WorldWideScience

Sample records for autophagy cytokines drugs

  1. Cell death and autophagy: cytokines, drugs, and nutritional factors.

    Science.gov (United States)

    Bursch, Wilfried; Karwan, Anneliese; Mayer, Miriam; Dornetshuber, Julia; Fröhwein, Ulrike; Schulte-Hermann, Rolf; Fazi, Barbara; Di Sano, Federica; Piredda, Lucia; Piacentini, Mauro; Petrovski, Goran; Fésüs, László; Gerner, Christopher

    2008-12-30

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, < or = 1 microM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-pi and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fésüs, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 microM), resulting in the lysis of almost all cells within 24h. However, a transient (1h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 microM TAM, autophagy predominant; 7-9 microM, apoptosis predominant; 15 microM, necrosis. These phenomena

  2. Autophagy and cytokines.

    Science.gov (United States)

    Harris, James

    2011-11-01

    Autophagy is a highly conserved homoeostatic mechanism for the lysosomal degradation of cytosolic constituents, including long-lived macromolecules, organelles and intracellular pathogens. Autophagosomes are formed in response to a number of environmental stimuli, including amino acid deprivation, but also by both host- and pathogen-derived molecules, including toll-like receptor ligands and cytokines. In particular, IFN-γ, TNF-α, IL-1, IL-2, IL-6 and TGF-β have been shown to induce autophagy, while IL-4, IL-10 and IL-13 are inhibitory. Moreover, autophagy can itself regulate the production and secretion of cytokines, including IL-1, IL-18, TNF-α, and Type I IFN. This review discusses the potentially pivotal roles of autophagy in the regulation of inflammation and the coordination of innate and adaptive immune responses.

  3. Interactions between Autophagy and Inhibitory Cytokines.

    Science.gov (United States)

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  4. Interactions between Autophagy and Inhibitory Cytokines

    Science.gov (United States)

    Wu, Tian-tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy. PMID:27313501

  5. AUTOPHAGY AND IL-1 FAMILY CYTOKINES

    Directory of Open Access Journals (Sweden)

    James Harris

    2013-01-01

    Full Text Available Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, include immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. This review focuses specifically on the role autophagy plays in regulating the production, processing and secretion of IL-1 family cytokines.

  6. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response

    NARCIS (Netherlands)

    Kleinnijenhuis, J.; Oosting, M.; Plantinga, T.S.; Meer, J.W.M. van der; Joosten, L.A.B.; Crevel, R. van; Netea, M.G.

    2011-01-01

    Both autophagy and pro-inflammatory cytokines are involved in the host defence against mycobacteria, but little is known regarding the effect of autophagy on Mycobacterium tuberculosis (MTB)-induced cytokine production. In the present study, we assessed the effect of autophagy on production of monoc

  7. Autophagy and IL-1 family cytokines

    Directory of Open Access Journals (Sweden)

    James eHarris

    2013-04-01

    Full Text Available Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, including immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role to play in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. As a result, autophagy acts a key modulator of IL-1β and IL-18, as well as IL-1α, release. This review focuses specifically on the role autophagy plays in regulating the production, processing and secretion of IL-1 and IL-18 and the consequences of this important function.

  8. Autophagy and IL-1 Family Cytokines.

    Science.gov (United States)

    Harris, James

    2013-01-01

    Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, including immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role to play in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. As a result, autophagy acts a key modulator of IL-1β and IL-18, as well as IL-1α, release. This review focuses specifically on the role autophagy plays in regulating the production, processing, and secretion of IL-1 and IL-18 and the consequences of this important function.

  9. Inflammasome-independent modulation of cytokine response by autophagy in human cells.

    Directory of Open Access Journals (Sweden)

    Tania O Crişan

    Full Text Available Autophagy is a cell housekeeping mechanism that has recently received attention in relation to its effects on the immune response. Genetic studies have identified candidate loci for Crohn's disease susceptibility among autophagy genes, while experiments in murine macrophages from ATG16L1 deficient mice have shown that disruption of autophagy increases processing of IL-1β and IL-18 through an inflammasome-dependent manner. Using complementary approaches either inducing or inhibiting autophagy, we describe modulatory effects of autophagy on proinflammatory cytokine production in human cells. Inhibition of basal autophagy in human peripheral blood mononuclear cells (PBMCs significantly enhances IL-1β after stimulation with TLR2 or TLR4 ligands, while at the same time reducing the production of TNFα. In line with this, induction of autophagy by starvation inhibited IL-1β production. These effects of autophagy were not exerted at the processing step, as inflammasome activation was not influenced. In contrast, the effect of autophagy on cytokine production was on transcription level, and possibly involving the inhibition of p38 mitogen activated protein kinase (MAPK phosphorylation. In conclusion, autophagy modulates the secretion of proinflammatory cytokines in human cells through an inflammasome-independent pathway, and this is a novel mechanism that may be targeted in inflammatory diseases.

  10. High throughput screening for drug discovery of autophagy modulators.

    Science.gov (United States)

    Shu, Chih-Wen; Liu, Pei-Feng; Huang, Chun-Ming

    2012-11-01

    Autophagy is an evolutionally conserved process in cells for cleaning abnormal proteins and organelles in a lysosome dependent manner. Growing studies have shown that defects or induced autophagy contributes to many diseases including aging, neurodegeneration, pathogen infection, and cancer. However, the precise involvement of autophagy in health and disease remains controversial because the theories are built on limited assays and chemical modulators, indicating that the role of autophagy in diseases may require further verification. Many food and drug administration (FDA) approved drugs modulate autophagy signaling, suggesting that modulation of autophagy with pharmacological agonists or antagonists provides a potential therapy for autophagy-related diseases. This suggestion raises an attractive issue on drug discovery for exploring chemical modulators of autophagy. High throughput screening (HTS) is becoming a powerful tool for drug discovery that may accelerate screening specific autophagy modulators to clarify the role of autophagy in diseases. Herein, this review lays out current autophagy assays to specifically measure autophagy components such as LC3 (mammalian homologue of yeast Atg8) and Atg4. These assays are feasible or successful for HTS with certain chemical libraries, which might be informative for this intensively growing field as research tools and hopefully developing new drugs for autophagy-related diseases.

  11. Autophagy modulation as a target for anticancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Xin LI; Huai-long XU; Yong-xi LIU; Na AN; Si ZHAO; Jin-ku BAO

    2013-01-01

    Autophagy,an evolutionarily conserved catabolic process involving the engulfment and degradation of non-essential or abnormal cellular organelles and proteins,is crucial for homeostatic maintenance in living cells.This highly regulated,multi-step process has been implicated in diverse diseases including cancer.Autophagy can function as either a promoter or a suppressor of cancer,which makes it a promising and challenging therapeutic target.Herein,we overview the regulatory mechanisms and dual roles of autophagy in cancer.We also describe some of the representative agents that exert their anticancer effects by regulating autophagy.Additionally,some emerging strategies aimed at modulating autophagy are discussed as having the potential for future anticancer drug discovery.In summary,these findings will provide valuable information to better utilize autophagy in the future development of anticancer therapeutics that meet clinical requirements.

  12. The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Ling, Haibin; Chen, Hongguang; Wei, Miao; Meng, Xiaoyin; Yu, Yonghao; Xie, Keliang

    2016-02-01

    Acute kidney injury (AKI) is characterized by a rapid loss of kidney function and an antigen-independent inflammatory process that causes tissue damage, which was one of the main manifestations of kidney ischemia/reperfusion (I/R). Recent studies have demonstrated autophagy participated in the pathological process of acute kidney injury. In this study, we discuss how autophagy regulated inflammation response in the kidney I/R. AKI was performed by renal I/R. Autophagy activator rapamycin (Rap) and inhibitor 3-methyladenine (MA) were used to investigate the role of autophagy on kidney function and inflammation response. After the experiment, kidney tissues were obtained for the detection of autophagy-related protein microtubule-associated protein light chain 3(LC3)II, Beclin1, and Rab7 and lysosome-associated membrane protein type (LAMP)2 protein by reverse transcription-polymerase chain reaction (PT-PCR) and Western blotting, and histopathology and tissue injury scores also. The blood was harvested to measure kidney function (creatinine (Cr) and blood urea nitrogen (BUN) levels) after I/R. Cytokines TNF-α, IL-6, HMGB1, and IL-10 were measured after I/R. I/R induced the expression of LC3II, Beclin1, LAMP2, and Rab7. The activation and inhibition of autophagy by rapamycin and 3-MA were promoted and attenuated histological and renal function in renal I/R rats, respectively. Cytokines TNF-α, IL-6, and HMGB1 were decreased, and IL-10 was further increased after activation of autophagy treated in I/R rats, while 3-MA exacerbated the pro-inflammatory cytokines TNF-α, IL-6, HMGB1, and anti-inflammatory cytokine IL-10 in renal I/R. I/R can activated the autophagy, and autophagy increase mitigated the renal injury by decreasing kidney injury score, levels of Cr and BUN after renal I/R, and inflammation response via regulating the balance of pro-inflammation and anti-inflammation cytokines.

  13. Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium.

    Science.gov (United States)

    Koay, Luan C; Rigby, Rachael J; Wright, Karen L

    2014-07-15

    Autophagy is a catabolic process involved in homeostatic and regulated cellular protein recycling and degradation via the lysosomal degradation pathway. Emerging data associate impaired autophagy, increased activity in the endocannabinoid system, and upregulation of suppressor of cytokine signaling-3 (SOCS3) protein expression during intestinal inflammation. We have investigated whether these three processes are linked. By assessing the impact of the phytocannabinoid cannabidiol (CBD), the synthetic cannabinoid arachidonyl-2'-chloroethylamide (ACEA), and the endocannabinoid N-arachidonoylethanolamine (AEA) on autophagosome formation, we explored whether these actions were responsible for cyclic SOCS3 protein levels. Our findings show that all three cannabinoids induce autophagy in a dose-dependent manner in fully differentiated Caco-2 cells, a model of mature intestinal epithelium. ACEA and AEA induced canonical autophagy, which was cannabinoid type 1 receptor-mediated. In contrast, CBD was able to bypass the cannabinoid type 1 receptor and the canonical pathway to induce autophagy, albeit to a lesser extent. Functionally, all three cannabinoids reduced SOCS3 protein expression, which was reversed by blocking early and late autophagy. In conclusion, the regulatory protein SOCS3 is regulated by autophagy, and cannabinoids play a role in this process, which could be important when therapeutic applications for the cannabinoids in inflammatory conditions are considered.

  14. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    Science.gov (United States)

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  15. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammantory cytokine expression.

    NARCIS (Netherlands)

    Jansen, H.J.; Essen, van P.; Koenen, T.; Joosten, L.A.; Netea, M.G.; Tack, C.J.; Stienstra, R.

    2012-01-01

    Autophagy, an evolutionary conserved process aimed at recycling damaged organelles and protein aggregates in the cell, also modulates proinflammatory cytokine production in peripheral blood mononuclear cells. Because adipose tissue inflammation accompanied by elevated levels of proinflammatory cytok

  16. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression

    NARCIS (Netherlands)

    Jansen, H.J.; Essen, P. van; Koenen, T.; Joosten, L.A.B.; Netea, M.G.; Tack, C.J.J.; Stienstra, R.

