul H.; Nelson, Stanley F.; Frants, Rune R.; Baloh, Robert W.; Ferrari, Michel D.; Atkinson, John P.

    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease

  14. Novel compound heterozygous NMNAT1 variants associated with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Siemiatkowska, Anna M; van den Born, L Ingeborgh; van Genderen, Maria M

    2014-01-01

    , were screened in 532 additional patients with retinal dystrophies. This cohort encompassed 108 persons with isolated or autosomal recessive cone-rod dystrophy (CRD), 271 with isolated or autosomal recessive retinitis pigmentosa (RP), and 49 with autosomal dominant RP, as well as 104 persons with LCA...... and associated phenotypes in different types of inherited retinal dystrophies. METHODS: DNA samples of 161 patients with LCA without genetic diagnosis were analyzed for variants in NMNAT1 using Sanger sequencing. Variants in exon 5 of NMNAT1, which harbors the majority of the previously identified mutations...

  15. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten

    2016-01-01

    Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874

  16. Splicing defect in FKBP10 gene causes autosomal recessive osteogenesis imperfecta disease: a case report.

    Science.gov (United States)

    Maghami, Fatemeh; Tabei, Seyed Mohammad Bagher; Moravej, Hossein; Dastsooz, Hassan; Modarresi, Farzaneh; Silawi, Mohammad; Faghihi, Mohammad Ali

    2018-05-25

    Osteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance. Here we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation. Our study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations.

  17. A novel c.5308_5311delGAGA mutation in Senataxin in a Cypriot family with an autosomal recessive cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Zamba-Papanicolaou Eleni

    2008-04-01

    Full Text Available Abstract Background Senataxin (chromosome 9q34 was recently identified as the causative gene for an autosomal recessive form of Ataxia (ARCA, termed as Ataxia with Oculomotor Apraxia, type 2 (AOA2 and characterized by generalized incoordination, cerebellar atrophy, peripheral neuropathy, "oculomotor apraxia" and increased alpha-fetoprotein (AFP. Here, we report a novel Senataxin mutation in a Cypriot ARCA family. Methods We studied several Cypriot autosomal recessive cerebellar ataxia (ARCA families for linkage to known ARCA gene loci. We linked one family (909 to the SETX locus on chromosome 9q34 and screened the proband for mutations by direct sequencing. Results Sequence analysis revealed a novel c.5308_5311delGAGA mutation in exon 11 of the SETX gene. The mutation has not been detected in 204 control chromosomes from the Cypriot population, the remaining Cypriot ARCA families and 37 Cypriot sporadic cerebellar ataxia patients. Conclusion We identified a novel SETX homozygous c.5308_5311delGAGA mutation that co-segregates with ARCA with cerebellar atrophy and raised AFP.

  18. Genetic Linkage Analysis of DFNB2 Locus with Autosomal Recessive Hearing Loss in Families Negative for GJB2 Mutations in Khuzestan Province

    Directory of Open Access Journals (Sweden)

    Parisa Tahmasebi

    2016-09-01

    Full Text Available Abstract Background: Hearing loss is a common sensory impairment in humans which half of its causes are genetic reasons. Genetic hearing loss can be divided into the two types of syndromic and non-syndromic, which 80% of non-syndromic cases is Autosomal Recessive Non-Syndromic Hearing Loss. The aim of the present research is to determine the contribution of DFNB2 locus (MYO7A gene in causing an autosomal recessive hearing loss in the one group of the deaf families of Khuzestan province. Materials and Methods: This study was conducted on 26 families with autosomal recessive hearing loss (with 4 patients and negative for GJB2 mutations in Khuzestan province. 22 families suffered from ARNSHL and 4 families suffered from Usher syndrome. Linkage analysis was performed by using STR (Short Tandem Repeat markers related to DFNB2 locus. Each family’s genotype was determined by PCR-PAGE method. Furthermore, haplotypes drawing and LOD score calculations were performed. Results: From 26 families with hearing loss participating in this research, following genetic linkage analysis and haplotypes drawing, two families (7.7% of the families showed linkage to DFNB2 locus. One family (4.5% suffered from ARNSHL and another family suffered from Usher syndrome. Conclusion: The results of the present research show that the contribution of DFNB2 locus in causing hearing loss in the population of Khuzestan province was similar to other studies conducted in Iran and this locus with other important loci should be considered to check in the hearing loss panel.

  19. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    Science.gov (United States)

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  20. Two Cases of Autosomal Recessive Congenital Ichthyosis due to CYP4F22 Mutations: Expanding the Genotype of Self-Healing Collodion Baby

    NARCIS (Netherlands)

    Noguera-Morel, L.; Feito-Rodriguez, M.; Maldonado-Cid, P.; Garcia-Minaur, S.; Kamsteeg, E.J.; Gonzalez-Sarmiento, R.; Lucas-Laguna, R. De; Hernandez-Martin, A.; Torrelo, A.

    2016-01-01

    Collodion babies are born with a tight, shiny cast that sheds in a few weeks. After shedding, most patients will display features of autosomal recessive congenital ichthyosis (ARCI) later in life but in up to 10% of cases, the skin eventually becomes normal or only minimally involved, a phenotype

  1. Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses

    Directory of Open Access Journals (Sweden)

    Carsten Bergmann

    2018-02-01

    Full Text Available Autosomal recessive polycystic kidney disease (ARPKD is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD. A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD. For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic

  2. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X.

    Science.gov (United States)

    Song, Y; Zhao, D; Xu, X; Lv, F; Li, L; Jiang, Y; Wang, O; Xia, W; Xing, X; Li, M

    2018-03-09

    We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.

  3. Localization of A Novel Autosomal Recessive Non-Syndromic Hearing Impairment Locus (DFNB38) to 6q26–q27 in a Consanguineous Kindred from Pakistan

    Science.gov (United States)

    Ansar, Muhammad; Ramzan, Mohammad; Pham, Thanh L.; Yan, Kai; Jamal, Syed Muhammad; Haque, Sayedul; Ahmad, Wasim; Leal, Suzanne M.

    2010-01-01

    For autosomal recessive nonsyndromic hearing impairment over 30 loci have been mapped and 19 genes have been identified. DFNB38, a novel locus for autosomal recessive nonsyndromic hearing impairment, was localized in a consanguineous Pakistani kindred to 6q26–q27. The affected family members present with profound prelingual sensorineural hearing impairment and use sign language for communications. Linkage was established to microsatellite markers located on chromosome 6q26–q27 (Multipoint lod score 3.6). The genetic region for DFNB38 spans 10.1 cM according to the Marshfield genetic map and is bounded by markers D6S980 and D6S1719. This genetic region corresponds to 3.4 MB on the sequence-based physical map. PMID:12890929

  4. Midlife diagnosis of Refsum Disease in siblings with Retinitis Pigmentosa – the footprint is the clue: a case report

    Directory of Open Access Journals (Sweden)

    Jayaram Hari

    2008-03-01

    Full Text Available Abstract Introduction Refsum disease is a potentially lethal and disabling condition associated with retinitis pigmentosa in which early treatment can prevent some of the systemic manifestations. Case presentation We present the cases of two brothers with a diagnosis of retinitis pigmentosa from childhood in whom Refsum disease was subsequently diagnosed midlife, after routine enquiry into hand and feet abnormalities. Subsequent treatment through dietary modification stabilised visual impairment and has prevented development of neurological complications to date. Conclusion It is therefore important to consider the diagnosis of Refsum disease in any patient with autosomal recessive or simplex retinitis pigmentosa, and to enquire about the presence of "unusual" feet or hands in such patients.

  5. Novel FAM20A mutation causes autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Volodarsky, Michael; Zilberman, Uri; Birk, Ohad S

    2015-06-01

    To relate the peculiar phenotype of amelogenesis imperfecta in a large Bedouin family to the genotype determined by whole genome linkage analysis. Amelogenesis imperfecta (AI) is a broad group of inherited pathologies affecting enamel formation, characterized by variability in phenotypes, causing mutations and modes of inheritance. Autosomal recessive or compound heterozygous mutations in FAM20A, encoding sequence similarity 20, member A, have been shown to cause several AI phenotypes. Five members from a large consanguineous Bedouin family presented with hypoplastic amelogenesis imperfecta with unerupted and resorbed permanent molars. Following Soroka Medical Center IRB approval and informed consent, blood samples were obtained from six affected offspring, five obligatory carriers and two unaffected siblings. Whole genome linkage analysis was performed followed by Sanger sequencing of FAM20A. The sequencing unravelled a novel homozygous deletion mutation in exon 11 (c.1523delC), predicted to insert a premature stop codon (p.Thr508Lysfs*6). We provide an interesting case of novel mutation in this rare disorder, in which the affected kindred is unique in the large number of family members sharing a similar phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Molecular genetic analysis of consanguineous Pakistani families with autosomal recessive hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad

    2011-02-01

    Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.

  7. New autosomal recessive faciodigitogenital syndrome.

    OpenAIRE

    Teebi, A S; Naguib, K K; Al-Awadi, S; Al-Saleh, Q A

    1988-01-01

    Most pedigrees of Aarskog's faciodigitogenital syndrome have suggested X linked inheritance. However, sex influenced autosomal dominant inheritance is also a possibility in some families. We describe an Arab family of normal consanguineous parents with five children (three males and two females) with some features of Aarskog syndrome in addition to some unusual hair changes. The possibility that this family represents a distinct previously unrecognised faciodigitogenital syndrome with short s...

  8. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    International Nuclear Information System (INIS)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L.

    1991-01-01

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene

  9. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype.

    Directory of Open Access Journals (Sweden)

    Qin Liu

    Full Text Available Mutations in the retinitis pigmentosa 1 (RP1 gene are a common cause of autosomal dominant retinitis pigmentosa (adRP, and have also been found to cause autosomal recessive RP (arRP in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39 are located in the 4(th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd exon of RP1 (c.686delC; p.P229QfsX35 found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.

  10. A longitudinal study of visual function in carriers of X-linked recessive retinitis pigmentosa.

    Science.gov (United States)

    Grover, S; Fishman, G A; Anderson, R J; Lindeman, M

    2000-02-01

    This study was carried out to evaluate the progression of visual function impairment in carriers of X-linked recessive retinitis pigmentosa. We also assessed the relationship between the retinal findings at presentation and the extent of deterioration. Observational, retrospective, case series. Twenty-seven carriers of X-linked recessive retinitis pigmentosa. Each carrier was clinically categorized into one of four grades (grades 0 through 3) depending on the presence or absence of a tapetal-like retinal reflex and the extent of peripheral pigmentary degeneration. A complete ophthalmologic examination was performed and data for visual acuity, visual field area, and electroretinographic measurements were collected on the most recent visit in both eyes. These were then compared with similar data obtained on their initial visits. A comparison of visual function was carried out between the initial visit and the most recent visit on each carrier. The visual acuity was measured with Snellen's acuity charts. The visual fields to targets V-4-e and II-4-e were planimeterized and used for the analysis. The electroretinographic (ERG) measures used were light-adapted single-flash b-wave amplitudes and 30-Hz red flicker for cone function, dark-adapted maximal b-wave amplitudes, and response to a low intensity blue-flash for rod function. None of the 11 carriers with a tapetal-like reflex only (grade 1) showed any significant change in visual acuity or fields as compared with 3 of 7 (43%) carriers with diffuse peripheral pigmentary findings (grade 3) who showed significant deterioration in visual acuity in at least one eye, and 6 of 7 (86%) who showed a significant decrease in visual field area with at least one target size in at least one eye. By comparison, only 1 of 10 carriers with a grade 1 fundus finding demonstrated a significant decrease in maximal dark-adapted ERG function as compared with 5 of 6 (83%) carriers with grade 3 in response to a single-flash stimulus and

  11. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss.

    Science.gov (United States)

    Rivolta, C; Sweklo, E A; Berson, E L; Dryja, T P

    2000-06-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an amino-acid residue within the fifth laminin-epidermal growth factor-like domain of the USH2A gene and that is associated with recessive RP without hearing loss. This single mutation was found in 4.5% of 224 patients with recessive RP, suggesting that USH2A could cause more cases of nonsyndromic recessive RP than does any other gene identified to date.

  12. Unravelling the genetic basis of simplex Retinitis Pigmentosa cases

    Science.gov (United States)

    Bravo-Gil, Nereida; González-del Pozo, María; Martín-Sánchez, Marta; Méndez-Vidal, Cristina; Rodríguez-de la Rúa, Enrique; Borrego, Salud; Antiñolo, Guillermo

    2017-01-01

    Retinitis Pigmentosa (RP) is the most common form of inherited retinal dystrophy (IRD) characterized ultimately by photoreceptors degeneration. Exhibiting great clinical and genetic heterogeneity, RP can be inherited as an autosomal dominant (ad), autosomal recessive (ar) and X-linked (xl) disorder. Although the relative prevalence of each form varies somewhat between populations, a major proportion (41% in Spain) of patients represent simplex cases (sRP) in which the mode of inheritance is unknown. Molecular genetic diagnostic is crucial, but also challenging, for sRP patients because any of the 81 RP genes identified to date may be causative. Herein, we report the use of a customized targeted gene panel consisting of 68 IRD genes for the molecular characterization of 106 sRP cases. The diagnostic rate was 62.26% (66 of 106) with a proportion of clinical refinements of 30.3%, demonstrating the high efficiency of this genomic approach even for clinically ambiguous cases. The high number of patients diagnosed here has allowed us to study in detail the genetic basis of the sRP. The solved sRP cohort is composed of 62.1% of arRP cases, 24.2% of adRP and 13.6% of xlRP, which implies consequences for counselling of patients and families. PMID:28157192

  13. Otologic Manifestations of Autosomal Recessive Congenital Ichthyosis in Children.

    Science.gov (United States)

    Martín-Santiago, A; Rodríguez-Pascual, M; Knöpfel, N; Hernández-Martín, Á

    2015-11-01

    Few studies have investigated ear involvement in nonsyndromic autosomal recessive congenital ichthyosis (ARCI). To assess the type and frequency of otologic manifestations of ARCI in patients under follow-up at the pediatric dermatology department of our hospital. We prospectively studied the presence of ear pain, ear itching, tinnitus, otitis, cerumen impaction, accumulation of epithelial debris, and hearing loss. Daily hygiene measures, topical treatments, medical-surgical interventions, and frequency of visits to an ear, nose, and throat (ENT) specialist were noted in the patients' medical records. Ear examination and hearing tests were performed in all cases. Ten patients were studied: 2 had a self-healing collodion baby phenotype and 8 had ichthyosis. There was mention of otologic manifestations in the records of all 8 patients with ichthyosis (100%); 6 of these patients (75%) had abnormalities in the external auditory canal examination and 2 (25%) had conductive hearing loss. Our findings are limited by the small number of patients studied, all of whom were younger than 19 years. The involvement of both dermatologists and ENT specialists in the management of patients with ichthyosis is crucial to ensure the application of the best therapeutic and preventive measures. More studies are needed to assess the prevalence and impact on quality of life of ear involvement in patients with ichthyosis and to determine the optimal interval between ENT visits for these patients. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  14. Genetic Defects Underlie the Non-syndromic Autosomal Recessive Intellectual Disability (NS-ARID

    Directory of Open Access Journals (Sweden)

    Saleha Shamim

    2017-05-01

    Full Text Available Intellectual disability (ID is a neurodevelopmental disorder which appears frequently as the result of genetic mutations and may be syndromic (S-ID or non-syndromic (NS-ID. ID causes an important economic burden, for patient's family, health systems, and society. Identifying genes that cause S-ID can easily be evaluated due to the clinical symptoms or physical anomalies. However, in the case of NS-ID due to the absence of co-morbid features, the latest molecular genetic techniques can be used to understand the genetic defects that underlie it. Recent studies have shown that non-syndromic autosomal recessive (NS-ARID is extremely heterogeneous and contributes much more than X-linked ID. However, very little is known about the genes and loci involved in NS-ARID relative to X-linked ID, and whose complete genetic etiology remains obscure. In this review article, the known genetic etiology of NS-ARID and possible relationships between genes and the associated molecular pathways of their encoded proteins has been reviewed which will enhance our understanding about the underlying genes and mechanisms in NS-ARID.

  15. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer

    Directory of Open Access Journals (Sweden)

    Yu Zheng

    2018-01-01

    Full Text Available AIM: To study the genes responsible for retinitis pigmentosa. METHODS: A total of 15 Chinese families with retinitis pigmentosa, containing 94 sporadically afflicted cases, were recruited. The targeted sequences were captured using the Target_Eye_365_V3 chip and sequenced using the BGISEQ-500 sequencer, according to the manufacturer’s instructions. Data were aligned to UCSC Genome Browser build hg19, using the Burroughs Wheeler Aligner MEM algorithm. Local realignment was performed with the Genome Analysis Toolkit (GATK v.3.3.0 IndelRealigner, and variants were called with the Genome Analysis Toolkit Haplotypecaller, without any use of imputation. Variants were filtered against a panel derived from 1000 Genomes Project, 1000G_ASN, ESP6500, ExAC and dbSNP138. In all members of Family ONE and Family TWO with available DNA samples, the genetic variant was validated using Sanger sequencing. RESULTS: A novel, pathogenic variant of retinitis pigmentosa, c.357_358delAA (p.Ser119SerfsX5 was identified in PRPF31 in 2 of 15 autosomal-dominant retinitis pigmentosa (ADRP families, as well as in one, sporadic case. Sanger sequencing was performed upon probands, as well as upon other family members. This novel, pathogenic genotype co-segregated with retinitis pigmentosa phenotype in these two families. CONCLUSION: ADRP is a subtype of retinitis pigmentosa, defined by its genotype, which accounts for 20%-40% of the retinitis pigmentosa patients. Our study thus expands the spectrum of PRPF31 mutations known to occur in ADRP, and provides further demonstration of the applicability of the BGISEQ500 sequencer for genomics research.

  16. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer

    Science.gov (United States)

    Zheng, Yu; Wang, Hai-Lin; Li, Jian-Kang; Xu, Li; Tellier, Laurent; Li, Xiao-Lin; Huang, Xiao-Yan; Li, Wei; Niu, Tong-Tong; Yang, Huan-Ming; Zhang, Jian-Guo; Liu, Dong-Ning

    2018-01-01

    AIM To study the genes responsible for retinitis pigmentosa. METHODS A total of 15 Chinese families with retinitis pigmentosa, containing 94 sporadically afflicted cases, were recruited. The targeted sequences were captured using the Target_Eye_365_V3 chip and sequenced using the BGISEQ-500 sequencer, according to the manufacturer's instructions. Data were aligned to UCSC Genome Browser build hg19, using the Burroughs Wheeler Aligner MEM algorithm. Local realignment was performed with the Genome Analysis Toolkit (GATK v.3.3.0) IndelRealigner, and variants were called with the Genome Analysis Toolkit Haplotypecaller, without any use of imputation. Variants were filtered against a panel derived from 1000 Genomes Project, 1000G_ASN, ESP6500, ExAC and dbSNP138. In all members of Family ONE and Family TWO with available DNA samples, the genetic variant was validated using Sanger sequencing. RESULTS A novel, pathogenic variant of retinitis pigmentosa, c.357_358delAA (p.Ser119SerfsX5) was identified in PRPF31 in 2 of 15 autosomal-dominant retinitis pigmentosa (ADRP) families, as well as in one, sporadic case. Sanger sequencing was performed upon probands, as well as upon other family members. This novel, pathogenic genotype co-segregated with retinitis pigmentosa phenotype in these two families. CONCLUSION ADRP is a subtype of retinitis pigmentosa, defined by its genotype, which accounts for 20%-40% of the retinitis pigmentosa patients. Our study thus expands the spectrum of PRPF31 mutations known to occur in ADRP, and provides further demonstration of the applicability of the BGISEQ500 sequencer for genomics research. PMID:29375987

  17. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation; Accion inhibidora de la clorofilina de letales recesivos autosonicos inducidos por irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V.M.; Pimentel, P.A.E.; Cruces, M.P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: vmss@nuclear.inin.mx

    2006-07-01

    The chlorolin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the

  18. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation; Accion inhibidora de la clorofilina de letales recesivos autosonicos inducidos por irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V M; Pimentel, P A.E.; Cruces, M P [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    The chlorolin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the chlorophyllin on

  19. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  20. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    Science.gov (United States)

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  1. Discovery of a Cynomolgus Monkey Family With Retinitis Pigmentosa.

    Science.gov (United States)

    Ikeda, Yasuhiro; Nishiguchi, Koji M; Miya, Fuyuki; Shimozawa, Nobuhiro; Funatsu, Jun; Nakatake, Shunji; Fujiwara, Kohta; Tachibana, Takashi; Murakami, Yusuke; Hisatomi, Toshio; Yoshida, Shigeo; Yasutomi, Yasuhiro; Tsunoda, Tatsuhiko; Nakazawa, Toru; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2018-02-01

    To accelerate the development of new therapies, an inherited retinal degeneration model in a nonhuman primate would be useful to confirm the efficacy in preclinical studies. In this study, we describe the discovery of retinitis pigmentosa in a cynomolgus monkey (Macaca fascicularis) pedigree. First, screening with fundus photography was performed on 1443 monkeys at the Tsukuba Primate Research Center. Ophthalmic examinations, such as indirect ophthalmoscopy, ERGs using RETeval, and optic coherent tomography (OCT) measurement, were then performed to confirm diagnosis. Retinal degeneration with cystoid macular edema was observed in both eyes of one 14-year-old female monkey. In her examinations, the full-field ERGs were nonrecordable and the outer layer of the retina in the parafoveal area was not visible on OCT imaging. Moreover, less frequent pigmentary retinal anomalies also were observed in her 3-year-old nephew. His full-field ERGs were almost nonrecordable and the outer layer was not visible in the peripheral retina. His father was her cousin (the son of her mother's older brother) and his mother was her younger half-sibling sister with a different father. The hereditary nature is highly probable (autosomal recessive inheritance suspected). However, whole-exome analysis performed identified no pathogenic mutations in these monkeys.

  2. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  3. Distribution of skeletal muscle involvement in autosomal recessive distal muscular dystrophy

    International Nuclear Information System (INIS)

    Mizusawa, Hidehiro; Nakanishi, Takao; Kobayashi, Fumie.

    1987-01-01

    Distribution of skeletal muscle involvement in 5 cases with autosomal recessive distal muscular dystrophy was studied clinically and by computed tomography (CT). Manual muscle test showed muscle involvement with a predilection for flexors in the lower leg and adductors in the thigh. Flexion and extension of the thigh and the lower leg was impaired to similar degree. In progressed cases, neck flexors and trunk muscles were also affected mildly. CT disclosed more clearly the preferential involvement of flexors in the lower leg, and involvement of both hamstrings · adductors group and extensors group of the thigh to similar degree. However, m. popliteus was curiously well preserved. In addition, there was a stage showing high density and hypertrophy of m. sartorius, m. gracilis, m. adductor, m. biceps femoris, m. semimenbranosus, m. semitendinosus or m. rectus femoris, which in thought to be compensatory hypertrophy. M. gluteus minimus in the pelvic girdle and m. dorsi proprii in the trunk were also liable to be affected. The CT findings are regarded as characteristic features noted clearly before muscle weakness and atrophy become apparent clinically. CT is very useful for distinguishing distal muscular dystrophy from rimmed vacuolar distal myopathy in which m. quadriceps femoris and flexors of the lower leg are usually well preserved without compensatory hypertrophy on CT. (author)

  4. A Rare Variant in PGAP2 Causes Autosomal Recessive Hyperphosphatasia with Mental Retardation Syndrome, with a Mild Phenotype in Heterozygous Carriers

    Directory of Open Access Journals (Sweden)

    Yonatan Perez

    2017-01-01

    Full Text Available Mutations in genes involved in the biosynthesis of the glycosylphosphatidylinositol (GPI anchor cause autosomal recessive glycosylation defects, with a wide phenotypic spectrum of intellectual disability, seizures, minor facial dysmorphism, hypotonia, and elevated serum alkaline phosphatase. We now describe consanguineous Bedouin kindred presenting with an autosomal recessive syndrome of intellectual disability and elevated serum alkaline phosphatase. Genome-wide linkage analysis identified 6 possible disease-associated loci. Whole-exome sequencing followed by Sanger sequencing validation identified a single variant in PGAP2 as the disease-causing mutation (C.554G>A; p.185(R>Q, segregating as expected within the kindred and not found in 150 Bedouin controls. The mutation replaces a highly conserved arginine residue with glutamine within the Frag1 (FGF receptor activating domain of PGAP2. Interestingly, this mutation is a known dbSNP variant (rs745521288, build 147 with a very low allele frequency (0.00000824 in dbSNP, no homozygotes reported, highlighting the fact that dbSNP variants should not be automatically ruled out as disease-causing mutations. We further showed that PGAP2 is ubiquitously expressed, but in line with the disease phenotype, it is highly transcribed in human brain, skeletal muscle, and liver. Interestingly, a mild phenotype of slightly elevated serum levels of alkaline phosphatase and significant learning disabilities was observed in heterozygous carriers.

  5. Identification of a Novel Dentin Matrix Protein-1 (DMP-1) Mutation and Dental Anomalies in a Kindred with Autosomal Recessive Hypophosphatemia

    OpenAIRE

    Turan, Serap; Aydin, Cumhur; Bereket, Abdullah; Akcay, Teoman; Güran, Tülay; Yaralioglu, Betul Akmen; Bastepe, Murat; Jüppner, Harald

    2009-01-01

    An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we report a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowin...

  6. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome.

    Science.gov (United States)

    Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha

    2017-07-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.

  7. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability

    DEFF Research Database (Denmark)

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline...... mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated...... alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous...

  8. The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region

    DEFF Research Database (Denmark)

    Kozyraki, R; Kristiansen, M; Silahtaroglu, A

    1998-01-01

    -5445 on the short arm of chromosome 10. This is within the autosomal recessive megaloblastic anemia (MGA1) 6-cM region harboring the unknown recessive-gene locus of juvenile megaloblastic anemia caused by intestinal malabsorption of cobalamin (Imerslund-Gräsbeck's disease). In conclusion, the present...... molecular and genetic information on human cubilin now provides circumstantial evidence that an impaired synthesis, processing, or ligand binding of cubilin is the molecular background of this hereditary form of megaloblastic anemia. Udgivelsesdato: 1998-May-15...

  9. Identification of a Novel Mutation in the ABCA4 Gene in a Chinese Family with Retinitis Pigmentosa Using Exome Sequencing.

    Science.gov (United States)

    Huang, Xiangjun; Yuan, Lamei; Xu, Hongbo; Zheng, Wen; Cao, Yanna; Yi, Junhui; Guo, Yi; Yang, Zhijian; Li, Yu; Deng, Hao

    2018-02-05

    Retinitis pigmentosa (RP) is a group of hereditary, degenerative retinal disorders characterized by progressive retinal dysfunction, outer retina cell loss, and retinal tissue atrophy. It eventually leads to tunnel vision and legal, or total blindness. Here we aimed to reveal the causal gene and mutation contributing to the development of autosomal recessive RP (arRP) in a consanguineous family. A novel homozygous mutation, c.4845delT (p.K1616Rfs*46), in the ATP-binding cassette subfamily A member 4gene ( ABCA4 ) was identified. It may reduce ABCA4 protein activity, leading to progressive degeneration of both rod and cone photoreceptors. The study extends the arRP genotypic spectrum and confirms a genotype-phenotype relationship. This study may also disclose some new clues for RP genetic causes and pathogenesis, as well as clinical and genetic diagnosis. The research findings may contribute to improvement in clinical care, therapy, genetic screening, and counseling. ©2018 The Author(s).

  10. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    Science.gov (United States)

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function.

    Science.gov (United States)

    Nishiguchi, Koji M; Friedman, James S; Sandberg, Michael A; Swaroop, Anand; Berson, Eliot L; Dryja, Thaddeus P

    2004-12-21

    Mice lacking the transcription factor Nrl have no rod photoreceptors and an increased number of short-wavelength-sensitive cones. Missense mutations in NRL are associated with autosomal dominant retinitis pigmentosa; however, the phenotype associated with the loss of NRL function in humans has not been reported. We identified two siblings who carried two allelic mutations: a predicted null allele (L75fs) and a missense mutation (L160P) altering a highly conserved residue in the domain involved in DNA-binding-site recognition. In vitro luciferase reporter assays demonstrated that the NRL-L160P mutant had severely reduced transcriptional activity compared with the WT NRL protein, consistent with a severe loss of function. The affected patients had night blindness since early childhood, consistent with a severe reduction in rod function. Color vision was normal, suggesting the presence of all cone color types; nevertheless, a comparison of central visual fields evaluated with white-on-white and blue-on-yellow light stimuli was consistent with a relatively enhanced function of short-wavelength-sensitive cones in the macula. The fundi had signs of retinal degeneration (such as vascular attenuation) and clusters of large, clumped, pigment deposits in the peripheral fundus at the level of the retinal pigment epithelium (clumped pigmentary retinal degeneration). Our report presents an unusual clinical phenotype in humans with loss-of-function mutations in NRL.

  12. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    Science.gov (United States)

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  13. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy.

    Science.gov (United States)

    Tschernutter, M; Schlichtenbrede, F C; Howe, S; Balaggan, K S; Munro, P M; Bainbridge, J W B; Thrasher, A J; Smith, A J; Ali, R R

    2005-04-01

    The Royal College of Surgeons (RCS) rat is a well-characterized model of autosomal recessive retinitis pigmentosa (RP) due to a defect in the retinal pigment epithelium (RPE). It is homozygous for a null mutation in the gene encoding , a receptor tyrosine kinase found in RPE cells, that is required for phagocytosis of shed photoreceptor outer segments. The absence of Mertk results in accumulation of outer segment debris. This subsequently leads to progressive loss of photoreceptor cells. In order to evaluate the efficacy of lentiviral-mediated gene replacement therapy in the RCS rat, we produced recombinant VSV-G pseudotyped HIV-1-based lentiviruses containing a murine Mertk cDNA driven by a spleen focus forming virus (SFFV) promoter. The vector was subretinally injected into the right eye of 10-day-old RCS rats; the left eye was left untreated as an internal control. Here, we present a detailed assessment of the duration and extent of the morphological rescue and the resulting functional benefits. We examined animals at various time points over a period of 7 months by light and electron microscopy, and electroretinography. We observed correction of the phagocytic defect, slowing of photoreceptor cell loss and preservation of retinal function for up to 7 months. This study demonstrates the potential of gene therapy approaches for the treatment of retinal degenerations caused by defects specific to the RPE and supports the use of lentiviral vectors for the treatment of such disorders.

  14. Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS).

    Science.gov (United States)

    Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel

    2017-12-01

    A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. AUTOSOMAL RECESSIVE POLYCYSTIC KIDNEY DISEASE AND CONGENITAL HEPATIC FIBROSIS: SUMMARY STATEMENT OF A FIRST NATIONAL INSTITUTES OF HEALTH/OFFICE OF RARE DISEASES CONFERENCE

    Science.gov (United States)

    Gunay-Aygun, Meral; Avner, Ellis D.; Bacallo, Robert L.; Choyke, Peter L.; Flynn, Joseph T.; Germino, Gregory G.; Guay-Woodford, Lisa; Harris, Peter; Heller, Theo; Ingelfinger, Julie; Kaskel, Frederick; Kleta, Robert; LaRusso, Nicholas F.; Mohan, Parvathi; Pazour, Gregory J.; Shneider, Benjamin L.; Torres, Vicente E.; Wilson, Patricia; Zak, Colleen; Zhou, Jing; Gahl, William A.

    2010-01-01

    Researchers and clinicians with expertise in autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF) and related fields met on May 5-6, 2005, on the National Institutes of Health (NIH) campus for a 1.5-day symposium sponsored by the NIH Office of Rare Diseases, the National Human Genome Research Institute (NHGRI), and in part by the ARPKD/CHF Alliance. The meeting addressed the present status and the future of ARPKD/CHF research. PMID:16887426

  16. Malformations among 289,365 Births Attributed to Mutations with Autosomal Dominant and Recessive and X-Linked Inheritance.

    Science.gov (United States)

    Toufaily, M Hassan; Westgate, Marie-Noel; Nasri, Hanah; Holmes, Lewis B

    2018-01-01

    The number of malformations attributed to mutations with autosomal or X-linked patterns of inheritance has increased steadily since the cataloging began in the 1960s. These diagnoses have been based primarily on the pattern of phenotypic features among close relatives. A malformations surveillance program conducted in consecutive pregnancies can identify both known and "new" hereditary disorders. The Active Malformations Surveillance Program was carried out among 289,365 births over 41 years (1972-2012) at Brigham and Women's Hospital in Boston. The findings recorded by examining pediatricians and all consultants were reviewed by study clinicians to establish the most likely diagnoses. The findings in laboratory testing in the newborn period were reviewed, as well. One hundred ninety-six (0.06%) infants among 289,365 births had a malformation or malformation syndrome that was attributed to Mendelian inheritance. A total of 133 (68%) of the hereditary malformations were attributed to autosomal dominant inheritance, with 94 (71%) attributed to apparent spontaneous mutations. Forty-six (23%) were attributed to mutations with autosomal recessive inheritance, 17 associated with consanguinity. Seventeen (9%) were attributed to X-linked inheritance. Fifteen novel familial phenotypes were identified. The family histories showed that most (53 to 71%) of the affected infants were born, as a surprise, to healthy, unaffected parents. It is important for clinicians to discuss with surprised healthy parents how they can have an infant with an hereditary condition. Future studies, using DNA samples from consecutive populations of infants with malformations and whole genome sequencing, will identify many more mutations in loci associated with mendelizing phenotypes. Birth Defects Research 110:92-97, 2018.© 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia

    DEFF Research Database (Denmark)

    Grau, Tanja; Artemyev, Nikolai O; Rosenberg, Thomas

    2011-01-01

    study on PDE6C mutations including the mutation spectrum, its prevalence in a large cohort of ACHM/cone dysfunction patients, the clinical phenotype and the functional characterization of mutant PDE6C proteins. Twelve affected patients from seven independent families segregating PDE6C mutations were......Mutations in the gene encoding the catalytic subunit of the cone photoreceptor phosphodiesterase (PDE6C) have been recently reported in patients with autosomal recessive inherited achromatopsia (ACHM) and early-onset cone photoreceptor dysfunction. Here we present the results of a comprehensive...... identified in our total patient cohort of 492 independent families. Eleven different PDE6C mutations were found including two nonsense mutations, three mutations affecting transcript splicing as shown by minigene assays, one 1 bp-insertion and five missense mutations. We also performed a detailed functional...