    2012-01-01

    Autophagy, an evolutionary conserved process aimed at recycling damaged organelles and protein aggregates in the cell, also modulates proinflammatory cytokine production in peripheral blood mononuclear cells. Because adipose tissue inflammation accompanied by elevated levels of proinflammatory cytok

  17. Autophagy gene polymorphism is associated with susceptibility to leprosy by affecting inflammatory cytokines.

    Science.gov (United States)

    Yang, Degang; Chen, Jia; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-04-01

    Autophagy and inflammation closely interact with each other, and together, they play critical roles in bacterial infection. Leprosy is caused by the infection of Mycobacterium leprae (M. leprae). The objective of the study was to investigate the association between polymorphisms in IRGM, an autophagy gene, and susceptibility to leprosy, and identify possible functions of the polymorphism in the infection of M. leprae. Two polymorphisms in IRGM, rs4958842 and rs13361189, were tested in 412 leprosy cases and 432 healthy controls. Levels of inflammatory cytokines including interleukin 1 beta, IL-4, IL-6, and interferon gamma (INF-γ) were measured after the infection of M. leprae in the peripheral blood mononuclear cell (PBMC) of subjects with different genotypes of rs13361189. Data showed that prevalence of rs13361189TC and CC genotypes were significantly higher in leprosy patients than in healthy controls (odds ratio (OR) = 1.49, 95 % confidence interval (CI) 1.09-2.04, P = 0.012; OR = 2.58, 95 % CI 1.65-4.05, P autophagy gene polymorphism was associated with the increased risk of leprosy by affecting inflammatory cytokines.

  18. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.

    Science.gov (United States)

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-08-18

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.

  19. Inflammasome-independent modulation of cytokine response by autophagy in human cells

    NARCIS (Netherlands)

    Crisan, T.O.; Plantinga, T.S.; Veerdonk, F.L. van de; Farcas, M.F.; Stoffels, M.; Kullberg, B.J.; Meer, J.W. van der; Joosten, L.A.B.; Netea, M.G.

    2011-01-01

    Autophagy is a cell housekeeping mechanism that has recently received attention in relation to its effects on the immune response. Genetic studies have identified candidate loci for Crohn's disease susceptibility among autophagy genes, while experiments in murine macrophages from ATG16L1 deficient m

  20. Autophagy inhibits cell death induced by the anti-cancer drug morusin

    Science.gov (United States)

    Cho, Sang Woo; Na, Wooju; Choi, Minji; Kang, Shin Jung; Lee, Seok-Geun; Choi, Cheol Yong

    2017-01-01

    Autophagy is a cellular process by which damaged organelles and dysfunctional proteins are degraded. Morusin is an anti-cancer drug isolated from the root bark of Morus alba. Morusin induces apoptosis in human prostate cancer cells by reducing STAT3 activity. In this study, we examined whether morusin induces autophagy and also examined the effects of autophagy on the morusin-induced apoptosis. Morusin induces LC3-II accumulation and ULK1 activation in HeLa cells. In addition, we found that induction of ULK1 Ser317 phosphorylation and reduction of ULK1 Ser757 phosphorylation occurred simultaneously during morusin-induced autophagy. Consistently, morusin induces autophagy by activation of AMPK and inhibition of mTOR activity. Next, we investigated the role of autophagy in morusin-induced apoptosis. Inhibition of autophagy by treating cells with the 3-methyladenine (3-MA) autophagic inhibitor induces high levels of morusin-mediated apoptosis, while treatment of cells with morusin alone induces moderate levels of apoptosis. Cell survival was greatly reduced when cells were treated with morusin and 3-MA. Taken together, morusin induces autophagy, which is an impediment for morusin-induced apoptosis, suggesting combined treatment of morusin with an autophagic inhibitor would increase the efficacy of morusin as an anti-cancer drug.

  1. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy.

    Directory of Open Access Journals (Sweden)

    Marianne R Spalinger

    Full Text Available BACKGROUND: Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22 are associated with the risk to develop inflammatory bowel disease (IBD. PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP-induced signaling and effects in immune cells. MATERIAL & METHODS: Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC were obtained from PTPN22 knockout mice or wild-type animals. RESULTS: MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells. CONCLUSIONS: Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.

  2. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Science.gov (United States)

    Leventhal, Jeremy S; Ni, Jie; Osmond, Morgan; Lee, Kyung; Gusella, G Luca; Salem, Fadi; Ross, Michael J

    2016-01-01

    Sepsis related acute kidney injury (AKI) is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC) from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS), a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO). Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3) and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  3. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  4. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner.

    Science.gov (United States)

    Sorbara, Matthew T; Ellison, Lisa K; Ramjeet, Mahendrasingh; Travassos, Leonardo H; Jones, Nicola L; Girardin, Stephen E; Philpott, Dana J

    2013-11-14

    The peptidoglycan sensor Nod2 and the autophagy protein ATG16L1 have been linked to Crohn's disease (CD). Although Nod2 and the related sensor, Nod1, direct ATG16L1 to initiate anti-bacterial autophagy, whether ATG16L1 affects Nod-driven inflammation has not been examined. Here, we uncover an unanticipated autophagy-independent role for ATG16L1 in negatively regulating Nod-driven inflammatory responses. Knockdown of ATG16L1 expression, but not that of ATG5 or ATG9a, specifically enhanced Nod-driven cytokine production. In addition, autophagy-incompetent truncated forms of ATG16L1 regulated Nod-driven cytokine responses. Mechanistically, we demonstrated that ATG16L1 interfered with poly-ubiquitination of the Rip2 adaptor and recruitment of Rip2 into large signaling complexes. The CD-associated allele of ATG16L1 was impaired in its ability to regulate Nod-driven inflammatory responses. Overall, these results suggest that ATG16L1 is critical for Nod-dependent regulation of cytokine responses and that disruption of this Nod1- or Nod2-ATG16L1 signaling axis could contribute to the chronic inflammation associated with CD.

  5. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  6. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs.

    Science.gov (United States)

    Yu, Qilin; Jia, Chang; Dong, Yijie; Zhang, Bing; Xiao, Chenpeng; Chen, Yulu; Wang, Yuzhou; Li, Xiaoling; Wang, Lei; Zhang, Biao; Li, Mingchun

    2015-08-01

    Autophagy is a degradation process involved in pathogenicity of many pathogenic fungi. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be detailed. Most recently, we found that endoplasmic reticulum (ER) stress-inducing conditions led to transcriptional up-regulation of C. albicans autophagy-related (ATG) genes, implying a possible link between autophagy and ER stress response in this pathogen. Using a series of C. albicans ATG mutants and autophagy reporting systems, we found that both treatment of ER stress-related drugs and loss of the ER calcium pump Spf1 promoted autophagic flux of Atg8 and Lap41 (a homologue of Saccharomyces cerevisiae Ape1), indicating that these conditions induce autophagy. Moreover, deletion of ATG genes in the spf1Δ/Δ mutant rendered cells hypersensitive to these drugs and caused activation of UPR, revealing a role of autophagy in alleviating ER stress. In addition, only treatment of tunicamycin and loss of Spf1 in combination increased autophagic flux of the ER component Sec63, suggesting that most of the ER stress-related conditions cause non-selective autophagy rather than selective ER phagy. This study uncovers the important role of C. albicans autophagy in ER stress response and tolerance to antifungal drugs.

  7. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia.

    Science.gov (United States)

    Zeng, Xian; Zhao, Hui; Li, Yubin; Fan, Jiajun; Sun, Yun; Wang, Shaofei; Wang, Ziyu; Song, Ping; Ju, Dianwen

    2015-01-01

    The frontline tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, drug resistance is the major clinical challenge in the treatment of CML. The Hedgehog (Hh) signaling pathway and autophagy are both related to tumorigenesis, cancer therapy, and drug resistance. This study was conducted to explore whether the Hh pathway could regulate autophagy in CML cells and whether simultaneously regulating the Hh pathway and autophagy could induce cell death of drug-sensitive or -resistant BCR-ABL(+) CML cells. Our results indicated that pharmacological or genetic inhibition of Hh pathway could markedly induce autophagy in BCR-ABL(+) CML cells. Autophagic inhibitors or ATG5 and ATG7 silencing could significantly enhance CML cell death induced by Hh pathway suppression. Based on the above findings, our study demonstrated that simultaneously inhibiting the Hh pathway and autophagy could markedly reduce cell viability and induce apoptosis of imatinib-sensitive or -resistant BCR-ABL(+) cells. Moreover, this combination had little cytotoxicity in human peripheral blood mononuclear cells (PBMCs). Furthermore, this combined strategy was related to PARP cleavage, CASP3 and CASP9 cleavage, and inhibition of the BCR-ABL oncoprotein. In conclusion, this study indicated that simultaneously inhibiting the Hh pathway and autophagy could potently kill imatinib-sensitive or -resistant BCR-ABL(+) cells, providing a novel concept that simultaneously inhibiting the Hh pathway and autophagy might be a potent new strategy to overcome CML drug resistance.

  8. 细胞自噬与肿瘤耐药的研究进展%Recent progress of autophagy and drug-resistance

    Institute of Scientific and Technical Information of China (English)

    叶丽霖; 李玉峰

    2013-01-01

    Summary Autophagy is a self degradation process that are responsible for the removal of long lived proteins and damaged organelles, which plays a key role in the elimination of such intracellular waste, reconstruction of structure,growth and development of cells and maintainance of cellular homeostasis. During tumour development, autophagy has paradoxically been reported to have roles in promoting both cell survival and growth. In tumour cells with defects in apoptosis, autophagy allows prolonged survival. Recent evidence suggests that autophagy provides a protective function to limit tumour necrosis and inflammation,and to mitigate genome damage in tumour cells in response to metabolic stress. Many studies show that many cytoxic drugs can induce autophagy in its induction of apoptosis. Activation of autophagy can lead to drug resistance in tumour cells. In this review, we will summarize the relationship between autophagy and drug resistance.

  9. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  10. Autophagy in Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Alexander J. S. Choi

    2011-01-01

    Full Text Available Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.

  11. Ciprofloxacin modulates cytokine/chemokine profile in serum, improves bone marrow repopulation, and limits apoptosis and autophagy in ileum after whole body ionizing irradiation combined with skin-wound trauma.

    Directory of Open Access Journals (Sweden)

    Risaku Fukumoto

    Full Text Available Radiation combined injury (CI is a radiation injury (RI combined with other types of injury, which generally leads to greater mortality than RI alone. A spectrum of specific, time-dependent pathophysiological changes is associated with CI. Of these changes, the massive release of pro-inflammatory cytokines, severe hematopoietic and gastrointestinal losses and bacterial sepsis are important treatment targets to improve survival. Ciprofloxacin (CIP is known to have immunomodulatory effect besides the antimicrobial activity. The present study reports that CIP ameliorated pathophysiological changes unique to CI that later led to major mortality. B6D2F1/J mice received CI on day 0, by RI followed by wound trauma, and were treated with CIP (90 mg/kg p.o., q.d. within 2 h after CI through day 10. At day 10, CIP treatment not only significantly reduced pro-inflammatory cytokine and chemokine concentrations, including interleukin-6 (IL-6 and KC (i.e., IL-8 in human, but it also enhanced IL-3 production compared to vehicle-treated controls. Mice treated with CIP displayed a greater repopulation of bone marrow cells. CIP also limited CI-induced apoptosis and autophagy in ileal villi, systemic bacterial infection, and IgA production. CIP treatment led to LD(0/10 compared to LD(20/10 for vehicle-treated group after CI. Given the multiple beneficial activities of CIP shown in our experiments, CIP may prove to be a useful therapeutic drug for CI.

  12. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains.

    Science.gov (United States)

    Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-07-01

    Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains.

  13. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    Directory of Open Access Journals (Sweden)

    Zai-Fa Hong

    Full Text Available Cholangiocarcinoma (CCA, a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K/protein kinase B (AKT/mammalian target of rapamycin (mTOR pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.

  14. Potential pharmacokinetic interactions of therapeutic cytokines or cytokine modulators on small-molecule drugs: mechanistic understanding via studies using in vitro systems.

    Science.gov (United States)

    Zhou, Jin; Li, Feng

    2014-01-01

    The potential pharmacokinetic interactions between macromolecules and small-molecule drugs have received more and more attention with the increasing development of macromolecule therapeutics. Studies have shown that cytokines can differentially modulate drug-metabolizing enzymes and transporters, which raises concerns on the potential interactions of therapeutic cytokines and cytokine modulators on the disposition of small-molecule drugs. Although many in vitro studies have been conducted to characterize the effects of cytokines on drug-metabolizing enzymes and transporters, these studies were limited to only a handful of cytokines, such as interleukin-1 (IL-1), IL-6, tumor necrosis factor-α, and interferon. It is also challenging to translate these in vitro results to in vivo. In addition, information on the impact of cytokine modulators on drug-metabolizing enzymes and transporters is rather limited. More research is needed in this area. The present review is to provide a summary of the in vitro findings on the pharmacokinetic interactions of therapeutic cytokines and cytokine modulators on small-molecule drugs. Discussion on current challenges in assessing these interactions is also included.

  15. HnRNP K contributes to drug resistance in acute myeloid leukemia through the regulation of autophagy.

    Science.gov (United States)

    Zhang, JinFang; Liu, XiaoLi; Lin, YuDeng; Li, YuLing; Pan, JianWei; Zong, Sa; Li, YongKang; Zhou, Yang

    2016-09-01

    The goal of this study was to explore the role of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in drug resistance through the regulation of autophagy in acute myeloid leukemia (AML). First, we used fluorescence quantitative polymerase chain reaction (PCR) to verify the connection between the expression level of hnRNP K and the level of drug resistance in AML. We then used Western blotting to determine the expression level of the autophagy-related proteins microtubule-associated protein light chain 3 I and II (LC3 I/II) after the modulation of hnRNP K by ribonucleic acid (RNA) interference. Finally, an analysis of adriamycin drug sensitivity was conducted before and after the modulation of hnRNP K expression. hnRNP K and LC3 I/II were significantly overexpressed in the bone marrow of nonremission patients and in drug-resistant cell lines; however, the expression of LC3 I/II was decreased when the expression of hnRNP K was reduced and drug sensitivity to adriamycin could be restored. hnRNP K may be involved in the development of adriamycin resistance in AML through the regulation of autophagy.

  16. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy.

    Science.gov (United States)

    Jiang, Q-L; Zhang, S; Tian, M; Zhang, S-Y; Xie, T; Chen, D-Y; Chen, Y-J; He, J; Liu, J; Ouyang, L; Jiang, X

    2015-02-01

    Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.

  17. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  18. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    Science.gov (United States)

    Hong, Zai-Fa; Zhao, Wen-Xiu; Yin, Zhen-Yu; Xie, Cheng-Rong; Xu, Ya-Ping; Chi, Xiao-Qin; Zhang, Sheng; Wang, Xiao-Min

    2015-01-01

    Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU) was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI) capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.

  19. Inflammatory conditions and cytokines and their roles in the regulation of heme and drug metabolism

    Institute of Scientific and Technical Information of China (English)

    YoshT

    2002-01-01

    It has been well known that inflammation leads to the decreased ability of drug metabolism in human and animals.Since many inflammatory and anti-inflammatory cytokines produced under the inflammatory conditions,their possible roles in the regulation of drug metabolizing enzymes,specifically cytochrome P450s(CYPs),have been examined to date.Lipopolysaccharide (LPS) produces many cryokines and decreases drug medabolism.LPS is also a potent inducer of heme oxygenase(HO-1).We found that LPS produced the induction of HO-1 via TNFα rather than IL-1,be employing each cytokine knockout mice.Additionally,arthritis model mice exhibited the increase in HO-1 without any changes in total CYP content.Effects of chemicals on HO-1 and CYPs in cytokine knockout mice will also be discussed.

  20. Effects of autophagy on multidrug resistance of drug resistant LoVo/Adr cells of colon carcinoma

    Directory of Open Access Journals (Sweden)

    Qiang MA

    2013-11-01

    Full Text Available Objective To observe the effects of autophagy on multidrug resistance (MDR of drug resistant LoVo/Adr cells of colon carcinoma. Methods The formation of autophagosomes was monitored with transmission electron microscopy, and autophagy rate was measured with the aid of MDC staining and flow cytometry. IC50 value of adriamycin (ADR on colon carcinoma cells was detected by MTT assay. The mRNA level of MDR1 gene was measured by RT-PCR, and P-gp protein expression was detected by Western blotting. Results The sporadic autophagosomes or green epoptic dots were found to distribute in LoVo/Adr cells with an autophagy rate of 3.1%±0.5%. A large number of autophagosomes were seen after being treated with ADR or rapamycin (RAPA with the autophagy rates of 33.6%±5.1% and 45.2%±6.1%, respectively (P<0.05. After being treated with ADR combining RAPA, autophagosomes appeared abundantly with an autophagy rate of 76.2%±7.4%, which was significantly higher than that when treated with ADR or RAPA alone (P<0.05. The IC50 value of LoVo/Adr cells on ADR was 3.05±0.52mg/L, which decreased to 1.12±0.21mg/L after being treated with RAPA (P<0.01. RAPA could reverse MDR with a reversal ratio of 2.26. High expression of mRNA and protein of MDR1 gene were observed in LoVo/Adr cells. When treated with RAPA, the expression of MDR1 mRNA decreased from 1.42±0.31 to 0.54±0.20 (P<0.05, and the expression of P-gp protein also decreased significantly from 0.67±0.14 to 0.15±0.08 (P<0.01. Conclusion MDR LoVo/Adr cell shows a low autophagic activity, and RAPA can reverse MDR by increasing autophagy activity. The reversal path might be related with the increase of cell autophagic death and the decrease in MDR1 gene expression in LoVo/Adr cells. DOI: 10.11855/j.issn.0577-7402.2013.11.007

  1. DMH1 (4-[6-(4-isopropoxyphenylpyrazolo[1,5-a]pyrimidin-3-yl]quinoline inhibits chemotherapeutic drug-induced autophagy

    Directory of Open Access Journals (Sweden)

    Yue Sheng

    2015-07-01

    Full Text Available Our previous work found that DMH1 (4-[6-(4-isopropoxyphenylpyrazolo [1,5-a]pyrimidin-3-yl]quinoline was a novel autophagy inhibitor. Here, we aimed to investigate the effects of DMH1 on chemotherapeutic drug-induced autophagy as well as the efficacy of chemotherapeutic drugs in different cancer cells. We found that DMH1 inhibited tamoxifen- and cispcis-diaminedichloroplatinum (II (CDDP-induced autophagy responses in MCF-7 and HeLa cells, and potentiated the anti-tumor activity of tamoxifen and CDDP for both cells. DMH1 inhibited 5-fluorouracil (5-FU-induced autophagy responses in MCF-7 and HeLa cells, but did not affect the anti-tumor activity of 5-FU for these two cell lines. DMH1 itself did not induce cell death in MCF-7 and HeLa cells, but inhibited the proliferation of these cells. In conclusion, DMH1 inhibits chemotherapeutic drug-induced autophagy response and the enhancement of efficacy of chemotherapeutic drugs by DMH1 is dependent on the cell sensitivity to drugs.

  2. miR-140-5p attenuates chemotherapeutic drug-induced cell death by regulating autophagy through inositol 1,4,5-trisphosphate kinase 2 (IP3k2) in human osteosarcoma cells

    Science.gov (United States)

    Wei, Renxiong; Cao, Gang; Deng, Zhouming; Su, Jiajia; Cai, Lin

    2016-01-01

    Acquisition of drug-resistant phenotypes is often associated with chemotherapy in osteosarcoma. A number of studies have demonstrated a critical role for autophagy in osteosarcoma development, therapy and drug resistance. However, the molecular mechanisms underlying the autophagy-mediated chemotherapy resistance of osteosarcoma cells remain largely unknown. In the present study, we determined the autophagy and microRNA-140 (miR-140-5p, miRBase ID: MIMAT0000431) expression induced by chemotherapeutic drugs in osteosarcoma cells. Then we determined the promotory role of miR-140-5p to the chemotherapy-induced autophagy. Our results demonstrated that miR-140-5p expression was highly induced during chemotherapy of osteosarcoma cells, and this was accompanied by up-regulated autophagy. The increased miR-140-5p expression levels up-regulated anticancer drug-induced autophagy in osteosarcoma cells and ameliorated the anticancer drug-induced cell proliferation and viability decrease. Importantly, miR-140-5p regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (IP3k2). Therefore, the results of the present study demonstrated that miR-140-5p mediated drug-resistance in osteosarcoma cells by inducing autophagy. The present study provides evidence of miRNA regulation of autophagy through modulation of IP3 signalling. The present study recognized a novel mechanism of chemoresistance in osteosarcoma cancers. PMID:27582507

  3. Nutrient-deprivation autophagy factor-1 (NAF-1: biochemical properties of a novel cellular target for anti-diabetic drugs.

    Directory of Open Access Journals (Sweden)

    Sagi Tamir

    Full Text Available Nutrient-deprivation autophagy factor-1 (NAF-1 (synonyms: Cisd2, Eris, Miner1, and Noxp70 is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2 and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria. Importantly, the drug pioglitazone abrogates NAF-1's ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.

  4. Autophagy in Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yang Song

    2014-01-01

    Full Text Available Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.

  5. Autophagy in sepsis: Degradation into exhaustion?

    Science.gov (United States)

    Ho, Jeffery; Yu, Jun; Wong, Sunny H; Zhang, Lin; Liu, Xiaodong; Wong, Wai T; Leung, Czarina C H; Choi, Gordon; Wang, Maggie H T; Gin, Tony; Chan, Matthew T V; Wu, William K K

    2016-07-01

    Autophagy is one of the innate immune defense mechanisms against microbial challenges. Previous in vitro and in vivo models of sepsis demonstrated that autophagy was activated initially in sepsis, followed by a subsequent phase of impairment. Autophagy modulation appears to be protective against multiple organ injuries in these murine sepsis models. This is achieved in part by preventing apoptosis, maintaining a balance between the productions of pro- and anti-inflammatory cytokines, and preserving mitochondrial functions. This article aims to discuss the role of autophagy in sepsis and the therapeutic potential of autophagy enhancers.