  18. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein

    International Nuclear Information System (INIS)

    Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki

    2006-01-01

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus

  19. Bardet-Biedl Syndrome

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... the autosomal recessive pattern of inheritance. In this type of inheritance both parents, called carriers, have one ...

  20. Do consanguineous parents of a child affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related parents with healthy offspring? Design of a case-control study

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2010-07-01

    Full Text Available Abstract Background The offspring of consanguineous relations have an increased risk of congenital/genetic disorders and early mortality. Consanguineous couples and their offspring account for approximately 10% of the global population. The increased risk for congenital/genetic disorders is most marked for autosomal recessive disorders and depends on the degree of relatedness of the parents. For children of first cousins the increased risk is 2-4%. For individual couples, however, the extra risk can vary from zero to 25% or higher, with only a minority of these couples having an increased risk of at least 25%. It is currently not possible to differentiate between high-and low-risk couples. The quantity of DNA identical-by-descent between couples with the same degree of relatedness shows a remarkable variation. Here we hypothesize that consanguineous partners with children affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related partners who have only healthy children. The aim of the study is thus to establish whether the amount of DNA identical-by-descent in consanguineous parents of children with an autosomal recessive disease is indeed different from its proportion in consanguineous parents who have healthy children only. Methods/Design This project is designed as a case-control study. Cases are defined as consanguineous couples with one or more children with an autosomal recessive disorder and controls as consanguineous couples with at least three healthy children and no affected child. We aim to include 100 case couples and 100 control couples. Control couples are matched by restricting the search to the same family, clan or ethnic origin as the case couple. Genome-wide SNP arrays will be used to test our hypothesis. Discussion This study contains a new approach to risk assessment in consanguineous couples. There is no previous study on the amount of DNA identical-by-descent in consanguineous

  1. Simultaneous Presence of Macular Corneal Dystrophy and Retinitis Pigmentosa in Three Members of a Family

    Directory of Open Access Journals (Sweden)

    Farhad Nejat

    2018-03-01

    Full Text Available Macular corneal dystrophy (MCD is an autosomal recessive hereditary disease. In most cases, various mutations in carbohydrate sulfotransferase 6 (CHST6 gene are the main cause of MCD. These mutations lead to a defect in keratan sulfate synthesis. Retinitis pigmentosa (RP is another eye disorder with nyctalopia as its common symptom. It has been shown that more than 65 genes have been implicated in different forms of RP. Herein, we report on a 9-member family with 2 girls and 5 boys. Both parents, one of the girls and one of the boys had normal eye vision and another boy had keratoconus. Other children (1 girl and 2 boys suffered from both MCD and RP. Corneal transplantation and medical supplements were used for MCD and RP during the follow-up period, respectively. Based on the family tree, it seems that the inheritance of both diseases is autosomal recessive. Based on our search of databases, there is no report on the simultaneous presence of MCD and RP. To the best of our knowledge, the present article is the first case report on this topic. Molecular genetic investigation is needed to clarify the mechanism of concurrent MCD and RP.

  2. Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability.

    Science.gov (United States)

    Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit

    2014-12-01

    Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.

  3. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging.

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    Science.gov (United States)

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  5. The population genetics of X-autosome synthetic lethals and steriles.

    Science.gov (United States)

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  6. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  7. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts.

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O; Riazuddin, S Amer

    2016-01-01

    The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.

  8. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease

    DEFF Research Database (Denmark)

    Gal, Andreas; Rau, Isabella; El Matri, Leila

    2011-01-01

    Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we...... the affinity and reactivity of the enzyme toward in vivo protein substrates are likely to be substantially reduced....... heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603...

  9. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration.

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-03-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.

  10. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967

  11. Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families.

    Directory of Open Access Journals (Sweden)

    Sobia Shafique

    Full Text Available The frequency of inherited bilateral autosomal recessive non-syndromic hearing loss (ARNSHL in Pakistan is 1.6/1000 individuals. More than 50% of the families carry mutations in GJB2 while mutations in MYO15A account for about 5% of recessive deafness. In the present study a cohort of 30 ARNSHL families was initially screened for mutations in GJB2 and MYO15A. Homozygosity mapping was performed by employing whole genome single nucleotide polymorphism (SNP genotyping in the families that did not carry mutations in GJB2 or MYO15A. Mutation analysis was performed for the known ARNSHL genes present in the homozygous regions to determine the causative mutations. This allowed the identification of a causative mutation in all the 30 families including 9 novel mutations, which were identified in 9 different families (GJB2 (c.598G>A, p.Gly200Arg; MYO15A (c.9948G>A, p.Gln3316Gln; c.3866+1G>A; c.8767C>T, p.Arg2923* and c.8222T>C, p.Phe2741Ser, TMC1 (c.362+18A>G, BSND (c.97G>C, p.Val33Leu, TMPRSS3 (c.726C>G, p.Cys242Trp and MSRB3 (c.20T>G, p.Leu7Arg. Furthermore, 12 recurrent mutations were detected in 21 other families. The 21 identified mutations included 10 (48% missense changes, 4 (19% nonsense mutations, 3 (14% intronic mutations, 2 (9% splice site mutations and 2 (9% frameshift mutations. GJB2 accounted for 53% of the families, while mutations in MYO15A were the second most frequent (13% cause of ARNSHL in these 30 families. The identification of novel as well as recurrent mutations in the present study increases the spectrum of mutations in known deafness genes which could lead to the identification of novel founder mutations and population specific mutated deafness genes causative of ARNSHL. These results provide detailed genetic information that has potential diagnostic implication in the establishment of cost-efficient allele-specific analysis of frequently occurring variants in combination with other reported mutations in Pakistani populations.

  12. Additional case of Marden-Walker syndrome: support for the autosomal-recessive inheritance adn refinement of phenotype in a surviving patient.

    Science.gov (United States)

    Orrico, A; Galli, L; Zappella, M; Orsi, A; Hayek, G

    2001-02-01

    In this report, we present a 14-year-old girl, born to consanguineous parents, who presented with severe mental retardation, hypotonia, short stature, and congenital joint contractures. The craniofacial features were scaphocephaly, thin/long and immobile face, marked hypoplasia of the midface, temporal narrowness, blepharophimosis, palpebral ptosis, and strabismus. The combination of such a distinctive craniofacial appearance and psychomotor retardation allows us to recognize a new case of the Marden-Walker syndrome. Our patient represents one of the rare cases in which consanguineous mating supports the autosomal-recessive pattern of inheritance of this condition. Furthermore, through refining the phenotype of a surviving patient, this report may contribute to a better recognition of this disorder in older affected children.

  13. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    Science.gov (United States)

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  14. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities.

    Directory of Open Access Journals (Sweden)

    Catherine Cukras

    Full Text Available Retinitis Pigmentosa (RP is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A in the gene encoding retinol binding protein 4 (RBP4. This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.

  15. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities.

    Science.gov (United States)

    Cukras, Catherine; Gaasterland, Terry; Lee, Pauline; Gudiseva, Harini V; Chavali, Venkata R M; Pullakhandam, Raghu; Maranhao, Bruno; Edsall, Lee; Soares, Sandra; Reddy, G Bhanuprakash; Sieving, Paul A; Ayyagari, Radha

    2012-01-01

    Retinitis Pigmentosa (RP) is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE) atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A) in the gene encoding retinol binding protein 4 (RBP4). This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP) in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th) decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.

  16. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    DEFF Research Database (Denmark)

    Riess, O; Noerremoelle, A; Weber, B

    1992-01-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons...

  17. Myosin7a deficiency results in reduced retinal activity which is improved by gene therapy.

    Directory of Open Access Journals (Sweden)

    Pasqualina Colella

    Full Text Available Mutations in MYO7A cause autosomal recessive Usher syndrome type IB (USH1B, one of the most frequent conditions that combine severe congenital hearing impairment and retinitis pigmentosa. A promising therapeutic strategy for retinitis pigmentosa is gene therapy, however its pre-clinical development is limited by the mild retinal phenotype of the shaker1 (sh1(-/- murine model of USH1B which lacks both retinal functional abnormalities and degeneration. Here we report a significant, early-onset delay of sh1(-/- photoreceptor ability to recover from light desensitization as well as a progressive reduction of both b-wave electroretinogram amplitude and light sensitivity, in the absence of significant loss of photoreceptors up to 12 months of age. We additionally show that subretinal delivery to the sh1(-/- retina of AAV vectors encoding the large MYO7A protein results in significant improvement of sh1(-/- photoreceptor and retinal pigment epithelium ultrastructural anomalies which is associated with improvement of recovery from light desensitization. These findings provide new tools to evaluate the efficacy of experimental therapies for USH1B. In addition, although AAV vectors expressing large genes might have limited clinical applications due to their genome heterogeneity, our data show that AAV-mediated MYO7A gene transfer to the sh1(-/- retina is effective.

  18. Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa.

    Science.gov (United States)

    Seyedahmadi, Babak Jian; Rivolta, Carlo; Keene, Julia A; Berson, Eliot L; Dryja, Thaddeus P

    2004-08-01

    A screen of the entire coding region of the USH2A gene in 129 unrelated patients with Usher syndrome type II (USH2) and in 146 unrelated patients with non-syndromic autosomal recessive retinitis pigmentosa (ARRP) uncovered 54 different sequence variations, including 18 likely pathogenic mutations (13 frameshift, three nonsense, and two missense), 12 changes of uncertain pathogenicity (11 missense changes and one in-frame deletion), and 24 non-pathogenic rare variants or polymorphisms. Of the 18 likely pathogenic mutations, nine were novel. Among the USH2 patients, 50 (39%) had one or two likely pathogenic mutations. The most common mutant allele in USH2 patients was E767fs, which was found in 29 patients, including one homozygote. Among the ARRP patients, we found 17 (12%) with one or two likely pathogenic mutations. The most common mutant allele in ARRP patients was C759F and it was found in 10 patients. The C759F allele was also found in two USH2 patients; in neither of them was a change in the other allele found. The second most common mutant allele in both patient groups was L1447fs (found in 6/50 USH2 patients and 6/17 ARRP patients). Of the 50+17=67 patients with identified USH2A mutations, only one mutation in one allele was found in 41+12=53 (79%); the reason for the high proportion of patients with only one identified mutation is obscure. Our results indicate that USH2A mutations are found in about 7% of all cases of RP in North America, a frequency similar to the RPGR gene (8%) and the rhodopsin gene (10%).

  19. A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia

    DEFF Research Database (Denmark)

    Roos, L; Fang, M; Dali, C

    2013-01-01

    to the identification of new genes. Very recently, homozygous variations within ALDH1A3 have been associated with autosomal recessive microphthalmia with or without cysts or coloboma, and with variable subphenotypes of developmental delay/autism spectrum disorder in eight families. In a consanguineous family where...... three of the five siblings were affected with microphthalmia/coloboma, we identified a novel homozygous missense mutation in ALDH1A3 using exome sequencing. Of the three affected siblings, one had intellectual disability and one had intellectual disability and autism, while the last one presented...... with normal development. This study contributes further to the description of the clinical spectrum associated with ALDH1A3 mutations, and illustrates the interfamilial clinical variation observed in individuals with ALDH1A3 mutations....

  20. Identification of a novel p.R1443W mutation in RP1 gene associated with retinitis pigmentosa sine pigmento

    Directory of Open Access Journals (Sweden)

    Li Ma

    2013-08-01

    Full Text Available AIM: To screen mutations in the retinitis pigmentosa 1 (RP1 gene and the rhodopsin (RHO gene in Chinese patients with retinitis pigmentosa sine pigmento (RPSP and describe the genotype-phenotype relationship of the mutations.METHODS:Twenty affected, unrelated Chinese individuals with RPSP (4 autosomal dominant RPSP, 12 autosomal recessive RPSP and 4 unknown inheritance pattern were recruited between 2009 and 2012. The clinical features were determined by complete ophthalmologic examinations. Polymerase chain reaction (PCR and direct DNA sequencing were used to screen the entire coding region and splice junctions of the RP1 gene and the RHO gene. The cosegregation analysis and population frequency studies were performed for patients with identified mutations.RESULTS: Five variants in the RP1 gene and one in the RHO gene were detected in 20 probands. Four missense changes (rs444772, rs446227, rs414352, rs441800 and one non-coding variant (rs56340615 were common SNPs and none of them showed a significant relationship with RPSP. A missense mutation p.R1443W was identified in the RP1 gene in three affected individuals from a family with autosomal dominant RPSP and was found to cosegregate with the phenotype in this family, suggestive of pathogenic. In addition, population frequency analysis showed the p.R1443W mutation was absent in 300 healthy controls.CONCLUSION: The identification of p.R1443W mutation cosegregating in a family with autosomal dominant RPSP highlights an atypical phenotype of the RP1 gene mutation, while RHO gene is not associated with the pathogenesis of RPSP in this study. To our knowledge, this is the fist mutation identified to associate with RPSP.

  1. Identification of a novel p.R1443W mutation in RP1 gene associated with retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Ma, Li; Sheng, Xun-Lun; Li, Hui-Ping; Zhang, Fang-Xia; Liu, Ya-Ni; Rong, Wei-Ning; Zhang, Jian-Ling

    2013-01-01

    To screen mutations in the retinitis pigmentosa 1 (RP1) gene and the rhodopsin (RHO) gene in Chinese patients with retinitis pigmentosa sine pigmento (RPSP) and describe the genotype-phenotype relationship of the mutations. Twenty affected, unrelated Chinese individuals with RPSP (4 autosomal dominant RPSP, 12 autosomal recessive RPSP and 4 unknown inheritance pattern) were recruited between 2009 and 2012. The clinical features were determined by complete ophthalmologic examinations. Polymerase chain reaction (PCR) and direct DNA sequencing were used to screen the entire coding region and splice junctions of the RP1 gene and the RHO gene. The cosegregation analysis and population frequency studies were performed for patients with identified mutations. Five variants in the RP1 gene and one in the RHO gene were detected in 20 probands. Four missense changes (rs444772, rs446227, rs414352, rs441800) and one non-coding variant (rs56340615) were common SNPs and none of them showed a significant relationship with RPSP. A missense mutation p.R1443W was identified in the RP1 gene in three affected individuals from a family with autosomal dominant RPSP and was found to cosegregate with the phenotype in this family, suggestive of pathogenic. In addition, population frequency analysis showed the p.R1443W mutation was absent in 300 healthy controls. The identification of p.R1443W mutation cosegregating in a family with autosomal dominant RPSP highlights an atypical phenotype of the RP1 gene mutation, while RHO gene is not associated with the pathogenesis of RPSP in this study. To our knowledge, this is the fist mutation identified to associate with RPSP.

  2. Kidney Versus Combined Kidney and Liver Transplantation in Young People With Autosomal Recessive Polycystic Kidney Disease: Data From the European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant (ESPN/ERA-EDTA) Registry

    NARCIS (Netherlands)

    Mekahli, Djalila; van Stralen, Karlijn J.; Bonthuis, Marjolein; Jager, Kitty J.; Balat, Ayşe; Benetti, Elisa; Godefroid, Nathalie; Edvardsson, Vidar O.; Heaf, James G.; Jankauskiene, Augustina; Kerecuk, Larissa; Marinova, Svetlana; Puteo, Flora; Seeman, Tomas; Zurowska, Aleksandra; Pirenne, Jacques; Schaefer, Franz; Groothoff, Jaap W.; Levtchenko, E.; Haffner, D.; Bjerre, A.; Massy, Z.; Shtiza, D.; Kramar, R.; Oberbauer, R.; Baiko, S.; Sukalo, A.; van Hoeck, K.; Collart, F.; des Grottes, J. M.; Pokrajac, D.; Roussinov, D.; Batinić , D.; Lemac, M.; Slavicek, J.; Seeman, T.; Vondrak, K.; Heaf, J. G.; Toots, U.; Finne, P.; Grö nhagen-Riska, C.; Couchoud, C.; Lasalle, M.; Sahpazova, E.; Abazi, N.; Ristoka Bojkovska, N.; von Gersdorff, G.; Scholz, C.; Tö nshoff, B.; Krupka, K.

    2016-01-01

    The choice for either kidney or combined liver-kidney transplantation in young people with kidney failure and liver fibrosis due to autosomal recessive polycystic kidney disease (ARPKD) can be challenging. We aimed to analyze the characteristics and outcomes of transplantation type in these

  3. Kidney Versus Combined Kidney and Liver Transplantation in Young People With Autosomal Recessive Polycystic Kidney Disease: Data From the European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant (ESPN/ERA-EDTA) Registry

    NARCIS (Netherlands)

    Mekahli, D.; Stralen, K.J. van; Bonthuis, M.; Jager, K.J.; Balat, A.; Benetti, E.; Godefroid, N.; Edvardsson, V.O.; Heaf, J.G.; Jankauskiene, A.; Kerecuk, L.; Marinova, S.; Puteo, F.; Seeman, T.; Zurowska, A.; Pirenne, J.; Schaefer, F.; Groothoff, J.W.; Hoitsma, A.J.; et al.,

    2016-01-01

    BACKGROUND: The choice for either kidney or combined liver-kidney transplantation in young people with kidney failure and liver fibrosis due to autosomal recessive polycystic kidney disease (ARPKD) can be challenging. We aimed to analyze the characteristics and outcomes of transplantation type in

  4. Inherited Retinal Degenerative Clinical Trial Network. Addendum

    Science.gov (United States)

    2013-10-01

    inherited orphan retinal degenerative diseases and dry age-related macular degeneration (AMD) through the conduct of clinical trials and other...design and conduct of effective and efficient clinical trials for inherited orphan retinal degenerative diseases and dry AMD; • Limited number and...linica l trial in the NEER network for autosomal dominant retinitis pigmentosa, and the ProgSTAR studies for Stargardt disease ) . As new interventions b

  5. A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability.

    Science.gov (United States)

    Larti, Farzaneh; Kahrizi, Kimia; Musante, Luciana; Hu, Hao; Papari, Elahe; Fattahi, Zohreh; Bazazzadegan, Niloofar; Liu, Zhe; Banan, Mehdi; Garshasbi, Masoud; Wienker, Thomas F; Ropers, H Hilger; Galjart, Niels; Najmabadi, Hossein

    2015-03-01

    In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score = 3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which specifically associates with the ends of growing MTs. These proteins regulate MT dynamic behavior and are important for MT-mediated transport over the length of axons and dendrites. As such, CLIP1 may have a role in neuronal development. We studied lymphoblastoid and skin fibroblast cell lines established from healthy and affected patients. RT-PCR and western blot analyses showed the absence of CLIP1 transcript and protein in lymphoblastoid cells derived from affected patients. Furthermore, immunofluorescence analyses showed MT plus-end staining only in fibroblasts containing the wild-type (and not the mutant) CLIP1 protein. Collectively, our data suggest that defects in CLIP1 may lead to ARID.

  6. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome

    DEFF Research Database (Denmark)

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander

    2015-01-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical ...

  7. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  8. X-Linked and Autosomal Recessive Alport Syndrome

    DEFF Research Database (Denmark)

    Savige, Judith; Storey, Helen; Il Cheong, Hae

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all published...... COL4A5, COL4A3 and COL4A4 variants in the LOVD databases. It also determined genotype-phenotype correlations for variants where clinical data were available. Individuals were referred for genetic testing where Alport syndrome was suspected clinically or on biopsy (renal failure, hearing loss...

  9. The acrocallosal syndrome in first cousins: widening of the spectrum of clinical features and further support for autosomal recessive inheritance.

    Science.gov (United States)

    Schinzel, A

    1988-01-01

    First cousins, related through their mothers, showed a pattern of craniofacial, brain, and limb anomalies consistent with the acrocallosal syndrome. Both patients had a defect of the corpus callosum, macrocephaly with a protruding forehead and occiput, hypertelorism, non-horizontal palpebral fissures, a small nose, notched ear lobes, and postaxial polydactyly of the hands. The boy, in addition, had hypospadias, cryptorchidism, inguinal hernias, duplication with syndactyly of the phalanges of the big toe, and a bipartite right clavicle. The girl had an arachnoidal cyst, a calvarian defect, and digitalisation of the thumbs. Motor and mental development was retarded in both patients. This observation provides further evidence of probable autosomal recessive inheritance of the acrocallosal syndrome and widens the spectrum of clinical findings and the variability of features in this rare malformation syndrome. Images PMID:3385741

  10. Mutations in DZIP1L, which encodes a ciliary transition zone protein, cause autosomal recessive polycystic kidney disease

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C. Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P. Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D.; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H.; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C.; Wright, Graham D.; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A.; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-01-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in the DAZ interacting protein 1-like (DZIP1L) gene in patients with ARPKD, findings we have further validated by loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and at the distal end of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. Consistent with a defect in the diffusion barrier, we found that the ciliary membrane translocation of the PKD proteins, polycystin-1 and −2, is compromised in DZIP1L mutant cells. Together, these data provide the first conclusive evidence that ARPKD is not a homogeneous disorder, and establishes DZIP1L as a second gene involved in its pathogenesis. PMID:28530676

  11. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C; Wright, Graham D; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-07-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.

  12. Recessive Epidermolysis Bullosa simplex- A case report

    African Journals Online (AJOL)

    Ademu

    Abstract: Background:Epidermolysis bullosa simplex (EBS) is characterized by intraepidermal blister formation, most commonly appearing in early infancy. Many variants of EBS exist; the four most common variants are inherited in an autosomal dominant fashion. The recessive forms are rare and less reported in our ...

  13. Libyan Boy with Autosomal Recessive Trait (P22-phox Defect of Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Ilka Schulze

    2006-09-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immune deficiency disorder of the phagocytes. In this disorder, phagocytic cells (polymorphonuclear leukocytes and monocytes cannot produce active oxygen metabolites, and therefore, cannot destroy the ingested intracellular bacteria. Clinically, patients with CGD usually have recurrent bacterial and fungal infections causing abscess and granuloma formation in the skin, lymph nodes and visceral organs.In this report, we present a boy from Libya with a rare autosomal recessive trait of CGD (defect of p22-phox who has chronic lung disease following multiple severe pneumonia attacks. The case we present suffered from bloody diarrhea since the third month of his life. He also had recurrent episodes of fever, and later, developed persistent cervical lymphadenitis and failure to gain weight. CGD is a very rare condition worldwide. It is also not recognized here in Libya, and usually not in the list of differential diagnosis for chronic pulmonary infections. We advise that pediatricians and general practitioners who treat chronic cases of lung diseases (with or without chronic diarrhea should consider primary immunodeficiency disorders in the hope that early diagnosis and treatment may prevent chronic complications especially of the respiratory tract. Furthermore, we state that, to the best of our knowledge, this is the first documented case of CGD from Libya.

  14. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease

    DEFF Research Database (Denmark)

    Gal, Andreas; Rau, Isabella; El Matri, Leila

    2011-01-01

    heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603......Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we...... amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both...

  15. Genetics Home Reference: retinitis pigmentosa

    Science.gov (United States)

    ... A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. ... in known genes account for 58% of autosomal dominant retinitis pigmentosa (adRP). Adv Exp Med Biol. 2008; ...

  16. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability

    Science.gov (United States)

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J. M.; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D. James; Carter, Melissa T.; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B.

    2015-01-01

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. PMID:26206890

  17. Prevalence of GJB2 Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss.

    Science.gov (United States)

    Tlili, Abdelaziz; Al Mutery, Abdullah; Kamal Eddine Ahmad Mohamed, Walaa; Mahfood, Mona; Hadj Kacem, Hassen

    2017-11-01

    Mutations in the gap junction protein beta 2 (GJB2) gene are responsible for more cases of nonsyndromic recessive hearing loss than any other gene. The purpose of our study was to evaluate the prevalence of GJB2 mutations among affected individuals from United Arab Emirates (UAE). There were 50 individuals diagnosed with hereditary hearing loss and 120 healthy individuals enrolled in the study. The Sanger sequencing method was used to screen the GJB2 coding region in all affected individuals. The c.-1G>A variant was determined by the polymerase chain reaction-restriction fragment length polymorphism method in normal individuals. Nine cases with bi-allelic mutations and three cases with mono-allelic mutations were detected in 12 out of 50 patients (24%). The homozygous mutation c.35delG was identified as the cause of hearing loss in six participants (12%). The mutation c.506G>A was identified in three affected individuals (6%). The allelic frequency (14%) and low percentage of individuals that were homozygous (2%) for the c.35delG mutation suggest that there are other genes responsible for nonsyndromic deafness in the UAE population. The results reported here are a preliminary step in collecting epidemiological data regarding autosomal recessive nonsyndromic hearing loss related to GJB2 gene mutations among the UAE population. The c.35delG mutation of the GJB2 gene is the most frequently seen causative mutation in the UAE and is followed by the p.Cys169Tyr mutation.

  18. Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford

    Science.gov (United States)

    2017-09-28

    ; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type

  19. Dominant versus recessive traits conveyed by allelic mutations - to what extent is nonsense-mediated decay involved?

    NARCIS (Netherlands)

    Ben-Shachar, S.; Khajavi, M.; Withers, M.A.; Shaw, C.A.; Bokhoven, J.H.L.M. van; Brunner, H.G.; Lupski, J.R.

    2009-01-01

    Mutations in ROR2, encoding a receptor tyrosine kinase, can cause autosomal recessive Robinow syndrome (RRS), a severe skeletal dysplasia with limb shortening, brachydactyly, and a dysmorphic facial appearance. Other mutations in ROR2 result in the autosomal dominant disease, brachydactyly type B

  20. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism

    International Nuclear Information System (INIS)

    Asai, Hirohide; Hirano, Makito; Kiriyama, Takao; Ikeda, Masanori; Ueno, Satoshi

    2010-01-01

    Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF hSel-10 ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.

  1. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability.

    Science.gov (United States)

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J M; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D James; Carter, Melissa T; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B

    2015-10-15

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Autosomal dominant syndrome resembling Coffin-Siris syndrome.

    Science.gov (United States)

    Flynn, Maureen A; Milunsky, Jeff M

    2006-06-15

    Coffin-Siris syndrome is a multiple congenital anomaly/mental retardation syndrome with phenotypic variability [OMIM 135900]. The diagnosis is based solely on clinical findings, as there is currently no molecular, biochemical, or cytogenetic analysis available to confirm a diagnosis. Although typically described as an autosomal recessive disorder, autosomal dominant inheritance has also been infrequently reported. We describe a mother and her two daughters who all have features that resemble Coffin-Siris syndrome. However, this is not a completely convincing diagnosis given that hypertelorism is not a feature of Coffin-Siris syndrome and the family is relatively mildly affected. Yet, this family provides further evidence of an autosomal dominant mode of inheritance for a likely variant of Coffin-Siris syndrome (at least in some families). In addition, Sibling 1 had premature thelarche. She is the second reported individual within the spectrum of Coffin-Siris syndrome to have premature thelarche, indicating that it may be a rare clinical feature. Copyright 2006 Wiley-Liss, Inc.

  3. Birth of a healthy infant following preimplantation PKHD1 haplotyping for autosomal recessive polycystic kidney disease using multiple displacement amplification

    Science.gov (United States)

    Janson, Marleen M.; Roesler, Mark R.; Avner, Ellis D.; Strawn, Estil Y.; Bick, David P.

    2010-01-01

    Purpose To develop a reliable preimplantation genetic diagnosis protocol for couples who both carry a mutant PKHD1 gene wishing to conceive children unaffected with autosomal recessive polycystic kidney disease (ARPKD). Methods Development of a unique protocol for preimplantation genetic testing using whole genome amplification of single blastomeres by multiple displacement amplification (MDA), and haplotype analysis with novel short tandem repeat (STR) markers from the PKHD1 gene and flanking sequences, and a case report of successful utilization of the protocol followed by successful IVF resulting in the birth of an infant unaffected with ARPKD. Results We have developed 20 polymorphic STR markers suitable for linkage analysis of ARPKD. These linked STR markers have enabled unambiguous identification of the PKHD1 haplotypes of embryos produced by at-risk couples. Conclusions We have developed a reliable protocol for preimplantation genetic diagnosis of ARPKD using single-cell MDA products for PKHD1 haplotyping. PMID:20490649

  4. Validation of a clinical practice-based algorithm for the diagnosis of autosomal recessive cerebellar ataxias based on NGS identified cases.

    Science.gov (United States)

    Mallaret, Martial; Renaud, Mathilde; Redin, Claire; Drouot, Nathalie; Muller, Jean; Severac, Francois; Mandel, Jean Louis; Hamza, Wahiba; Benhassine, Traki; Ali-Pacha, Lamia; Tazir, Meriem; Durr, Alexandra; Monin, Marie-Lorraine; Mignot, Cyril; Charles, Perrine; Van Maldergem, Lionel; Chamard, Ludivine; Thauvin-Robinet, Christel; Laugel, Vincent; Burglen, Lydie; Calvas, Patrick; Fleury, Marie-Céline; Tranchant, Christine; Anheim, Mathieu; Koenig, Michel

    2016-07-01

    Establishing a molecular diagnosis of autosomal recessive cerebellar ataxias (ARCA) is challenging due to phenotype and genotype heterogeneity. We report the validation of a previously published clinical practice-based algorithm to diagnose ARCA. Two assessors performed a blind analysis to determine the most probable mutated gene based on comprehensive clinical and paraclinical data, without knowing the molecular diagnosis of 23 patients diagnosed by targeted capture of 57 ataxia genes and high-throughput sequencing coming from a 145 patients series. The correct gene was predicted in 61 and 78 % of the cases by the two assessors, respectively. There was a high inter-rater agreement [K = 0.85 (0.55-0.98) p < 0.001] confirming the algorithm's reproducibility. Phenotyping patients with proper clinical examination, imaging, biochemical investigations and nerve conduction studies remain crucial for the guidance of molecular analysis and to interpret next generation sequencing results. The proposed algorithm should be helpful for diagnosing ARCA in clinical practice.

  5. Genetics of recessive cognitive disorders

    OpenAIRE

    Musante, Luciana; Ropers, H. Hilger

    2014-01-01

    Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elu...

  6. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11)

    NARCIS (Netherlands)

    Luijendijk, M.W.J.; Wijk, E. van; Bischoff, A.M.L.C.; Krieger, E.; Huygen, P.L.M.; Pennings, R.J.E.; Brunner, H.G.; Cremers, C.W.R.J.; Cremers, F.P.M.; Kremer, J.M.J.

    2004-01-01

    Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant

  7. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).

    NARCIS (Netherlands)

    Luijendijk, M.W.J.; Wijk, E. van; Bischoff, A.M.L.C.; Krieger, E.; Huygen, P.L.M.; Pennings, R.J.E.; Brunner, H.G.; Cremers, C.W.R.J.; Cremers, F.P.M.; Kremer, J.M.J.

    2004-01-01

    Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant

  8. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations.

    Science.gov (United States)

    Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro

    2018-04-01

    In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.

  9. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    NARCIS (Netherlands)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2,

  10. Abetalipoproteinemia: A novel mutation of microsomal triglyceride ...

    African Journals Online (AJOL)

    Abetalipoproteinemia (ABL), or Bassen–Kornzweig syndrome, is a rare autosomal recessive disorder of lipoprotein metabolism, characterized by fat malabsorption, hypocholesterolemia, retinitis pigmentosa, progressive neuropathy and acanthocytosis. We report the case of a Tunisian male child born from consanguineous ...

  11. Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis

    Science.gov (United States)

    Ullah, Rahim; Ansar, Muhammad; Durrani, Zaka Ullah; Lee, Kwanghyuk; Santos-Cortez, Regie Lyn P.; Muhammad, Dost; Ali, Mahboob; Zia, Muhammad; Ayub, Muhammad; Khan, Suliman; Smith, Josh D.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Leal, Suzanne M.; Ahmad, Wasim

    2016-01-01

    Background Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members. PMID:26578203

  12. Good Epidemiologic Practice in Retinitis Pigmentosa: From Phenotyping to Biobanking

    Science.gov (United States)

    Chizzolini, Marzio; Galan, Alessandro; Milan, Elisabeth; Sebastiani, Adolfo; Costagliola, Ciro; Parmeggiani, Francesco

    2011-01-01

    Inherited retinal dystrophies, such as retinitis pigmentosa (RP), include a group of relatively rare hereditary diseases caused by mutations in genes that code for proteins involved in the maintenance and function of the photoreceptor cells (cones and rods). The different forms of RP consist of progressive neurodegenerative disorders which are generally related to various and severe limitations of visual performances. In the course of typical RP (rod-cone dystrophy), the affected individuals first experience night-blindness and/or visual field constriction (secondary to rod dysfunctions), followed by variable alterations of the central vision (due to cone damages). On the other hand, during the atypical form of RP (cone-rod dystrophy), the cone’s functionalities are prevalently disrupted in comparison with the rod’s ones. The basic diagnosis of RP relies upon the documentation of unremitting loss in photoreceptor activity by electroretinogram and/or visual field testing. The prevalence of all RP typologies is variably reported in about one case for each 3000-5000 individuals, with a total of about two millions of affected persons worldwide. The inherited retinal dystrophies are sometimes the epiphenomenon of a complex framework (syndromic RP), but more often they represent an isolated disorder (about 85-90 % of cases). Although 200 causative RP mutations have been hitherto detected in more than 100 different genes, the molecular defect is identifiable in just about the 50% of the analyzed patients with RP. Not only the RP genotypes are very heterogeneous, but also the patients with the same mutation can be affected by different phenotypic manifestations. RP can be inherited as autosomal dominant, autosomal recessive or X-linked trait, and many sporadic forms are diagnosed in patients with no affected relatives. Dissecting the clinico-genetic complexity of RP has become an attainable objective by means of large-scale research projects, in which the collaboration

  13. Further delineation of spondylometaphyseal dysplasia with cone-rod dystrophy

    NARCIS (Netherlands)

    Sousa, Sérgio B.; Russell-Eggitt, Isabelle; Hall, Christine; Hall, Bryan D.; Hennekam, Raoul C. M.

    2008-01-01

    There are several entities that combine a skeletal dysplasia with a retinal dystrophy. Recently, another possibly autosomal recessive entity was added to this group characterized by a specific spondylometaphyseal dysplasia and a cone-rod dystrophy, without other significant impairments. The entity

  14. A PEX6-defective peroxisomal biogenesis disorder with severe phenotype in an infant, versus mild phenotype resembling Usher syndrome in the affected parents

    NARCIS (Netherlands)

    Raas-Rothschild, Annick; Wanders, Ronald J. A.; Mooijer, Petra A. W.; Gootjes, Jeannette; Waterham, Hans R.; Gutman, Alisa; Suzuki, Yasuyuki; Shimozawa, Nobuyuki; Kondo, Naomi; Eshel, Gideon; Espeel, Marc; Roels, Frank; Korman, Stanley H.