  6. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  7. Epidemiology of Hepatitis B, C, D and G Viruses and Cytokine Levels among Intravenous Drug Users

    Institute of Scientific and Technical Information of China (English)

    LI Jianrong; WANG Jing; TIAN Kunlun; WANG Yixin; ZHANG Lei; HUANG Hanju

    2006-01-01

    To investigate the features of various hepatitis virus infection in intravenous drug users (IVDU), we conducted an epidemiological survey of hepatitis viruses including hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and hepatitis G virus (HGV) in IVDU. The correlation of TH lymphocyte cytokine and hepatitis virus infection was examined. A study population of 406 IVDU consisted of 383 males and 23 females. HBV-DNA and HCV-RNA were detected by fluorescence quantitative polymerase chain reaction. HBsAg, HBeAg, anti-HBc,anti-HCV, HDV-Ag and anti-HGV were assayed by ELISA. The levels of cytokines of TH 1 and TH2 were measured by ELISA. The similar indices taken from 102 healthy persons served as controls. The infection-rate of each virus among IVDU was 36.45 % for HBV, 69. 7 % for HCV,2.22 % for HDV, and 1. 97 % for HGV, respectively. The co-infection rate of HBV and HCV was detected in 113 of 406 (27. 83%). In contrast, among controls, the infection rate was 17.65 % for HBV and 0% for the other hepatitis viruses. The levels of PHA-induced cytokines (IFN-γ and IL-4) and the level of serum IL 2 were obviously decreased in IVDU. On the other hand, the level of serum IL-4 was increased. The IFN-γ level was continuously decreased when the IVDU was infected with HBV/HCV. In conclusion, HBV and HCV infection were common in this population ofIVDU and they had led to a high incidence of impaired TH 1 cytokine levels.

  8. Autophagy: An Exposing Therapeutic Target in Atherosclerosis.

    Science.gov (United States)

    Luo, Yun; Lu, Shan; Zhou, Ping; Ai, Qi-Di; Sun, Gui-Bo; Sun, Xiao-Bo

    2016-03-01

    Autophagy is an evolutionarily conserved catabolic process whereby the cytoplasmic contents of a cell are sequestered within autophagosomes through a lysosome-dependent pathway. Increasing evidence shows that this process is of great importance in a wide range of diseases, including atherosclerosis (AS). Autophagy can be modulated in advanced AS plaques by cytokines, reactive lipids, lipopolysaccharides, advanced glycation end products, and microRNAs. Autophagy exerts both protective and detrimental functions in vascular disorders. However, despite an increasing interest in autophagy, it remains an underestimated and overlooked phenomenon in AS. Therefore, the precise role of autophagy and its relationship with apoptosis need to be described. This review highlights recent findings on the autophagy activities and signaling pathways in endothelial cells, macrophages, and smooth muscle cells that are accompanied by apoptosis in AS. We conclude with recent studies on autophagy modulation as a new therapeutic approach to treat AS.

  9. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  10. Autophagy in Trypanosomatids

    Directory of Open Access Journals (Sweden)

    Paul A. M. Michels

    2012-07-01

    Full Text Available Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments. Autophagy plays a major role during these transformations. Since inhibition of autophagy affects the transformation, survival and/or virulence of the parasites, the ATGs offer promise for development of drugs against tropical diseases. Furthermore, various trypanocidal drugs have been shown to trigger autophagy-like processes in the parasites. It is inferred that autophagy is used by the parasites in an—not always successful—attempt to cope with the stress caused by the toxic compounds.

  11. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death

    Science.gov (United States)

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S.; Gaviglio, Emilia A.; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-01-01

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity. PMID:28256519

  12. Anti-tumor immunity, autophagy and chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Gy(o)rgyi Müzes; Ferenc Sipos

    2012-01-01

    Autophagy or self-digestion of cells is activated upon various stressful stimuli and has been found to be a survival and drug resistance pathway in cancer.However,genetic studies support that autophagy can act as a tumor suppressor.Furthermore,defective autophagy is implicated in tumorigenesis,as well.The precise impact of autophagy on malignant transformation has not yet been clarified,but recent data suggest that this complex process is mainly directed by cell types,phases,genetic background and microenvironment.Relation of autophagy to anticancer immune responses may indicate a novel aspect in cancer chemotherapy.

  13. Autophagy is an inflammation-related defensive mechanism against disease.

    Science.gov (United States)

    Joven, Jorge; Guirro, Maria; Mariné-Casadó, Roger; Rodríguez-Gallego, Esther; Menéndez, Javier A

    2014-01-01

    The inflammatory response is an energy-intensive process. Consequently, metabolism is closely associated with immune function. The autophagy machinery plays a role in metabolism by providing energy but may also be used to attack invading pathogens (xenophagy). The autophagy machinery may function to protect against not only the threats of infection but also the threats of the host's own response acting on the central immunological tolerance and the negative regulation of innate and inflammatory signaling. The balance between too little and too much autophagy is critical for the survival of immune cells because autophagy is linked to type 2-cell death programmed necrosis and apoptosis. Changes in inflammatory cells are driven by extracellular signals; however, the mechanisms by which cytokines mediate autophagy regulation and govern immune cell function remain unknown. Certain cytokines increase autophagy, whereas others inhibit autophagy. The relationship between autophagy and inflammation is also important in the pathogenesis of metabolic, non-communicable diseases. Inflammation per se is not the cause of obesity-associated diseases, but it is secondary to both the positive energy balance and the specific cellular responses. In metabolic tissues, the suppression of autophagy increases inflammation with the overexpression of cytokines, resulting in an activation of autophagy. The physiological role of these apparently contradictory findings remains uncertain but exemplifies future challenges in the therapeutic modulation of autophagy in the management of disease.

  14. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...

  15. Effects of cytokines, growth factors and drugs on matrix metalloproteinases activities of osteoarthritic chondrocytes and synoviocytes

    Institute of Scientific and Technical Information of China (English)

    GUAN Jian-long; HAN Xing-hai; SHI Gui-ying; YUAN Guo-hua

    2001-01-01

    Objective: To evaluate the effects of some cytokines, TGF-β1 and drugs on matrix metalloproteinases (MMPs) activities in culture medium of arthritic chondrocytes and synoviocytes. Methods: The chondrocyte and synoviocyte monolayers isolated from the cartilages and synovial fluids in 10 knee OA patients were treated with IL-1β TGF-β1, TNF-α, diclofenac acid, dexamethasone or doxycycline individually and together for 72 h. Zymography was used to determine the activities of MMP-2 and -9. Results: The chondrocyte monolayers produced MMP-2 and -9, while the synoviocytes only produced MMP-2. The MMP-9 activity was markedly enhanced by IL-1β TNF-α and diclofenac. IL-1β was the most effective stimulus, and had synergistic effect with TNF-α or diclifenac. MMP-2 activity was not affected. Doxcycline, TGF-β1 and dexamethasone could depress the activities of MMP-9 and MMP-2, and antagonize the enhancing effect of IL-1β TNF-α or diclofenac. Conclusion: IL-1β and TNF-α may play important roles degrading OA cartilage, while TGF-β1 and doxycycline may be protective factors.

  16. Precision autophagy: Will the next wave of selective autophagy markers and specific autophagy inhibitors feed clinical pipelines?

    Science.gov (United States)

    Lebovitz, Chandra B; DeVorkin, Lindsay; Bosc, Damien; Rothe, Katharina; Singh, Jagbir; Bally, Marcel; Jiang, Xiaoyan; Young, Robert N; Lum, Julian J; Gorski, Sharon M

    2015-01-01

    Research presented at the Vancouver Autophagy Symposium (VAS) 2014 suggests that autophagy's influence on health and disease depends on tight regulation and precision targeting of substrates. Discussions recognized a pressing need for robust biomarkers that accurately assess the clinical utility of modulating autophagy in disease contexts. Biomarker discovery could flow from investigations of context-dependent triggers, sensors, and adaptors that tailor the autophagy machinery to achieve target specificity. In his keynote address, Dr. Vojo Deretic (University of New Mexico) described the discovery of a cargo receptor family that utilizes peptide motif-based cargo recognition, a mechanism that may be more precise than generic substrate tagging. The keynote by Dr. Alec Kimmelman (Harvard Medical School) emphasized that unbiased screens for novel selective autophagy factors may accelerate the development of autophagy-based therapies. Using a quantitative proteomics screen for de novo identification of autophagosome substrates in pancreatic cancer, Kimmelman's group discovered a new type of selective autophagy that regulates bioavailable iron. Additional presentations revealed novel autophagy regulators and receptors in metabolic diseases, proteinopathies, and cancer, and outlined the development of specific autophagy inhibitors and treatment regimens that combine autophagy modulation with anticancer therapies. VAS 2014 stimulated interdisciplinary discussions focused on the development of biomarkers, drugs, and preclinical models to facilitate clinical translation of key autophagy discoveries.

  17. HIV-1 differentially modulates autophagy in neurons and astrocytes.

    Science.gov (United States)

    Mehla, Rajeev; Chauhan, Ashok

    2015-08-15

    Autophagy, a lysosomal degradative pathway that maintains cellular homeostasis, has emerged as an innate immune defense against pathogens. The role of autophagy in the deregulated HIV-infected central nervous system (CNS) is unclear. We have found that HIV-1-induced neuro-glial (neurons and astrocytes) damage involves modulation of the autophagy pathway. Neuro-glial stress induced by HIV-1 led to biochemical and morphological dysfunctions. X4 HIV-1 produced neuro-glial toxicity coupled with suppression of autophagy, while R5 HIV-1-induced toxicity was restricted to neurons. Rapamycin, a specific mTOR inhibitor (autophagy inducer) relieved the blockage of the autophagy pathway caused by HIV-1 and resulted in neuro-glial protection. Further understanding of the regulation of autophagy by cytokines and chemokines or other signaling events may lead to recognition of therapeutic targets for neurodegenerative diseases.

  18. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication

    Directory of Open Access Journals (Sweden)

    Xiaozhen Guo

    2017-03-01

    Full Text Available The new porcine epidemic diarrhea (PED has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.

  19. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    2016-01-01

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regardi

  20. DNA damage response and Autophagy: a meaningful partnership

    Directory of Open Access Journals (Sweden)

    ARISTIDES G ELIOPOULOS

    2016-11-01

    Full Text Available Autophagy and the DNA damage response (DDR are biological processes essential for cellular and organismal homeostasis. Herein we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.

  1. The dynamic nature of autophagy in cancer.

    Science.gov (United States)

    Kimmelman, Alec C

    2011-10-01

    Macroautophagy (referred to hereafter as autophagy) is a highly regulated cellular process that serves to remove damaged proteins and organelles from the cell. Autophagy contributes to an array of normal and pathological processes, and has recently emerged as a key regulator of multiple aspects of cancer biology. The role of autophagy in cancer is complex and is likely dependent on tumor type, stage, and genetic context. This complexity is illustrated by the identification of settings where autophagy acts potently to either promote or inhibit tumorigenesis. In this review, I discuss the underlying basis for these opposing functions and propose a model suggesting a dynamic role for autophagy in malignancy. Collectively, the data point to autophagy as serving as a barrier to limit tumor initiation. Once neoplastic lesions are established, it appears that adaptive changes occur that now result in positive roles for autophagy in malignant progression and in subsequent tumor maintenance. Remarkably, constitutive activation of autophagy is critical for continued growth of some tumors, serving to both reduce oxidative stress and provide key intermediates to sustain cell metabolism. Autophagy is also induced in response to cancer therapies where it can function as a survival mechanism that limits drug efficacy. These findings have inspired significant interest in applying anti-autophagy therapies as an entirely new approach to cancer treatment. It is now apparent that aberrant control of autophagy is among the key hallmarks of cancer. While much needs to be learned about the regulation and context-dependent biological functions of autophagy, it seems clear that modulation of this process will be an attractive avenue for future cancer therapeutic approaches.

  2. Cytokines as cellular communicators

    Directory of Open Access Journals (Sweden)

    R. Debets

    1996-01-01

    Full Text Available Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.