    2002-01-01

    Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP

  15. Distribution of skeletal muscle involvement in autosomal recessive distal muscular dystrophy. A clinical and computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Mizusawa, Hidehiro; Nakanishi, Takao; Kobayashi, Fumie

    1987-02-01

    Distribution of skeletal muscle involvement in 5 cases with autosomal recessive distal muscular dystrophy was studied clinically and by computed tomography (CT). Manual muscle test showed muscle involvement with a predilection for flexors in the lower leg and adductors in the thigh. Flexion and extension of the thigh and the lower leg was impaired to similar degree. In progressed cases, neck flexors and trunk muscles were also affected mildly. CT disclosed more clearly the preferential involvement of flexors in the lower leg, and involvement of both hamstrings center dot adductors group and extensors group of the thigh to similar degree. However, m. popliteus was curiously well preserved. In addition, there was a stage showing high density and hypertrophy of m. sartorius, m. gracilis, m. adductor, m. biceps femoris, m. semimenbranosus, m. semitendinosus or m. rectus femoris, which in thought to be compensatory hypertrophy. M. gluteus minimus in the pelvic girdle and m. dorsi proprii in the trunk were also liable to be affected. The CT findings are regarded as characteristic features noted clearly before muscle weakness and atrophy become apparent clinically. CT is very useful for distinguishing distal muscular dystrophy from rimmed vacuolar distal myopathy in which m. quadriceps femoris and flexors of the lower leg are usually well preserved without compensatory hypertrophy on CT.

  16. [Retinitis pigmentosa and color vision deficiency in Kamigoto island, Nagasaki Prefecture].

    Science.gov (United States)

    Toda, S

    1997-08-01

    I studied two genetic diseases, retinitis pigmentosa (RP) and color vision anomaly, in Kamigoto, one of the off-shore islands in Nagasaki Prefecture. The Prevalance of RP patients in this island was estimated to be one in 473 persons. Among the RP patients observed, familial cases whose disorders are transmitted through successive generations comprised 25.7%. Although it seems that the inheritance mode of RP in these familial cases is autosomal dominant, an autosomal recessive fashion showing quasi-dominance cannot be ruled out, because inbreeding frequently occurs on this island. There were at least two types of RP, one with late onset (40 years of age or later) and the other with early onset, and patients with the latter RP tended to have a poor prognosis. Only a few RP patients had posterior subcapsular cataract, and none had pseudexfoliation in spite of advanced age. Color vision anomalies were found in 3.86% of high-school boys and in 0.41% of girls in this island, and they included protanopia (4.2%), protanomaly (10.4%), deuteranopia (37.5%), and deuteranomaly (47.9%). The prevalence in boys was comparable to that in the general Japanese population, but the prevalence in girls was higher in Kamigoto than in other districts. It is most likely that the unique findings regarding the two disorders reflect geographical and/or social features in Kamigoto island.

  17. Genetic Analysis for Two Italian Siblings with Usher Syndrome and Schizophrenia

    OpenAIRE

    Daniela Domanico; Serena Fragiotta; Paolo Trabucco; Marcella Nebbioso; Enzo Maria Vingolo

    2012-01-01

    Usher syndrome is a group of autosomal recessive genetic disorders characterized by deafness, retinitis pigmentosa, and sometimes vestibular areflexia. The relationship between Usher syndrome and mental disorders, most commonly a “schizophrenia-like” psychosis, is sometimes described in the literature. The etiology of psychiatric expression of Usher syndrome is still unclear. We reported a case of two natural siblings with congenital hypoacusis, retinitis pigmentosa, and psychiatric symptoms....

  18. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation.

    Science.gov (United States)

    Garshasbi, Masoud; Hadavi, Valeh; Habibi, Haleh; Kahrizi, Kimia; Kariminejad, Roxana; Behjati, Farkhondeh; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas Walter

    2008-05-01

    Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome 8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by sequencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes nonsyndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-ARMR and the first for which mutations have been reported in more than one family.

  19. Terapia gênica em distrofias hereditárias de retina Gene therapy for inherited retinal dystrophies

    Directory of Open Access Journals (Sweden)

    Monique Côco

    2009-08-01

    Full Text Available As distrofias hereditárias de retina abrangem um amplo número de doenças caracterizadas por lenta e progressiva degeneração da retina. São o resultado de mutações em genes expressos em fotorreceptores e no epitélio pigmentado da retina. A herança pode ser autossômica dominante, autossômica recessiva, ligada ao X recessiva, digênica ou herança mitocondrial. Atualmente não há tratamento para essas doenças e os pacientes convivem com a perda progressiva da visão. O aconselhamento genético e o suporte para reabilitação têm indicação nestes casos. Pesquisas envolvendo a base molecular e genética dessas doenças está continuamente em expansão e ampliam as perspectivas para novas formas de tratamento. Dessa forma, a terapia gênica, que consiste na inserção de material genético exógeno em células de um indivíduo com finalidade terapêutica, tem sido a principal forma de tratamento para as distrofias hereditárias de retina. O olho é um órgão peculiar para a terapia gênica, pois é anatomicamente dividido em compartimentos, imunologicamente privilegiado e com meios transparentes. A maioria das doenças oculares tem defeitos em genes conhecidos. Além disso, há modelo animal bem caracterizado para algumas condições. Propostas para pesquisa clínica em terapia gênica nas degenerações retinianas hereditárias com defeito no gene RPE65, recentemente tiveram aprovação ética e os resultados preliminares obtidos trouxeram grandes expectativas na melhora da qualidade de vida dos pacientes.The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these

  20. Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3.

    Science.gov (United States)

    Klebe, Stephan; Azzedine, Hamid; Durr, Alexandra; Bastien, Patrick; Bouslam, Naima; Elleuch, Nizar; Forlani, Sylvie; Charon, Celine; Koenig, Michel; Melki, Judith; Brice, Alexis; Stevanin, Giovanni

    2006-06-01

    The hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive spasticity in the lower limbs. Twenty-nine different loci (SPG) have been mapped so far, and 11 responsible genes have been identified. Clinically, one distinguishes between pure and complex HSP forms which are variably associated with numerous combinations of neurological and extra-neurological signs. Less is known about autosomal recessive forms (ARHSP) since the mapped loci have been identified often in single families and account for only a small percentage of patients. We report a new ARHSP locus (SPG30) on chromosome 2q37.3 in a consanguineous family with seven unaffected and four affected members of Algerian origin living in Eastern France with a significant multipoint lod score of 3.8. Ten other families from France (n = 4), Tunisia (n = 2), Algeria (n = 3) and the Czech Republic (n = 1) were not linked to the newly identified locus thus demonstrating further genetic heterogeneity. The phenotype of the linked family consists of spastic paraparesis and peripheral neuropathy associated with slight cerebellar signs confirmed by cerebellar atrophy on one CT scan.

  1. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. CHITRA KANNABIRAN. Articles written in Journal of Genetics. Volume 81 Issue 2 August 2002 pp 59-63 Perspectives. Screening for homozygosity by descent in families with autosomal recessive retinitis pigmentosa · Kota Lalitha Subhadra Jalali Tejas Kadakia Chitra Kannabiran.

  2. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. Chitra Kannabiran. Articles written in Journal of Genetics. Volume 81 Issue 2 August 2002 pp 59-63 Perspectives. Screening for homozygosity by descent in families with autosomal recessive retinitis pigmentosa · Kota Lalitha Subhadra Jalali Tejas Kadakia Chitra Kannabiran.

  3. Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy.

    Directory of Open Access Journals (Sweden)

    Cécile Méjécase

    Full Text Available GNAT1, encoding the transducin subunit Gα, is an important element of the phototransduction cascade. Mutations in this gene have been associated with autosomal dominant and autosomal recessive congenital stationary night blindness. Recently, a homozygous truncating GNAT1 mutation was identified in a patient with late-onset rod-cone dystrophy. After exclusion of mutations in genes underlying progressive inherited retinal disorders, by targeted next generation sequencing, a 32 year-old male sporadic case with severe rod-cone dystrophy and his unaffected parents were investigated by whole exome sequencing. This led to the identification of a homozygous nonsense variant, c.963C>A p.(Cys321* in GNAT1, which was confirmed by Sanger sequencing. The mother was heterozygous for this variant whereas the variant was absent in the father. c.963C>A p.(Cys321* is predicted to produce a shorter protein that lacks critical sites for the phototransduction cascade. Our work confirms that the phenotype and the mode of inheritance associated with GNAT1 variants can vary from autosomal dominant, autosomal recessive congenital stationary night blindness to autosomal recessive rod-cone dystrophy.

  4. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach

    Science.gov (United States)

    Zimoń, Magdalena; Battaloǧlu, Esra; Parman, Yesim; Erdem, Sevim; Baets, Jonathan; De Vriendt, Els; Atkinson, Derek; Almeida-Souza, Leonardo; Deconinck, Tine; Ozes, Burcak; Goossens, Dirk; Cirak, Sebahattin; Van Damme, Philip; Shboul, Mohammad; Voit, Thomas; Van Maldergem, Lionel; Dan, Bernard; El-Khateeb, Mohammed S.; Guergueltcheva, Velina; Lopez-Laso, Eduardo; Goemans, Nathalie; Masri, Amira; Züchner, Stephan; Timmerman, Vincent; Topaloǧlu, Haluk; De Jonghe, Peter

    2016-01-01

    Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1—GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2—SH3TC2, histidine-triad nucleotide binding protein 1—HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22 % of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3 % patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies. PMID:25231362

  5. Usher Syndrome: Case Reports of Two Siblings

    OpenAIRE

    Raman Prasad Sah, B.Optom; Pragati Gautam, MD; Jyoti Baba Shrestha, MD; Mahesh Raj Joshi, M.Optom

    2015-01-01

    Background: Usher syndrome is a rare autosomal recessive disorder characterized by congenital sensory neural deafness and progressive visual loss secondary to retinitis pigmentosa. There are three different types of Usher syndrome. Retinitis pigmentosa is the main ophthalmic manifestation shared by all three. Differences in auditory and vestibular function are the distinguishing feature. Case Reports: Two brothers, 13 and 16 years of age, presented with chief complaints of progressive dim...

  6. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia.

    Science.gov (United States)

    Adaimy, Lynn; Chouery, Eliane; Megarbane, Hala; Mroueh, Salman; Delague, Valerie; Nicolas, Elsa; Belguith, Hanen; de Mazancourt, Philippe; Megarbane, Andre

    2007-10-01

    Odonto-onycho-dermal dysplasia is a rare autosomal recessive syndrome in which the presenting phenotype is dry hair, severe hypodontia, smooth tongue with marked reduction of fungiform and filiform papillae, onychodysplasia, keratoderma and hyperhidrosis of palms and soles, and hyperkeratosis of the skin. We studied three consanguineous Lebanese Muslim Shiite families that included six individuals affected with odonto-onycho-dermal dysplasia. Using a homozygosity-mapping strategy, we assigned the disease locus to an ~9-cM region at chromosome 2q35-q36.2, located between markers rs16853834 and D2S353, with a maximum multipoint LOD score of 5.7. Screening of candidate genes in this region led us to identify the same c.697G-->T (p.Glu233X) homozygous nonsense mutation in exon 3 of the WNT10A gene in all patients. At the protein level, the mutation is predicted to result in a premature truncated protein of 232 aa instead of 417 aa. This is the first report to our knowledge of a human phenotype resulting from a mutation in WNT10A, and it is the first demonstration of an ectodermal dysplasia caused by an altered WNT signaling pathway, expanding the list of WNT-related diseases.

  7. USH1G with unique retinal findings caused by a novel truncating mutation identified by genome-wide linkage analysis

    Science.gov (United States)

    Taibah, Khalid; Bin-Khamis, Ghada; Kennedy, Shelley; Hemidan, Amal; Al-Qahtani, Faisal; Tabbara, Khalid; Mubarak, Bashayer Al; Ramzan, Khushnooda; Meyer, Brian F.; Al-Owain, Mohammed

    2012-01-01

    Purpose Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation. Methods Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons. Results We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals. Conclusions In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease. PMID:22876113

  8. Recessive omodysplasia: five new cases and review of the literature

    International Nuclear Information System (INIS)

    Elcioglu, Nursel H.; Gustavson, Karl H.; Wilkie, Andrew O.M.; Yueksel-Apak, Memune; Spranger, Juergen W.

    2004-01-01

    Autosomal recessive omodysplasia (MIM 258315) is a rare skeletal dysplasia characterized by severe congenital micromelia with shortening and distal tapering of the humeri and femora to give a club-like appearance. Fewer than 20 cases have been reported in the literature so far. The purpose of this study was to more clearly describe the clinical and radiographic phenotypes and their changes with age. Five new patients, including two sibs, with autosomal recessive omodysplasia are presented. Clinical features are rhizomelic dwarfism with limited extension of elbows and knees and a distinct face with a short nose, depressed nasal bridge, long philtrum, midline haemangiomas in infants and cryptorchidism in males. Radiological findings are distal hypoplasia of the short humerus and femur with characteristic radial dislocation and radioulnar diastasis. Based on a review of these and 16 previously reported patients, the regressive nature of the humerofemoral changes and the obvious male predominance are stressed. Phenotypic similarities with the atelosteogenesis group of disorders and with diastrophic dysplasia suggest common pathogenetic mechanisms. (orig.)

  9. Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa.

    Science.gov (United States)

    Booij, J C; Florijn, R J; ten Brink, J B; Loves, W; Meire, F; van Schooneveld, M J; de Jong, P T V M; Bergen, A A B

    2005-11-01

    To identify mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. Mutation analysis was carried out in a group of 35 unrelated patients with juvenile autosomal recessive retinitis pigmentosa (ARRP), Leber's congenital amaurosis (LCA), or juvenile isolated retinitis pigmentosa (IRP), by denaturing high performance liquid chromatography followed by direct sequencing. All three groups of patients showed typical combinations of eye signs associated with retinitis pigmentosa: pale optic discs, narrow arterioles, pigmentary changes, and nystagmus. Mutations were found in 34% of in CRB1 (11%), GUCY2D (11%), RPE65 (6%), and RPGRIP1 (6%). Nine mutations are reported, including a new combination of two mutations in CRB1, and new mutations in GUCY2D and RPGRIP1. The new GUCY2D mutation (c.3283delC, p.Pro1069ArgfsX37) is the first pathological sequence change reported in the intracellular C-terminal domain of GUCY2D, and did not lead to the commonly associated LCA, but to a juvenile retinitis pigmentosa phenotype. The polymorphic nature of three previously described (pathological) sequence changes in AIPL1, CRB1, and RPGRIP1 was established. Seven new polymorphic changes, useful for further association studies, were found. New and previously described sequence changes were detected in retinitis pigmentosa in CRB1, GUCY2D, and RPGRIP1; and in LCA patients in CRB1, GUCY2D, and RPE65. These data, combined with previous reports, suggest that LCA and juvenile ARRP are closely related and belong to a continuous spectrum of juvenile retinitis pigmentosa.

  10. Expanded clinical spectrum of enhanced S-cone syndrome

    NARCIS (Netherlands)

    Yzer, Suzanne; Barbazetto, Irene; Allikmets, Rando; van Schooneveld, Mary J.; Bergen, Arthur; Tsang, Stephen H.; Jacobson, Samuel G.; Yannuzzi, Lawrence A.

    2013-01-01

    New funduscopic findings in patients with enhanced S-cone syndrome (ESCS) may help clinicians in diagnosing this rare autosomal recessive retinal dystrophy. To expand the clinical spectrum of ESCS due to mutations in the NR2E3 gene. Retrospective, noncomparative case series of 31 patients examined

  11. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    Science.gov (United States)

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  12. A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance

    Directory of Open Access Journals (Sweden)

    Ali Bassam R

    2012-05-01

    Full Text Available Abstract Background We previously reported the existence of a unique autosomal recessive syndrome consisting of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance mapping to chromosome 15q26. Methods In this manuscript, we have used whole exome sequencing on two affected members of a consanguineous family with this condition and carried out detailed bioinformatics analysis to elucidate the causative mutation. Results Our analysis resulted in the identification of a homozygous p.N1060S missense mutation in a highly conserved residue in KIF7, a regulator of Hedgehog signaling that has been recently found to be causing Joubert syndrome, fetal hydrolethalus and acrocallosal syndromes. The phenotype in our patients partially overlaps with the phenotypes associated with those syndromes but they also exhibit some distinctive features including multiple epiphyseal dysplasia. Conclusions We report the first missense homozygous disease-causing mutation in KIF7 and expand the clinical spectrum associated with mutations in this gene to include multiple epiphyseal dysplasia. The missense nature of the mutation might account for the unique presentation in our patients.

  13. Four siblings with distal renal tubular acidosis and nephrocalcinosis, neurobehavioral impairment, short stature, and distinctive facial appearance: a possible new autosomal recessive syndrome.

    Science.gov (United States)

    Faqeih, Eissa; Al-Akash, Samhar I; Sakati, Nadia; Teebi, Prof Ahmad S

    2007-09-01

    We report on four siblings (three males, one female) born to first cousin Arab parents with the constellation of distal renal tubular acidosis (RTA), small kidneys, nephrocalcinosis, neurobehavioral impairment, short stature, and distinctive facial features. They presented with early developmental delay with subsequent severe mental, behavioral and social impairment and autistic-like features. Their facial features are unique with prominent cheeks, well-defined philtrum, large bulbous nose, V-shaped upper lip border, full lower lip, open mouth with protruded tongue, and pits on the ear lobule. All had proteinuria, hypercalciuria, hypercalcemia, and normal anion-gap metabolic acidosis. Renal ultrasound examinations revealed small kidneys, with varying degrees of hyperechogenicity and nephrocalcinosis. Additional findings included dilated ventricles and cerebral demyelination on brain imaging studies. Other than distal RTA, common causes of nephrocalcinosis were excluded. The constellation of features in this family currently likely represents a possibly new autosomal recessive syndrome providing further evidence of heterogeneity of nephrocalcinosis syndromes. Copyright 2007 Wiley-Liss, Inc.

  14. Familial Exudative Vitreoretinopathy.

    Science.gov (United States)

    Sızmaz, Selçuk; Yonekawa, Yoshihiro; T Trese, Michael

    2015-08-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary disease associated with visual loss, particularly in the pediatric group. Mutations in the NDP, FZD4, LRP5, and TSPAN12 genes have been shown to contribute to FEVR. FEVR has been reported to have X-linked recessive, autosomal dominant, and autosomal recessive inheritances. However, both the genotypic and phenotypic features are variable. Novel mutations contributing to the disease have been reported. The earliest and the most prominent finding of the disease is avascularity in the peripheral retina. As the disease progresses, retinal neovascularization, subretinal exudation, partial and total retinal detachment may occur, which may be associated with certain mutations. With early diagnosis and prompt management visual loss can be prevented with laser photocoagulation and anti-VEGF injections. In case of retinal detachment, pars plana vitrectomy alone or combined with scleral buckling should be considered. Identifying asymptomatic family members with various degrees of insidious findings is of certain importance. Wide-field imaging with fluorescein angiography is crucial in the management of this disease. The differential diagnosis includes other pediatric vitreoretinopathies such as Norrie disease, retinopathy of prematurity, and Coats' disease.

  15. Familial Exudative Vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2015-08-01

    Full Text Available Familial exudative vitreoretinopathy (FEVR is a hereditary disease associated with visual loss, particularly in the pediatric group. Mutations in the NDP, FZD4, LRP5, and TSPAN12 genes have been shown to contribute to FEVR. FEVR has been reported to have X-linked recessive, autosomal dominant, and autosomal recessive inheritances. However, both the genotypic and phenotypic features are variable. Novel mutations contributing to the disease have been reported. The earliest and the most prominent finding of the disease is avascularity in the peripheral retina. As the disease progresses, retinal neovascularization, subretinal exudation, partial and total retinal detachment may occur, which may be associated with certain mutations. With early diagnosis and prompt management visual loss can be prevented with laser photocoagulation and anti-VEGF injections. In case of retinal detachment, pars plana vitrectomy alone or combined with scleral buckling should be considered. Identifying asymptomatic family members with various degrees of insidious findings is of certain importance. Wide-field imaging with fluorescein angiography is crucial in the management of this disease. The differential diagnosis includes other pediatric vitreoretinopathies such as Norrie disease, retinopathy of prematurity, and Coats’ disease. (Turk J Ophthalmol 2015; 45: 164-168

  16. Fetal brain disruption sequence versus fetal brain arrest: A distinct autosomal recessive developmental brain malformation phenotype.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; El-Khayat, Hamed A; Eid, Ola M; Saba, Soliman; Farag, Mona K; Saleem, Sahar N; Gaber, Khaled R

    2015-05-01

    The term fetal brain disruption sequence (FBDS) was coined to describe a number of sporadic conditions caused by numerous external disruptive events presenting with variable imaging findings. However, rare familial occurrences have been reported. We describe five patients (two sib pairs and one sporadic) with congenital severe microcephaly, seizures, and profound intellectual disability. Brain magnetic resonance imaging (MRI) revealed unique and uniform picture of underdeveloped cerebral hemispheres with increased extraxial CSF, abnormal gyral pattern (polymicrogyria-like lesions in two sibs and lissencephaly in the others), loss of white matter, dysplastic ventricles, hypogenesis of corpus callosum, and hypoplasia of the brainstem, but hypoplastic cerebellum in one. Fetal magnetic resonance imaging (FMRI) of two patients showed the same developmental brain malformations in utero. These imaging findings are in accordance with arrested brain development rather than disruption. Molecular analysis excluded mutations in potentially related genes such as NDE1, MKL2, OCLN, and JAM3. These unique clinical and imaging findings were described before among familial reports with FBDS. However, our patients represent a recognizable phenotype of developmental brain malformations, that is, apparently distinguishable from either familial microhydranencephaly or microlissencephaly that were collectively termed FBDS. Thus, the use of the umbrella term FBDS is no longer helpful. Accordingly, we propose the term fetal brain arrest to distinguish them from other familial patients diagnosed as FBDS. The presence of five affected patients from three unrelated consanguineous families suggests an autosomal-recessive mode of inheritance. The spectrum of fetal brain disruption sequence is reviewed. © 2015 Wiley Periodicals, Inc.

  17. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of Natriuretic Peptide Precursor A.

    Science.gov (United States)

    Disertori, Marcello; Quintarelli, Silvia; Grasso, Maurizia; Pilotto, Andrea; Narula, Nupoor; Favalli, Valentina; Canclini, Camilla; Diegoli, Marta; Mazzola, Silvia; Marini, Massimiliano; Del Greco, Maurizio; Bonmassari, Roberto; Masè, Michela; Ravelli, Flavia; Specchia, Claudia; Arbustini, Eloisa

    2013-02-01

    Atrial dilatation and atrial standstill are etiologically heterogeneous phenotypes with poorly defined nosology. In 1983, we described 8-years follow-up of atrial dilatation with standstill evolution in 8 patients from 3 families. We later identified 5 additional patients with identical phenotypes: 1 member of the largest original family and 4 unrelated to the 3 original families. All families are from the same geographic area in Northeast Italy. We followed up the 13 patients for up to 37 years, extended the clinical investigation and monitoring to living relatives, and investigated the genetic basis of the disease. The disease was characterized by: (1) clinical onset in adulthood; (2) biatrial dilatation up to giant size; (3) early supraventricular arrhythmias with progressive loss of atrial electric activity to atrial standstill; (4) thromboembolic complications; and (5) stable, normal left ventricular function and New York Heart Association functional class during the long-term course of the disease. By linkage analysis, we mapped a locus at 1p36.22 containing the Natriuretic Peptide Precursor A gene. By sequencing Natriuretic Peptide Precursor A, we identified a homozygous missense mutation (p.Arg150Gln) in all living affected individuals of the 6 families. All patients showed low serum levels of atrial natriuretic peptide. Heterozygous mutation carriers were healthy and demonstrated normal levels of atrial natriuretic peptide. Autosomal recessive atrial dilated cardiomyopathy is a rare disease associated with homozygous mutation of the Natriuretic Peptide Precursor A gene and characterized by extreme atrial dilatation with standstill evolution, thromboembolic risk, preserved left ventricular function, and severely decreased levels of atrial natriuretic peptide.

  18. [Spinocerebellar ataxia type 2 associated to pigmentary retinitis].

    Science.gov (United States)

    Jiménez-Caballero, Pedro Enrique; Serviá, Mónica

    2010-07-01

    Ocular disorders are useful in the characterisation of the different types of spinocerebellar ataxias (SCA); pigmentary retinitis is an alteration that is specifically associated to SCA type 7 and is characterised by night blindness, sensitivity to glare and progressive narrowing of the visual field. A 34-year-old woman with clinical symptoms of progressive ataxia and visual impairment secondary to pigmentary retinitis. The patient had a personal history with an autosomal dominant pattern of a similar disorder in her father and paternal grandmother. In the genetic study she presented a triplet expansion in the SCA type 2 gene. CONCLUSIONS; Although pigmentary retinitis belongs to the SCA type 7 phenotype, our patient presented this retinal disorder, as in other cases of SCA type 2. A genetic study for SCA type 2 must therefore be conducted in patients with a degenerative ataxic clinical picture and who present evidence of pigmentary retinitis.

  19. Classificação diagnóstica dos portadores de doenças degenerativas de retina, integrantes dos grupos Retina São Paulo e Retina Vale do Paraíba Diagnostic classification of retinal degenerative diseases São Paulo and Vale Retina groups

    Directory of Open Access Journals (Sweden)

    Nichard Unonius

    2003-08-01

    ,5% eram casos isolados. CONCLUSÃO: Destaca-se assim a importância desta classificação como a primeira referência nacional dos padrões de hereditariedade das distrofias retinianas do país. Este é o primeiro passo para se proceder em seguida a classificação genético-molecular baseada no seqüenciamento de cada gene responsável por cada um dos padrões de herança. A freqüência de cada tipo específico é semelhante à encontrada em outros trabalhos epidemiológicos de outros países.PURPOSE: To organize a regional data bank of all individuals that have retinal degenerative diseases, with the aim to classify each patient according to the type of distrophy and pattern of inheritance. METHODS: During the meeting of the São Paulo Retina Group on May 5th, 2001, two hundred and forty-three persons were registered, part of whom provided information concerning ocular, personal and family history and family tree. Ninety-three patients were asked about age, origin, type of dystrophy, family history and family tree information, type of inheritance, other systemic abnormalities and complementary examination. They were classified according to the diagnosis and pattern of inhe-ritance. RESULTS: The distrophies found in the registered two hundred and forty-three patients, were: retinitis pigmentosa, Stargardt disease, Usher syndrome, Leber congenital amaurosis and choroideremia. Of the ninety-three patients examined on the same day, sixty-two had retinitis pigmentosa, thirteen had Stargardt disease, thirteen had Usher syndrome, three had Leber congenital amaurosis and two had choroideremia. The inheritance pattern of the patients with retinitis pigmentosa was autosomal dominant in 4 cases (7%, autosomal recessive in twenty cases (32%, X-linked recessive in 7 cases (11%. Twenty-nine cases were isolated (47% and two had an indeterminate pattern of inheritance (3%. Of the Stargardt disease patients, three (23% were autosomal recessive and ten (77% were isolated cases. Of the

  20. Genetic Linkage Analysis of the DFNB21 Locus in Autosomal Recessive Hearing Loss in Large Families from Khuzestan Province

    Directory of Open Access Journals (Sweden)

    Mahtab Khosrofar

    2017-06-01

    Full Text Available Abstract Background: Hearing loss (HL is the most common congenital defect in humans. One or two in thousand newborn babies have prelingual hearing loss. Autosomal recessive non-syndromic hearing loss (ARNSHL is the most common form of hereditary deafness. Hearing loss is more common in the developing countries which is due to genetic and environmental (cultural -health factors reasons. HL has a wide range of clinical demonstrations including: congenital or late onset, conductive or sensory-neural, syndromic or non-syndromic hearing loss. The goal of this project is to determine the portion of the DFNB21 (TECTA in ARNSHL in families with negative GJB2 gene in Khuzestan province. Materials and Methods: We studied 21 families with ARNSHL with at least 4 patients and negative for GJB2 mutations from Khuzestan province. Genetic linkage analysis was performed using STR markers linked to DFNB21 locus. Results: Following genetic linkage analysis and haplotyping, out of 21 families with ARNSHL, one family showed linkage to the DFNB21 (TECTA locus. Conclusion: The results of this project confirm other studies in Iran and give insight into the most common loci causing ARNSHL in Iran which could be helpful in research and clinic.

  1. Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3.

    Directory of Open Access Journals (Sweden)

    Yanping Lu

    Full Text Available Meckel-Gruber syndrome type 3 is an autosomal recessive genetic defect caused by mutations in TMEM67 gene. In our previous study, we have identified a homozygous TMEM67 mutation in a Chinese family exhibiting clinical characteristics of MKS3, which provided a ground for further PGD procedure. Here we report the development and the first clinical application of the PGD for this MKS3 family. Molecular analysis protocol for clinical PGD procedure was established using 50 single cells in pre-clinical set-up. After whole genomic amplification by multiple displacement amplification with the DNA from single cells, three techniques were applied simultaneously to increase the accuracy and reliability of genetic diagnosis in single blastomere, including real-time PCR with Taq Man-MGB probe, haplotype analysis with polymorphic STR markers and Sanger sequencing. In the clinical PGD cycle, nine embryos at cleavage-stage were biopsied and subjected to genetic diagnosis. Two embryos diagnosed as free of TMEM67 mutation were transferred and one achieving normal pregnancy. Non-invasive prenatal assessment of trisomy 13, 18 and 21 by multiplex DNA sequencing at 18 weeks' gestation excluded the aneuploidy of the analyzed chromosomes. A healthy boy was delivered by cesarean section at 39 weeks' gestation. DNA sequencing from his cord blood confirmed the result of genetic analysis in the PGD cycle. The protocol developed in this study was proved to be rapid and safe for the detection of monogenic mutations in clinical PGD cycle.

  2. Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia.

    Science.gov (United States)

    Ueki, Yumi; Ramirez, Grisela; Salcedo, Ernesto; Stabio, Maureen E; Lefcort, Frances

    2016-01-01

    Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein ( IKBKAP ). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre ( Tα1-Cre ). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.

  3. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system.

    Science.gov (United States)

    Brons, A-K; Henthorn, P S; Raj, K; Fitzgerald, C A; Liu, J; Sewell, A C; Giger, U

    2013-01-01

    Cystinuria, one of the first recognized inborn errors of metabolism, has been reported in many dog breeds. To determine urinary cystine concentrations, inheritance, and mutations in the SLC3A1 and SLC7A9 genes associated with cystinuria in 3 breeds. Mixed and purebred Labrador Retrievers (n = 6), Australian Cattle Dogs (6), Miniature Pinschers (4), and 1 mixed breed dog with cystine urolithiasis, relatives and control dogs. Urinary cystinuria and aminoaciduria was assessed and exons of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA. In each breed, male and female dogs, independent of neuter status, were found to form calculi. A frameshift mutation in SLC3A1 (c.350delG) resulting in a premature stop codon was identified in autosomal-recessive (AR) cystinuria in Labrador Retrievers and mixed breed dogs. A 6 bp deletion (c.1095_1100del) removing 2 threonines in SLC3A1 was found in autosomal-dominant (AD) cystinuria with a more severe phenotype in homozygous than in heterozygous Australian Cattle Dogs. A missense mutation in SLC7A9 (c.964G>A) was discovered in AD cystinuria in Miniature Pinschers with only heterozygous affected dogs observed to date. Breed-specific DNA tests were developed, but the prevalence of each mutation remains unknown. These studies describe the first AD inheritance and the first putative SLC7A9 mutation to cause cystinuria in dogs and expand our understanding of this phenotypically and genetically heterogeneous disease, leading to a new classification system for canine cystinuria and better therapeutic management and genetic control in these breeds. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  4. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    Directory of Open Access Journals (Sweden)

    Jinglan Zhang

    2016-04-01

    Full Text Available Genetic leukoencephalopathies (gLEs are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS. The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES, we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G, as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026. VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting and CORVET (class C core vacuole/endosome tethering protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.

  5. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15.

    OpenAIRE

    Heckenlively, J R; Chang, B; Erway, L C; Peng, C; Hawes, N L; Hageman, G S; Roderick, T H

    1995-01-01

    Usher syndrome is a group of diseases with autosomal recessive inheritance, congenital hearing loss, and the development of retinitis pigmentosa, a progressive retinal degeneration characterized by night blindness and visual field loss over several decades. The causes of Usher syndrome are unknown and no animal models have been available for study. Four human gene sites have been reported, suggesting at least four separate forms of Usher syndrome. We report a mouse model of type I Usher syndr...

  6. Mapping recessive ophthalmic diseases: linkage of the locus for Usher syndrome type II to a DNA marker on chromosome 1q.

    Science.gov (United States)

    Lewis, R A; Otterud, B; Stauffer, D; Lalouel, J M; Leppert, M

    1990-06-01

    Usher syndrome is a heterogeneous group of autosomal recessive disorders that combines variably severe congenital neurosensory hearing impairment with progressive night-blindness and visual loss similar to that in retinitis pigmentosa. Usher syndrome type I is distinguished by profound congenital (preverbal) deafness and retinal disease with onset in the first decade of life. Usher syndrome type II is characterized by partial hearing impairment and retinal dystrophy that occurs in late adolescence or early adulthood. The chromosomal assignment and the regional localization of the genetic mutation(s) causing the Usher syndromes are unknown. We analyzed a panel of polymorphic genomic markers for linkage to the disease gene among six families with Usher syndrome type I and 22 families with Usher syndrome type II. Significant linkage was established between Usher syndrome type II and the DNA marker locus THH33 (D1S81), which maps to chromosome 1q. The most likely location of the disease gene is at a map distance of 9 cM from THH33 (lod score 6.5). The same marker failed to show linkage in families segregating an allele for Usher syndrome type I. These data confirm the provisional assignment of the locus for Usher syndrome type II to the distal end of chromosome 1q and demonstrate that the clinical heterogeneity between Usher types I and II is caused by mutational events at different genetic loci. Regional localization has the potential to improve carrier detection and to provide antenatal diagnosis in families at risk for the disease.

  7. Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    Nguyen, Thanh-Minh T; Hull, Sarah; Roepman, Ronald; van den Born, L Ingeborgh; Oud, Machteld M; de Vrieze, Erik; Hetterschijt, Lisette; Letteboer, Stef J F; van Beersum, Sylvia E C; Blokland, Ellen A; Yntema, Helger G; Cremers, Frans P M; van der Zwaag, Paul A; Arno, Gavin; van Wijk, Erwin; Webster, Andrew R; Haer-Wigman, Lonneke

    2017-09-01

    Recent findings suggesting that Abelson helper integration site 1 ( AHI1 ) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1 , with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Rasgos epidemiológicos de ciegos y débiles visuales por retinosis pigmentaria en la provincia Las Tunas Epidemiologic traits of the blind and visually handicapped due to retinitis pigmantosa in the province of Las Tunas

    Directory of Open Access Journals (Sweden)

    Luisa González Hess

    2003-06-01

    Full Text Available Se estudiaron 325 pacientes con el diagnóstico retinosis pigmentaria en la provincia Las Tunas. De ellos, se encontró que el 24,9 y el 10 % eran ciegos y débiles visuales respectivamente, donde se obtuvo una tasa de ciegos por retinosis pigmentaria de 1,45 x 10 000 habitantes y de débiles visuales de 0,6 x 10 000 habitantes. El tipo de herencia que predominó en ambos grupos fue la autosómica recesiva.325 patients with the diagnosis of retinitis pigmentosa were studied in the province of Las Tunas. Of them, it was found that 24.9 % and 10 % were blind and visually handicapped, respectively. A rate of blind patients caused by retinitis pigmentosa of 1.45 x 10 000 inhabitants and of visually handicapped of 0.6 x 10 000 inhabitants was obtained. The type of inheritance predominating in both groups was the autosomal recessive inheritance.

  9. Computational analysis of TRAPPC9: candidate gene for autosomal recessive non-syndromic mental retardation.

    Science.gov (United States)

    Khattak, Naureen Aslam; Mir, Asif

    2014-01-01

    Mental retardation (MR)/ intellectual disability (ID) is a neuro-developmental disorder characterized by a low intellectual quotient (IQ) and deficits in adaptive behavior related to everyday life tasks such as delayed language acquisition, social skills or self-help skills with onset before age 18. To date, a few genes (PRSS12, CRBN, CC2D1A, GRIK2, TUSC3, TRAPPC9, TECR, ST3GAL3, MED23, MAN1B1, NSUN1) for autosomal-recessive forms of non syndromic MR (NS-ARMR) have been identified and established in various families with ID. The recently reported candidate gene TRAPPC9 was selected for computational analysis to explore its potentially important role in pathology as it is the only gene for ID reported in more than five different familial cases worldwide. YASARA (12.4.1) was utilized to generate three dimensional structures of the candidate gene TRAPPC9. Hybrid structure prediction was employed. Crystal Structure of a Conserved Metalloprotein From Bacillus Cereus (3D19-C) was selected as best suitable template using position-specific iteration-BLAST. Template (3D19-C) parameters were based on E-value, Z-score and resolution and quality score of 0.32, -1.152, 2.30°A and 0.684 respectively. Model reliability showed 93.1% residues placed in the most favored region with 96.684 quality factor, and overall 0.20 G-factor (dihedrals 0.06 and covalent 0.39 respectively). Protein-Protein docking analysis demonstrated that TRAPPC9 showed strong interactions of the amino acid residues S(253), S(251), Y(256), G(243), D(131) with R(105), Q(425), W(226), N(255), S(233), its functional partner 1KBKB. Protein-protein interacting residues could facilitate the exploration of structural and functional outcomes of wild type and mutated TRAPCC9 protein. Actively involved residues can be used to elucidate the binding properties of the protein, and to develop drug therapy for NS-ARMR patients.

  10. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome.

    Science.gov (United States)

    Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M

    2012-04-01

    Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A common ancestral origin of the frequent and widespread 2299delG USH2A mutation.

    NARCIS (Netherlands)

    Dreyer, B.; Tranebjaerg, L.; Brox, V.; Rosenberg, T.; Moller, C.G.; Beneyto, M.; Weston, M.D.; Kimberling, W.J.; Cremers, C.W.R.J.; Liu, X.Z.; Nilssen, O.

    2001-01-01

    Usher syndrome type IIa is an autosomal recessive disorder characterized by mild-to-severe hearing loss and progressive visual loss due to retinitis pigmentosa. The mutation that most commonly causes Usher syndrome type IIa is a 1-bp deletion, described as "2299delG," in the USH2A gene. The mutation

  12. A Psychophysical Test for Retinitis Pigmentosa.

    Science.gov (United States)

    Corwin, Thomas R; Mancini, Michael

    A new test designed to detect an hereditary eye disease called retinitis pigmentosa (RP) is described. This condition is revealed by pigmentation in the retina, but early diagnosis is difficult because the symptoms are subtle, and since it is genetically recessive it frequently occurs in families with no history of early blindness. In many cases…

  13. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes

    DEFF Research Database (Denmark)

    Duchatelet, Sabine; Ostergaard, Elsebet; Cortes, Dina

    2005-01-01

    Eiken syndrome is a rare autosomal recessive skeletal dysplasia. We identified a truncation mutation in the C-terminal cytoplasmic tail of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) type 1 receptor (PTHR1) gene as the cause of this syndrome. Eiken syndrome differs from Jansen...

  14. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    Science.gov (United States)

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  15. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    Science.gov (United States)

    Yao, Lu; Zhang, Lei; Qi, Lin-Song; Liu, Wei; An, Jing; Wang, Bin; Xue, Jun-Hui; Zhang, Zuo-Ming

    2016-01-01

    Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  16. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    Directory of Open Access Journals (Sweden)

    Lu Yao

    Full Text Available Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  17. EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families

    Directory of Open Access Journals (Sweden)

    Schmitt-Egenolf Marcus

    2006-11-01

    Full Text Available Abstract Background Hypohidrotic ectodermal dysplasia (HED is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR protein that plays an important role during embryogenesis. Methods The coding DNA sequence of the EDAR gene was analyzed in two large Swedish three-generational families with autosomal dominant HED. Results A non-sense C to T mutation in exon 12 was identified in both families. This disease-specific mutation changes an arginine amino acid in position 358 of the EDAR protein into a stop codon (p.Arg358X, thereby truncating the protein. In addition to the causative mutation two polymorphisms, not associated with the HED disorder, were also found in the EDAR gene. Conclusion The finding of the p.Arg358X mutation in the Swedish families is the first corroboration of a previously described observation in an American family. Thus, our study strengthens the role of this particular mutation in the aetiology of autosomal dominant HED and confirms the importance of EDAR for the development of HED.

  18. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II.

    NARCIS (Netherlands)

    Weston, M.D.; Luijendijk, M.W.J.; Humphrey, K.D.; Moller, C.G.; Kimberling, W.J.

    2004-01-01

    Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C

  19. Counseling Students Who Have Usher Syndrome. PEPNet Tipsheet

    Science.gov (United States)

    Lago-Avery, Patricia, Comp.

    2010-01-01

    Usher Syndrome is an autosomal recessive genetic disorder characterized by congenital hearing loss and gradually developing retinitis pigmentosa leading to the loss of vision. Approximately 27,000 people in the United States have some form of Usher Syndrome. Most of these individuals have either Type I (11,000) or Type II (16,000). Type I Usher…

  20. Counseling Students Who Have Usher Syndrome. NETAC Teacher Tipsheet

    Science.gov (United States)

    Lago-Avery, Patricia, Comp.

    2001-01-01

    Usher Syndrome is an autosomal recessive genetic disorder characterized by congenital hearing loss and gradually developing retinitis pigmentosa leading to the loss of vision. Approximately 25,000 people in the United States have some form of Usher Syndrome. Most of these individuals have either Type I (10,000) or Type II (15,000). Type I Usher…

  1. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    Science.gov (United States)

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  2. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations.

    Science.gov (United States)

    Sharon, Dror; Banin, Eyal

    2015-01-01

    Nonsyndromic retinitis pigmentosa (RP) is the most common inherited retinal degeneration, and prevalence of the disease has been reported in populations of American and European origin with a relatively low consanguinity rate. Our aim was to determine the prevalence of nonsyndromic RP in the Jerusalem region, which has a population of about 1 million individuals with a high rate of consanguinity. The patients' clinical data included eye exam findings (visual acuity, anterior segment, and funduscopy) as well as electroretinographic (ERG) testing results under scotopic and photopic conditions. Mutation analysis on a subgroup of patients was performed mainly with candidate gene analysis and homozygosity mapping. We evaluated the medical records of patients with degenerative retinal diseases residing in the Jerusalem region who were examined over the past 20 years in a large tertiary medical center. A total of 453 individuals affected with nonsyndromic RP were diagnosed at our center, according to funduscopic findings and ERG testing. Based on the estimated population size of 945,000 individuals who reside in the vicinity of Jerusalem, the prevalence of nonsyndromic RP in this region is 1:2,086. The prevalence of RP was higher among Arab Muslims (1:1,798) compared to Jews (1:2,230), mainly due to consanguineous marriages that are more common in the Arab Muslim population. To identify the genetic causes of RP in our cohort, we recruited 383 patients from 183 different families for genetic analysis: 70 with autosomal recessive (AR) inheritance, 15 with autosomal dominant, 86 isolate cases, and 12 with an X-linked inheritance pattern. In 64 (35%) of the families, we identified the genetic cause of the disease, and we revised the inheritance pattern of 20 isolate cases to the AR pattern; 49% of the families in our cohort had AR inheritance. Interestingly, in 42 (66%) of the genetically identified families, the cause of disease was a founder mutation. Previous studies

  3. Genetics of recessive cognitive disorders.

    Science.gov (United States)

    Musante, Luciana; Ropers, H Hilger

    2014-01-01

    Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elucidation has lagged behind. Here we review recent progress in this field, show that ARID is not rare even in outbred Western populations, and discuss the prospects for improving its diagnosis and prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A novel COL4A3 mutation causes autosomal-recessive Alport syndrome in a large Turkish family.

    Science.gov (United States)

    Uzak, Asli Subasioglu; Tokgoz, Bulent; Dundar, Munis; Tekin, Mustafa

    2013-03-01

    Alport syndrome (AS) is a genetically heterogeneous disorder that is characterized by hematuria, progressive renal failure typically resulting in end-stage renal disease, sensorineural hearing loss, and variable ocular abnormalities. Only 15% of cases with AS are autosomal recessive and are caused by mutations in the COL4A3 or COL4A4 genes, encoding type IV collagen. Clinical data in a large consanguineous family with four affected members were reviewed, and genomic DNA was extracted. For mapping, 15 microsatellite markers flanking COL4A3, COL4A4, and COL4A5 in 16 family members were typed. For mutation screening, all coding exons of COL4A3 were polymerase chain reaction- amplified and Sanger-sequenced from genomic DNA. The disease locus was mapped to chromosome 2q36.3, where COL4A3 and COL4A4 reside. Sanger sequencing revealed a novel mis-sense mutation (c.2T>C; p.M1T) in exon 1 of COL4A3. The identified nucleotide change was not found in 100 healthy ethnicity-matched controls via Sanger sequencing. We present a large consanguineous Turkish family with AS that was found to have a COL4A3 mutation as the cause of the disease. Although the relationship between the various genotypes and phenotypes in AS has not been fully elucidated, detailed clinical and molecular analyses are helpful for providing data to be used in genetic counseling. It is important to identify new mutations to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy for final diagnosis.

  5. Clinical Application of Screening for GJB2 Mutations before Cochlear Implantation in a Heterogeneous Population with High Rate of Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-01-01

    Full Text Available Clinical application of mutation screening and its effect on the outcome of cochlear implantation is widely debated. We investigated the effect of mutations in GJB2 gene on the outcome of cochlear implantation in a population with a high rate of consanguineous marriage and autosomal recessive nonsyndromic hearing loss. Two hundred and one children with profound prelingual sensorineural hearing loss were included. Forty-six patients had 35delG in GJB2. Speech awareness thresholds (SATs and speech recognition thresholds (SRTs improved following implantation, but there was no difference in performance between patients with GJB2-related deafness versus control (all >0.10. Both groups had produced their first comprehensible words within the same period of time following implantation (2.27 months in GJB2-related deaf versus 2.62 months in controls, =0.22. Although our findings demonstrate the need to uncover unidentified genetic causes of hereditary deafness, they do not support the current policy for genetic screening before cochlear implantation, nor prove a prognostic value.

  6. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    Science.gov (United States)

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  7. Evidence for autosomal dominant inheritance of ablepharon-macrostomia syndrome.

    Science.gov (United States)

    Rohena, Luis; Kuehn, Devon; Marchegiani, Shannon; Higginson, Jason D

    2011-04-01

    Ablepharon-macrostomia syndrome (AMS) is characterized by absent or short eyelids, macrostomia, ear anomalies, absent lanugo and hair, redundant skin, abnormal genitalia, and developmental delay in two-thirds of the reported patients. Additional anomalies include dry skin, growth retardation, hearing loss, camptodactyly, hypertelorism, absent zygomatic arches, and umbilical abnormalities. We present the second familial case of ablepharon-macrostomia syndrome in a newborn female and her 22-year-old father making autosomal dominant inheritance more likely than the previously proposed autosomal recessive transmission for this disorder. These cases likely represent the 16th and 17th reported cases of AMS and the first case suspected on prenatal ultrasound. Additionally, the child shows more prominent features of the disorder when compared to her father documenting variable expression and possible anticipation. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2011 Wiley-Liss, Inc.

  8. Homozygous SLC6A17 Mutations Cause Autosomal-Recessive Intellectual Disability with Progressive Tremor, Speech Impairment, and Behavioral Problems

    Science.gov (United States)

    Iqbal, Zafar; Willemsen, Marjolein H.; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M.; Vulto-van Silfhout, Anneke T.; Vissers, Lisenka E.L.M.; de Brouwer, Arjan P.M.; Marouillat, Sylviane; Wienker, Thomas F.; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans

    2015-01-01

    We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. PMID:25704603

  9. Single Nucleotide Polymorphisms of the GJB2 and GJB6 Genes Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Ana Paula Grillo

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within the DFNB1 locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL. The SNPs rs3751385 (C/T, rs7994748 (C/T, rs7329857 (C/T, rs7987302 (G/A, rs7322538 (G/A, rs9315400 (C/T, rs877098 (C/T, rs945369 (A/C, and rs7333214 (T/G were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P<0.05. No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in the GJB2 and GJB6 genes may have an influence on ARNSHL in humans.

  10. Concentric retinitis pigmentosa: clinicopathologic correlations.

    Science.gov (United States)

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  11. An Expanded Multi-Organ Disease Phenotype Associated with Mutations in YARS

    DEFF Research Database (Denmark)

    Tracewska-Siemiątkowska, Anna; Haer-Wigman, Lonneke; Bosch, Danielle G M

    2017-01-01

    Whole exome sequence analysis was performed in a Swedish mother-father-affected proband trio with a phenotype characterized by progressive retinal degeneration with congenital nystagmus, profound congenital hearing impairment, primary amenorrhea, agenesis of the corpus callosum, and liver disease....... A homozygous variant c.806T > C, p.(F269S) in the tyrosyl-tRNA synthetase gene (YARS) was the only identified candidate variant consistent with autosomal recessive inheritance. Mutations in YARS have previously been associated with both autosomal dominant Charcot-Marie-Tooth syndrome and a recently reported...

  12. Restoration of vision in the pde6β-deficient dog, a large animal model of rod-cone dystrophy.

    Science.gov (United States)

    Petit, Lolita; Lhériteau, Elsa; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Guihal, Caroline; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2012-11-01

    Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.

  13. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    Science.gov (United States)

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  14. A peculiar autosomal dominant macular dystrophy caused by an asparagine deletion at codon 169 in the peripherin/RDS gene

    NARCIS (Netherlands)

    van Lith-Verhoeven, Janneke J. C.; van den Helm, Bellinda; Deutman, August F.; Bergen, Arthur A. B.; Cremers, Frans P. M.; Hoyng, Carel B.; de Jong, Paulus T. V. M.

    2003-01-01

    Objective: To describe the clinical and genetic findings in a family with a peculiar autosomal dominant macular dystrophy with peripheral deposits. Methods: All family members underwent an ophthalmic examination, and their genomic DNA was screened for mutations in the human retinal degeneration slow

  15. Autosomal male determination in a spinosad-resistant housefly strain from Denmark

    DEFF Research Database (Denmark)

    Højland, Dorte H; Scott, Jeffrey G; Vagn Jensen, Karl-Martin

    2014-01-01

    males in this strain. The factor responsible for spinosad resistance in the strain is unknown, but previous studies suggest a role of cytochrome P450s for detoxification of spinosad. Sex determination in the housefly is controlled by a male-determining factor (M), either located on the Y chromosome......BACKGROUND The housefly, Musca domestica L., is a global pest and has developed resistance to most insecticides applied for its control. The insecticide spinosad plays an important role in housefly control. Females of the Danish housefly strain 791spin are threefold more resistant to spinosad than...... of resistance to spinosad. Sex determination in 791spin is due to a male factor on autosome 3. CONCLUSIONS The most likely explanation for the differentiation of spinosad resistance between males and females is a recessive spinosad resistance factor on autosome III. © 2013 Society of Chemical Industry...

  16. IMPG2-Associated Retinitis Pigmentosa Displays Relatively Early Macular Involvement

    NARCIS (Netherlands)

    Huet, R.A.C. van; Collin, R.W.J.; Siemiatkowska, A.M.; Klaver, C.C.; Hoyng, C.B.; Simonelli, F.; Khan, M.I.; Qamar, R.; Banin, E.; Cremers, F.P.M.; Theelen, T.; Hollander, A.I. den; Born, L.I. van den; Klevering, B.J.

    2014-01-01

    PURPOSE: To provide the first detailed clinical description in patients with RP caused by recessive mutations in IMPG2. METHODS: This international collaborative study includes 17 RP patients with inherited retinal disease caused by mutations in IMPG2. The patients were clinically (re-)examined,

  17. Usher syndrome type I associated with bronchiectasis and immotile nasal cilia in two brothers.

    OpenAIRE

    Bonneau, D; Raymond, F; Kremer, C; Klossek, J M; Kaplan, J; Patte, F

    1993-01-01

    Usher syndrome type I is an autosomal recessive disease characterised by congenital sensorineural deafness, involvement of the vestibular system, and progressive visual loss owing to retinitis pigmentosa. Here we report the association of this disease with bronchiectasis, chronic sinusitis, and reduced nasal mucociliary clearance in two sibs and we suggest Usher syndrome type I could be a primary ciliary disorder.

  18. A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFbeta signaling and cause autosomal dominant spondylocarpotarsal synostosis

    NARCIS (Netherlands)

    Zieba, J.; Zhang, W.; Chong, J.X.; Forlenza, K.N.; Martin, J.H.; Heard, K.; Grange, D.K.; Butler, M.G.; Kleefstra, T.; Lachman, R.S.; Nickerson, D.; Regnier, M.; Cohn, D.H.; Bamshad, M.; Krakow, D.

    2017-01-01

    Spondylocarpotarsal synostosis (SCT) is a skeletal disorder characterized by progressive vertebral, carpal and tarsal fusions, and mild short stature. The majority of affected individuals have an autosomal recessive form of SCT and are homozygous or compound heterozygous for nonsense mutations in

  19. Implementing Non-Invasive Prenatal Diagnosis (NIPD) in a National Health Service Laboratory; From Dominant to Recessive Disorders.

    Science.gov (United States)

    Drury, Suzanne; Mason, Sarah; McKay, Fiona; Lo, Kitty; Boustred, Christopher; Jenkins, Lucy; Chitty, Lyn S

    2016-01-01

    Our UK National Health Service regional genetics laboratory offers NIPD for autosomal dominant and de novo conditions (achondroplasia, thanataphoric dysplasia, Apert syndrome), paternal mutation exclusion for cystic fibrosis and a range of bespoke tests. NIPD avoids the risks associated with invasive testing, making prenatal diagnosis more accessible to families at high genetic risk. However, the challenge remains in offering definitive diagnosis for autosomal recessive diseases, which is complicated by the predominance of the maternal mutant allele in the cell-free DNA sample and thus requires a variety of different approaches. Validation and diagnostic implementation for NIPD of congenital adrenal hyperplasia (CAH) is further complicated by presence of a pseudogene that requires a different approach. We have used an assay targeting approximately 6700 heterozygous SNPs around the CAH gene (CYP21A2) to construct the high-risk parental haplotypes and tested this approach in five cases, showing that inheritance of the parental alleles can be correctly identified using NIPD. We are evaluating various measures of the fetal fraction to help determine inheritance of parental mutations. We are currently exploring the utility of an NIPD multi-disorder panel for autosomal recessive disease, to make testing more widely applicable to families with a variety of serious genetic conditions.

  20. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8

    Science.gov (United States)

    Boycott, Kym M.; Beaulieu, Chandree L.; Kernohan, Kristin D.; Gebril, Ola H.; Mhanni, Aziz; Chudley, Albert E.; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G.; Scott, James N.; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A.; McLeod, D. Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T.; Nebert, Daniel W.; Innes, A. Micheil; Parboosingh, Jillian S.; Abou Jamra, Rami

    2015-01-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development. PMID:26637978

  1. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.

    Science.gov (United States)

    Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M

    2007-08-01

    The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.

  2. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    Science.gov (United States)

    Dickman, Christopher T D; Moehring, Amanda J

    2013-01-01

    When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  3. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    Directory of Open Access Journals (Sweden)

    Christopher T D Dickman

    Full Text Available When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56% of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  4. Autosomal dominant epidermodysplasia verruciformis lacking a known EVER1 or EVER2 mutation

    OpenAIRE

    McDermott, David H.; Gammon, Bryan; Snijders, Peter J.; Mbata, Ihunanya; Phifer, Beth; Hartley, A. Howland; Lee, Chyi-Chia Richard; Murphy, Philip M.; Hwang, Sam T.

    2009-01-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to infection with specific human papillomavirus (HPV) serotypes. EV is a genetically heterogeneous disease, and autosomal recessive and X-linked inheritance patterns have been reported. Nonsense mutations in the genes EVER1 and EVER2 have been identified in over 75% of cases. We present EV in a father and son with typical histologic and clinical findings that occur in the absence of mutation...

  5. [Analysis of clinical phenotype and mode of inheritance in retinitis pigmentosa patients with consanguineous marriage].

    Science.gov (United States)

    Rong, Wei-ning; Sheng, Xun-lun; Liu, Ya-ni

    2012-10-01

    To analyse the mode of inheritance and clinical characteristics of retinitis pigmentosa (RP) patients with consanguineous marriage. RP patients were recruited for this study in Ningxia Eye Hospital from September 2009 to July 2011. All patients received complete ophthalmic examination. The mode of inheritance were determined based on family history and marriage history. Clinical features were characterized by complete ophthalmic examinations including visual acuity, macular OCT, visual field and electroretinogram (ERG). A total of 143 individuals with RP (33 families) were recruited. Based on analysis of family history and marriage history, 20 RP families (23 patients) had consanguineous marriage history accounted for 60.6% RP families (16.1% RP patients). There were 4 patients (from 4 families) diagnosed as Usher syndrome. In 20 RP families with consanguineous marriage history, 7 families (35.0%) were Hui ethnicity and 13 families (65%) were Han ethnicity. The marriages of 15 families were between first cousins and 3 families were between second cousins, only 2 families were between half cousins matrimony. Of 23 RP patients, 12 were males and 11 were females. The average age of onset was 11.4 ± 6.8 years and the average age of recruitment was (32.0 ± 13.5) years. The best-corrected visual acuity was less than 0.6 in 78.2% patients. According to the features of the fundus, 13 patients were classical retinitis pigmentosa and 10 patients were retinitis pigmentosa sine pigmento. Visual field examination showed that all patients had varying degrees of peripheral visual field defect. Retinal neuroepithelial layer of macular and peripheral retina became thinner and retinal photoreceptors were disappeared. The average thickness of macular fovea was (186.1 ± 78.7) µm on right eyes and (187.4 ± 76.3) µm on left eyes. The incidence of RP with consanguineous marriages was high in Ningxia Region. The mode of inheritance of RP patients with consanguinity is autosomal

  6. Digenic inheritance in autosomal recessive non-syndromic hearing loss cases carrying GJB2 heterozygote mutations: assessment of GJB4, GJA1, and GJC3.

    Science.gov (United States)

    Kooshavar, Daniz; Tabatabaiefar, Mohammad Amin; Farrokhi, Effat; Abolhasani, Marziye; Noori-Daloii, Mohammad-Reza; Hashemzadeh-Chaleshtori, Morteza

    2013-02-01

    Autosomal recessive non-syndromic hearing loss (ARNSHL) can be caused by many genes. However, mutations in the GJB2 gene, which encodes the gap-junction (GJ) protein connexin (Cx) 26, constitute a considerable proportion differing among population. Between 10 and 42 percent of patients with recessive GJB2 mutations carry only one mutant allele. Mutations in GJB4, GJA1, and GJC3 encoding Cx30.3, Cx43, and Cx29, respectively, can lead to HL. Combination of different connexins in heteromeric and heterotypic GJ assemblies is possible. This study aims to determine whether variations in any of the genes GJB4, GJA1 or GJC3 can be the second mutant allele causing the disease in the digenic mode of inheritance in the studied GJB2 heterozygous cases. We examined 34 unrelated GJB2 heterozygous ARNSHL subjects from different geographic and ethnic areas in Iran, using polymerase chain reaction (PCR) followed by direct DNA sequencing to identify any sequence variations in these genes. Restriction fragment length polymorphism (RFLP) assays were performed on 400 normal hearing individuals. Sequence analysis of GJB4 showed five heterozygous variations including c.451C>A, c.219C>T, c.507C>G, c.155_158delTCTG and c.542C>T, with only the latter variation not being detected in any of control samples. There were three heterozygous variations including c.758C>T, c.717G>A and c.3*dupA in GJA1 in four cases. We found no variations in GJC3 gene sequence. Our data suggest that GJB4 c.542C>T variant and less likely some variations of GJB4 and GJA1, but not possibly GJC3, can be assigned to ARNSHL in GJB2 heterozygous mutation carriers providing clues of the digenic pattern. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet

    2013-01-01

    in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted...

  8. Homozygous SLC6A17 mutations cause autosomal-recessive intellectual disability with progressive tremor, speech impairment, and behavioral problems.

    Science.gov (United States)

    Iqbal, Zafar; Willemsen, Marjolein H; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Marouillat, Sylviane; Wienker, Thomas F; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans

    2015-03-05

    We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Calpain 12 Function Revealed through the Study of an Atypical Case of Autosomal Recessive Congenital Ichthyosis.

    Science.gov (United States)

    Bochner, Ron; Samuelov, Liat; Sarig, Ofer; Li, Qiaoli; Adase, Christopher A; Isakov, Ofer; Malchin, Natalia; Vodo, Dan; Shayevitch, Ronna; Peled, Alon; Yu, Benjamin D; Fainberg, Gilad; Warshauer, Emily; Adir, Noam; Erez, Noam; Gat, Andrea; Gottlieb, Yehonatan; Rogers, Tova; Pavlovsky, Mor; Goldberg, Ilan; Shomron, Noam; Sandilands, Aileen; Campbell, Linda E; MacCallum, Stephanie; McLean, W H Irwin; Ast, Gil; Gallo, Richard L; Uitto, Jouni; Sprecher, Eli

    2017-02-01

    Congenital erythroderma is a rare and often life-threatening condition, which has been shown to result from mutations in several genes encoding important components of the epidermal differentiation program. Using whole exome sequencing, we identified in a child with congenital exfoliative erythroderma, hypotrichosis, severe nail dystrophy and failure to thrive, two heterozygous mutations in ABCA12 (c.2956C>T, p.R986W; c.5778+2T>C, p. G1900Mfs*16), a gene known to be associated with two forms of ichthyosis, autosomal recessive congenital ichthyosis, and harlequin ichthyosis. Because the patient displayed an atypical phenotype, including severe hair and nail manifestations, we scrutinized the exome sequencing data for additional potentially deleterious genetic variations in genes of relevance to the cornification process. Two mutations were identified in CAPN12, encoding a member of the calpain proteases: a paternal missense mutation (c.1511C>A; p.P504Q) and a maternal deletion due to activation of a cryptic splice site in exon 9 of the gene (c.1090_1129del; p.Val364Lysfs*11). The calpain 12 protein was found to be expressed in both the epidermis and hair follicle of normal skin, but its expression was dramatically reduced in the patient's skin. The downregulation of capn12 expression in zebrafish was associated with abnormal epidermal morphogenesis. Small interfering RNA knockdown of CAPN12 in three-dimensional human skin models was associated with acanthosis, disorganized epidermal architecture, and downregulation of several differentiation markers, including filaggrin. Accordingly, filaggrin expression was almost absent in the patient skin. Using ex vivo live imaging, small interfering RNA knockdown of calpain 12 in skin from K14-H2B GFP mice led to significant hair follicle catagen transformation compared with controls. In summary, our results indicate that calpain 12 plays an essential role during epidermal ontogenesis and normal hair follicle cycling and that

  10. Three novel and the common Arg677Ter RP1 protein truncating mutations causing autosomal dominant retinitis pigmentosa in a Spanish population

    Directory of Open Access Journals (Sweden)

    Antiñolo Guillermo

    2006-04-01

    Full Text Available Abstract Background Retinitis pigmentosa (RP, a clinically and genetically heterogeneous group of retinal degeneration disorders affecting the photoreceptor cells, is one of the leading causes of genetic blindness. Mutations in the photoreceptor-specific gene RP1 account for 3–10% of cases of autosomal dominant RP (adRP. Most of these mutations are clustered in a 500 bp region of exon 4 of RP1. Methods Denaturing gradient gel electrophoresis (DGGE analysis and direct genomic sequencing were used to evaluate the 5' coding region of exon 4 of the RP1 gene for mutations in 150 unrelated index adRP patients. Ophthalmic and electrophysiological examination of RP patients and relatives according to pre-existing protocols were carried out. Results Three novel disease-causing mutations in RP1 were detected: Q686X, K705fsX712 and K722fsX737, predicting truncated proteins. One novel missense mutation, Thr752Met, was detected in one family but the mutation does not co-segregate in the family, thereby excluding this amino acid variation in the protein as a cause of the disease. We found the Arg677Ter mutation, previously reported in other populations, in two independent families, confirming that this mutation is also present in a Spanish population. Conclusion Most of the mutations reported in the RP1 gene associated with adRP are expected to encode mutant truncated proteins that are approximately one third or half of the size of wild type protein. Patients with mutations in RP1 showed mild RP with variability in phenotype severity. We also observed several cases of non-penetrant mutations.

  11. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    Directory of Open Access Journals (Sweden)

    Laura Fernández-Sánchez

    Full Text Available Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  12. Phenotypic and genetic spectrum of Danish patients with ABCA4-related retinopathy

    DEFF Research Database (Denmark)

    Duno, Morten; Schwartz, Marianne; Larsen, Pernille L.

    2012-01-01

    Pathogenic variations in the ABCA4 gene were originally recognized as genetic background for the autosomal recessive disorders Stargardt disease and fundus flavimaculatus, but have expanded to embrace a diversity of retinal diseases, giving rise to the new diagnostic term, ABCA4-related retinopathy...... diagnosis must rely on a comprehensive genetic screening as the mutation spectrum of ABCA4-related retinopathies continues to expand....

  13. Senior-Loken syndrome: A novel NPHP5 gene mutation in a family from Kuwait

    OpenAIRE

    Marafie, Makia J; Al-Mulla, Fahd

    2014-01-01

    Background: Rare autosomal recessive disorders of variable severity are segregating in many highly consanguineous families from the Arab population. One of these deleterious diseases is Senior-Loken syndrome, a hereditary heterogeneous multiorgan disorder, which combines nephronophthisis with retinal dystrophy, leading to blindness and eventually end stage renal failure. This disorder has been reported in many cases worldwide, including two unrelated families from Arabian Gulf countries, whic...

  14. X-linked recessive primary retinal dysplasia is linked to the Norrie disease locus.

    Science.gov (United States)

    Ravia, Y; Braier-Goldstein, O; Bat-Miriam, K M; Erlich, S; Barkai, G; Goldman, B

    1993-08-01

    X-linked primary retinal dysplasia (PRD) refers to an abnormal proliferation of retinal tissue causing either its neural elements or its glial tissue to form folds, giving rise to gliosis. A Jewish family of oriental origin was previously reported by Godel and Goodman, in which a total of five males suffer from different degrees of blindness. The authors postulated that the described findings are distinguished from Norrie disease, since in this case no clinical findings, other than those associated with the eyes, were noticed in the affected males. In addition, two of the carrier females exhibit minimal eye changes. We have performed linkage analysis of the family using the L1.28, p58-1 and m27 beta probes, and DXS426 and MAOB associated microsatellites. Our results map the gene responsible for the disorder between the MAOB and DXS426, m27 beta and p58-1 loci, on the short arm of the X chromosome at Xp11.3, which suggest the possibility that the same gene is responsible for both primary retinal dysplasia and Norrie disease.

  15. RHO Mutations (p.W126L and p.A346P in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    2014-01-01

    Full Text Available Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP. Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L and c.1036G>C (p.A346P, one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling.

  16. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    Science.gov (United States)

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  17. Autosomal recessive polycystic kidney disorder due to two novel compound heterozygote mutations in PKHD1 gene: case report

    Directory of Open Access Journals (Sweden)

    Mohammad Miryounesi

    2017-01-01

    Full Text Available Background: Autosomal recessive polycystic kidney disorder (ARPCKD is one of the most prevalent hereditary disorders in neonates and children. Its frequency is between 1/6000 to 1/55000 births. In the most severe cases, it can be diagnosed prenatally by the presence of enlarged, echogenic kidneys and oligohydramnios. However, in the milder forms, clinical manifestations are usually detected in neonatal and childhood period. PKHD1 gene located on chromosome 6 is linked with this disorder. About half of detected mutations in this gene are missense ones. The largest protein product of this gene is called the FPC/polyductin complex (FPC. It is a single-membrane spanning protein whose absence leads to abnormal ciliogenesis in the kidneys. Case presentation: Here we present a 5-year-old female patient affected with ARPCKD. She has been born to a non-consanguineous healthy Iranian parents. No similar disorder has been seen in the family. Prenatal history has been normal. In order to find the genetic background, DNA was extracted from patient's peripheral blood lymphocytes. PKHD1 gene exons and exon-intron boundaries were sequenced using next generation sequencing platform. Two novel variants have been detected in compound heterozygote state in the patient (c.6591C>A, c.8222C>A. Bioinformatics tools predicted these variants to be pathogenic. Conclusion: In the present study, we detected two novel variants in PKHD1 gene in a patient with ARPCKD. The relatively mild phenotype of this patient is in accordance with the missense mutations found. Molecular genetic tools can help in accurate risk assessment as well as precise genotype-phenotype correlation establishment in families affected with such disorder to decrease the birth of affected individuals through preimplantation genetic diagnosis or better management of disorder.