  3. Anticancer Drug 2-Methoxyestradiol Protects against Renal Ischemia/Reperfusion Injury by Reducing Inflammatory Cytokines Expression

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2014-01-01

    Full Text Available Background. Ischemia/reperfusion (I/R injury is a major cause of acute renal failure and allograft dysfunction in kidney transplantation. ROS/inflammatory cytokines are involved in I/R injury. 2-Methoxyestradiol (2ME2, an endogenous metabolite of estradiol, inhibits inflammatory cytokine expression and is an antiangiogenic and antitumor agent. We investigated the inhibitory effect of 2ME2 on renal I/R injury and possible molecular actions. Methods. BALB/c mice were intraperitoneally injected with 2ME2 (10 or 20 mg/kg or vehicle 12 h before and immediately after renal I/R experiments. The kidney weight, renal function, tubular damages, and apoptotic response were examined 24 h after I/R injury. The expression of mRNA of interleukin-1β, tumor necrosis factor- (TNF α, caspase-3, hypoxia inducible factor- (HIF 1α, and proapoptotic Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3 in kidney tissue was determined using RT-PCR, while the expression of nuclear factor κB (NF-κB, BCL-2, and BCL-xL, activated caspase-9, and HIF-1α was determined using immunoblotting. In vitro, we determined the effect of 2ME2 on reactive oxygen species (ROS production and cell viability in antimycin-A-treated renal mesangial (RMC and tubular (NRK52E cells. Results. Serum creatinine and blood urea nitrogen were significantly higher in mice with renal I/R injury than in sham control and in I/R+2ME2-treated mice. Survival in I/R+2ME2-treated mice was higher than in I/R mice. Histological examination showed that 2ME2 attenuated tubular damage in I/R mice, which was associated with lower expression TNF-α, IL-1β, caspase-9, HIF-1α, and BNIP3 mRNA in kidney tissue. Western blotting showed that 2ME2 treatment substantially decreased the expression of activated caspase-9, NF-κB, and HIF-1α but increased the antiapoptotic proteins BCL-2 and BCL-xL in kidney of I/R injury. In vitro, 2MR2 decreased ROS production and increased cell viability in antimycin

  4. The Impact of Autophagy on Cell Death Modalities

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2014-01-01

    Full Text Available Autophagy represents a homeostatic cellular mechanism for the turnover of organelles and proteins, through a lysosome-dependent degradation pathway. During starvation, autophagy facilitates cell survival through the recycling of metabolic precursors. Additionally, autophagy can modulate other vital processes such as programmed cell death (e.g., apoptosis, inflammation, and adaptive immune mechanisms and thereby influence disease pathogenesis. Selective pathways can target distinct cargoes (e.g., mitochondria and proteins for autophagic degradation. At present, the causal relationship between autophagy and various forms of regulated or nonregulated cell death remains unclear. Autophagy can occur in association with necrosis-like cell death triggered by caspase inhibition. Autophagy and apoptosis have been shown to be coincident or antagonistic, depending on experimental context, and share cross-talk between signal transduction elements. Autophagy may modulate the outcome of other regulated forms of cell death such as necroptosis. Recent advances suggest that autophagy can dampen inflammatory responses, including inflammasome-dependent caspase-1 activation and maturation of proinflammatory cytokines. Autophagy may also act as regulator of caspase-1 dependent cell death (pyroptosis. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases in which apoptosis or other forms of regulated cell death may play a cardinal role.

  5. Stress management by autophagy: Implications for chemoresistance.

    Science.gov (United States)

    Huang, Zhao; Zhou, Li; Chen, Zhibin; Nice, Edouard C; Huang, Canhua

    2016-07-01

    Development of chemoresistance, which limits the efficiency of anticancer agents, has long been a major problem in cancer therapy and urgently needs to be solved to improve clinical outcomes. Factors contributing to chemoresistance are various, but a key factor is the cell's capability for stress management. Autophagy, a favored survival strategy that organisms employ to get over many kinds of stress, is emerging as a crucial player in drug resistance. It has been shown that autophagy facilitates the resistance of tumor cells to anticancer agents, and abrogation of autophagy could be therapeutically beneficial in some cases, suggesting autophagy could be a promising target for cancer treatments. Thus, defining the roles of autophagy in chemoresistance, and the mechanisms involved, will be critical to enhance the efficiency of chemotherapy and develop novel anticancer strategy interventions.

  6. MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells

    NARCIS (Netherlands)

    J. Nyhan (Michelle); R. O'Donovan (Tracey); W.M.A. Boersma (Antonius); E.A.C. Wiemer (Erik); S.L. McKenna (Sharon)

    2016-01-01

    markdownabstract__Background:__ Successful treatment of oesophageal cancer is hampered by recurrent drug resistant disease. We have previously demonstrated the importance of apoptosis and autophagy for the recovery of oesophageal cancer cells following drug treatment. When apoptosis (with autophagy)

  7. Autophagy- An emerging target for melanoma therapy

    Science.gov (United States)

    Ndoye, Abibatou; Weeraratna, Ashani T.

    2016-01-01

    Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation. PMID:27583134

  8. Insights into cytokine-receptor interactions from cytokine engineering.

    Science.gov (United States)

    Spangler, Jamie B; Moraga, Ignacio; Mendoza, Juan L; Garcia, K Christopher

    2015-01-01

    Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.

  9. RUFY4: Immunity piggybacking on autophagy?

    Science.gov (United States)

    Terawaki, Seigo; Camosseto, Voahirana; Pierre, Philippe; Gatti, Evelina

    2016-01-01

    Although autophagy is a highly conserved mechanism among species and cell types, few are the molecules involved with the autophagic process that display cell- or tissue- specific expression. We have unraveled the positive regulatory role on autophagy of RUFY4 (RUN and FYVE domain containing 4), which is expressed in subsets of immune cells, including dendritic cells (DCs). DCs orchestrate the eradication of pathogens by coordinating the action of the different cell types involved in microbe recognition and destruction during the immune response. To fulfill this function, DC display particular regulation of their endocytic and autophagy pathways in response to the immune environment. Autophagy flux is downmodulated in DCs upon microbe sensing, but is remarkably augmented, when cells are differentiated in the presence of the pleiotropic cytokine IL4 (interleukin 4). From gene expression studies aimed at comparing the impact of IL4 on DC differentiation, we identified RUFY4, as a novel regulator that augments autophagy flux and, when overexpressed, induces drastic membrane redistribution and strongly tethers lysosomes. RUFY4 is therefore one of the few known positive regulators of autophagy that is expressed in a cell-specific manner or under specific immunological conditions associated with IL4 expression such as allergic asthma.

  10. Host Cell Autophagy in Immune Response to Zoonotic Infections

    Directory of Open Access Journals (Sweden)

    Panagiotis Skendros

    2012-01-01

    Full Text Available Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  11. Autophagy, Metabolism, and Cancer.

    Science.gov (United States)

    White, Eileen; Mehnert, Janice M; Chan, Chang S

    2015-11-15

    Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage, and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus, autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, many important unanswered questions remain about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy."

  12. Suppression of autophagy exacerbates Mefloquine-mediated cell death.

    Science.gov (United States)

    Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Kim, Eun Sung; Kang, Hee; Park, Ji-Ho; Lee, Eunjoo H; Cho, Dong-Hyung

    2012-05-02

    Mefloquine is an effective treatment drug for malaria. However, it can cause several adverse side effects, and the precise mechanism associated with the adverse neurological effects of Mefloquine is not clearly understood. In this study, we investigated the effect of Mefloquine on autophagy in neuroblastoma cells. Mefloquine treatment highly induced the formation of autophagosomes and the conversion of LC3I into LC3II. Moreover, Mefloquine-induced autophagy was efficiently suppressed by an autophagy inhibitor and by down regulation of ATG6. The autophagy was also completely blocked in ATG5 deficient mouse embryonic fibroblast cells. Moreover, suppression of autophagy significantly intensified Mefloquine-mediated cytotoxicity in SH-SY5Y cells. Our findings suggest that suppression of autophagy may exacerbate Mefloquine toxicity in neuroblastoma cells.

  13. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Arwa S Kathiria

    Full Text Available INTRODUCTION: Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα, both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB, which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells. METHODS: We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A(1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine. RESULTS: TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability. CONCLUSIONS: Decreased PHB levels coupled with dysfunctional

  14. Autophagy in Tuberculosis

    Science.gov (United States)

    Deretic, Vojo

    2014-01-01

    Autophagy as an immune mechanism controls inflammation and acts as a cell-autonomous defense against intracellular microbes including Mycobacterium tuberculosis. An equally significant role of autophagy is its anti-inflammatory and tissue-sparing function. This combination of antimicrobial and anti-inflammatory actions prevents active disease in animal models. In human populations, genetic links between autophagy, inflammatory bowel disease, and susceptibility to tuberculosis provide further support to these combined roles of autophagy. The autophagic control of M. tuberculosis and prevention of progressive disease provide novel insights into physiological and immune control of tuberculosis. It also offers host-based therapeutic opportunities because autophagy can be pharmacologically modulated. PMID:25167980

  15. Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: A meta-analysis.

    Science.gov (United States)

    Capuzzi, Enrico; Bartoli, Francesco; Crocamo, Cristina; Clerici, Massimo; Carrà, Giuseppe

    2017-03-08

    Schizophrenia is likely to be associated with immunological abnormalities. However, antipsychotics may induce immunomodulatory effects, by influencing plasma cytokines. In order to distinguish these influences, we carried out a systematic review and meta-analysis exploring the acute effect of antipsychotics on candidate cytokines plasma levels (IL-1β, IL-2, IL-6, IL-17, IFN-γ, TNF-α) among drug-naïve subjects with first episode psychosis. We searched main Electronic Databases, identifying eight studies meeting our inclusion criteria. Pre and post-treatment plasma cytokines values were used to estimate standardized mean differences. Heterogeneity was estimated using the I(2) index. Heterogeneity-based sensitivity analyses were performed. IL-2 (p=0.023) and IL-6 (p=0.012) levels showed a significant decrease after four weeks of antipsychotic treatment. Relevant sensitivity analysis confirmed these findings. IL-1β had high between-study heterogeneity. However, leaving out one study, significant after treatment decrease was found. IL-6 and IL-2, and possibly IL-1β, could be considered state markers, decreasing after antipsychotic treatment, whilst TNF-α, IL-17, and IFN-γ might be considered trait markers. Options for novel treatments in FEP, involving cytokine-modulating agents, should be further studied.

  16. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  17. Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy.

    Directory of Open Access Journals (Sweden)

    Angèle Nalbandian

    Full Text Available Mutations in the valosin containing protein (VCP gene cause hereditary Inclusion body myopathy (hIBM associated with Paget disease of bone (PDB, frontotemporal dementia (FTD, more recently termed multisystem proteinopathy (MSP. Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem

  18. Nanomaterials, Autophagy, and Lupus Disease.

    Science.gov (United States)

    Bianco, Alberto; Muller, Sylviane

    2016-01-19

    Nanoscale materials hold great promise in the therapeutic field. In particular, as carriers or vectors, they help bioactive molecules reach their primary targets. Furthermore, by themselves, certain nanomaterials-regarded as protective-can modulate particular metabolic pathways that are deregulated in pathological situations. They can also synergistically improve the effects of a payload drug. These properties are the basis of their appeal. However, nanoscale materials can also have intrinsic properties that limit their use, and this is the case for certain types of nanomaterials that influence autophagy. This property can be beneficial in some pathological settings, but in others, if the autophagic flux is already accelerated, it can be deleterious. This is notably the case for systemic lupus erythematosus (SLE) and other chronic inflammatory diseases, including certain neurological diseases. The nanomaterial-autophagy interaction therefore must be treated with caution for therapeutic molecules and peptides that require vectorization for their administration.

  19. Application and interpretation of current autophagy inhibitors and activators

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Li-fang HU; Hui-fen ZHENG; Cheng-jie MAO; Wei-dong HU; Kang-ping XIONG; Fen WANG

    2013-01-01

    Aut ophagy is the major intracellular degradation system,by which cytoplasmic materials are delivered to and degraded in the lysosome.As a quality control mechanism for cytoplasmic proteins and organelles,autophagy plays important roles in a variety of human diseases,including neurodegenerative diseases,cancer,cardiovascular disease,diabetes and infectious and inflammatory diseases.The discovery of ATG genes and the dissection of the signaling pathways involved in regulating autophagy have greatly enriched our knowledge on the occurrence and development of this lysosomal degradation pathway.In addition to its role in degradation,autophagy may also promote a type of programmed cell death that is different from apoptosis,termed type II programmed cell death.Owing to the dual roles of autophagy in cell death and the specificity of diseases,the exact mechanisms of autophagy in various diseases require more investigation.The application of autophagy inhibitors and activators will help us understand the regulation of autophagy in human diseases,and provide insight into the use of autophagy-targeted drugs.In this review,we summarize the latest research on autophagy inhibitors and activators and discuss the possibility of their application in human disease therapy.

  20. Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: Implications for drug development and basic cytokine biology.

    Science.gov (United States)

    Tatzel, Katharina; Kuroki, Lindsay; Dmitriev, Igor; Kashentseva, Elena; Curiel, David T; Goedegebuure, S Peter; Powell, Matthew A; Mutch, David G; Hawkins, William G; Spitzer, Dirk

    2016-03-03

    TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the "peaceful" coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics.

  1. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque.

    Directory of Open Access Journals (Sweden)

    Chungang Zhai

    Full Text Available Macrophage infiltration contributes to the instability of atherosclerotic plaques. In the present study, we investigated whether selective inhibition of PI3K/Akt/mTOR signaling pathway can enhance the stability of atherosclerotic plaques by activation of macrophage autophagy. In vitro study, selective inhibitors or siRNA of PI3K/Akt/mTOR pathways were used to treat the rabbit's peritoneal primary macrophage cells. Inflammation related cytokines secreted by macrophages were measured. Ultrastructure changes of macrophages were examined by transmission electron microscope. mRNA or protein expression levels of autophagy related gene Beclin 1, protein 1 light chain 3 II dots (LC3-II or Atg5-Atg12 conjugation were assayed by quantitative RT-PCR or Western blot. In vivo study, vulnerable plaque models were established in 40 New Zealand White rabbits and then drugs or siRNA were given for 8 weeks to inhibit the PI3K/Akt/mTOR signaling pathway. Intravascular ultrasound (IVUS was performed to observe the plaque imaging. The ultrastructure of the abdominal aortic atherosclerosis lesions were analyzed with histopathology. RT-PCR or Western blot methods were used to measure the expression levels of corresponding autophagy related molecules. We found that macrophage autophagy was induced in the presence of Akt inhibitor, mTOR inhibitor and mTOR-siRNA in vitro study, while PI3K inhibitor had the opposite role. In vivo study, we found that macrophage autophagy increased significantly and the rabbits had lower plaque rupture incidence, lower plaque burden and decreased vulnerability index in the inhibitors or siRNA treated groups. We made a conclusion that selective inhibition of the Akt/mTOR signal pathway can reduce macrophages and stabilize the vulnerable atherosclerotic plaques by promoting macrophage autophagy.

  2. Sinomenine Hydrochloride Protects against Polymicrobial Sepsis via Autophagy

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2015-01-01

    Full Text Available Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs. The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl is widely used to treat rheumatoid arthritis (RA. However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3 puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM. 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.

  3. Sinomenine hydrochloride protects against polymicrobial sepsis via autophagy.

    Science.gov (United States)

    Jiang, Yu; Gao, Min; Wang, Wenmei; Lang, Yuejiao; Tong, Zhongyi; Wang, Kangkai; Zhang, Huali; Chen, Guangwen; Liu, Meidong; Yao, Yongming; Xiao, Xianzhong

    2015-01-23

    Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs). The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN) is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl) is widely used to treat rheumatoid arthritis (RA). However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP) in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA) was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3) puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS)-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM). 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.

  4. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment.

    Science.gov (United States)

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-07-14

    Autophagy, a cellular waste disposal process, has well-established tumor-suppressive properties. New studies indicate that, in addition to its cell-autonomous anti-tumorigenic functions, autophagy inhibits cancer development by orchestrating inflammation and immunity. While attenuating tumor-promoting inflammation, autophagy enhances the processing and presentation of tumor antigens and thereby stimulates anti-tumor immunity. Although cancer cells can escape immunosurveillance by tuning down autophagy, certain chemotherapeutic agents with immunogenic properties may enhance anti-tumor immunity by inducing autophagic cell death. Understanding the intricate and complex relationships within this troika and how they are affected by autophagy enhancing drugs should improve the efficacy of cancer immunotherapy.

  5. IL13 activates autophagy to regulate secretion in airway epithelial cells.

    Science.gov (United States)

    Dickinson, John D; Alevy, Yael; Malvin, Nicole P; Patel, Khushbu K; Gunsten, Sean P; Holtzman, Michael J; Stappenbeck, Thaddeus S; Brody, Steven L

    2016-01-01

    Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.

  6. The molecular mechanism and significance of autophagy in immune response to mycobacterium tuberculosis%结核病免疫应答中自噬现象的分子机制和意义

    Institute of Scientific and Technical Information of China (English)

    黄丹丹; 鲍朗

    2012-01-01

    A growing body of evidence shows that autophagy is an essential component in the immune response to Mycobacterium tuberculosis (Mtb).Autophagy,a direct mechanism of killing intracellular Mycobacterium tuberculosis,acts as a modulator of proinflammatory cytokine secretion and plays a key role in antigen presentation.Autophagy coordinate with other host immune strategies against mycobacteria,including vitamin D-mediated innate immunity,ubiquitin-and intlammasome-involved pathways.On the other hand,Mtb has its strategies to modulate the autophagy in macrophage.Autophagy offers an attractive therapeutic target.Autophagy-promoting agents could have a clinical application as adjunctive treatment for drug-resistant tuberculosis.Moreover,vaccines which effectively induce autophagy could be more successful in providing better immune protection.%越来越多的证据表明,自噬是结核免疫反应的重要组成部分.自噬可以杀灭结核分枝杆菌、调节促炎细胞因子的分泌、增加抗原递呈功能.自噬与其他抗菌途径如维生素D3、炎性体、泛素系统存在协同作用.另一方面,结核分枝杆菌可以调控巨噬细胞的自噬.目前,自噬已成为临床重要的诊疗靶点.其能诱导自噬的药物,可以作为佐剂治疗耐药性结核;能有效诱导自噬的疫苗,可能提供更好的免疫保护作用.

  7. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity.

    Science.gov (United States)

    Mathew, Robin; Khor, Sinan; Hackett, Sean R; Rabinowitz, Joshua D; Perlman, David H; White, Eileen

    2014-09-18

    Ras-driven cancer cells upregulate basal autophagy that degrades and recycles intracellular proteins and organelles. Autophagy-mediated proteome degradation provides free amino acids to support metabolism and macromolecular synthesis, which confers a survival advantage in starvation and promotes tumorigenesis. While the degradation of isolated protein substrates by autophagy has been implicated in controlling cellular function, the extent and specificity by which autophagy remodels the cellular proteome and the underlying functional consequences were unknown. Here we compared the global proteome of autophagy-functional and -deficient Ras-driven cancer cells, finding that autophagy affects the majority of the proteome yet is highly selective. While levels of vesicle trafficking proteins important for autophagy are preserved during starvation-induced autophagy, deleterious inflammatory response pathway components are eliminated even under basal conditions, preventing cytokine-induced paracrine cell death. This reveals the global, functional impact of autophagy-mediated proteome remodeling on cell survival and identifies critical autophagy substrates that mediate this process.

  8. Berberine attenuates autophagy in adipocytes by targeting BECN1.

    Science.gov (United States)

    Deng, Yujie; Xu, Jun; Zhang, Xiaoyan; Yang, Jian; Zhang, Di; Huang, Jian; Lv, Pengfei; Shen, Weili; Yang, Ying

    2014-10-01

    The lysosomal degradation pathway, autophagy, is essential for the maintenance of cellular homeostasis. Recently, autophagy has been demonstrated to be required in the process of adipocyte conversion. However, its role in mature adipocytes under physiological and pathological conditions remains unclear. Here, we report a major function of BECN1 in the regulation of basal autophagy in mature adipocytes. We also show that berberine, a natural plant alkaloid, inhibits basal autophagy in adipocytes and adipose tissue of mice fed a high-fat diet via downregulation of BECN1 expression. We further demonstrate that berberine has a pronounced effect on the stability of Becn 1 mRNA through the Mir30 family. These findings explore the potential of BECN1 as a key molecule and a drug target for regulating autophagy in mature adipocytes.

  9. Autophagy and cancer

    Institute of Scientific and Technical Information of China (English)

    Si-Zhao; Lu; Duygu; Dee; Harrison-Findik

    2013-01-01

    Autophagy is a homeostatic and evolutionarily conserved mechanism of self-digestion by which the cells degrade and recycle long-lived proteins and excess or damaged organelles.Autophagy is activated in response to both physiological and pathological stimuli including growth factor depletion,energy deficiency or the upregulation of Bcl-2 protein expression.A novel role of autophagy in various cancers has been proposed.Interestingly,evidence that supports both a positive and negative role of autophagy in the pathogenesis of cancer has been reported.As a tumor suppression mechanism,autophagy maintains genome stability,induces senescence and possibly autophagic cell death.On the other hand,autophagy participates in tumor growth and maintenance by supplying metabolic substrate,limiting oxidative stress,and maintaining cancer stem cell population.It has been proposed that the differential roles of autophagy in cancer are disease type and stage specific.In addition,substrate selectivity might be involved in carrying out the specific effect of autophagy in cancer,and represents one of the potential directions for future studies.

  10. Modulation of Cytokine Production by Drugs with Antiepileptic or Mood Stabilizer Properties in Anti-CD3- and Anti-CD40-Stimulated Blood In Vitro

    Directory of Open Access Journals (Sweden)

    Hubertus Himmerich

    2014-01-01

    Full Text Available Increased cytokine production possibly due to oxidative stress has repeatedly been shown to play a pivotal role in the pathophysiology of epilepsy and bipolar disorder. Recent in vitro and animal studies of valproic acid (VPA report antioxidative and anti-inflammatory properties, and suppression of interleukin (IL-6 and tumor necrosis factor (TNF-α. We tested the effect of drugs with antiepileptic or mood stabilizer properties, namely, primidone (PRM, carbamazepine (CBZ, levetiracetam (LEV, lamotrigine (LTG, VPA, oxcarbazepine (OXC, topiramate (TPM, phenobarbital (PB, and lithium on the production of the following cytokines in vitro: interleukin (IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22, and TNF-α. We performed a whole blood assay with stimulated blood of 14 healthy female subjects. Anti-human CD3 monoclonal antibody OKT3, combined with 5C3 antibody against CD40, was used as stimulant. We found a significant reduction of IL-1 and IL-2 levels with all tested drugs other than lithium in the CD3/5C3-stimulated blood; VPA led to a decrease in IL-1β, IL-2, IL-4, IL-6, IL-17, and TNF-α production, which substantiates and adds knowledge to current hypotheses on VPA’s anti-inflammatory properties.