  18. Analysis of the rdd locus in chicken: a model for human retinitis pigmentosa.

    Science.gov (United States)

    Burt, David W; Morrice, David R; Lester, Douglas H; Robertson, Graeme W; Mohamed, Moin D; Simmons, Ian; Downey, Louise M; Thaung, Caroline; Bridges, Leslie R; Paton, Ian R; Gentle, Mike; Smith, Jacqueline; Hocking, Paul M; Inglehearn, Chris F

    2003-04-30

    To identify the locus responsible for the blind mutation rdd (retinal dysplasia and degeneration) in chickens and to further characterise the rdd phenotype. The eyes of blind and sighted birds were subjected to ophthalmic, morphometric and histopathological examination to confirm and extend published observations. Electroretinography was used to determine age of onset. Birds were crossed to create pedigrees suitable for genetic mapping. DNA samples were obtained and subjected to a linkage search. Measurement of IOP, axial length, corneal diameter, and eye weight revealed no gross morphological changes in the rdd eye. However, on ophthalmic examination, rdd homozygotes have a sluggish pupillary response, atrophic pecten, and widespread pigmentary disturbance that becomes more pronounced with age. Older birds also have posterior subcapsular cataracts. At three weeks of age, homozygotes have a flat ERG indicating severe loss of visual function. Pathological examination shows thinning of the RPE, ONL, photoreceptors and INL, and attenuation of the ganglion cell layer. From 77 classified backcross progeny, 39 birds were blind and 38 sighted. The rdd mutation was shown to be sex-linked and not autosomal as previously described. Linkage analysis mapped the rdd locus to a small region of the chicken Z chromosome with homologies to human chromosomes 5q and 9p. Ophthalmic, histopathologic, and electrophysiological observations suggest rdd is similar to human recessive retinitis pigmentosa. Linkage mapping places rdd in a region homologous to human chromosomes 9p and 5q. Candidate disease genes or loci include PDE6A, WGN1, and USH2C. This is the first use of genetic mapping in a chicken model of human disease.

  19. 'Cherry red spot' in a patient with Tay-Sachs disease: case report.

    Science.gov (United States)

    Aragão, Ricardo Evangelista Marrocos de; Ramos, Régia Maria Gondim; Pereira, Felipe Bezerra Alves; Bezerra, Andreya Ferreira Rodrigues; Fernandes, Daniel Nogueira

    2009-01-01

    Tay-Sachs disease is an autosomal recessive disorder of sphingolipid metabolism, caused by enzyme hexosaminidase A deficiency that leads to an accumulation of GM2 in neurocytes which results in progressive loss of neurological function. The accumulation of lipid in retinal ganglion cells that leads to a chalk-white appearance of the fundus called 'cherry red spot' is the hallmark of Tay-Sachs disease. It is also seen in others neurometabolic diseases as well as in central retinal artery occlusion. This case reports a child with Tay-Sachs disease in a family with four previous similar deaths without diagnostic.

  20. Genetic analysis for two italian siblings with usher syndrome and schizophrenia.

    Science.gov (United States)

    Domanico, Daniela; Fragiotta, Serena; Trabucco, Paolo; Nebbioso, Marcella; Vingolo, Enzo Maria

    2012-01-01

    Usher syndrome is a group of autosomal recessive genetic disorders characterized by deafness, retinitis pigmentosa, and sometimes vestibular areflexia. The relationship between Usher syndrome and mental disorders, most commonly a "schizophrenia-like" psychosis, is sometimes described in the literature. The etiology of psychiatric expression of Usher syndrome is still unclear. We reported a case of two natural siblings with congenital hypoacusis, retinitis pigmentosa, and psychiatric symptoms. Clinical features and genetic analysis were also reported. We analyzed possible causes to explain the high prevalence of psychiatric manifestations in Usher syndrome: genetic factors, brain damage, and "stress-related" hypothesis.

  1. Genetic Analysis for Two Italian Siblings with Usher Syndrome and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Daniela Domanico

    2012-01-01

    Full Text Available Usher syndrome is a group of autosomal recessive genetic disorders characterized by deafness, retinitis pigmentosa, and sometimes vestibular areflexia. The relationship between Usher syndrome and mental disorders, most commonly a “schizophrenia-like” psychosis, is sometimes described in the literature. The etiology of psychiatric expression of Usher syndrome is still unclear. We reported a case of two natural siblings with congenital hypoacusis, retinitis pigmentosa, and psychiatric symptoms. Clinical features and genetic analysis were also reported. We analyzed possible causes to explain the high prevalence of psychiatric manifestations in Usher syndrome: genetic factors, brain damage, and “stress-related” hypothesis.

  2. X-linked dominant cone-rod degeneration: linkage mapping of a new locus for retinitis pigmentosa (RP 15) to Xp22.13-p22.11.

    OpenAIRE

    McGuire, R E; Sullivan, L S; Blanton, S H; Church, M W; Heckenlively, J R; Daiger, S P

    1995-01-01

    Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and excluded all mapped autosomal loci. However, a marker from ...

  3. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population

    NARCIS (Netherlands)

    Corton, M.; Avila-Fernandez, A.; Vallespin, E.; Lopez-Molina, M.I.; Almoguera, B.; Martin-Garrido, E.; Tatu, S.D.; Khan, M.I.; Blanco-Kelly, F.; Riveiro-Alvarez, R.; Brion, M.; Garcia-Sandoval, B.; Cremers, F.P.M.; Carracedo, A.; Ayuso, C.

    2014-01-01

    OBJECTIVE: We aimed to identify novel genetic defects in the LCA5 gene underlying Leber congenital amaurosis (LCA) in the Spanish population and to describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: A cohort of 217 unrelated Spanish families affected by autosomal recessive or

  4. COCHLEAR IMPLANTATION IN A PATIENT WITH USHER'S SYNDROME

    OpenAIRE

    Derinsu, Ufuk; Ciprut, Ayca

    2016-01-01

    Usher's Syndrome is an autosomal recessive disorder characterized by congenital hearing loss and retinitis pigmentosa. Usher’s Syndrome patients with severe to profound sensorineural hearing loss can be considered as candidates for cochlear implantation.This case study reports a deaf-blind with Usher's Syndrome who received a cochlear implant, the audiological evaluation is presented and the therapy sessions are discussed. The patient demonstrated good performance overtime after the...

  5. Cochlear ımplantatıon ın a patıent wıth usher's syndrome

    OpenAIRE

    Derinsu, Ufuk; Ciprut, Ayca

    2002-01-01

    Usher's Syndrome is an autosomal recessive disorder characterized by congenital hearing loss and retinitis pigmentosa. Usher’s Syndrome patients with severe to profound sensorineural hearing loss can be considered as candidates for cochlear implantation. This case study reports a deaf-blind with Usher's Syndrome who received a cochlear implant, the audiological evaluation is presented and the therapy sessions are discussed. The patient demonstrated good performance overtime after the impla...

  6. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    Directory of Open Access Journals (Sweden)

    Ana Cotta

    2014-09-01

    Full Text Available Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  7. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael

    2014-01-01

    diameters (central retinal artery equivalent, CRAE, and central retinal vein equivalent, CRVE). Statistical analysis was corrected for age, gender, spherical equivalent refraction, axial length and mean arterial blood pressure (MABP) in a mixed model analysis. RESULTS: Retinal arteries and veins were...... ganglion cell-inner plexiform layer (GC-IPL) thickness (p = 0.0017 and p = 0.0057, respectively). CONCLUSION: Narrow retinal arteries and veins were associated not only with the severity of ADOA but with ganglion cell volume in patients with ADOA and in healthy subjects. This suggests that narrow vessels...

  8. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  9. Cleft lip with or without cleft palate in Shanghai, China: Evidence for an autosomal major locus

    Energy Technology Data Exchange (ETDEWEB)

    Marazita, M.L. (Virginia Commonwealth Univ., Richmond, VA (United States)); Hu, Dan-Ning; Liu, You-E. (Zhabei Eye Institute, Shanghai (China)); Spence, A. (Univ. of California, Los Angeles, CA (United States)); Melnick, M. (Univ. of Southern California, Los Angeles, CA (United States))

    1992-09-01

    Orientals are at higher risk for cleft lip with our without cleft palate (CL[+-] P) than Caucasians or blacks. The authors collected demographic and family data to study factors contributing to the etiology of CL[+-]P in Shanghai. The birth incidence of nonsyndromic CL[+-]P (SHanghai 1980-87) was 1.11/1,000, with a male/female ratio of 1.42. Almost 2,000 nonsyndromic CL[+-]P probands were ascertained from individuals operated on during the years 1956-83 at surgical hospitals in Shanghai. Detailed family histories and medical examinations were obtained for the probands and all available family members. Genetic analysis of the probands' families were performed under the mixed model with major locus (ML) and multifactorial (MFT) components. The hypothesis of no familial transmission and of MFT alone could be rejected. Of the ML models, the autosomal recessive was significantly most likely and was assumed for testing three complex hypothesis: (1) ML and sporadics; (2) ML and MFT; (3) ML, MFT, and sporadics. None of the complex models were more likely than the ML alone model. In conclusion, the best-fitting, most parsimonious model for CL[+-]P in Shanghai was that of an autosomal recessive major locus. 37 refs., 1 tab.

  10. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities.

    Science.gov (United States)

    Hackl, Agnes; Mehler, Katrin; Gottschalk, Ingo; Vierzig, Anne; Eydam, Marcus; Hauke, Jan; Beck, Bodo B; Liebau, Max C; Ensenauer, Regina; Weber, Lutz T; Habbig, Sandra

    2017-05-01

    Differential diagnosis of prenatally detected hyperechogenic and enlarged kidneys can be challenging as there is a broad phenotypic overlap between several rare genetic and non-genetic disorders. Metabolic diseases are among the rarest underlying disorders, but they demand particular attention as their prognosis and postnatal management differ from those of other diseases. We report two cases of cystic, hyperechogenic and enlarged kidneys detected on prenatal ultrasound images, resulting in the suspected diagnosis of autosomal recessive polycystic kidney disease (ARPKD). Postnatal clinical course and work-up, however, revealed early, neonatal forms of disorders of fatty acid oxidation (DFAO) in both cases, namely, glutaric acidemia type II, based on identification of the novel, homozygous splice-site mutation c.1117-2A > G in the ETFDH gene, in one case and carnitine palmitoyltransferase II deficiency in the other case. Review of pre- and postnatal sonographic findings resulted in the identification of some important differences that might help to differentiate DFAO from ARPKD. In DFAO, kidneys are enlarged to a milder degree than in ARPKD, and the cysts are located ubiquitously, including also in the cortex and the subcapsular area. Interestingly, recent studies have pointed to a switch in metabolic homeostasis, referred to as the Warburg effect (aerobic glycolysis), as one of the underlying mechanisms of cell proliferation and cyst formation in cystic kidney disease. DFAO are characterized by the inhibition of oxidative phosphorylation, resulting in aerobic glycolysis, and thus they do resemble the Warburg effect. We therefore speculate that this inhibition might be one of the pathomechanisms of renal hyperproliferation and cyst formation in DFAO analogous to the reported findings in ARPKD. Neonatal forms of DFAO can be differentially diagnosed in neonates with cystic or hyperechogenic kidneys and necessitate immediate biochemical work-up to provide early

  11. A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Xiong, Huaqi; Chen, Yongxiong; Yi, Yajun; Tsuchiya, Karen; Moeckel, Gilbert; Cheung, Joseph; Liang, Dan; Tham, Kyi; Xu, Xiaohu; Chen, Xing-Zhen; Pei, York; Zhao, Zhizhuang Jeo; Wu, Guanqing

    2002-07-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-p12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. We recently identified a novel gene in this genetic interval from kidney cDNA, using cloning strategies. The gene PKHD1 (PKHD1-tentative) encodes a novel 3396-amino-acid protein with no apparent homology with any known proteins. We named its gene product "tigmin" because it contains multiple TIG domains, which usually are seen in proteins containing immunoglobulin-like folds. PKHD1 encodes an 11.6-kb transcript and is composed of 61 exons spanning an approximately 365-kb genomic region on chromosome 6p12-p11.2 adjacent to the marker D6S1714. Northern blot analyses demonstrated that the gene has discrete bands with one peak signal at approximately 11 kb, indicating that PKHD1 is likely to have multiple alternative transcripts. PKHD1 is highly expressed in adult and infant kidneys and weakly expressed in liver in northern blot analysis. This expression pattern parallels the tissue involvement observed in ARPKD. In situ hybridization analysis further revealed that the expression of PKHD1 in the kidney is mainly localized to the epithelial cells of the collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features of PKHD1 make it a strong positional candidate gene for ARPKD.

  12. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs.

    Directory of Open Access Journals (Sweden)

    Cali E Willet

    Full Text Available Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant. Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.

  13. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs.

    Science.gov (United States)

    Willet, Cali E; Makara, Mariano; Reppas, George; Tsoukalas, George; Malik, Richard; Haase, Bianca; Wade, Claire M

    2015-01-01

    Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant). Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.

  14. Recurrent De Novo Mutations Affecting Residue Arg1 38 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa

    NARCIS (Netherlands)

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E.; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L.; Loh, Abigail; Wright, Graham D.; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K.; Choudhri, Asim F.; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N.; Mundlos, Stefan; Villarroel, Camilo E.; Byers, Peter; Masri, Amira; Robertson, Stephen P.; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-01-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively,

  15. Stargardt disease: towards developing a model to predict phenotype

    OpenAIRE

    Heathfield, Laura; Lacerda, Miguel; Nossek, Christel; Roberts, Lisa; Ramesar, Rajkumar S

    2013-01-01

    Stargardt disease is an ABCA4-associated retinopathy, which generally follows an autosomal recessive inheritance pattern and is a frequent cause of macular degeneration in childhood. ABCA4 displays significant allelic heterogeneity whereby different mutations can cause retinal diseases with varying severity and age of onset. A genotype–phenotype model has been proposed linking ABCA4 mutations, purported ABCA4 functional protein activity and severity of disease, as measured by degree of visual...

  16. An Update on the Genetics of Usher Syndrome

    OpenAIRE

    José M. Millán; Elena Aller; Teresa Jaijo; Fiona Blanco-Kelly; Ascensión Gimenez-Pardo; Carmen Ayuso

    2011-01-01

    Usher syndrome (USH) is an autosomal recessive disease characterized by hearing loss, retinitis pigmentosa (RP), and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous and is the most common cause underlying deafness and blindness of genetic origin. Clinically, USH is divided into three types. Usher type I (USH1) is the most severe form and is characterized by severe to profound congenital deafness, vestibular areflexia, and prepubertal onset of progressive...

  17. New evidence for the role of calpain 10 in autosomal recessive intellectual disability: identification of two novel nonsense variants by exome sequencing in Iranian families.

    Science.gov (United States)

    Oladnabi, Morteza; Musante, Luciana; Larti, Farzaneh; Hu, Hao; Abedini, Seyedeh Sedigheh; Wienker, Thomas; Ropers, Hans Hilger; Kahrizi, Kimia; Najmabadi, Hossein

    2015-03-01

    Knowledge of the genes responsible for intellectual disability, particularly autosomal recessive forms, is rapidly expanding. Increasing numbers of the gene show great heterogeneity and supports the hypothesis that human genome may contain over 2000 causative genes with a critical role in brain development. Since 2004, we have applied genome-wide SNP genotyping and next-generation sequencing in large consanguineous Iranian families with intellectual disability, to identify the genes harboring disease-causing mutations. The current study paved the way for identification of responsible genes in two unrelated Iranian families. We found two novel nonsense mutations, p.C77* and p.Q115*, in the calpain catalytic domain of CAPN10, which is a cysteine protease known to be involved in pathogenesis of noninsulin-dependent diabetes mellitus. Another different mutation in this gene (p.S138_R139ins5) has previously been reported in an Iranian family. All of these patients have common clinical features in spite of specific brain structural abnormalities on MRI. Different mutations in CAPN10 have already been found in three independent Iranian families. These results have strongly supported the possible role of CAPN10 in human brain development. Altogether, we proposed CAPN10 as a promising candidate gene for intellectual disability, which should be considered in diagnostic gene panels.

  18. [Stickler's syndrome (dystrophia vitreoretinalis hereditaria). Results of surgery for retinal detachment].

    Science.gov (United States)

    Karel, I; Dolezalová, J; Oudová, P

    2001-05-01

    Stickler's syndrome (SS) is an autosomal dominant hereditary disease of the collagenous connective tissue where impaired development of the vitreous body gel and peripheral retina and detachment of the retina are associated with general manifestations. The objective of the retrospective study was to evaluate the long-term results of surgery of retinal detachment in SS. The group of patients comprised 7 patients, 6 men and 1 woman aged 4 to 45 years, average age 16.8 years. Autosomal dominant heredity was obvious in 6 members (85.7%) of two families. General manifestations of SS included abnormalities of the facial skeleton (6 patients), cleft palate (4 patients), impaired hearing (2 patients), marfanoid habitus (2 patients) and hyperextensibility of the joints (4 patients). In the eyes with SS was manifested by myopia from -1 to -9 D and a liquid vitreous body. Multiple foci of lattice degeneration supplemented the finding in 6 patients (85.7%). Detachment of the retina was a manifestation of SS in 12 of 14 eyes (85.7%). It was manifested in 5 of 7 patients concurrently or within 12 years in both eyes. The causes of retinal detachment were multiple equatorial and postequatorial tears due to lattice degeneration in 8 eyes (66.7%) or a giant tear in 4 eyes (33.3%). Advanced proliferative vitreoretinopathy (PVR) was associated with retinal detachment in 8 eyes (66.7%) and in 6 eyes (50%) it was not possible to assess the beginning of retinal detachment. In 3 of 5 patients with bilateral retinal detachment the adverse course of retinal detachment on the first eye was followed 8 to 12 years previously in another department: two retinal detachments with giant tears were evaluated as inoperable and one inveterated detachment with advanced PVR was operated unsuccessfully. Retinal detachment was operated in 9 eyes of 7 patients, in two patients both eyes were operated simultaneously. The patients were followed up after surgery for 11 months to 15 years, on average for 65

  19. Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome

    OpenAIRE

    De Vos, Michel; Hayward, Bruce E.; Picton, Susan; Sheridan, Eamonn; Bonthron, David T.

    2004-01-01

    We investigated a family with an autosomal recessive syndrome of café-au-lait patches and childhood malignancy, notably supratentorial primitive neuroectodermal tumor. There was no cancer predisposition in heterozygotes; nor was there bowel cancer in any individual. However, autozygosity mapping indicated linkage to a region of 7p22 surrounding the PMS2 mismatch-repair gene. Sequencing of genomic PCR products initially failed to identify a PMS2 mutation. Genome searches then revealed a previo...

  20. [Clinical and molecular study in a family with autosomal dominant hypohidrotic ectodermal dysplasia].

    Science.gov (United States)

    Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella

    2017-02-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.

  1. Highly prevalent LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and the genotype/phenotype correlations.

    Directory of Open Access Journals (Sweden)

    Kana Tanahashi

    Full Text Available Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH, and the 2 missense mutations c.736T>A (p.Cys246Ser and c.742C>A (p.His248Asn are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016, and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024. In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH.

  2. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases

    Science.gov (United States)

    Kabir, Firoz; Ullah, Inayat; Ali, Shahbaz; Gottsch, Alexander D.H.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose This study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families. Methods Large consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon–intron boundaries of RP1 were sequenced to identify the causal mutation. Results The ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples. Conclusions These results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families. PMID:27307693

  3. Monozygotic twins with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Rowell HA

    2012-12-01

    Full Text Available Hannah A Rowell,1,2 Alexander G Bassuk,3,4 Vinit B Mahajan1,21Omics Laboratory, 2Department of Ophthalmology and Visual Sciences, 3Department of Pediatrics, 4Department of Neurology, University of Iowa, Iowa City, IA, USABackground: The purpose of this study was to describe the clinical findings in a set of monozygotic twins with autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV over a 23-year period.Methods: A pair of female twins were examined between 26 and 49 years of age. The concordance and discordance of their clinical features were determined. The CAPN5 gene was sequenced using genomic DNA.Results: Both twins of an affected father demonstrated Stage I ADNIV with mild vitreous cells and a negative b-wave on electroretinography. Genetic analysis confirmed a guanine to thymine nucleotide (c.728G>T, pArg243Leu mutation in the CAPN5 gene. Over the course of 23 years, each twin progressed to stage III disease, showing posterior uveitis, cystoid macular edema, intraocular fibrosis, early retinal neovascularization, retinal degeneration, and cataract. Disease progression varied moderately between each twin and was asymmetrical between eyes. Twin A had 20/70 and 20/125 in the right and left eye, respectively, and underwent vitrectomy surgery and intravitreal injections with bevacizumab for recurrent cystoid macular edema. Twin B maintained 20/20 and 20/40 in the right and left eye, respectively without intervention.Conclusion: There was asymmetry between the eyes and some discordance in the rate of disease progression in these monozygotic twins with ADNIV. The overall high disease concordance suggests genetic factors play a major role in clinical manifestations in CAPN5 vitreoretinopathy.Keywords: autosomal dominant neovascular inflammatory vitreoretinopathy, ADNIV, CAPN5, calpain-5, monozygotic twins

  4. Autosomal Recessive Inheritance

    Science.gov (United States)

    ... NEI Intranet (Employees Only) *PDF files require the free Adobe® Reader® software for viewing. This website is maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this website can be addressed ...

  5. Skeletal muscle, but not cardiovascular function, is altered in a mouse model of autosomal recessive hypophosphatemic rickets

    Directory of Open Access Journals (Sweden)

    Michael J. Wacker

    2016-05-01

    Full Text Available Autosomal recessive hypophosphatemic rickets (ARHR is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL- fast-twitch muscle, soleus (SOL- slow-twitch muscle, heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2a or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In

  6. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    Science.gov (United States)

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  7. Variability in clinical phenotypes of PRPF8-linked autosomal dominant retinitis pigmentosa correlates with differential PRPF8/SNRNP200 interactions.

    Science.gov (United States)

    Escher, Pascal; Passarin, Olga; Munier, Francis L; Tran, Viet H; Vaclavik, Veronika

    2018-01-01

    To expand the genotype/phenotype correlations in patients with autosomal dominant retinitis pigmentosa (adRP) harboring PRPF8 variants. Two patients, a father and his daughter, harboring a novel p.PRPF8-Glu2331* variant, underwent ophthalmic examination at 3-year-interval, including fundus photography, fundus autofluorescence, optical coherence tomography, and ISCEV standard full field ERGs. All reported disease-causing PRPF8 variants were collected and localized in the PRPF8 and PRPF8/SNRNP200 protein structures. The p.PRPF8-Glu2331* variant results in a truncated PRPF8 protein lacking the last five C-terminal amino acids and caused in the two patients a severe clinical phenotype, with the macula being affected from the second decade on. All but two adRP-linked variants are located in the last exon 43 encoding the C-terminal tail of the C-terminal PRPF8 Jab1 domain. The p.PRPF8-Ser2118Phe and -Asn2280Lys variants encoded by exons 39 and 42, respectively, are located at the basis of the C-terminal tail. Frame-shift mutations and nonconservative amino acid changes in PRPF8 typically cause severe clinical phenotypes. The conservative missense variant p.PRPF8-Arg2310Lys that is not altering the global charge of the C-terminal tail, and variants located at the basis of the C-terminal tail show milder clinical phenotypes, in accordance with functional data on PRPF8/SNRNP200 interactions in yeast.

  8. AUTOSOMAL RECESSIVE PERIPHERAL NEUROPATHY WITH NEUROMYOTONIA (ARAN-NM: DESCRIPTION OF A CLINICAL CASE CONFIRMED BY A MUTATION IN THE HINT1 GENE

    Directory of Open Access Journals (Sweden)

    Olga A. Klochkova

    2017-01-01

    Full Text Available Autosomal recessive  peripheral neuropathy with neuromyotonia  (ARAN-NM  is a relatively newly described  disease associated  with mutations  in the HINT1 gene.  It accounts  for a significant  part of the poorly  differentiated  forms  of axonal polyneuropathies.  We present the first in Russia description of the genetically confirmed case of ARAN-NM in a boy aged 14 years and 11 months without the hereditary-tainted anamnesis. On presentation,  the patient experienced  progressive  distal muscular weakness, asymmetric foot deformity,  gait disorders  and minimal manifestations  of neuromyotonia  (stiffness  in the fingers.  During examination,  we detected an increase in the level of creatine phosphokinase up to 635 U/l, a disturbance of conduction of motor and, to a lesser extent, sensory fibers  of  the  peripheral  nerves  (according  to  the  stimulation  electromyography,  EMG,  denervation-reinnervation  changes,  single positive acute waves, fibrillation potentials, complex repeated discharge (according to the data of needle EMG. In the study of exome, a homozygous mutation c.110G>C, p.R37P was determined in exon 01 of the HINT1 gene, which confirmed the presence of ARAN-NM. A molecular-genetic  examination of the patient's immediate relatives was carried out. The described case is compared with literature data. An overview of currently available information on ARAN-NM is provided. Diagnostic criteria of the disease are presented.

  9. Preimplantation Genetic Diagnosis for Stargardt Disease

    Science.gov (United States)

    Sohrab, Mahsa A.; Allikmets, Rando; Guarnaccia, Michael M.; Smith, R. Theodore

    2010-01-01

    Purpose To report the first use of in vitro fertilization (IVF) and preimplantation genetic diagnosis to achieve an unaffected pregnancy in an autosomal-recessive retinal dystrophy. Design Case report. Methods An affected male with Stargardt disease and his carrier wife underwent IVF. Embryos obtained by intracytoplasmic sperm injection underwent single-cell DNA testing via polymerase chain reaction and restriction enzyme analysis to detect the presence of ABCA4 mutant alleles. Embryos were diagnosed as being either affected by or carriers for Stargardt disease. A single carrier embryo was implanted. Results Chorionic villus sampling performed during the first trimester verified that the fetus possessed only one mutant paternal allele and one normal maternal allele, thus making her an unaffected carrier of the disease. A healthy, live-born female was delivered. Conclusion IVF and preimplantation genetic diagnosis can assist couples with an affected spouse and a carrier spouse with recessive retinal dystrophies to have an unaffected child. PMID:20149343

  10. Molecular diagnosis of known recessive ataxias by homozygosity mapping with SNP arrays.

    Science.gov (United States)

    H'mida-Ben Brahim, D; M'zahem, A; Assoum, M; Bouhlal, Y; Fattori, F; Anheim, M; Ali-Pacha, L; Ferrat, F; Chaouch, M; Lagier-Tourenne, C; Drouot, N; Thibaut, C; Benhassine, T; Sifi, Y; Stoppa-Lyonnet, D; N'Guyen, K; Poujet, J; Hamri, A; Hentati, F; Amouri, R; Santorelli, F M; Tazir, M; Koenig, M

    2011-01-01

    The diagnosis of rare inherited diseases is becoming more and more complex as an increasing number of clinical conditions appear to be genetically heterogeneous. Multigenic inheritance also applies to the autosomal recessive progressive cerebellar ataxias (ARCAs), for which 14 genes have been identified and more are expected to be discovered. We used homozygosity mapping as a guide for identification of the defective locus in patients with ARCA born from consanguineous parents. Patients from 97 families were analyzed with GeneChip Mapping 10K or 50K SNP Affymetrix microarrays. We identified six families homozygous for regions containing the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) gene, two families homozygous for the ataxia-telangiectasia gene (ATM), two families homozygous for the ataxia with oculomotor apraxia type 1 (AOA1) gene, and one family homozygous for the AOA type 2 (AOA2) gene. Upon direct gene testing, we were able to identify a disease-related mutation in all families but one of the two kindred homozygous at the ATM locus. Although linkage analyses pointed to a single locus on chromosome 11q22.1-q23.1 for this family, clinical features, normal levels of serum alpha-foetoprotein as well as absence of mutations in the ATM gene rather suggest the existence of an additional ARCA-related gene in that interval. While the use of homozygosity mapping was very effective at pointing to the correct gene, it also suggests that the majority of patients harbor mutations either in the genes of the rare forms of ARCA or in genes yet to be identified.

  11. NCBI nr-aa BLAST: CBRC-FCAT-01-1153 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 1| polycystic kidney and hepatic disease 1 [Homo sapiens] emb|CAH73867.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAH72781.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI16676.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI20324.1| polycystic kidney and hepatic disease 1 (autosomal r...ecessive) [Homo sapiens] emb|CAI20233.1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_619639.3 0.0 76% ...

  12. NCBI nr-aa BLAST: CBRC-CJAC-01-1207 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 1| polycystic kidney and hepatic disease 1 [Homo sapiens] emb|CAH73867.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAH72781.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI16676.1| polycystic kidney and hepatic disease 1 (autos...omal recessive) [Homo sapiens] emb|CAI20324.1| polycystic kidney and hepatic disease 1 (autosomal r...ecessive) [Homo sapiens] emb|CAI20233.1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_619639.3 0.0 87% ...

  13. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  14. Missense Mutations in CRYAB Are Liable for Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was initiated to identify causal mutations responsible for autosomal recessive congenital cataracts in consanguineous familial cases.Affected individuals underwent a detailed ophthalmological and clinical examination, and slit-lamp photographs were ascertained for affected individuals who have not yet been operated for the removal of the cataractous lens. Blood samples were obtained, and genomic DNA was extracted from white blood cells. A genome-wide scan was completed with short tandem repeat (STR markers, and the logarithm of odds (LOD scores were calculated. Protein coding exons of CRYAB were sequenced, bi-directionally. Evolutionary conservation was investigated by aligning CRYAB orthologues, and the expression of Cryab in embryonic and postnatal mice lens was investigated with TaqMan probe.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis suggested a potential region on chromosome 11q23 harboring CRYAB. DNA sequencing identified a missense variation: c.34C>T (p.R12C in CRYAB that segregated with the disease phenotype in the family. Subsequent interrogation of our entire cohort of familial cases identified a second familial case localized to chromosome 11q23 harboring a c.31C>T (p.R11C mutation. In silico analyses suggested that the mutations identified in familial cases, p.R11C and p.R12C will not be tolerated by the three-dimensional structure of CRYAB. Real-time PCR analysis identified the expression of Cryab in mouse lens as early as embryonic day 15 (E15 that increased significantly until postnatal day 6 (P6 with steady level of expression thereafter.Here, we report two novel missense mutations, p.R11C and p.R12C, in CRYAB associated with autosomal recessive congenital nuclear cataracts.

  15. Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study

    OpenAIRE

    Le Quesne Stabej, Polona; Saihan, Zubin; Rangesh, Nell; Steele-Stallard, Heather B; Ambrose, John; Coffey, Alison; Emmerson, Jenny; Haralambous, Elene; Hughes, Yasmin; Steel, Karen P; Luxon, Linda M; Webster, Andrew R; Bitner-Glindzicz, Maria

    2011-01-01

    Background Usher syndrome (USH) is an autosomal recessive disorder comprising retinitis pigmentosa, hearing loss and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous with three distinctive clinical types (I?III) and nine Usher genes identified. This study is a comprehensive clinical and genetic analysis of 172 Usher patients and evaluates the contribution of digenic inheritance. Methods The genes MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, GPR98, WHRN, CLR...

  16. MULTIMODAL IMAGING OF MOSAIC RETINOPATHY IN CARRIERS OF HEREDITARY X-LINKED RECESSIVE DISEASES.

    Science.gov (United States)

    Wu, An-Lun; Wang, Jung-Pan; Tseng, Yun-Ju; Liu, Laura; Kang, Yu-Chuan; Chen, Kuan-Jen; Chao, An-Ning; Yeh, Lung-Kun; Chen, Tun-Lu; Hwang, Yih-Shiou; Wu, Wei-Chi; Lai, Chi-Chun; Wang, Nan-Kai

    2018-05-01

    To investigate the clinical features in carriers of X-linked retinitis pigmentosa, X-linked ocular albinism, and choroideremia (CHM) using multimodal imaging and to assess their diagnostic value in these three mosaic retinopathies. We prospectively examined 14 carriers of 3 X-linked recessive disorders (X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM). Details of abnormalities of retinal morphology were evaluated using fundus photography, fundus autofluorescence (FAF) imaging, and spectral domain optical coherence tomography. In six X-linked retinitis pigmentosa carriers, fundus appearance varied from unremarkable to the presence of tapetal-like reflex and pigmentary changes. On FAF imaging, all carriers exhibited a bright radial reflex against a dark background. By spectral domain optical coherence tomography, loss of the ellipsoid zone in the macula was observed in 3 carriers (50%). Regarding the retinal laminar architecture, 4 carriers (66.7%) showed thinning of the outer nuclear layer and a dentate appearance of the outer plexiform layer. All five X-linked ocular albinism carriers showed a characteristic mud-splatter patterned fundus, dark radial streaks against a bright background on FAF imaging, and a normal-appearing retinal structure by spectral domain optical coherence tomography imaging. Two of the 3 CHM carriers (66.7%) showed a diffuse moth-eaten appearance of the fundus, and all 3 showed irregular hyper-FAF and hypo-FAF spots throughout the affected area. In the CHM carriers, the structural changes observed by spectral domain optical coherence tomography imaging were variable. Our findings in an Asian cohort suggest that FAF imaging is a practical diagnostic test for differentiating X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM carriers. Wide-field FAF is an easy and helpful adjunct to testing for the correct diagnosis and identification of lyonization in carriers of these three mosaic retinopathies.

  17. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  18. Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned

    Science.gov (United States)

    Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun

    2015-01-01

    This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217

  19. Addressing key issues in the consanguinity-related risk of autosomal recessive disorders in consanguineous communities: lessons from a qualitative study of British Pakistanis.