  11. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation.

    Directory of Open Access Journals (Sweden)

    Yung-Chun Chuang

    Full Text Available Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF induced reactive oxygen species (ROS production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC. In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation.

  12. The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs.

    Science.gov (United States)

    Paduch, Roman; Kandefer-Szerszeń, Martyna; Piersiak, Tomasz

    2010-01-01

    In colorectal cancers, the local cytokine network and the levels of nitric oxide (NO) and reactive oxygen species (ROS) are known to be closely related to cancer progression and metastasis, but the influence of the currently administered therapies on the cancer microenvironment is not completely understood. We analyzed the levels of reactive oxygen species (ROS), nitric oxide (NO), and cachexia-mediated cytokines (IL-1beta, IL-6, TNF-alpha) in cocultures of human colon carcinoma spheroids prepared with cells derived from tumors of different grades with human normal colon epithelial and myofibroblast cells and normal endothelial cells. We also analyzed the influence of standard chemotherapy with 5-fluorouracil (5-FU) and leucovorin (LV) combined with camptothecin (CPT-11) (IFL regimen with drug concentrations adjusted to in vitro conditions) on these parameters. The results indicated that adhesion of colon carcinoma spheroids to colon epithelium and myofibroblast monolayers induced O2- anion production but decreased NO levels compared to the sum of the radicals released by monocultures of the two types of cells. Coculture of colon carcinoma spheroids with endothelium was an exception to this rule, as only HT29 cells decreased NO production. In cocultures, anticancer drugs additionally, though only slightly and insignificantly, increased the production of the radicals compared to a nontreated coculture, but in monocultures, the drugs, and especially CPT-11, were ROS inducers and simultaneously NO production inhibitors. However, the levels of released ROS and NO were dependent on the stage of colon carcinoma that the cells were derived from. LS180 cells (grade B) grown in monocultures produced the lowest ROS levels but were the best producers of NO. Adhesion of tumor spheroids to normal cells influenced the microenvironmental cytokine network compared to monocultures, decreasing IL-1beta and TNF-alpha secretion but significantly enhancing L-6 levels. The addition of

  13. Polymorphisms in autophagy genes and susceptibility to tuberculosis.

    Directory of Open Access Journals (Sweden)

    Mario Songane

    Full Text Available Recent data suggest that autophagy is important for intracellular killing of Mycobacterium tuberculosis, and polymorphisms in the autophagy gene IRGM have been linked with susceptibility to tuberculosis (TB among African-Americans, and with TB caused by particular M. tuberculosis genotypes in Ghana. We compared 22 polymorphisms of 14 autophagy genes between 1022 Indonesian TB patients and 952 matched controls, and between patients infected with different M. tuberculosis genotypes, as determined by spoligotyping. The same autophagy polymorphisms were studied in correlation with ex-vivo production of TNF, IL-1β, IL-6, IL-8, IFN-γ and IL-17 in healthy volunteers. No association was found between TB and polymorphisms in the genes ATG10, ATG16L2, ATG2B, ATG5, ATG9B, IRGM, LAMP1, LAMP3, P2RX7, WIPI1, MTOR and ATG4C. Associations were found between polymorphisms in LAMP1 (p = 0.02 and MTOR (p = 0.02 and infection with the successful M. tuberculosis Beijing genotype. The polymorphisms examined were not associated with M. tuberculosis induced cytokines, except for a polymorphism in ATG10, which was linked with IL-8 production (p = 0.04. All associations found lost statistical significance after correction for multiple testing. This first examination of a broad set of polymorphisms in autophagy genes fails to show a clear association with TB, with M. tuberculosis Beijing genotype infection or with ex-vivo pro-inflammatory cytokine production.

  14. Phosphoinositide-3 kinase inhibition modulates responses to rhinovirus by mechanisms that are predominantly independent of autophagy.

    Directory of Open Access Journals (Sweden)

    Saila Ismail

    Full Text Available Human rhinoviruses (HRV are a major cause of exacerbations of airways disease. Aspects of cell signalling responses to HRV infection remain unclear, particularly with regard to signalling via PI3K, and the PI3K-dependent pathway, autophagy. We investigated the roles of PI3K and autophagy in the responses of epithelial cells to major and minor group HRV infection. The PI3K inhibitor 3-MA, commonly used to inhibit autophagy, markedly reduced HRV-induced cytokine induction. Further investigation of potential targets of 3-MA and comparison of results using this inhibitor to a panel of general and class I-selective PI3K inhibitors showed that several PI3Ks cooperatively regulate responses to HRV. Targeting by siRNA of the autophagy proteins Beclin-1, Atg7, LC3, alone or in combination, or targeting of the autophagy-specific class III PI3K had at most only modest effects on HRV-induced cell signalling as judged by induction of proinflammatory cytokine production. Our data indicate that PI3K and mTOR are involved in induction of proinflammatory cytokines after HRV infection, and that autophagy has little role in the cytokine response to HRV or control of HRV replication.

  15. Autophagy and ethanol neurotoxicity.

    Science.gov (United States)

    Luo, Jia

    2014-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.

  16. Chemical Inhibition of Autophagy

    DEFF Research Database (Denmark)

    Baek, Eric; Lin Kim, Che; Gyeom Kim, Mi;

    2016-01-01

    Chinese hamster ovary (CHO) cells activate and undergo apoptosis and autophagy for various environmental stresses. Unlike apoptosis, studies on increasing the production of therapeutic proteins in CHO cells by targeting the autophagy pathway are limited. In order to identify the effects of chemical...... autophagy inhibitors on the specific productivity (qp), nine chemical inhibitors that had been reported to target three different phases of autophagy (metformin, dorsomorphin, resveratrol, and SP600125 against initiation and nucleation; 3-MA, wortmannin, and LY294002 against elongation, and chloroquine...... and bafilomycin A1 against autophagosome fusion) were used to treat three recombinant CHO (rCHO) cell lines: the Fc-fusion protein-producing DG44 (DG44-Fc) and DUKX-B11 (DUKX-Fc) and antibody-producing DG44 (DG44-Ab) cell lines. Among the nine chemical inhibitors tested, 3-MA, dorsomorphin, and SP600125...

  17. Increased Survivorship and Altered Cytokine Profile from Treatment of Influenza A H1N1-Infected Mice with Ekybion: A Drug Complex of Natural Extracts and Inorganic Compounds

    Directory of Open Access Journals (Sweden)

    Christopher Lupfer

    2011-01-01

    Full Text Available Ekybion is a drug complex of 16 natural extracts and inorganic compounds designed to treat a variety of respiratory pathogens of bacterial and viral origin. It is licensed throughout Europe for the treatment of respiratory tract infections from equine parainfluenza type 3 and equine herpes virus type 1 in equine stables. The purpose of this paper was to test the efficacy of Ekybion on a well-developed animal model of influenza A infection and determine a mode of action. Experiments were performed with Balb/c mice infected with a lethal dose of influenza A/PR/8/34 H1N1 virus and treated with nebulized Ekybion every 8 h in a time-dependant or dose-dependant fashion. These experiments showed that mice treated prior to infection with Ekybion had a higher survival rates (~46% compared with untreated animals (~0%. Paradoxically, these mice showed no significant difference in lung virus titer or weight loss. There was, however, a decrease in the level of GM-CSF, IL-6, and G-CSF cytokines in the lungs of Ekybion-treated, infected mice. It is possible that decreases in proinflammatory cytokines may have contributed to increased survivorship in Ekybion-treated influenza-infected mice.

  18. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    Science.gov (United States)

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.

  19. [Advances in the study of the relationship between autophagy and sepsis-induced lung injury].

    Science.gov (United States)

    Wang, Xingtong; Li, Hengyu; Xia, Zhaofan

    2014-08-01

    Sepsis is one of the most common pathogenetic causes of acute lung injury (ALI), and at present there is still a lack of effective targeted techniques and methods for its prevention and treatment. Autophagy is a homeostatic mecha- nism common to all eukaryotic cells, including adaption to environment, defense against invasion of pathogens, and maintenance of cellular homeostasis. Autophagy is also involved in a variety of lung-related diseases. In septic lung injury, autophagy not only serves to dissipate dysfunctional organelles, but also inhibits the release of inflammatory cytokines. This review aims at eliciting the role of autophagy in sepsis-induced ALI and further exploring the potential targets of autophagy in inhibiting inflammation, in an effort to provide a new perspective for clinical treatment of sepsis-induced ALI.

  20. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana, E-mail: luciana.dini@unisalento.it [Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Lecce 73100 (Italy)

    2013-03-21

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies.

  1. YY1-MIR372-SQSTM1 regulatory axis in autophagy.

    Science.gov (United States)

    Feng, Lifeng; Ma, Yanning; Sun, Jie; Shen, Qi; Liu, Leiming; Lu, Haiqi; Wang, Faliang; Yue, Yongfang; Li, Jiaqiu; Zhang, Shenjie; Lin, Xiaoying; Chu, Jue; Han, Weidong; Wang, Xian; Jin, Hongchuan

    2014-08-01

    Autophagy is a self-proteolytic process that degrades intracellular material to enable cellular survival under unfavorable conditions. However, how autophagy is activated in human carcinogenesis remains largely unknown. Herein we report an epigenetic regulation of autophagy in human cancer cells. YY1 (YY1 transcription factor) is a well-known epigenetic regulator and is upregulated in many cancers. We found that YY1 knockdown inhibited cell viability and autophagy flux through downregulating SQSTM1 (sequestosome 1). YY1 regulated SQSTM1 expression through the epigenetic modulation of the transcription of MIR372 (microRNA 372) which was found to target SQSTM1 directly. During nutrient starvation, YY1 was stimulated to promote SQSTM1 expression and subsequent autophagy activation by suppressing MIR372 expression. Similar to YY1 depletion, MIR372 overexpression blocked autophagy activation and inhibited in vivo tumor growth. SQSTM1 upregulation and competent autophagy flux thus contributed to the oncogenic function of YY1. YY1-promoted SQSTM1 upregulation might be a useful histological marker for cancer detection and a potential target for drug development.

  2. Autophagy research: Lessons from metabolism

    NARCIS (Netherlands)

    A.J. Meijer

    2009-01-01

    Autophagy research continues to expand exponentially. Clearly autophagy and metabolism are intimately connected; however, the rapid expansion of research into this topic inevitably brings the risk that important basic knowledge of metabolism will be overlooked when considering experimental data. Unf

  3. Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency.