    Science.gov (United States)

    Darr, A; Small, N; Ahmad, W I U; Atkin, K; Corry, P; Modell, B

    2016-01-01

    Currently, there is no consensus regarding services required to help families with consanguineous marriages manage their increased genetic reproductive risk. Genetic services for communities with a preference for consanguineous marriage in the UK remain patchy, often poor. Receiving two disparate explanations of the cause of recessive disorders (cousin marriage and recessive inheritance) leads to confusion among families. Further, the realisation that couples in non-consanguineous relationships have affected children leads to mistrust of professional advice. British Pakistani families at-risk for recessive disorders lack an understanding of recessive disorders and their inheritance. Such an understanding is empowering and can be shared within the extended family to enable informed choice. In a three-site qualitative study of British Pakistanis, we explored family and health professional perspectives on recessively inherited conditions. Our findings suggest, firstly, that family networks hold strong potential for cascading genetic information, making the adoption of a family-centred approach an efficient strategy for this community. However, this is dependent on provision of high-quality and timely information from health care providers. Secondly, families' experience was of ill-coordinated and time-starved services, with few having access to specialist provision from Regional Genetics Services; these perspectives were consistent with health professionals' views of services. Thirdly, we confirm previous findings that genetic information is difficult to communicate and comprehend, further complicated by the need to communicate the relationship between cousin marriage and recessive disorders. A communication tool we developed and piloted is described and offered as a useful resource for communicating complex genetic information.

  20. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  1. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial

    NARCIS (Netherlands)

    Maclaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.; During, M.J.; Cremers, F.P.M.; Black, G.C.M.; Lotery, A.J.; Downes, S.M.; Webster, A.R.; Seabra, M.C.

    2014-01-01

    BACKGROUND: Choroideremia is an X-linked recessive disease that leads to blindness due to mutations in the CHM gene, which encodes the Rab escort protein 1 (REP1). We assessed the effects of retinal gene therapy with an adeno-associated viral (AAV) vector encoding REP1 (AAV.REP1) in patients with

  2. Case series of Stargardt's disease: Our experience

    Directory of Open Access Journals (Sweden)

    Syed Abdul Wadud

    2016-08-01

    Full Text Available Stargardt disease is the most common form of juvenile macular degeneration. Clinically, it is characterized by pisciform flecks at lhe level of the retinal pigment epithelium and a bull's-eye maculopathy. Inheritance is usually autosomal recessive, although dominantly inherited case have been described. Both sexes are affected equally. We reported here three cases of Stargardt's macular dystrophy, who are siblings and daughters of non consanguineous parents. In case-1,2 and 3 we found the typical presentation with almost same findings.

  3. Real-time PCR genotyping assay for canine progressive rod-cone degeneration and mutant allele frequency in Toy Poodles, Chihuahuas and Miniature Dachshunds in Japan

    OpenAIRE

    KOHYAMA, Moeko; TADA, Naomi; MITSUI, Hiroko; TOMIOKA, Hitomi; TSUTSUI, Toshihiko; YABUKI, Akira; RAHMAN, Mohammad Mahbubur; KUSHIDA, Kazuya; MIZUKAMI, Keijiro; YAMATO, Osamu

    2015-01-01

    Canine progressive rod-cone degeneration (PRCD) is a middle- to late-onset, autosomal recessive, inherited retinal disorder caused by a substitution (c.5G>A) in the canine PRCD gene that has been identified in 29 or more purebred dogs. In the present study, a TaqMan probe-based real-time PCR assay was developed and evaluated for rapid genotyping and large-scale screening of the mutation. Furthermore, a genotyping survey was carried out in a population of the three most popular breeds in Japan...

  4. Evolution of Cellular Inclusions in Bietti's Crystalline Dystrophy.

    Science.gov (United States)

    Furusato, Emiko; Cameron, J Douglas; Chan, Chi-Chao

    2010-03-09

    Bietti's crystalline dystrophy (BCD) consists of small, yellow-white, glistening intraretinal crystals in the posterior pole, tapetoretinal degeneration with atrophy of the retinal pigment epithelium (RPE) and "sclerosis" of the choroid; in addition, sparking yellow crystals in the superficial marginal cornea are also found in many patients. BCD is inherited as an autosomal-recessive trait (4q35-tel) and usually has its onset in the third decade of life. This review focuses on the ultrastructure of cellular crystals and lipid inclusions of BCD.

  5. Bardet-Biedl syndrome presenting with steroid sensitive nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    K K Singh

    2015-01-01

    Full Text Available Bardet-Biedl syndrome (BBS is a rare autosomal recessive disorder characterized by postaxial polydactyly, retinitis pigmentosa, central obesity, mental retardation, hypogonadism, and renal involvement. Renal involvement in various forms has been seen in BBS. Cases with nephrotic range proteinuria not responding to steroid have been described in this syndrome. Here we report a case of BBS who presented with nephrotic range proteinuria. The biopsy findings were suggestive of minimal change disease. The child responded well to steroid therapy and remains in remission.

  6. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC

    DEFF Research Database (Denmark)

    Tingaud-Sequeira, Angèle; Raldúa, Demetrio; Lavie, Julie

    2017-01-01

    ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid...... and motor skill impairment. A disruption of retina architecture and retinotectal projections was observed, together with an inhibition of lens clarification and a low number of mechanosensory hair cells in the inner ear and lateral line system. The severe phenotypes in abhd12 knockdown morphants were...

  7. Peripapillar retinal hamartoma associated with tuberous sclerosis. Case report.

    Science.gov (United States)

    Hernández Pardines, F; Núñez Márquez, S; Fernández Montalvo, L; Serra Verdú, M C; Juárez Marroquí, A

    2018-03-01

    Tuberous sclerosis is a rare multisystemic disease with an autosomal dominant inheritance pattern. There are few documented cases in the literature of retinal hamartomas (astrocytomas) with aggressive progression in the context of this disease. A report is presented on a case of a 31 year-old male with unknown history of ophthalmic or systemic conditions, who referred to a history of 6 months of blurred vision in his right eye. This was caused by a unilateral retinal hamartoma due to an undiagnosed tuberous sclerosis. Multidisciplinary management, with the cooperation of Internal Medicine and the Oncology Department, is needed in these cases, as well as genetic counselling for affected patients. Complications are directly related to increased tumour size. Treatment does not seem to have any influence on the natural history of the disease. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Ocular Phenotype Analysis of a Family With Biallelic Mutations in the BEST1 Gene

    DEFF Research Database (Denmark)

    Sharon, Dror; Al-Hamdani, Sermed; Engelsberg, Karl

    2014-01-01

    in the inner nuclear layer, no light rise in the electro-oculography, and a reduced central but preserved peripheral retinal function by multifocal electroretinography. Full-field electroretinography demonstrated a reduced rod response and inner retina dysfunction. Retinal structure was normal in all 3 family......PURPOSE: To investigate the genetic cause and perform a comprehensive clinical analysis of a Danish family with autosomal recessive bestrophinopathy; to investigate whether Bestrophin may be expressed in normal human retina. DESIGN: Retrospective clinical and molecular genetic analysis...... and immunohistochemical observational study. METHODS: setting: National referral center. participants: A family with 5 individuals and biallelic BEST1 mutations, and enucleated eyes from 2 individuals with nonaffected retinas. observation procedures: Molecular genetic analysis included sequencing of BEST1 and co...

  9. Usher syndrome in four siblings from a consanguineous family of Pakistani origin.

    Science.gov (United States)

    Trop, I; Schloss, M D; Polomeno, R; Der Kaloustian, V

    1995-04-01

    Usher syndrome is a heterogeneous group of disorders of autosomal recessive inheritance characterized by retinitis pigmentosa and congenital sensorineural hearing loss. Two types are accepted clinically: type I is associated with profound congenital deafness with progressive pigmentary retinopathy and total loss of vestibular function. Type II is a milder form, with moderate-to-profound hearing loss and a milder form of retinitis pigmentosa. Vestibular function is preserved. A total of five loci have been identified as accounting for the two distinct phenotypic presentations. We describe a consanguineous family of Pakistani origin whose four children all are affected with Usher syndrome type I. DNA analysis showed non-linkage to any of the loci already identified as tightly linked to the Usher syndrome type I.

  10. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    Science.gov (United States)

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  11. The Great Recession: a comparison of recession magnitudes in Europe, USA and Japan

    OpenAIRE

    Mazurek, Jiří

    2013-01-01

    In this article recession magnitudes in Europe, the USA and Japan during the Great Recession are compared. The strongest recessions (of severe category) occurred in Latvia, Lithuania and Estonia, while recessions in Japan and the USA were significantly weaker. Even the strongest recession (in Latvia) was found smaller in its magnitude than the Great Depression 1929-1933 in the USA. Hence, comparisons of the Great Recession to the Great Depression in the literature are somewhat exaggerated.

  12. Posterior microphthalmos pigmentary retinopathy syndrome.

    Science.gov (United States)

    Pehere, Niranjan; Jalali, Subhadra; Deshmukh, Himanshu; Kannabiran, Chitra

    2011-04-01

    Posterior Microphthalmos Pigmentary Retinopathy Syndrome (PMPRS). Posterior microphthalmos (PM) is a relatively infrequent type of microphthalmos where posterior segment is predominantly affected with normal anterior segment measurements. Herein, we report two siblings with posterior microphthalmos retinopathy syndrome with postulated autosomal recessive mode of inheritance. A 13-year-old child had PM and retinitis pigmentosa (RP) and his 7-year-old sister had PM, RP, and foveoschisis. The genetics of this syndrome and variable phenotype is discussed. Importance of being aware of posterior microphthalmos and its posterior segment associations is highlighted.

  13. Genetic heterogeneity of Usher syndrome type II.

    OpenAIRE

    Pieke Dahl, S; Kimberling, WJ; Gorin, MB; Weston, MD; Furman, JM; Pikus, A; Moller, C

    1993-01-01

    Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis ...

  14. Genetic Heterogeneity of Usher Syndrome: Analysis of 151 Families with Usher Type I

    OpenAIRE

    Astuto, Lisa M.; Weston, Michael D.; Carney, Carol A.; Hoover, Denise M.; Cremers, Cor W.R.J.; Wagenaar, Mariette; Moller, Claes; Smith, Richard J.H.; Pieke-Dahl, Sandra; Greenberg, Jacquie; Ramesar, Raj; Jacobson, Samuel G.; Ayuso, Carmen; Heckenlively, John R.; Tamayo, Marta

    2000-01-01

    Usher syndrome type I is an autosomal recessive disorder marked by hearing loss, vestibular areflexia, and retinitis pigmentosa. Six Usher I genetic subtypes at loci USH1A–USH1F have been reported. The MYO7A gene is responsible for USH1B, the most common subtype. In our analysis, 151 families with Usher I were screened by linkage and mutation analysis. MYO7A mutations were identified in 64 families with Usher I. Of the remaining 87 families, who were negative for MYO7A mutations, 54 were info...

  15. Forecasting US Recessions

    DEFF Research Database (Denmark)

    Christiansen, Charlotte; Eriksen, Jonas Nygaard; Møller, Stig Vinther

    2014-01-01

    We study the role of sentiment variables as predictors for US recessions. We combine sentiment variables with either classical recession predictors or common factors based on a large panel of macroeconomic and financial variables. Sentiment variables hold vast predictive power for US recessions...

  16. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  17. High-Resolution En Face Images of Microcystic Macular Edema in Patients with Autosomal Dominant Optic Atrophy

    Directory of Open Access Journals (Sweden)

    Kiyoko Gocho

    2013-01-01

    Full Text Available The purpose of this study was to investigate the characteristics of microcystic macular edema (MME determined from the en face images obtained by an adaptive optics (AO fundus camera in patients with autosomal dominant optic atrophy (ADOA and to try to determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL by using the advantage of AO. Six patients from 4 families with ADOA underwent detailed ophthalmic examinations including spectral domain optical coherence tomography (SD-OCT. Mutational screening of all coding and flanking intron sequences of the OPA1 gene was performed by DNA sequencing. SD-OCT showed a severe reduction in the retinal nerve fiber layer (RNFL thickness in all patients. A new splicing defect and two new frameshift mutations with premature termination of the Opa1 protein were identified in three families. A reported nonsense mutation was identified in one family. SD-OCT of one patient showed MME in the inner nuclear layer (INL of the retina. AO images showed microcysts in the en face images of the INL. Our data indicate that AO is a useful method to identify MME in neurodegenerative diseases and may also help determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL.

  18. [Molecular genetics of pigmentary retinopathies: identification of mutations in CHM, RDS, RHO, RPE65, USH2A and XLRS1 genes].

    Science.gov (United States)

    Hamel, C P; Griffoin, J M; Bazalgette, C; Lasquellec, L; Duval, P A; Bareil, C; Beaufrère, L; Bonnet, S; Eliaou, C; Marlhens, F; Schmitt-Bernard, C F; Tuffery, S; Claustres, M; Arnaud, B

    2000-12-01

    To evaluate the occurrence and inheritance of various types of pigmentary retinopathy in patients followed at the outpatient clinic in the university hospital, Montpellier, France. To characterize genes and mutations causing these conditions. Ophthalmic examination and various visual tests were performed. Mutations were sought from genomic DNA by PCR amplification of exons associated with single-strand conformation analysis and/or direct sequencing. Among 315 patients over an 8-year period, cases of retinitis pigmentosa (63.2%), Usher's syndrome (10.2%), Stargardt's disease (5.4%), choroideremia (3.2%), Leber's congenital amaurosis (3.2%), congenital stationary night blindness (2.9%), cone dystrophy (2.5%), dominant optic atrophy (1.9%), X-linked juvenile retinoschisis (1.6%), Best's disease (1.6%), and others (4.3%) were diagnosed. In retinitis pigmentosa, inheritance could be determined in 54.2% of the cases including dominant autosomic (26.6%), recessive autosomic (22.6%), and X-linked cases (5%) while it could not be confirmed in 45.7% of the cases (simplex cases in the majority). For the 6 examined genes, mutations were found in 22 out of 182 propositus (12.1%). Analysis of phenotype-genotype correlations indicates that in retinitis pigmentosa, RDS is more frequently associated with macular involvement and retinal flecks, RHO with regional disease, and RPE65 with the great severity of the disease with some cases of Leber's congenital amaurosis. Identification of genes may help in diagnosis and in genetic counseling, especially in simplex cases with retinitis pigmentosa. In this latter condition, molecular diagnosis will be necessary to rationalize future treatments.

  19. Monozygotic twins with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy.

    Science.gov (United States)

    Rowell, Hannah A; Bassuk, Alexander G; Mahajan, Vinit B

    2012-01-01

    The purpose of this study was to describe the clinical findings in a set of monozygotic twins with autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) over a 23-year period. A pair of female twins were examined between 26 and 49 years of age. The concordance and discordance of their clinical features were determined. The CAPN5 gene was sequenced using genomic DNA. Both twins of an affected father demonstrated Stage I ADNIV with mild vitreous cells and a negative b-wave on electroretinography. Genetic analysis confirmed a guanine to thymine nucleotide (c.728G>T, pArg243Leu) mutation in the CAPN5 gene. Over the course of 23 years, each twin progressed to stage III disease, showing posterior uveitis, cystoid macular edema, intraocular fibrosis, early retinal neovascularization, retinal degeneration, and cataract. Disease progression varied moderately between each twin and was asymmetrical between eyes. Twin A had 20/70 and 20/125 in the right and left eye, respectively, and underwent vitrectomy surgery and intravitreal injections with bevacizumab for recurrent cystoid macular edema. Twin B maintained 20/20 and 20/40 in the right and left eye, respectively without intervention. There was asymmetry between the eyes and some discordance in the rate of disease progression in these monozygotic twins with ADNIV. The overall high disease concordance suggests genetic factors play a major role in clinical manifestations in CAPN5 vitreoretinopathy.

  20. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L

    2010-07-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.

  1. HUMAN CELLS IN CULTURE: REVISlTED*

    African Journals Online (AJOL)

    advantages, e.g. the generation time is reduced to about. 1/10000 that of the ... or less reflects the cellular biology of the donor tissut:'Y .... X-linked. Autosomal recessive. Autosomal recessive. Autosomal recessive mothers of affected males, however, show that only 50% of the cell population is defective, which furnishes an.

  2. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

    Science.gov (United States)

    Ballew, Bari J; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A; Small, Trudy N; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J; Savage, Sharon A; Petrini, John H J

    2013-08-01

    Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.

  3. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

    Directory of Open Access Journals (Sweden)

    Bari J Ballew

    2013-08-01

    Full Text Available Dyskeratosis congenita (DC is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.

  4. Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease.

    Science.gov (United States)

    Taylor, Rachel L; Parry, Neil R A; Barton, Stephanie J; Campbell, Christopher; Delaney, Claire M; Ellingford, Jamie M; Hall, Georgina; Hardcastle, Claire; Morarji, Jiten; Nichol, Elisabeth J; Williams, Lindsi C; Douzgou, Sofia; Clayton-Smith, Jill; Ramsden, Simon C; Sharma, Vinod; Biswas, Susmito; Lloyd, I Chris; Ashworth, Jane L; Black, Graeme C; Sergouniotis, Panagiotis I

    2017-07-01

    To assess the clinical usefulness of genetic testing in a pediatric population with inherited retinal disease (IRD). Single-center retrospective case series. Eighty-five unrelated children with a diagnosis of isolated or syndromic IRD who were referred for clinical genetic testing between January 2014 and July 2016. Participants underwent a detailed ophthalmic examination, accompanied by electrodiagnostic testing (EDT) and dysmorphologic assessment where appropriate. Ocular and extraocular features were recorded using Human Phenotype Ontology terms. Subsequently, multigene panel testing (105 or 177 IRD-associated genes) was performed in an accredited diagnostic laboratory, followed by clinical variant interpretation. Diagnostic yield and clinical usefulness of genetic testing. Overall, 78.8% of patients (n = 67) received a probable molecular diagnosis; 7.5% (n = 5) of these had autosomal dominant disease, 25.4% (n = 17) had X-linked disease, and 67.2% (n = 45) had autosomal recessive disease. In a further 5.9% of patients (n = 5), a single heterozygous ABCA4 variant was identified; all these participants had a spectrum of clinical features consistent with ABCA4 retinopathy. Most participants (84.7%; n = 72) had undergone EDT and 81.9% (n = 59) of these patients received a probable molecular diagnosis. The genes most frequently mutated in the present cohort were CACNA1F and ABCA4, accounting for 14.9% (n = 10) and 11.9% (n = 8) of diagnoses respectively. Notably, in many cases, genetic testing helped to distinguish stationary from progressive IRD subtypes and to establish a precise diagnosis in a timely fashion. Multigene panel testing pointed to a molecular diagnosis in 84.7% of children with IRD. The diagnostic yield in the study population was significantly higher compared with that in previously reported unselected IRD cohorts. Approaches similar to the one described herein are expected to become a standard component of care in pediatric ophthalmology

  5. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog.

    Science.gov (United States)

    Karlskov-Mortensen, P; Proschowsky, H F; Gao, F; Fredholm, M

    2018-04-06

    Progressive retinal atrophy (PRA) is a common cause of blindness in many dog breeds. It is most often inherited as a simple Mendelian trait, but great genetic heterogeneity has been demonstrated both within and between breeds. In many breeds the genetic cause of the disease is not known, and until now, the Old Danish Pointing Dog (ODP) has been one of those breeds. ODP is one of the oldest dog breeds in Europe. Seventy years ago the breed almost vanished, but today a population still exists, primarily in Denmark but with some dogs in Germany and Sweden. PRA has been diagnosed in ODP since the late 1990s. It resembles late onset PRA in other dog breeds, and it is inherited as an autosomal recessive trait. In the present study, we performed whole-genome sequencing and identified a single base insertion (c.3149_3150insC) in exon 1 of C17H2orf71. This is the same mutation previously found to cause PRA in Gordon Setters and Irish Setters, and it was later found in Tibetan Terrier, Standard Poodle and the Polski Owczarek Nizinny. The presence of the mutation in such a diverse range of breeds indicates an origin preceding creation of modern dog breeds. Hence, we screened 262 dogs from 44 different breeds plus four crossbred dogs, and can subsequently add Miniature Poodle and another polish sheepdog, the Polski Owczarek Podhalanski, to the list of affected breeds. © 2018 Stichting International Foundation for Animal Genetics.

  6. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  7. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss.

    Science.gov (United States)

    Ebermann, Inga; Scholl, Hendrik P N; Charbel Issa, Peter; Becirovic, Elvir; Lamprecht, Jürgen; Jurklies, Bernhard; Millán, José M; Aller, Elena; Mitter, Diana; Bolz, Hanno

    2007-04-01

    Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this "USH network" may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1-6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.

  8. NCBI nr-aa BLAST: CBRC-FCAT-01-1153 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available .1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAH72782.1| polycystic ...kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAI16677.1| polycystic kidney and hepatic disease 1 (autos...ney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_733842.2 0.0 76% ...

  9. NCBI nr-aa BLAST: CBRC-CJAC-01-1207 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available .1| polycystic kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAH72782.1| polycystic ...kidney and hepatic disease 1 (autosomal recessive) [Homo sapiens] emb|CAI16677.1| polycystic kidney and hepatic disease 1 (autos...ney and hepatic disease 1 (autosomal recessive) [Homo sapiens] NP_733842.2 0.0 87% ...

  10. PHAKOMATOSIS : INTRESTING CASES OF TUBEROUS SCLEROSIS WITH RETINAL ASTROCYTOMA

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao

    2015-05-01

    Full Text Available NTRODUCTION: Tuberous sclerosis complex (TSC or Morbus Bourneville - Pringle disease is an autosomal dominant phakomatosis, first described by Desiree - Magloire Bourneville in 1880. Tuberous sclerosis is a genetic disorder characterized by the growth of numerous benign tumours in many parts of the body caused by mutations on either of two genes, TSC1 and TSC2. This rare genetic disorder is usually associated with a triad of seizures, mental retardation and cutaneous lesions. Approximately one half of all patients affected by TS develop at least one retinal astrocytoma in one eye. PRESENTATION OF CASES: In the department of ophthalmology, G.S.L M edical C ollege, Rajahmundry, we came across 3 cases of tuberous sclerosis involving multi organ systems. Out of 3 cases, 2 cases were reported to be familial and 1case is sporadic, with a history of epilepsy with angiofibromatosis lesions over the face, multiple ash - leaf lesions over the abdomen, renal angiomyolipomas, multiple subependymal nodules in brain and retinal astrocytic hamartomas in the retina. CONCLUSION: It is important to be cognizant of the likely presence of systemic and ocular pathology in a child with mental retardation and skin lesions. Identification of retinal phakomatosis during ocular evaluation in any suspected case of Tuberous sclerosis can aid in the establishment of the diagnosis of the disease

  11. Prescreening whole exome sequencing results from patients with retinal degeneration for variants in genes associated with retinal degeneration

    Directory of Open Access Journals (Sweden)

    Bryant L

    2017-12-01

    heterozygous mutation identified that would cause recessive disease and 13% had no obviously pathogenic variants and no family members available to perform segregation analysis. Eleven subjects are good candidates for novel gene discovery. Two de novo mutations were identified that resulted in dominant retinal degeneration.Conclusion: Whole exome sequencing allows for thorough genetic analysis of candidate genes as well as novel gene discovery. It allows for an unbiased analysis of genetic variants to reduce the chance that the pathogenic mutation will be missed due to incomplete or inaccurate family history or analysis at the early stage of a syndromic form of retinal degeneration. Keywords: retinal degeneration, genetic diagnosis, retinitis pigmentosa, Leber congenital amaurosis, cone–rod dystrophy, whole exome sequencing

  12. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration.

    Science.gov (United States)

    Carrigan, Matthew; Duignan, Emma; Humphries, Pete; Palfi, Arpad; Kenna, Paul F; Farrar, G Jane

    2016-04-01

    The GNAT1 gene encodes the α subunit of the rod transducin protein, a key element in the rod phototransduction cascade. Variants in GNAT1 have been implicated in stationary night-blindness in the past, but unlike other proteins in the same pathway, it has not previously been implicated in retinitis pigmentosa. A panel of 182 retinopathy-associated genes was sequenced to locate disease-causing mutations in patients with inherited retinopathies. Sequencing revealed a novel homozygous truncating mutation in the GNAT1 gene in a patient with significant pigmentary disturbance and constriction of visual fields, a presentation consistent with retinitis pigmentosa. This is the first report of a patient homozygous for a complete loss-of-function GNAT1 mutation. The clinical data from this patient provide definitive evidence of retinitis pigmentosa with late onset in addition to the lifelong night-blindness that would be expected from a lack of transducin function. These data suggest that some truncating GNAT1 variants can indeed cause a recessive, mild, late-onset retinal degeneration in human beings rather than just stationary night-blindness as reported previously, with notable similarities to the phenotype of the Gnat1 knockout mouse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Herencia de la retinosis pigmentaria en la provincia Camagüey Inheritance of retinitis pigmentosa in the province of Camagüey

    Directory of Open Access Journals (Sweden)

    Elisa Dyce Gordon

    1999-06-01

    Full Text Available Con el objetivo de clasificar a los pacientes con Retinosis Pigmentaria y a sus respectivas familias según la herencia y exponer el valor de dicha clasificación, se realizó un estudio descriptivo con 354 individuos afectados, distribuidos en 191 familias camagüeyanas. A través de entrevistas y la confección e interpretación del árbol genealógico se obtuvieron los datos necesarios. Se realizó estadística descriptiva con pruebas de chi-cuadrado y de probabilidad estadística. El 36,65 % de las familias estuvieron representadas por los casos con herencia no definida (simple seguidas por las herencias autosómica recesiva (27,75 % y autosómica dominante (24,60 %, esta última con el 87 % de penetrancia. Estadísticamente significativa fue la asociación de la consanguinidad con las herencias recesivas ( p A descriptive study of 354 affected individuals distributed in 190 families from Camagüey was conducted aimed at classifying those patients with retinitis pigmentosa and their families according to inheritance and at showing the value of such classification. The necessary data were obtained by interviews and genealogical analysis. A descriptive statistics was presented based on chi square test and statistical probability test. 36,65 % of the families were represent by the cases with indefinite (simple inheritance followed by recessive autosomal inheritances (27,75 % and dominant autosomal inheritance (24,60 %. The latter with 87 % of penetrance. The association of consanguinity with the recesive inheritances was statistically significant (p < ,005. 231 new diagnosis (39,75 % were made among the 581 patients who were examined. Knowing the ways of inheritance of retinis pigmentosa of each patient and this family is very important for screening the affected individuals and for preventing the disease

  14. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  15. Phenotypical features of two patients diagnosed with PHARC syndrome and carriers of a new homozygous mutation in the ABHD12 gene.

    Science.gov (United States)

    Frasquet, Marina; Lupo, Vincenzo; Chumillas, María José; Vázquez-Costa, Juan Francisco; Espinós, Carmen; Sevilla, Teresa

    2018-04-15

    PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa and Cataracts) (MIM# 612674) is an autosomal recessive neurodegenerative disease caused by mutations in the ABHD12 gene. We evaluated two Spanish siblings affected with pes cavus, sensorimotor neuropathy, hearing loss, retinitis pigmentosa and juvenile cataracts in whom the genetic test of ABHD12 revealed a novel homozygous frameshift mutation, c.211_223del (p.Arg71Tyrfs*26). The earliest clinical manifestation in these patients was a demyelinating neuropathy manifested with a Charcot-Marie-Tooth phenotype over three decades. Progressive hearing loss, cataracts and retinitis pigmentosa appeared after the age of 30. We herein describe the complete clinical picture of these two patients, and focus particularly on neuropathy characteristics. This study supports the fact that although PHARC is rare, its phenotype is very characteristic and we should include its study in patients affected with demyelinating polyneuropathy, hearing loss and retinopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair.

    Science.gov (United States)

    Jacobsen, Jessie C; Whitford, Whitney; Swan, Brendan; Taylor, Juliet; Love, Donald R; Hill, Rosamund; Molyneux, Sarah; George, Peter M; Mackay, Richard; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2017-11-21

    Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ 10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q 10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ 10, and the siblings were subsequently established on a therapeutic dose of CoQ 10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.

  17. Congenital sensorineural deafness in Australian stumpy-tail cattle dogs is an autosomal recessive trait that maps to CFA10.

    Directory of Open Access Journals (Sweden)

    Susan Sommerlad

    2010-10-01

    speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93. Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.

  18. [A study of PDE6B gene mutation and phenotype in Chinese cases with retinitis pigmentosa].

    Science.gov (United States)

    Cui, Yun; Zhao, Kan-xing; Wang, Li; Wang, Qing; Zhang, Wei; Chen, Wei-ying; Wang, Li-ming

    2003-01-01

    To identify the mutation spectrum of phosphodiesterase beta subunit (PDE6B) gene, the incidence in Chinese patients with retinitis pigmentosa (RP) and their clinical phenotypic characteristics. Screening of mutations within PDE6B gene was performed using polymerase chain reaction-heteroduplex-single strand conformation polymorphism (PCR-SSCP) and DNA sequence in 35 autosomal recessive (AR) RP and 55 sporadic RP cases. The phenotypes of the patients with the gene mutation were examined and analyzed. Novel complex heterozygous variants of PDE6B gene in a sporadic case, a T to C transversion in codon 323 resulting in the substitution of Gly by Ser and 2 base pairs (bp: G and T) insert between the 27th-28th bp upstream of the 5'-end of exon 10 were both present in a same isolate RP. But they are not found in 100 unrelated healthy individuals. Ocular findings showed diffuse pigmentary retinal degeneration in the midperipheral and peripheral fundi, optic atrophy and vessel attenuation. Multi-focal ERG indicated that the rod function was more severely deteriorated. A mutation was found in a case with RP in a ARRP family, a G to A transversion at 19th base upstream 5'-end of exon 11 (within intron 10) of PDE6B gene. A sporadic RP carried a sequence variant of PDE6B gene, a G to C transition, at the 15th base adjacent to the 3'-end of exon l8. In another isolate case with RP was found 2 bp (GT) insert between 31st and 32nd base upstream 5'-end of exon 4 (in intron 3) of PDE6B gene. There are novel complex heterozygous mutations of PDE6B gene responsible for a sporadic RP patient in China. This gene mutation associated with rod deterioration and RP. Several DNA variants were found in introns of PDE6B gene in national population.

  19. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  20. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    Science.gov (United States)

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  1. Genetic mapping of the gene for Usher syndrome: Linkage analysis in a large Samaritan kindred

    Energy Technology Data Exchange (ETDEWEB)

    Bonne-Tamir, B.; Korostishevsky, M.; Kalinsky, H.; Seroussi, E.; Beker, R.; Weiss, S. (Sackler Faculty of Medicine, Ramat-Aviv (Israel)); Godel, V. (Ichilov Hospital, Tel-Aviv (Israel))

    1994-03-01

    Usher syndrome is a group of autosomal recessive disorders associated with congenital sensorineural deafness and progressive visual loss due to retinitis pigmentosa. Sixteen members of the small inbred Samaritan isolate with autosomal recessive deafness from 59 individuals including parents and affected and nonaffected sibs were typed for markers on chromosomes 1q and 11q for which linkage has recently been established for Usher syndrome types II and I. Statistically significant linkage was observed with four markers on 11q (D11S533, D11S527, OMP, and INT2) with a maximum six-point location score of 11.61 at the D11S533 locus. Analysis of haplotypes supports the notion that the mutation arose only once in an ancestral chromosome carrying a specific haplotype. The availability of markers closely linked to the disease locus allows indirect genotype analysis and identifies all carriers of the gene within the community. Furthermore, the detection of complete linkage disequilibrium between the D11S533 marker and the Usher gene suggests that these loci are either identical or adjacent and narrows the critical region to which physical mapping efforts are currently directed. 35 refs., 2 figs., 6 tabs.

  2. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    Science.gov (United States)

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  3. Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe).

    Science.gov (United States)

    Finsterer, Josef; Stöllberger, Claudia; Wollmann, Eva; Dertinger, Susanne; Laccone, Franco

    2016-09-01

    Carvajal syndrome is an autosomal dominant or autosomal recessive disorder, manifesting with dilated cardiomyopathy, woolly hair, and palmoplantar keratoma. Additional manifestations can be occasionally found. Carvajal syndrome may be due to mutations in the desmocollin-2, desmoplakin, or plakophilin-2 gene. We report a family with Carvajal syndrome which additionally presented with hypoacusis, noncompaction, recurrent pharyngeal infections, oligodontia, and recurrent diarrhoea. Father and brother were also affected and had died suddenly, the father despite implantation of a cardioverter defibrillator (ICD). Genetic studies revealed the novel pathogenic mutation c.1678A > T in the desmoplakin gene resulting in the amino acid change Ile to Phe at position 560 in the index case and her brother. The index case underwent ICD implantation recently. Phenotypic manifestations of Carvajal syndrome are even broader than so far anticipated, the number of mutations in the desmoplakin gene responsible for Carvajal syndrome is still increasing, and these patients require implantation of an ICD as soon as their diagnosis is established.

  4. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal crosses between Drosophila virilis and D. americana.

    Science.gov (United States)

    Sweigart, Andrea L

    2010-03-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F(1) hybrid males are perfectly fertile. Second, later generation (backcross and F(2)) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana.

  5. Compound Heterozygosity of Dominant and Recessive COL7A Alleles in a Severely Affected Patient with a Family History of Dystrophic Epidermolysis Bullosa: Clinical Findings, Genetic Testing, and Treatment Implications.

    Science.gov (United States)

    Watson, Kendra D; Schoch, Jennifer J; Beek, Geoffrey J; Hand, Jennifer L

    2017-03-01

    An 8-year-old girl born to a family with more than three generations of dominant dystrophic epidermolysis bullosa (DDEB) presented with life-threatening confluent skin erosions, mitten hand deformity, and failure to thrive. Reassessment of her family history and genetic testing showed compound heterozygous COL7A mutations, one inherited from her DDEB-affected mother and one from her unaffected, healthy father. This family illustrates the risk of unexpected, severe, autosomal recessive epidermolysis bullosa (EB) in a family with milder, multigenerational autosomal dominant EB. Clinicians should recognize the clinical spectrum of dystrophic EB and recommend genetic consultation when the phenotype conflicts with family history. © 2017 Wiley Periodicals, Inc.

  6. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease.

    Science.gov (United States)

    Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C

    2001-11-01

    Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.

  7. Usher syndrome with psychotic symptoms: two cases in the same family.

    Science.gov (United States)

    Wu, Chen-Ying; Chiu, Chih-Chiang

    2006-10-01

    Usher syndrome is a heterogeneous autosomal recessive disorder characterized by hearing and visual sensory impairment. Retinitis pigmentosa is essential for its diagnosis. There are only a few reports describing patients with Usher syndrome presenting with psychotic features and the etiology of its psychiatric manifestation is still unknown. Herein, the authors report variable congenital hearing impairment and progressive visual loss occurring in five of seven family members and two of them meeting the diagnostic criteria of Usher syndrome with psychotic features. Furthermore, the authors compare their psychiatric symptoms with other reports and the possible etiologies of psychotic symptoms are discussed.

  8. Genetic heterogeneity of Usher syndrome type II: localisation to chromosome 5q

    OpenAIRE

    Pieke-Dahl, S; Moller, C; Kelley, P; Astuto, L; Cremers, C; Gorin, M; Kimberling, W

    2000-01-01

    Usher syndrome is a group of autosomal recessive disorders that includes retinitis pigmentosa (RP) with hearing loss. Usher syndrome type II is defined as moderate to severe hearing loss with RP. The USH2A gene at 1q41 has been isolated and characterised. In 1993, a large Usher II family affected with a mild form of RP was found to be unlinked to 1q41 markers. Subsequent linkage studies of families in our Usher series identified several type II families unlinked to USH2A and USH3 on 3q25. Aft...

  9. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia.

    Science.gov (United States)

    Aldahmesh, Mohammed A; Mohamed, Jawahir Y; Alkuraya, Hisham S; Verma, Ishwar C; Puri, Ratna D; Alaiya, Ayodele A; Rizzo, William B; Alkuraya, Fowzan S

    2011-12-09

    Very-long-chain fatty acids (VLCFAs) play important roles in membrane structure and cellular signaling, and their contribution to human health is increasingly recognized. Fatty acid elongases catalyze the first and rate-limiting step in VLCFA synthesis. Heterozygous mutations in ELOVL4, the gene encoding one of the elongases, are known to cause macular degeneration in humans and retinal abnormalities in mice. However, biallelic ELOVL4 mutations have not been observed in humans, and murine models with homozygous mutations die within hours of birth as a result of a defective epidermal water barrier. Here, we report on two human individuals with recessive ELOVL4 mutations revealed by a combination of autozygome analysis and exome sequencing. These individuals exhibit clinical features of ichthyosis, seizures, mental retardation, and spasticity-a constellation that resembles Sjögren-Larsson syndrome (SLS) but presents a more severe neurologic phenotype. Our findings identify recessive mutations in ELOVL4 as the cause of a neuro-ichthyotic disease and emphasize the importance of VLCFA synthesis in brain and cutaneous development. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series

    Directory of Open Access Journals (Sweden)

    Rashid Ban Mousa

    2013-01-01

    Full Text Available Abstract Introduction Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case presentation Case 1 is the 12-year-old daughter (index patient of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1, whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. Case 2 is the 16-year-old son (brother of the index patient of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride

  11. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    Science.gov (United States)

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  12. Photoreceptor dysplasia (pd) in miniature schnauzer dogs: evaluation of candidate genes by molecular genetic analysis.

    Science.gov (United States)

    Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K

    1999-01-01

    Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.

  13. [Early therapeutic trials for retinitis pigmentosa].

    Science.gov (United States)

    Dufier, Jean-Louis

    2003-01-01

    Non syndromic forms of Retinitis Pigmentosa (RP) constitute a collection of clinically and genetically heterogeneous inherited retinal degenerative diseases. They are characterized by a bilateral progressive visual loss susceptible to cause blindness. These diseases are transmitted through pedigrees according to all known modes of inheritance. They are bilateral and usually start during infancy. However, very early clinical presentations exist, such as those observed in children affected by Leber Congenital Amaurosis, as well as late onset autosomal dominant forms of retinitis pigmentosa. The characteristic clinical aspect of the rod-cone RP dystrophies is marked by alterations of the peripheral retina associated with a night blindness and a progressive narrowing of the visual field. The ophthalmoscopic examination of RP patients commonly reveals thin retinal arteries and scattered pigmentary accumulations. In contrast, there are cone rod retinal dystrophies whose onset is marked by a decreased visual acuity before the appearance of any visual field alteration. Some forms of RPs display an ocular fundus devoid of any pigmentary alteration. Syndromic forms of RPs are not uncommon. The association of deafness with RP is detected in nearly 30% of the patients. Other associations with RP can include mental deficiency, facial dysmorphy, microcephaly, obesity, kidney deficiency, immune deficiencies, metabolic disorders. The existence of such syndromic forms of RP localizes RPs at the crossroad of several medical specialties. A long lasting collaboration between our department of ophthalmology and the department of medical genetics of the Necker-Sick Children Hospital has allowed us to establish numerous genotype-phenotype correlations, especially in LCA and Stargardt's disease. ABCR gene mutations cause Stargardt disease. ABCR mutations may also cause some types of Ages Related Macular Degenerations (AMD). Nowadays, there is no known efficient therapy available for

  14. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.

    Directory of Open Access Journals (Sweden)

    Stefano Lise

    Full Text Available β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5, an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1. In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.

  15. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

    Directory of Open Access Journals (Sweden)

    Shotland Lawrence I

    2004-09-01

    Full Text Available Abstract Background Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10. TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. Methods We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. Results We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. Conclusion Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449 of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

  16. Disease: H01880 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01880 Autosomal recessive microcephaly and chorioretinopathy Autosomal-recessive ...ent in MCCRP patients are variable, but the chorioretinopathy is a constant feature and includes typical pun...ark DB ... TITLE ... Chorioretinopathy with hereditary microcephaly. ... JOURNAL ... Arch Ophthalmol 75:597-600 (1... autosomal recessive microcephaly and chorioretinopathy. ... JOURNAL ... Eur J Hum Genet 24:1702-1706 (2016) DOI... ... Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

  17. Clinical and molecular analysis of the enamelin gene ENAM in Colombian families with autosomal dominant amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Sandra Gutiérrez

    2012-01-01

    Full Text Available In this study, we analyzed the phenotype, clinical characteristics and presence of mutations in the enamelin gene ENAM in five Colombian families with autosomal dominant amelogenesis imperfecta (ADAI. 22 individuals (15 affected and seven unaffected belonging to five Colombian families with ADAI and eight individuals (three affected and five unaffected belonging to three Colombian families with autosomal recessive amelogenesis imperfecta (ARAI that served as controls for molecular alterations and inheritance patterns were studied. Clinical, radiographic and genetic evaluations were done in all individuals. Eight exons and three intron-exon boundaries were sequenced for mutation analysis. Two of the five families with ADAI had the hypoplasic phenotype, two had the hypocalcified phenotype and one had the hypomaturative phenotype. Anterior open bite and mandibular retrognathism were the most frequent skeletal abnormalities in the families with ADAI. No mutations were found. These findings suggest that ADAI in these Colombian families was unrelated to previously described mutations in the ENAM gene. These results also indicate that other regions not included in this investigation, such as the promoter region, introns and other genes should be considered as potential ADAI candidates.

  18. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. 2016 BMJ Publishing Group Ltd.

  19. Manifestaciones clínicas de la retinosis pigmentaria recesiva ligada al sexo en una portadora Clinical manifestations of recessive retinitis pigmentosa linked to sex in a carrier

    Directory of Open Access Journals (Sweden)

    Elisa Dyce Gordon

    2001-06-01

    Full Text Available Se presenta el caso de una portadora del gen mutante causante de la retinosis pigmentaria con herencia recesiva ligada al sexo con un cuadro clínico típico de la enfermedad, de inicio tardío y marcada asimetría de las manifestaciones oftalmológicas entre ambos ojos. Se expone la hipótesis de Lyon para explicar la ocurrencia de este hecho. Se concluye que las heterocigotas pueden manifestarse clínicamente al igual que los varones hemicigotos, por lo que a todas se les debe realizar estudio oftalmológico minucioso para confirmar el estado de portadora, así como para iniciar tratamiento adecuado, de ser necesario.The case of a carrier of the mutant gene causing retinitis pigmentosa with recessive heredity linked to sex with a typical clinical picture of late onset disease and marked assimetry of ophthalmological manifestations between both eyes is presented. Lyon's hypothesis is used to explain the occurrence of this event. It is concluded that heterozygote females may have the same clinical manifestations as hemizigote males. That's why, an ophthalmologic thorough study should be conducted to confirm the state of the carrier as well as to initiate an adequate treatment, if necessary.

  20. Genetic heterogeneity in familial exudative vitreoretinopathy; exclusion of the EVR1 locus on chromosome 11q in a large autosomal dominant pedigree.

    Science.gov (United States)

    Bamashmus, M A; Downey, L M; Inglehearn, C F; Gupta, S R; Mansfield, D C

    2000-04-01

    Familial exudative vitreoretinopathy (FEVR) is associated with mutations in the Norrie disease gene in X linked pedigrees and with linkage to the EVR1 locus at 11q13 in autosomal dominant cases. A large autosomal dominant FEVR family was studied, both clinically and by linkage analysis, to determine whether it differed from the known forms of FEVR. Affected members and obligate gene carriers from this family were examined by slit lamp biomicroscopy, indirect ophthalmoscopy, and in some cases fluorescein angiography. Patient DNAs were genotyped for markers at the EVR1 locus on chromosome 11q13. The clinical evaluation in this family is consistent with previous descriptions of FEVR pedigrees, but linkage analysis proves that it has a form of FEVR genetically distinct from the EVR1 locus on 11q. This proves that there are at least three different loci associated with comparable FEVR phenotypes, a situation similar to that existing for many forms of retinal degeneration.

  1. Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    DEFF Research Database (Denmark)

    2017-01-01

    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox-Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients...... with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient-parent trios that were generally...... not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population....

  2. Retinal Vasculitis

    Science.gov (United States)

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  3. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  4. Genetic analysis of a four generation Indian family with Usher syndrome: a novel insertion mutation in MYO7A.

    Science.gov (United States)

    Kumar, Arun; Babu, Mohan; Kimberling, William J; Venkatesh, Conjeevaram P

    2004-11-24

    Usher syndrome (USH) is a rare autosomal recessive disorder characterized by deafness and retinitis pigmentosa. The purpose of this study was to determine the genetic cause of USH in a four generation Indian family. Peripheral blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to known USH loci, microsatellite markers were selected from the candidate regions of known loci and used to genotype the family. Exon specific intronic primers for the MYO7A gene were used to amplify DNA samples from one affected individual from the family. PCR products were subsequently sequenced to detect mutation. PCR-SSCP analysis was used to determine if the mutation segregated with the disease in the family and was not present in 50 control individuals. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Pedigree analysis suggested an autosomal recessive mode of inheritance of USH in the family. Haplotype analysis suggested linkage of this family to the USH1B locus on chromosome 11q. DNA sequence analysis of the entire coding region of the MYO7A gene showed a novel insertion mutation c.2663_2664insA in a homozygous state in all affected individuals, resulting in truncation of MYO7A protein. This is the first study from India which reports a novel MYO7A insertion mutation in a four generation USH family. The mutation is predicted to produce a truncated MYO7A protein. With the novel mutation reported here, the total number of USH causing mutations in the MYO7A gene described to date reaches to 75.

  5. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population.

    Science.gov (United States)

    Corton, Marta; Avila-Fernandez, Almudena; Vallespín, Elena; López-Molina, María Isabel; Almoguera, Berta; Martín-Garrido, Esther; Tatu, Sorina D; Khan, M Imran; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Brión, María; García-Sandoval, Blanca; Cremers, Frans P M; Carracedo, Angel; Ayuso, Carmen

    2014-01-01

    We aimed to identify novel genetic defects in the LCA5 gene underlying Leber congenital amaurosis (LCA) in the Spanish population and to describe the associated phenotype. Case series. A cohort of 217 unrelated Spanish families affected by autosomal recessive or isolated retinal dystrophy, that is, 79 families with LCA and 138 families with early-onset retinitis pigmentosa (EORP). A total of 100 healthy, unrelated Spanish individuals were screened as controls. High-resolution homozygosity mapping was performed in 44 patients with LCA using genome-wide single nucleotide polymorphism (SNP) microarrays. Direct sequencing of the LCA5 gene was performed in 5 patients who showed homozygous regions at chromosome 6 and in 173 unrelated individuals with LCA or EORP. The ophthalmic history of 8 patients carrying LCA5 mutations was reviewed and additional examinations were performed, including electroretinography (ERG), optical coherence tomography (OCT), and fundus photography. Single nucleotide polymorphism genotyping, identity-by-descent (IBD) regions, LCA5 mutations, best-corrected visual acuity, visual field assessments, fundus appearance, ERG, and OCT findings. Four novel and 2 previously reported LCA5 mutations have been identified in 6 unrelated families with LCA by homozygosity mapping or Sanger sequencing. Thus, LCA5 mutations have a frequency of 7.6% in the Spanish population. However, no LCA5 mutations were found in 138 patients with EORP. Although most of the identified LCA5 mutations led to a truncated protein, a likely pathogenic missense variant was identified for the first time as a cause of LCA, segregating in 2 families. We also have characterized a novel splicing site mutation at the RNA level, demonstrating that the mutant LCA5 transcript was absent in a patient. All patients carrying LCA5 mutations presented nystagmus, night blindness, and progressive loss of visual acuity and visual field leading to blindness toward the third decade of life. Fundoscopy

  6. Al-Aqeel Sewairi Syndrome, a new autosomal recessive disorder with multicentric osteolysis, nodulosis and arthropathy. The first genetic defect of matrix metalloproteinase 2 gene

    International Nuclear Information System (INIS)

    Al-Aqeel, Aida I.

    2005-01-01

    We report a distinctive autosomal recessive multicentric osteolysis in Saudi Arabian families with distal arthropathy of the metacarpal, metatarsal and interphalangeal joints, with ultimate progression to the proximal joints with decreased range of movements and deformities with ankylosis and generalized osteopenia. In addition, they had large, painful to touch palmar and plantar pads. Hirsutism and mild dysmorphic facial features including proptosis, a narrow nasal bridge, bulbous nose and micrognathia. Using a genome-wide search for microsatellite markers from 11 members of the family from the Armed Forces Hospital and King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia, localized the disease gene to chromosome 16q12-21. Haplotype analysis with additional markers narrowed the critical region to 1.2cM and identified the matrix metalloproteinase 2 (MMP-2), (gelatinase A, collagenase type IV, EC 3.4, 24,24) gene as a disease candidate at Mount Sinai School of Medicine, New York, United States of America in April 2000. Some affected individuals were homoallelic for a nonsense mutation (TCA>TAA) in codon 244 of exon 5, predicting the replacement of a tyrosine residue by a stop codon in the first fibronectin type II domain (Y244X). Other affected members had a missense mutation in exon 2 arginine 101-histidine (R101H) leading to no MMP-2 enzyme activity in serum or fibroblast or both of affected individuals. In other affected members, a non-pathogenic homoallelic GT transversion resulted in the substitution of an aspartate with a tyrosine residue in codon 210 of exon 4 (D210Y). The MMP-2-null mouse has no developmental defects, but are small, which may reflect genetic redundancy. The discovery that deficiency of this well-characterized gelatinase/collagenase results in an inherited form of an osteolytic and arthritic disorder provides an invaluable insights for the understanding of osteolysis and arthritis and is the first genetic

  7. A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family.

    Science.gov (United States)

    Audo, Isabelle; Bujakowska, Kinga; Mohand-Saïd, Saddek; Tronche, Sophie; Lancelot, Marie-Elise; Antonio, Aline; Germain, Aurore; Lonjou, Christine; Carpentier, Wassila; Sahel, José-Alain; Bhattacharya, Shomi; Zeitz, Christina

    2011-01-01

    To identify the genetic defect of a consanguineous Portuguese family with rod-cone dystrophy and varying degrees of decreased audition. A detailed ophthalmic and auditory examination was performed on a Portuguese patient with severe autosomal recessive rod-cone dystrophy. Known genetic defects were excluded by performing autosomal recessive retinitis pigmentosa (arRP) genotyping microarray analysis and by Sanger sequencing of the coding exons and flanking intronic regions of eyes shut homolog-drosophila (EYS) and chromosome 2 open reading frame 71 (C2orf71). Subsequently, genome-wide homozygosity mapping was performed in DNA samples from available family members using a 700K single nucleotide polymorphism (SNP) microarray. Candidate genes present in the significantly large homozygous regions were screened for mutations using Sanger sequencing. The largest homozygous region (~11 Mb) in the affected family members was mapped to chromosome 9, which harbors deafness, autosomal recessive 31 (DFNB31; a gene previously associated with Usher syndrome). Mutation analysis of DFNB31 in the index patient identified a novel one-base-pair deletion (c.737delC), which is predicted to lead to a truncated protein (p.Pro246HisfsX13) and co-segregated with the disease in the family. Ophthalmic examination of the index patient and the affected siblings showed severe rod-cone dystrophy. Pure tone audiometry revealed a moderate hearing loss in the index patient, whereas the affected siblings were reported with more profound and early onset hearing impairment. We report a novel truncating mutation in DFNB31 associated with severe rod-cone dystrophy and varying degrees of hearing impairment in a consanguineous family of Portuguese origin. This is the second report of DFNB31 implication in Usher type 2.

  8. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    International Nuclear Information System (INIS)

    Lytle, C.D.; Tarone, R.E.; Barrett, S.F.; Robbins, J.H.; Wirtschafter, J.D.; Dupuy, J.-M.

    1983-01-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration. (author)

  9. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, C.D. (Food and Drug Administration, Rockville, MD (USA)); Tarone, R.E.; Barrett, S.F.; Robbins, J.H. (National Cancer Inst., Bethesda, MD (USA)); Wirtschafter, J.D. (Minnesota Univ., Minneapolis (USA). Hospitals); Dupuy, J.M. (Quebec Univ., Laval-des-Rapides (Canada). Inst. Armand-Frappier)

    1983-05-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration.

  10. Fractal analysis reveals reduced complexity of retinal vessels in CADASIL.

    Directory of Open Access Journals (Sweden)

    Michele Cavallari

    2011-04-01

    Full Text Available The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D, a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD was lower than control (1.50±0.04; p = 0.002. Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients.

  11. Genetic mapping of the gene for Usher syndrome: linkage analysis in a large Samaritan kindred.

    Science.gov (United States)

    Bonné-Tamir, B; Korostishevsky, M; Kalinsky, H; Seroussi, E; Beker, R; Weiss, S; Godel, V

    1994-03-01

    Usher syndrome is a group of autosomal recessive disorders associated with congenital sensorineural deafness and progressive visual loss due to retinitis pigmentosa. Sixteen members of the small inbred Samaritan isolate with autosomal recessive deafness were studied in 10 related sibships. DNA samples from 59 individuals including parents and affected and nonaffected sibs were typed for markers on chromosomes 1q and 11q for which linkage has recently been established for Usher syndrome types II and I. Statistically significant linkage was observed with four markers on 11q (D11S533, D11S527, OMP, and INT2) with a maximum six-point location score of 11.61 at the D11S533 locus. Analysis of haplotypes supports the notion that the mutation arose only once in an ancestral chromosome carrying a specific haplotype. The availability of markers closely linked to the disease locus allows indirect genotype analysis and identifies all carriers of the gene within the community. Furthermore, the detection of complete linkage disequilibrium between the D11S533 marker and the Usher gene suggests that these loci are either identical or adjacent and narrows the critical region to which physical mapping efforts are currently directed.

  12. Improvement and decline in vision with gene therapy in childhood blindness.

    Science.gov (United States)

    Jacobson, Samuel G; Cideciyan, Artur V; Roman, Alejandro J; Sumaroka, Alexander; Schwartz, Sharon B; Heon, Elise; Hauswirth, William W

    2015-05-14

    Retinal gene therapy for Leber's congenital amaurosis, an autosomal recessive childhood blindness, has been widely considered to be safe and efficacious. Three years after therapy, improvement in vision was maintained, but the rate of loss of photoreceptors in the treated retina was the same as that in the untreated retina. Here we describe long-term follow-up data from three treated patients. Topographic maps of visual sensitivity in treated regions, nearly 6 years after therapy for two of the patients and 4.5 years after therapy for the third patient, indicate progressive diminution of the areas of improved vision. (Funded by the National Eye Institute; ClinicalTrials.gov number, NCT00481546.).

  13. Nanophthalmos: A Review of the Clinical Spectrum and Genetics

    Directory of Open Access Journals (Sweden)

    Pedro C. Carricondo

    2018-01-01

    Full Text Available Nanophthalmos is a clinical spectrum of disorders with a phenotypically small but structurally normal eye. These disorders present significant clinical challenges to ophthalmologists due to a high rate of secondary angle-closure glaucoma, spontaneous choroidal effusions, and perioperative complications with cataract and retinal surgeries. Nanophthalmos may present as a sporadic or familial disorder, with autosomal-dominant or recessive inheritance. To date, five genes (i.e., MFRP, TMEM98, PRSS56, BEST1, and CRB1 and two loci have been implicated in familial forms of nanophthalmos. Here, we review the definition of nanophthalmos, the clinical and pathogenic features of the condition, and the genetics of this disorder.

  14. Hereditary sensory and autosomal peripheral neuropathy-type IV: case series and review of literature.

    Science.gov (United States)

    Ashwin, D P; Chandan, G D; Jasleen, Handa Kaur; Rajkumar, G C; Rudresh, K B; Prashanth, R

    2015-06-01

    Hereditary sensory and autonomic neuropathy (HSAN) IV is a rare autosomal recessive disorder which is characterized by a decrease in the number of myelinated and non-myelinated nerve fibers of peripheral nerves which causes diminished or absent pain sensation leading to increase in self-mutilative habits. A retrospective study of eight cases ranging from age group of 4 to 17 years for oral and digital signs and symptoms is presented. All the patients showed congenital insensitivity to pain and anhidrosis. Oral self-mutilations, such as autoextraction of teeth and severe bite injuries (with resultant scarring) of the finger tips and oral soft tissues (tongue, lip, and buccal mucosa) were found in most patients. Our study suggests that early diagnosis and specific treatment plan are important for prevention of characteristic of the oral as well as digital trauma associated with this disorder.

  15. Analysis of TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 in autosomal recessive congenital ichthyosis from Galicia (NW Spain): evidence of founder effects.

    Science.gov (United States)

    Rodríguez-Pazos, L; Ginarte, M; Fachal, L; Toribio, J; Carracedo, A; Vega, A

    2011-10-01

      Mutations in six genes have been identified in autosomal recessive congenital ichthyosis (ARCI). To date, few studies have analysed the spectrum of these mutations in specific populations. We have studied the characteristics of patients with ARCI in Galicia (NW Spain). Methods  We recruited patients by contacting all dermatology departments of Galicia and the Spanish patient organization for ichthyosis. TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 were analysed in the patients and their relatives. We identified 23 patients with ARCI and estimated a prevalence of 1 : 122 000. Twenty of the patients were studied. Seventeen of them were clinically categorized as having lamellar ichthyosis (LI) and three as having congenital ichthyosiform erythroderma (CIE). TGM1 and ALOXE3 mutations were identified in 12/16 (75%) probands whereas no ALOX12B, NIPAL4 and CYP4F22 mutations were found. TGM1 mutations were found in 11/13 (85%) of LI probands. ALOXE3 mutations were identified in a single patient with CIE. Remarkably, mutations p.Arg760X, p.Asp408ValfsX21 and c.984+1G>A of TGM1 were present in six, four and two families, accounting for 41%, 23% and 14% of all TGM1 mutant alleles, respectively. The high percentage of patients with the same TGM1 mutations, together with the high number of homozygous probands (64%), indicates the existence of a strong founder effect in our population. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  16. Blepharophimosis-mental retardation (BMR) syndromes: A proposed clinical classification of the so-called Ohdo syndrome, and delineation of two new BMR syndromes, one X-linked and one autosomal recessive.

    Science.gov (United States)

    Verloes, Alain; Bremond-Gignac, Dominique; Isidor, Bertrand; David, Albert; Baumann, Clarisse; Leroy, Marie-Anne; Stevens, René; Gillerot, Yves; Héron, Delphine; Héron, Bénédicte; Benzacken, Brigitte; Lacombe, Didier; Brunner, Han; Bitoun, Pierre

    2006-06-15

    We report on 11 patients from 8 families with a blepharophimosis and mental retardation syndrome (BMRS) phenotype. Using current nosology, five sporadic patients have Ohdo syndrome, associated with congenital hypothyroidism in two of them (thus also compatible with a diagnosis of Young-Simpson syndrome). In two affected sibs with milder phenotype, compensated hypothyroidism was demonstrated. In another family, an affected boy was born to the unaffected sister of a previously reported patient. Finally, in the last sibship, two affected boys in addition had severe microcephaly and neurological anomalies. A definitive clinical and etiologic classification of BMRS is lacking, but closer phenotypic analysis should lead to a more useful appraisal of the BMRS phenotype. We suggest discontinuing the systematic use of the term "Ohdo syndrome" when referring to patients with BMRS. We propose a classification of BMRS into five groups: (1) del(3p) syndrome, (possibly overlooked in older reports); (2) BMRS, Ohdo type, limited to the original patients of Ohdo; (3) BMRS SBBYS (Say-Barber/Biesecker/Young-Simpson) type, with distinctive dysmorphic features and inconstant anomalies including heart defect, optic atrophy, deafness, hypoplastic teeth, cleft palate, joint limitations, and hypothyroidism. BMRS type SBBYS is probably an etiologically heterogeneous phenotype, as AD and apparently AR forms exist; (4) BMRS, MKB (Maat-Kievit-Brunner) type, with coarse, triangular face, which is probably sex-linked; (5) BMRS V (Verloes) type, a probable new type with severe microcephaly, hypsarrhythmia, adducted thumbs, cleft palate, and abnormal genitalia, which is likely autosomal recessive. Types MKB and V are newly described here. Copyright 2006 Wiley-Liss, Inc.

  17. Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.

    Science.gov (United States)

    Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica

    2017-07-18

    Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.

  18. Novel Presenting Phenotype in a Child With Autosomal Dominant Best's Vitelliform Macular Dystrophy.

    Science.gov (United States)

    Abdalla, Yasmine F; De Salvo, Gabriella; Elsahn, Ahmad; Self, James E

    2017-07-01

    Best's macular dystrophy (BMD) usually manifests with visual failure in the first or second decade of life; however, there is a large variability in expressivity of the disease, and some patients have no manifestation other than a pathological electro-oculogram (EOG). Autosomal dominant Best's vitelliform macular dystrophy (AD-BVMD) has a very specific phenotype that varies with the stage of the disease. In recent years, the authors have seen description of another clinical entity known as autosomal recessive BMD. Herein, the authors describe a 5-year-old girl referred from a peripheral hospital for investigation with a positive family history of BMD. Clinical findings included best-corrected visual acuity of 0.325 and 0.300 in the right and left eyes, respectively, by Sonksen logMar test, full color vision, normal orthoptic examination, and a small degree of hyperopia consistent with age. Macular optical coherence tomography (OCT) showed intraretinal fluid cysts and EOG showed reduced Arden ratio. Genetic testing was done for the proband and her father, who were found to be heterozygous for c.37C>T p. (Arg13Cys). The proband's younger sister will be reviewed and followed up once of age. The authors identified a new phenotype of AD-BVMD; although this is a single patient, more young children with BMD can now be scanned with the availability of hand-held OCT with better knowledge of the phenotype. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:580-585.]. Copyright 2017, SLACK Incorporated.

  19. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  20. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP).

    Science.gov (United States)

    Schorderet, Daniel F; Escher, Pascal

    2009-11-01

    NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.

  1. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency.

    Science.gov (United States)

    Lagier-Tourenne, Clotilde; Tazir, Meriem; López, Luis Carlos; Quinzii, Catarina M; Assoum, Mirna; Drouot, Nathalie; Busso, Cleverson; Makri, Samira; Ali-Pacha, Lamia; Benhassine, Traki; Anheim, Mathieu; Lynch, David R; Thibault, Christelle; Plewniak, Frédéric; Bianchetti, Laurent; Tranchant, Christine; Poch, Olivier; DiMauro, Salvatore; Mandel, Jean-Louis; Barros, Mario H; Hirano, Michio; Koenig, Michel

    2008-03-01

    Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.

  2. EST Table: DC540266 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) ... similar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) isoform 1 [Tribolium castaneum] FS929848 dpe- ...

  3. EST Table: FS936166 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) ... similar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) isoform 1 [Tribolium castaneum] FS929848 fwgP ...

  4. Retinal thickness as a marker of disease progression in longitudinal observation of patients with Wolfram syndrome.

    Science.gov (United States)

    Zmyslowska, Agnieszka; Fendler, Wojciech; Waszczykowska, Arleta; Niwald, Anna; Borowiec, Maciej; Jurowski, Piotr; Mlynarski, Wojciech

    2017-11-01

    Wolfram syndrome (WFS) is a recessively inherited monogenic form of diabetes coexisting with optic atrophy and neurodegenerative disorders with no currently recognized markers of disease progression. The aim of the study was to evaluate retinal parameters by using optical coherence tomography (OCT) in WFS patients after 2 years of follow-up and analysis of the parameters in relation to visual acuity. OCT parameters and visual acuity were measured in 12 WFS patients and 31 individuals with type 1 diabetes. Total thickness of the retinal nerve fiber layer (RNFL), average retinal thickness and total retinal volume decreased in comparison with previous OCT examination. Significant decreases were noted for RNFL (average difference -17.92 µm 95% CI -30.74 to -0.10; p = 0.0157), macular average thickness (average difference -5.38 µm 95% CI -10.63 to -2.36; p = 0.0067) and total retinal volume (average difference -0.15 mm 3 95% CI -0.30 to -0.07; p = 0.0070). Central thickness remained unchanged (average difference 1.5 µm 95% CI -7.61 to 10.61; p = 0.71). Visual acuity of WFS patients showed a strong negative correlation with diabetes duration (R = -0.82; p = 0.0010). After division of WFS patients into two groups (with low-vision and blind patients), all OCT parameters except for the RNFL value were lower in blind WFS patients. OCT measures structural parameters and can precede visual acuity loss. The OCT study in WFS patients should be performed longitudinally, and serial retinal examinations may be helpful as a potential end point for future clinical trials.

  5. EST Table: BY921544 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) ... similar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) isoform 1 [Tribolium castaneum] FS929848 ovS0 ...

  6. Correlation between SD-OCT, immunocytochemistry and functional findings in a pigmented animal model of retinal degeneration

    Directory of Open Access Journals (Sweden)

    Nicolás eCuenca

    2014-12-01

    Full Text Available Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa. The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz. Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer, and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.

  7. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family

    Science.gov (United States)

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-11-01

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.

  8. Autosomal dominant distal myopathy due to a novel ACTA1 mutation.

    Science.gov (United States)

    Liewluck, Teerin; Sorenson, Eric J; Walkiewicz, Magdalena A; Rumilla, Kandelaria M; Milone, Margherita

    2017-08-01

    Mutations in skeletal muscle α-actin 1-encoding gene (ACTA1) cause autosomal dominant or recessive myopathies with marked clinical and pathological heterogeneity. Patients typically develop generalized or limb-girdle pattern of weakness, but recently a family with scapuloperoneal myopathy was reported. We describe a father and 2 children with childhood-to-juvenile onset distal myopathy, carrying a novel dominant ACTA1 variant, c.757G>C (p.Gly253Arg). Father had delayed motor development and developed significant proximal weakness later in life; he was initially misdiagnosed as having spinal muscular atrophy based on electromyographic findings. His children had predominant anterior distal leg and finger extensor involvement. Nemaline rods were abundant on the daughter's biopsy, absent on the father's initial biopsy, and extremely rare on the father's subsequent biopsy a decade later. The father's second biopsy also showed myofibrillar pathology and rare fibers with actin filament aggregates. The present family expands the spectrum of actinopathy to include a distal myopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Clinicopathological report of retinitis pigmentosa with vitamin E deficiency caused by mutation of the alpha-tocopherol transfer protein gene.

    Science.gov (United States)

    Pang, J; Kiyosawa, M; Seko, Y; Yokota, T; Harino, S; Suzuki, J

    2001-01-01

    To discuss the clinicopathological findings in a patient with retinitis pigmentosa (RP) accompanied by a vitamin E deficiency caused by an H101Q mutation in the alpha-tocopherol transfer protein (alpha-TTP) gene. The clinical course of this patient was followed by conventional ophthalmological examinations over a 3-year period. After the patient died from pancreatic cancer, the eyes were obtained, and examined by light and electron microscopy. The patient complained of night blindness subsequent to adult-onset ataxia, although the ataxia was very mild. His visual acuity was 0.6 OU, and ophthalmoscopy revealed RP sine pigmento. Ring scotomas were detected, and the electroretinography, electro-oculography, and dark-adaptation were altered. Fluorescein angiography showed granular hyperfluorescence around the macula. No progression of the visual and neurological symptoms was observed during the 10 years he was taking oral vitamin E. Histopathological examination revealed the loss of the outer and inner segments of the photoreceptors in the area corresponding to the ring scotoma, as well as a disorganization and shortening of the outer segments in the peripheral retina. We conclude that the clinical and pathological findings in the eyes of this patient having RP with vitamin E deficiency caused by an H101Q mutation are similar to those of common autosomal recessive RP. However, special attention is required in making a diagnosis of RP with vitamin E deficiency because RP with vitamin E deficiency is medically treatable. The mild Friedreich-type ataxia accompanying the RP may be helpful in identifying this disease.

  10. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools...... this study, we recommend promoting recess physical activity through a combination of actions, addressing barriers within the natural, social, physical and organizational environment....

  11. EST Table: FS929848 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available DICTED: similar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia...1| PREDICTED: similar to Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) isoform 1 [Tribolium castaneum] FS929848 fwgP ...

  12. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  13. Peripheral retinal degenerations and the risk of retinal detachment.

    Science.gov (United States)

    Lewis, Hilel

    2003-07-01

    To review the degenerative diseases of the peripheral retina in relationship with the risk to develop a rhegmatogenous retinal detachment and to present recommendations for use in eyes at increased risk of developing a retinal detachment. Focused literature review and author's clinical experience. Retinal degenerations are common lesions involving the peripheral retina, and most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and, rarely, zonular traction tufts, can result in a rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic therapy; however, adequate studies have not been performed to date. Well-designed, prospective, randomized clinical studies are necessary to determine the benefit-risk ratio of prophylactic treatment. In the meantime, the evidence available suggests that most of the peripheral retinal degenerations should not be treated except in rare, high-risk situations.

  14. Retinal vascular oximetry during ranibizumab treatment of central retinal vein occlusion

    DEFF Research Database (Denmark)

    Traustason, Sindri; la Cour, Morten; Larsen, Michael

    2014-01-01

    PURPOSE: To investigate the effect of intravitreal injections of the vascular endothelial growth factor inhibitor ranibizumab on retinal oxygenation in patients with central retinal vein occlusion (CRVO). METHODS: Retinal oxygen saturation in patients with CRVO was analysed using the Oxymap Retin...

  15. The Great Recession was not so Great

    NARCIS (Netherlands)

    van Ours, J.C.

    2015-01-01

    The Great Recession is characterized by a GDP-decline that was unprecedented in the past decades. This paper discusses the implications of the Great Recession analyzing labor market data from 20 OECD countries. Comparing the Great Recession with the 1980s recession it is concluded that there is a

  16. Late-onset Stargardt-like macular dystrophy maps to chromosome 1p13

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, J.; Gerber, S.; Rozet, J.M. [Hopital des Enfants Malades, Paris (France)] [and others

    1994-09-01

    Stargardt`s disease (MIM 248200), originally described in 1909, is an autosomal recessive condition of childhood, characterized by a sudden and bilateral loss of central vision. Typically, it has an early onset (7 to 12 years), a rapidly progressive course and a poor final outcome. The central area of the retina (macula) displays pigmentary changes in a ring form with depigmentation and atrophy of the retinal pigmentary epithelium (RPE). Perimacular yellowish spots, termed fundus flavimaculatus, are observed in a high percentage of patients. We have recently reported the genetic mapping of Stargardt`s disease to chromosome 1p13. On the other hand, considering that fundus flavimaculatus (MIM 230100) is another form of fleck fundus disease, with a Stargardt-like retinal aspect but with a late-onset and a more progressive course, we decided to test the hypothesis of allelism between typical Stargardt`s disease and late-onset autosomal recessive fundus flavimaculatus. Significant pairwise lod scores were obtained in each of four multiplex families (11 affected individuals, 12 relatives) with four markers of the 1p13 region (Z = 4.79, 4.64, 3.07, 3.16 at loci D1S435, D1S424, D1S236, and D1S415, respectively at {theta} = 0). Multipoint analysis showed that the best estimate for location of the disease gene is between D1S424 and D1S236 (maximum lod score of 5.20) as also observed in Stargardt`s disease. Our results are consistent with the location of the gene responsible of the late-onset Stargardt-like macular dystrophy in the 1p13 region and raise the hypothesis of either allelic mutational events or contiguous genes in this chromosomal region. The question of possible relationship with some age-related macular dystrophies in now open to debate.

  17. NMNAT1 variants cause cone and cone-rod dystrophy.

    Science.gov (United States)

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  18. Mutation analysis of SLC26A4 for Pendred syndrome and nonsyndromic hearing loss by high-resolution melting

    DEFF Research Database (Denmark)

    Chen, Neng; Tranebjærg, Lisbeth; Rendtorff, Nanna Dahl

    2011-01-01

    Pendred syndrome and DFNB4 (autosomal recessive nonsyndromic congenital deafness, locus 4) are associated with autosomal recessive congenital sensorineural hearing loss and mutations in the SLC26A4 gene. Extensive allelic heterogeneity, however, necessitates analysis of all exons and splice sites...

  19. Disease: H01204 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01204 Cerebellar ataxia, mental retardation (MR), and dysequilibrium syndrome (CA...MRQ) Cerebellar ataxia, mental retardation (MR), and dysequilibrium syndrome (CAMRQ) is autosomal recessive,... Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium

  20. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  1. Multifocal dystonia, Clinical feature of Hallervorden-Spatz

    Directory of Open Access Journals (Sweden)

    Ghelichkhani H

    1998-09-01

    Full Text Available Hallervorden-spatz disease is an inherited metabolic disorder with autosomal recessive trait. Onset is in late childhood or early adolescence. Clinical manifestation is variable but pyramidal and extrapyramidal signs are often prominent. Many of patients show progressive dementia and extrapyramidal symptoms. Ataxia or myoclonus is reported in the course of the disease in individual cases. Focal dystonias including tongue, eyelids (blepharospasm and optic atrophy, retinitis pigmentosa, rarely familial parkinsonism are also reported. Pathologically pigmentary degeneration of globus pallidus, substantia nigra (pars reticular and red nucleus is characteristic. In our case the main clinical feature was multifocal dystonia without obvious pyramidal or other extrapyramidal symptoms, and diagnosis was based on clinical and MRI findings.

  2. Disease: H00499 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00499 Spondylocarpotarsal synostosis syndrome Spondylocarpotarsal synostosis syndrome is an autosomal recessive disease characterized by the malsegmentation of vertebrae and the fusion of carpal and tarsal bones. Retinal anomalies and hearing loss are also observed. Spondylocarpotarsal synostosis syndrome is due to FLNB mutations. Skeletal dysplasia FLNB (nonsense mutation) [HSA:2317] [KO:K04437] ... MeSH: C535780 OMIM: 272460 PMID:18386804 (description, gene) ... AUTHORS ... Brunetti-Pierri N, Esposito V, De Brasi D, Mattiacci DM, Krakow D, Lee B, Salerno M ... TITLE ... Spondylocarpotarsal synostosis: long-term follow-up of a case due to FLNB mutations. ... JOURNAL ... Am J Med Genet A 146A:1230-3 (2008) DOI:10.1002/ajmg.a.32303 ...

  3. Missense Mutation in the USH2A Gene: Association with Recessive Retinitis Pigmentosa without Hearing Loss

    OpenAIRE

    Rivolta, Carlo; Sweklo, Elizabeth A.; Berson, Eliot L.; Dryja, Thaddeus P.

    2000-01-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an...

  4. Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree.

    Science.gov (United States)

    Kooshavar, Daniz; Razipour, Masoumeh; Movasat, Morteza; Keramatipour, Mohammad

    2018-01-01

    Usher syndrome (USH) is characterized by congenital hearing loss and retinitis pigmentosa (RP) with a later onset. It is an autosomal recessive trait with clinical and genetic heterogeneity which makes the molecular diagnosis much difficult. In this study, we introduce a pedigree with two affected members with USH type 1 and represent a cost and time effective approach for genetic diagnosis of USH as a genetically heterogeneous disorder. Target region capture in the genes of interest, followed by next generation sequencing (NGS) was used to determine the causative mutations in one of the probands. Then segregation analysis in the pedigree was conducted using PCR-Sanger sequencing. Targeted NGS detected a novel homozygous nonsense variant c.4513G > T (p.Glu1505Ter) in MYO7A. The variant is segregating in the pedigree with an autosomal recessive pattern. In this study, a novel stop gained variant c.4513G > T (p.Glu1505Ter) in MYO7A was found in an Iranian pedigree with two affected members with USH type 1. Bioinformatic as well as pedigree segregation analyses were in line with pathogenic nature of this variant. Targeted NGS panel was showed to be an efficient method for mutation detection in hereditary disorders with locus heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An experimental platform for systemic drug delivery to the retina.

    LENUS (Irish Health Repository)

    Campbell, Matthew

    2009-10-20

    Degenerative retinopathies, including age-related macular degeneration, diabetic retinopathy, and hereditary retinal disorders--major causes of world blindness--are potentially treatable by using low-molecular weight neuroprotective, antiapoptotic, or antineovascular drugs. These agents are, however, not in current systemic use owing to, among other factors, their inability to passively diffuse across the microvasculature of the retina because of the presence of the inner blood-retina barrier (iBRB). Moreover, preclinical assessment of the efficacies of new formulations in the treatment of such conditions is similarly compromised. We describe here an experimental process for RNAi-mediated, size-selective, transient, and reversible modulation of the iBRB in mice to molecules up to 800 Da by suppression of transcripts encoding claudin-5, a protein component of the tight junctions of the inner retinal vasculature. MRI produced no evidence indicative of brain or retinal edema, and the process resulted in minimal disturbance of global transcriptional patterns analyzed in neuronal tissue. We show that visual function can be improved in IMPDH1(-\\/-) mice, a model of autosomal recessive retinitis pigmentosa, and that the rate of photoreceptor cell death can be reduced in a model of light-induced retinal degeneration by systemic drug delivery after reversible barrier opening. These findings provide a platform for high-throughput drug screening in models of retinal degeneration, and they ultimately could result in the development of a novel "humanized" approach to therapy for conditions with little or no current forms of treatment.

  6. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Science.gov (United States)

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  7. Retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2005-12-01

    Retinal vasculitis is a sight-threatening intraocular inflammation affecting the retinal vessels. It may occur as an isolated ocular condition, as a manifestation of infectious or neoplastic disorders, or in association with a systemic inflammatory disease. The search for an underlying etiology should be approached in a multidisciplinary fashion based on a thorough history, review of systems, physical examination, and laboratory evaluation. Discrimination between infectious and noninfectious etiologies of retinal vasculitis is important because their treatment is different. This review is based on recently published articles on retinal vasculitis and deals with its clinical diagnosis, its link with systemic diseases, and its laboratory investigation.

  8. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment.

    Science.gov (United States)

    Wilkinson, Charles P

    2014-09-05

    Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials

  9. Treatment of Retinal Separation in HIV-infected Patients with Cytomegalovirus Retinitis

    Directory of Open Access Journals (Sweden)

    A. L. Onischenko

    2017-01-01

    Full Text Available HIV infection — is a socially significant problem for many countries, as the infected die in an average of 10-11 years due to the immunodeficiency virus. Up to 20% of patients with AIDS lose their sight because of cytomegalovirus retinitis (CMV retinitis, which occurs in 70% of HIV-infected people. In some patients with HIV infection blindness occurs because of acute retinal necrosis of CMV etiology. The algorithm of CMV retinitis treatment in HIV-infected patients is described in modern manuals (ganciclovir, valganciclovir, foscarnet and others on the background of antiretroviral therapy, but the tactics of treatment of retinal separation in these patients is not clearly defined. It may be “wait and see”, providing conservative treatment with antiviral drugs, and the active tactics — vitreoretinal surgery. In this article the authors present their personal clinical observations of three HIV-infected patients with CMV retinitis at the age of 8 to 36 years with a detailed analysis of the clinical data and the results of the laboratory tests. In particular, the authors give their own results of intravitreal introduction of ganciclovir in patients with CMV retinitis. Given the poor prognosis for the life of these patients, the authors put a deontological question of justification of active treatment of retinal separation in AIDS patients with CMV retinitis.

  10. Mutational characterization of the P3H1/CRTAP/CypB complex in recessive osteogenesis imperfecta.

    Science.gov (United States)

    Barbirato, C; Trancozo, M; Almeida, M G; Almeida, L S; Santos, T O; Duarte, J C G; Rebouças, M R G O; Sipolatti, V; Nunes, V R R; Paula, F

    2015-12-03

    Osteogenesis imperfecta (OI) is a genetic disease characterized by bone deformities and fractures. Most cases are caused by autosomal dominant mutations in the type I collagen genes COL1A1 and COL1A2; however, an increasing number of recessive mutations in other genes have been reported. The LEPRE1, CRTAP, and PPIB genes encode proteins that form the P3H1/CRTAP/CypB complex, which is responsible for posttranslational modifications of type I collagen. In general, mutations in these genes lead to severe and lethal phenotypes of recessive OI. Here, we describe sixteen genetic variations detected in LEPRE1, CRTAP, and PPIB from 25 Brazilian patients with OI. Samples were screened for mutations on single-strand conformation polymorphism gels and variants were determined by automated sequencing. Seven variants were detected in patients but were absent in control samples. LEPRE1 contained the highest number of variants, including the previously described West African allele (c.1080+1G>T) found in one patient with severe OI as well as a previously undescribed p.Trp675Leu change that is predicted to be disease causing. In CRTAP, one patient carried the c.558A>G homozygous mutation, predicted as disease causing through alteration of a splice site. Genetic variations detected in the PPIB gene are probably not pathogenic due to their localization or because of their synonymous effect. This study enhances our knowledge about the mutational pattern of the LEPRE1, CRTAP, and PPIB genes. In addition, the results strengthen the proposition that LEPRE1 should be the first gene analyzed in mutation detection studies in patients with recessive OI.

  11. Pre-Eruptive Coronal Resorption and Congenitally Missing Teeth in a Patient with Amelogenesis Imperfecta: A Case Report

    OpenAIRE

    Miloglu, Ozkan; Karaalioglu, Osman Fatih; Caglayan, Fatma; Yesil, Zeynep Duymus

    2009-01-01

    This clinical report describes a male with autosomal recessive generalized hypoplastic amelogenesis imperfecta. This case is unusual in coronal resorptions prior to tooth eruption. This finding has been reported in some cases of autosomal recessive, autosomal dominant and X linked amelogenesis imperfecta (AI). In reported cases, the defects were usually small and occurred in a maximum of 2 teeth per person. In our case, pre-eruptive coronal resorptions affected three second molar teeth from b...

  12. Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by next-generation sequencing.

    Science.gov (United States)

    Oishi, Maho; Oishi, Akio; Gotoh, Norimoto; Ogino, Ken; Higasa, Koichiro; Iida, Kei; Makiyama, Yukiko; Morooka, Satoshi; Matsuda, Fumihiko; Yoshimura, Nagahisa

    2014-10-16

    Retinitis pigmentosa (RP), a major cause of blindness in developed countries, has multiple causative genes; its prevalence differs by ethnicity. Usher syndrome is the most common form of syndromic RP and is accompanied by hearing impairment. Although molecular diagnosis is challenging, recent technological advances such as targeted high-throughput resequencing are efficient screening tools. We performed comprehensive molecular testing in 329 Japanese RP and Usher syndrome patients by using a custom capture panel that covered the coding exons and exon/intron boundaries of all 193 known inherited eye disease genes combined with Illumina HiSequation 2500. Candidate variants were screened using systematic data analyses, and their potential pathogenicity was assessed according to the frequency of the variants in normal populations, in silico prediction tools, and compatibility with known phenotypes or inheritance patterns. Molecular diagnoses were made in 115/317 RP patients (36.3%) and 6/12 Usher syndrome patients (50%). We identified 104 distinct mutations, including 66 novel mutations. EYS, USH2A, and RHO were common causative genes. In particular, mutations in EYS accounted for 15.0% of the autosomal recessive/simplex RP patients or 10.7% of the entire RP cohort. Among the 189 previously reported mutations detected in the current study, 55 (29.1%) were found commonly in Japanese or other public databases and were excluded from molecular diagnoses. By screening a large cohort of patients, this study catalogued the genetic variations involved in RP and Usher syndrome in a Japanese population and highlighted the different distribution of causative genes among populations. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  13. NCBI nr-aa BLAST: CBRC-FRUB-02-0208 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available y and hepatic disease 1 (autosomal recessive)-like 1 (PKHD1L1) [Danio rerio] emb|CAP09460.1| novel gene simi...lar to vertebrate polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 (PKHD1L1) [Danio rerio] CAP09515.1 1e-111 42% ...

  14. Establishment of a recessive mutant small-eye rat with lens involution and retinal detachment associated with partial deletion and rearrangement of the Cryba1 gene.

    Science.gov (United States)

    Yamada, Toshiyuki; Nanashima, Naoki; Shimizu, Takeshi; Nakazawa, Yosuke; Nakazawa, Mitsuru; Tsuchida, Shigeki

    2015-10-15

    From our stock of SDRs (Sprague-Dawley rats), we established a mutant strain having small opaque eyes and named it HiSER (Hirosaki small-eye rat). The HiSER phenotype is progressive and autosomal recessive. In HiSER eyes, disruption and involution of the lens, thickening of the inner nuclear layer, detachment and aggregation of the retina, rudimentary muscle in the ciliary body and cell infiltration in the vitreous humour were observed. Genetic linkage analysis using crossing with Brown Norway rat suggested that the causative gene(s) is located on chromosome 10. Microarray analysis showed that the expression level of the Cryba1 gene encoding βA3/A1-crystallin on chromosome 10 was markedly decreased in HiSER eyes. Genomic PCR revealed deletion of a 3.6-kb DNA region encompassing exons 4-6 of the gene in HiSERs. In HiSER eyes, a chimaeric transcript of the gene containing exons 1-3 and an approximately 250-bp sequence originating from the 3'-UTR of the Nufip2 gene, located downstream of the breakpoint in the opposite direction, was present. Whereas the chimaeric transcript was expressed in HiSER eyes, neither normal nor chimaeric βA3/A1-crystallin proteins were detected by Western blot analysis. Real-time RT (reverse transcription)-PCR analysis revealed that expression level of the Nufip2 gene in the HiSER eye was 40% of that in the SDR eye. These results suggest that the disappearance of the βA3/A1-crystallin protein and, in addition, down-regulation of the Nufip2 gene as a consequence of gene rearrangement causes the HiSER phenotype. © 2015 Authors; published by Portland Press Limited.

  15. CT evaluation of the anterior epitympanic recess

    International Nuclear Information System (INIS)

    Yamasoba, Tatsuya; Kikuchi, Shigeru; Takeuchi, Naonobu; Harada, Takehiko; Nomura, Yasuya

    1991-01-01

    The structures of the anterior epitympanic recess and its surrounding tissues were examined among non-inflammatory ear, chronic otitis media with central perforation and cholesteatoma, using axial scans of high resolution computed tomography. The length and width of the recess, as well as the number of the slices where the cog was determined, had no significant differences among them. Thus, the bony structure of the recess was considered to be seldom influenced by inflammatory processes. In the non-inflammatory ear, the degree of pneumatization around the recess was similar to that of the petrous apex cells and lower than that of the mastoid cells. In the chronic otitis media with central perforation and cholesteatoma, the pneumatization of the whole temporal bones was suppressed and the tendency was also found that the cells around the recess were less pneumatized than the mastoid cells. When cholesteatoma invaded into the anterior epitympanic recess, the destruction of the bony protrusion of the lateral wall between the recess and the epitympanum was recognized, as well as the disappearance of the cog. The bony protrusion was considered to be an inferior extention of the cog toward the anterior tympanic spine. (author)

  16. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Möller, Fabian; Penner, Inessa; Wolfrum, Uwe

    2014-09-01

    The eye has become an excellent target for gene therapy, and gene augmentation therapy of inherited retinal disorders has made major progress in recent years. Nevertheless, a recent study indicated that gene augmentation intervention might not stop the progression of retinal degeneration in patients. In addition, for many genes, viral-mediated gene augmentation is currently not feasible due to gene size and limited packaging capacity of viral vectors as well as expression of various heterogeneous isoforms of the target gene. Thus, alternative gene-based strategies to stop or delay the retinal degeneration are necessary. This review focuses on an alternative pharmacologic treatment strategy based on the usage of translational read-through inducing drugs (TRIDs) such as PTC124, aminoglycoside antibiotics, and designer aminoglycosides for overreading in-frame nonsense mutations. This strategy has emerged as an option for up to 30-50% of all cases of recessive hereditary retinal dystrophies. In-frame nonsense mutations are single-nucleotide alterations within the gene coding sequence resulting in a premature stop codon. Consequently, translation of such mutated genes leads to the synthesis of truncated proteins, which are unable to fulfill their physiologic functions. In this context, application of TRIDs facilitates the recoding of the premature termination codon into a sense codon, thus restoring syntheses of full-length proteins. So far, clinical trials for non-ocular diseases have been initiated for diverse TRIDs. Although the clinical outcome is not analyzed in detail, an excellent safety profile, namely for PTC124, was clearly demonstrated. Moreover, recent data demonstrated sustained read-through efficacies of nonsense mutations causing retinal degeneration, as manifested in the human Usher syndrome. In addition, a strong retinal biocompatibility for PTC124 and designer aminoglycosides has been demonstrated. In conclusion, recent progress emphasizes the

  17. Genetics Home Reference: autosomal recessive hypotrichosis

    Science.gov (United States)

    ... in the growth and division (proliferation) and maturation (differentiation) of cells within hair follicles . These cell processes ... LIPH , LPAR6 , or DSG4 gene result in the production of abnormal proteins that cannot aid in the ...

  18. Familial megacalyces with autosomal recessive inheritance

    International Nuclear Information System (INIS)

    Lam, A.H.

    1988-01-01

    Three children with bilateral congenital megacalyces from a consanguinous marriage are reported. No renal abnormality was detected in the parents. Our observation supports the genetic nature of the disease. The ultrasonographic features of congenital megacalyces are described. (orig.)

  19. Chaetomium retinitis.

    Science.gov (United States)

    Tabbara, Khalid F; Wedin, Keith; Al Haddab, Saad

    2010-01-01

    To report a case of Chaetomium atrobrunneum retinitis in a patient with Hodgkin lymphoma. We studied the ocular manifestations of an 11-year-old boy with retinitis. Biomicroscopy, ophthalmoscopy, and fundus photography were done. Magnetic resonance imaging of the brain was performed. A vitreous biopsy was subjected to viral, bacterial, and fungal cultures. Vitreous culture grew C. atrobrunneum. Magnetic resonance imaging showed multiple cerebral lesions consistent with an infectious process. The patient was given intravenous voriconazole and showed improvement of the ocular and central nervous system lesions. We report a case of central nervous system and ocular lesions by C. atrobrunneum. The retinitis was initially misdiagnosed as cytomegaloviral retinitis. Vitreous biopsy helped in the early diagnosis and prompt treatment of a life- and vision-threatening infection.

  20. Looking the cow in the eye: deletion in the NID1 gene is associated with recessive inherited cataract in Romagnola cattle.

    Science.gov (United States)

    Murgiano, Leonardo; Jagannathan, Vidhya; Calderoni, Valerio; Joechler, Monika; Gentile, Arcangelo; Drögemüller, Cord

    2014-01-01

    Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.

  1. Looking the Cow in the Eye: Deletion in the NID1 Gene Is Associated with Recessive Inherited Cataract in Romagnola Cattle

    Science.gov (United States)

    Murgiano, Leonardo; Jagannathan, Vidhya; Calderoni, Valerio; Joechler, Monika; Gentile, Arcangelo; Drögemüller, Cord

    2014-01-01

    Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract. PMID:25347398

  2. Autosomal dominant hereditary ataxia in Sri Lanka

    OpenAIRE

    Sumathipala, Dulika S; Abeysekera, Gayan S; Jayasekara, Rohan W; Tallaksen, Chantal ME; Dissanayake, Vajira HW

    2013-01-01

    Background Spinocerebellar ataxias (SCA) are a group of hereditary neurodegenerative disorders. Prevalence of SCA subtypes differ worldwide. Autosomal dominant ataxias are the commonest types of inherited ataxias seen in Sri Lanka. The aim of the study is to determine the genetic etiology of patients with autosomal dominant ataxia in Sri Lanka and to describe the clinical features of each genetic subtype. Methods ...

  3. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  4. Differences in Physical Activity during School Recess

    Science.gov (United States)

    Ridgers, Nicola D.; Saint-Maurice, Pedro F.; Welk, Gregory J.; Siahpush, Mohammad; Huberty, Jennifer

    2011-01-01

    Background: School recess provides a daily opportunity for physical activity engagement. The purpose of this study was to examine physical activity levels during recess by gender, ethnicity, and grade, and establish the contribution of recess to daily school physical activity levels. Methods: Two hundred and ten children (45% boys) from grades 3…

  5. Severe early onset retinitis pigmentosa in a Moroccan patient with Heimler syndrome due to novel homozygous mutation of PEX1 gene.

    Science.gov (United States)

    Ratbi, Ilham; Jaouad, Imane Cherkaoui; Elorch, Hamza; Al-Sheqaih, Nada; Elalloussi, Mustapha; Lyahyai, Jaber; Berraho, Amina; Newman, William G; Sefiani, Abdelaziz

    2016-10-01

    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. It is the mildest form known to date of peroxisome biogenesis disorder caused by hypomorphic mutations of PEX1 and PEX6 genes. We report on a second Moroccan family with Heimler syndrome with early onset, severe visual impairment and important phenotypic overlap with Usher syndrome. The patient carried a novel homozygous missense variant c.3140T > C (p.Leu1047Pro) of PEX1 gene. As standard biochemical screening of blood for evidence of a peroxisomal disorder did not provide a diagnosis in the individuals with HS, patients with SNHL and retinal pigmentation should have mutation analysis of PEX1 and PEX6 genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  7. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  8. Modified adjustable suture hang-back recession: Description of technique and comparison with conventional adjustable hang-back recession

    Directory of Open Access Journals (Sweden)

    Siddharth Agrawal

    2017-01-01

    Full Text Available Purpose: This study aims to describe and compare modified hang-back recession with the conventional hang-back recession in large angle comitant exotropia (XT. Methods: A prospective, interventional, double-blinded, randomized study on adult patients (>18 years undergoing single eye recession-resection for large angle (>30 prism diopters constant comitant XT was conducted between January 2011 and December 2015. Patients in Group A underwent modified hang-back lateral rectus recession with adjustable knot while in Group B underwent conventional hang-back recession with an adjustable knot. Outcome parameters studied were readjustment rate, change in deviation at 6 weeks, complications and need for resurgery at 6 months. Results: The groups were comparable in terms of age and preoperative deviation. The patients with the modified hang back (Group A fared significantly better (P < 0.05 than those with conventional hang back (Group B in terms of lesser need for adjustment, greater correction in deviation at 6 weeks and lesser need for resurgery at 6 months. Conclusion: This modification offers several advantages, significantly reduces resurgery requirement and has no added complications.

  9. Screening of the USH1G gene among Spanish patients with Usher syndrome. Lack of mutations and evidence of a minor role in the pathogenesis of the syndrome.

    Science.gov (United States)

    Aller, Elena; Jaijo, Teresa; Beneyto, Magdalena; Nájera, Carmen; Morera, Constantino; Pérez-Garrigues, Herminio; Ayuso, Carmen; Millán, Jose

    2007-09-01

    The Usher syndrome (USH) is an autosomal recessive hereditary disorder characterized by the association of sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. The USH1G gene, encoding SANS, has been found to cause both Usher syndrome type I and atypical Usher syndrome. 109 Spanish unrelated patients suffering from Usher syndrome type I, type II, type III and unclassified Usher syndrome were screened for mutations in this gene, but only eight different changes without a clear pathogenic effect have been detected. Based on these results as well as previous studies in other populations where mutational analysis of this gene has been carried out, one can conclude that USH1G has a minor involvement in Usher syndrome pathogenesis.

  10. Nystagmus in Laurence-Moon-Biedl Syndrome

    Directory of Open Access Journals (Sweden)

    A. Bruce Janati

    2015-01-01

    Full Text Available Introduction. Laurence-Moon-Biedl (LMB syndrome is a rare autosomal-recessive ciliopathy with manifold symptomatology. The cardinal clinical features include retinitis pigmentosa, obesity, intellectual delay, polydactyly/syndactyly, and hypogenitalism. In this paper, the authors report on three siblings with Laurence-Moon-Biedl syndrome associated with a probable pseudocycloid form of congenital nystagmus. Methods. This was a case study conducted at King Khaled Hospital. Results. The authors assert that the nystagmus in Laurence-Moon-Biedl syndrome is essentially similar to idiopathic motor-defect nystagmus and the nystagmus seen in optic nerve hypoplasia, ocular albinism, and bilateral opacities of the ocular media. Conclusion. The data support the previous hypothesis that there is a common brain stem motor abnormality in sensory-defect and motor-defect nystagmus.

  11. Gingival recession: a cross-sectional clinical investigation.

    Science.gov (United States)

    Goutoudi, P; Koidis, P T; Konstantinidis, A

    1997-06-01

    In this cross-sectional study, risk and potentially causative factors of gingival recession were examined and their relationship to apical migration of the gingival margin evaluated. Thirty eight patients (18-60 years), displaying one or more sites with gingival recession but without any significant periodontal disease participated. A total of 28 parameters were evaluated in both 'test' teeth (50 teeth with gingival recession) and 'control' teeth (50 contralateral teeth). The results revealed that gingival margin recession was associated with both high inflammatory and plaque scores, with decreased widths of keratinized and attached gingiva and with the subjects' toothbrush bristle hardness.

  12. Exome sequencing of index patients with retinal dystrophies as a tool for molecular diagnosis.

    Directory of Open Access Journals (Sweden)

    Marta Corton

    Full Text Available Retinal dystrophies (RD are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context.We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases.Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.

  13. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  14. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Astra Dinculescu

    Full Text Available Usher syndrome type III (USH3A is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1 gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  15. HYDRORECESSION: A toolbox for streamflow recession analysis

    Science.gov (United States)

    Arciniega, S.

    2015-12-01

    Streamflow recession curves are hydrological signatures allowing to study the relationship between groundwater storage and baseflow and/or low flows at the catchment scale. Recent studies have showed that streamflow recession analysis can be quite sensitive to the combination of different models, extraction techniques and parameter estimation methods. In order to better characterize streamflow recession curves, new methodologies combining multiple approaches have been recommended. The HYDRORECESSION toolbox, presented here, is a Matlab graphical user interface developed to analyse streamflow recession time series with the support of different tools allowing to parameterize linear and nonlinear storage-outflow relationships through four of the most useful recession models (Maillet, Boussinesq, Coutagne and Wittenberg). The toolbox includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error) and three different methods to extract hydrograph recessions segments (Vogel, Brutsaert and Aksoy). In addition, the toolbox has a module that separates the baseflow component from the observed hydrograph using the inverse reservoir algorithm. Potential applications provided by HYDRORECESSION include model parameter analysis, hydrological regionalization and classification, baseflow index estimates, catchment-scale recharge and low-flows modelling, among others. HYDRORECESSION is freely available for non-commercial and academic purposes.

  16. Performance Analysis of High-Speed Deep/Shallow Recessed Hybrid Bearing

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2013-01-01

    Full Text Available The present paper proposes a theoretical analysis of the performance of deep/shallow recessed hybrid bearing. It is intended that, on the basis of the numerical results drawn from this study, appropriate shallow recess depth and width can be determined for use in the bearing design process. By adopting bulk flow theory, the turbulent Reynolds equation and energy equation are modified and solved numerically including concentrated inertia effects at the recess edge with different depth and width of shallow recess. The results indicate that the load capacity, drag torque increases as the depth of shallow recess is shallower and the width ratio (half angle of deep recess versus half angle of shallow recess is smaller. In contrast, the flow rate decreases as the depth of shallow recess is shallower and the width ratio is smaller. Nevertheless, the appropriate design of the depth and width of shallow recess might well induce the performance of high-speed deep/shallow recessed hybrid bearing.

  17. Retinal Endovascular Surgery with Tissue Plasminogen Activator Injection for Central Retinal Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Yuta Takata

    2018-06-01

    Full Text Available Purpose: To report 2 cases of central retinal artery occlusion (CRAO who underwent retinal endovascular surgery with injection of tissue plasminogen activator (tPA into the retinal artery and showed a remarkable improvement in visual acuity and retinal circulation. Methods: Standard 25-G vitrectomy was performed under local anesthesia. Simultaneously, tPA (80,000 units/mL solution was injected into the retinal artery of the optic disc for 2–3 min using a microneedle. Changes in visual acuity, fundus photography, optical coherence tomography (OCT, fluorescein angiography, and laser speckle flowgraphy (LSFG results were examined. Results: Both cases could be treated within 12 h after the onset of CRAO. Case 1 was a 47-year-old woman. Her visual acuity improved from counting fingers before operation to 0.08 logMAR 1 month after the surgery. However, thinning of the retina at the macula was observed by OCT. Case 2 was a 70-year-old man. His visual acuity improved from counting fingers to 0.1 logMAR 2 months after the surgery. Both fluorescein angiography and LSFG showed improvement in retinal circulation after the surgery in case 2. Conclusions: Retinal endovascular surgery with injection of tPA into the retinal artery was feasible and may be a way to improve visual acuity and retinal circulation when performed in the acute phase of CRAO.

  18. Prognostic Indicators of Gingival Recession in Nigeria: Preliminary Findings

    Directory of Open Access Journals (Sweden)

    Michael Adedigba

    2010-06-01

    Full Text Available AIM: Literature is replete with studies on gingival recession, the apical shift of the gingival margin from the cemento-enamel junction. Chronic periodontitis and frequent toothbrushing are among its aetiological factors. Many of these were however prevalence studies. The current study was therefore aimed at separating prognostic indicators from determinants of the number of recessions. METHOD: 650 consecutive adult patients visiting a Nigerian teaching hospital were examined using a checklist including plaque, calculus, Miller’s class of recession and other parameters.. A total of 408 recession sites were identified. RESULTS: The mean age of the patients with recession was 42.3 years; mean number of recession was 4.74 Incisors had the highest number of recessions (35.7%. While a factor such as age was related both to the number and prognosis of recession sites, abrasion and plaque were only related to prognosis. Again, some of the factors previously significantly related to prognosis on univariate analysis like calculus and smoking, lost their significance on regression analysis. CONCLUSION: The three strongest predictors of prognosis (Miller’s class of recession were age, plaque and abrasion. [TAF Prev Med Bull 2010; 9(3.000: 187-194

  19. The Great Recession and America's Geography of Unemployment.

    Science.gov (United States)

    Thiede, Brian C; Monnat, Shannon M

    The Great Recession of 2007-2009 was the most severe and lengthy economic crisis in the U.S. since the Great Depression. The impacts on the population were multi-dimensional, but operated largely through local labor markets. To examine differences in recession-related changes in county unemployment rates and assess how population and place characteristics shaped these patterns. We calculate and decompose Theil Indexes to describe recession-related changes in the distribution of unemployment rates between counties and states. We use exploratory spatial statistics to identify geographic clusters of counties that experienced similar changes in unemployment. We use spatial regression to evaluate associations between county-level recession impacts on unemployment and demographic composition, industrial structure, and state context. The recession was associated with increased inequality between county labor markets within states, but declining between-state differences. Counties that experienced disproportionate recession-related increases in unemployment were spatially clustered and characterized by large shares of historically disadvantaged racial and ethnic minority populations, low educational attainment, and heavy reliance on pro-cyclical industries. Associations between these sources of vulnerability were partially explained by unobserved state-level factors. The local consequences of macroeconomic trends are associated with county population characteristics, as well as the structural contexts and policy environments in which they are embedded. The recession placed upward pressure on within-state inequality between local labor market conditions. To present new estimates of the recession's impact on local labor markets, quantify how heterogeneous impacts affected the distribution of unemployment prevalence, and identify county characteristics associated with disproportionately large recession-related increases in unemployment.

  20. High Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl 3-Hydroxylase 2

    Science.gov (United States)

    Mordechai, Shikma; Gradstein, Libe; Pasanen, Annika; Ofir, Rivka; El Amour, Khalil; Levy, Jaime; Belfair, Nadav; Lifshitz, Tova; Joshua, Sara; Narkis, Ginat; Elbedour, Khalil; Myllyharju, Johanna; Birk, Ohad S.

    2011-01-01

    Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ∼1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2. PMID:21885030