    Science.gov (United States)

    Abdel Fattah, Elmoataz; Bhattacharya, Abhisek; Herron, Alan; Safdar, Zeenat; Eissa, N Tony

    2015-06-01

    Autophagy is an important component of the immune response. However, the functions of autophagy in human diseases are much less understood. We studied biological consequences of autophagy deficiency in mice lacking the essential autophagy gene Atg7 or Atg5 in myeloid cells. Surprisingly, these mice presented with spontaneous sterile lung inflammation, characterized by marked recruitment of inflammatory cells, submucosal thickening, goblet cell metaplasia, and increased collagen content. Lung inflammation was associated with increase in several proinflammatory cytokines in the bronchoalveolar lavage and in serum. This inflammation was largely driven by IL-18 as a result of constitutive inflammasome activation. Following i.p. LPS injection, autophagy-deficient mice had higher levels of proinflammatory cytokines in lungs and in serum, as well as increased mortality, than control mice. Intranasal bleomycin challenge exacerbated lung inflammation in autophagy-deficient mice and produced more severe fibrotic changes than in control mice. These results uncover a new and important role for autophagy as negative regulator of lung inflammation.

  4. The interplays between autophagy and apoptosis induced by enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Xueyan Xi

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I to LC3-II and degradation of sequestosome 1 (SQSTM1/P62. Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles. CONCLUSIONS/SIGNIFICANCE: In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection.

  5. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation.

    Science.gov (United States)

    Weindel, Chi G; Richey, Lauren J; Bolland, Silvia; Mehta, Abhiruchi J; Kearney, John F; Huber, Brigitte T

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.

  6. Interactions between Autophagy and Bacterial Toxins: Targets for Therapy?

    Directory of Open Access Journals (Sweden)

    Jacques Mathieu

    2015-08-01

    Full Text Available Autophagy is a physiological process involved in defense mechanisms for clearing intracellular bacteria. The autophagic pathway is finely regulated and bacterial toxins interact with this process in a complex manner. Bacterial toxins also interact significantly with many biochemical processes. Evaluations of the effects of bacterial toxins, such as endotoxins, pore-forming toxins and adenylate cyclases, on autophagy could support the development of new strategies for counteracting bacterial pathogenicity. Treatment strategies could focus on drugs that enhance autophagic processes to improve the clearance of intracellular bacteria. However, further in vivo studies are required to decipher the upregulation of autophagy and potential side effects limiting such approaches. The capacity of autophagy activation strategies to improve the outcome of antibiotic treatment should be investigated in the future.

  7. Interactions between Autophagy and Bacterial Toxins: Targets for Therapy?

    Science.gov (United States)

    Mathieu, Jacques

    2015-08-04

    Autophagy is a physiological process involved in defense mechanisms for clearing intracellular bacteria. The autophagic pathway is finely regulated and bacterial toxins interact with this process in a complex manner. Bacterial toxins also interact significantly with many biochemical processes. Evaluations of the effects of bacterial toxins, such as endotoxins, pore-forming toxins and adenylate cyclases, on autophagy could support the development of new strategies for counteracting bacterial pathogenicity. Treatment strategies could focus on drugs that enhance autophagic processes to improve the clearance of intracellular bacteria. However, further in vivo studies are required to decipher the upregulation of autophagy and potential side effects limiting such approaches. The capacity of autophagy activation strategies to improve the outcome of antibiotic treatment should be investigated in the future.

  8. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy.

    Science.gov (United States)

    Gibson, Spencer B

    2010-10-01

    Reactive oxygen species (ROS) have been implicated in many biological functions and diseases. Often their role is counterintuitive, where ROS can either promote cell survival or cell death depending on the cellular context. Similarly, autophagy is involved in many biological functions and diseases where it can either promote cell survival or cell death. There is now a growing consensus that ROS controls autophagy in multiple contexts and cell types. Furthermore, alterations in ROS and autophagy regulation contribute to cancer initiation and progression. However, how ROS and autophagy contribute to cancer and how to target either for cancer treatment is controversial. Blocking ROS generation could prevent cancer initiation, whereas blockage of autophagy seems to be required for initiation of cancer. In cancer progression, high levels of ROS correspond with increased metabolism and under metabolic stress autophagy is required to maintain cellular integrity. In cancer treatment, therapeutic drugs that increase ROS and autophagy have been implicated in their mechanism for cell death, such as 2-methoxyestrodial (2-ME) and arsenic trioxide (As(2)O(3)), whereas other therapeutic drugs that induce ROS and autophagy seem to have a protective effect. This has led to different approaches to treat cancer patients where autophagy is either activated or inhibited. Both views of ROS and autophagy are valid and reflect the balance within a cell to either survive or die. Understanding this balancing act within a cell is essential to determine whether to block or activate ROS-controlled autophagy for cancer therapy.

  9. Autophagy in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Kadija; Abounit; Tiziano; M; Scarabelli; Roy; B; McCauley

    2012-01-01

    Autophagy is a regulated process for the degradation of cellular components that has been well conserved in eukaryotic cells. The discovery of autophagy-regulating proteins in yeast has been important in understanding this process. Although many parallels exist between fungi and mammals in the regulation and execution of autophagy, there are some important differences. The preautophagosomal structure found in yeast has not been identified in mammals, and it seems that there may be multiple origins for autophagosomes, including endoplasmic reticulum, plasma membrane and mitochondrial outer membrane. The maturation of the phagophore is largely dependent on 5’-AMP activated protein kinase and other factors that lead to the dephosphorylation of mammalian target of rapamycin. Once the process is initiated, the mammalian phagophore elongates and matures into an autophagosome by processes that are similar to those in yeast. Cargo selection is dependent on the ubiquitin conjugation of protein aggregates and organelles and recognition of these conjugates by autophagosomal receptors. Lysosomal degradation of cargo produces metabolites that can be recycled during stress. Autophagy is an impor-tant cellular safeguard during starvation in all eukaryotes; however, it may have more complicated, tissue specific roles in mammals. With certain exceptions, autophagy seems to be cytoprotective, and defects in the process have been associated with human disease.

  10. Complex regulation of autophagy in cancer - integrated approaches to discover the networks that hold a double-edged sword.

    Science.gov (United States)

    Kubisch, János; Türei, Dénes; Földvári-Nagy, László; Dunai, Zsuzsanna A; Zsákai, Lilian; Varga, Máté; Vellai, Tibor; Csermely, Péter; Korcsmáros, Tamás

    2013-08-01

    Autophagy, a highly regulated self-degradation process of eukaryotic cells, is a context-dependent tumor-suppressing mechanism that can also promote tumor cell survival upon stress and treatment resistance. Because of this ambiguity, autophagy is considered as a double-edged sword in oncology, making anti-cancer therapeutic approaches highly challenging. In this review, we present how systems-level knowledge on autophagy regulation can help to develop new strategies and efficiently select novel anti-cancer drug targets. We focus on the protein interactors and transcriptional/post-transcriptional regulators of autophagy as the protein and regulatory networks significantly influence the activity of core autophagy proteins during tumor progression. We list several network resources to identify interactors and regulators of autophagy proteins. As in silico analysis of such networks often necessitates experimental validation, we briefly summarize tractable model organisms to examine the role of autophagy in cancer. We also discuss fluorescence techniques for high-throughput monitoring of autophagy in humans. Finally, the challenges of pharmacological modulation of autophagy are reviewed. We suggest network-based concepts to overcome these difficulties. We point out that a context-dependent modulation of autophagy would be favored in anti-cancer therapy, where autophagy is stimulated in normal cells, while inhibited only in stressed cancer cells. To achieve this goal, we introduce the concept of regulo-network drugs targeting specific transcription factors or miRNA families identified with network analysis. The effect of regulo-network drugs propagates indirectly through transcriptional or post-transcriptional regulation of autophagy proteins, and, as a multi-directional intervention tool, they can both activate and inhibit specific proteins in the same time. The future identification and validation of such regulo-network drug targets may serve as novel intervention

  11. MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy.

    Science.gov (United States)

    Paillas, Salome; Causse, Annick; Marzi, Laetitia; de Medina, Philippe; Poirot, Marc; Denis, Vincent; Vezzio-Vie, Nadia; Espert, Lucile; Arzouk, Hayat; Coquelle, Arnaud; Martineau, Pierre; Del Rio, Maguy; Pattingre, Sophie; Gongora, Céline

    2012-07-01

    Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.

  12. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    Science.gov (United States)

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  13. Targeting Protective Autophagy Exacerbates UV-Triggered Apoptotic Cell Death

    Directory of Open Access Journals (Sweden)

    Shih-Hwa Chiou

    2012-01-01

    Full Text Available Autophagy is activated by various stresses, including DNA damage, and previous studies of DNA damage-induced autophagy have focused on the response to chemotherapeutic drugs, ionizing radiation, and reactive oxygen species. In this study, we investigated the biological significance of autophagic response to ultraviolet (UV irradiation in A549 and H1299 cells. Our results indicated that UV induces on-rate autophagic flux in these cells. Autophagy inhibition resulting from the knockdown of beclin-1 and Atg5 reduced cell viability and enhanced apoptosis. Moreover, we found that ATR phosphorylation was accompanied by microtubule-associated protein 1 light chain 3B II (LC3B-II expression during the early phases following UV irradiation, which is a well-established inducer of ATR. Knocking down ATR further attenuated the reduction in LC3B-II at early stages in response to UV treatment. Despite the potential role of ATR in autophagic response, reduced ATR expression does not affect autophagy induction during late phases (24 and 48 h after UV treatment. The result is consistent with the reduced ATR phosphorylation at the same time points and suggests that autophagic response at this stage is activated via a distinct pathway. In conclusion, this study demonstrated that autophagy acts as a cytoprotective mechanism against UV-induced apoptosis and that autophagy induction accompanied with apoptosis at late stages is independent of ATR activation.

  14. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  15. DNA damage and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States); Panayiotidis, Mihalis I. [School of Community Health Sciences, University of Nevada, Reno, NV 89557 (United States); Franco, Rodrigo, E-mail: rfrancocruz2@unl.edu [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States)

    2011-06-03

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  16. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition.

    Science.gov (United States)

    Xu, Kang; Chen, Weijian; Wang, Xiaofei; Peng, Yan; Liang, Anjing; Huang, Dongsheng; Li, Chunhai; Ye, Wei

    2015-09-01

    Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor‑α (TNF‑α) and interleukin‑1β (IL‑1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and intervertebral disc degeneration. However, the autophagy induced by TNF‑α and IL‑1β and the corresponding molecular mechanism appear to be cell‑type dependent. The effect and mechanism of autophagy regulated by TNF‑α and IL‑1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF‑α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy‑related gene expression in rat NP cells following TNF‑α and IL‑1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF‑κB), c‑Jun N‑terminal kinase (JNK), extracellular signal‑regulated kinases and p38 mitogen‑activated protein kinase inhibitors and TNF‑α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF‑κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF‑κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions.

  17. Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats.

    Science.gov (United States)

    Sun, K; Guo, X-L; Zhao, Q-d; Jing, Y-y; Kou, X-r; Xie, X-q; Zhou, Y; Cai, N; Gao, L; Zhao, X; Zhang, S-s; Song, J-r; Li, D; Deng, W-j; Li, R; Wu, M-c; Wei, L-x

    2013-02-21

    Many reports have shown that autophagy has a role as both a promoter and inhibitor in tumor development. However, the mechanism of this paradox is unknown. Tumor development is a multistep process. Therefore, we investigated whether the role of autophagy in hepatocarcinoma formation depended on the stage of tumor development. Based on our results, autophagy inhibition by chloroquine had a tumor-promotive effect in the rat model with N-diethylnitrosamine-induced hepatocarcinogenesis in its dysplastic stage (Ds) and a tumor-suppressive effect in its tumor-forming stage (Ts). In the Ds, autophagy inhibition enhanced cell proliferation, DNA damage and inflammatory cytokines expression in liver. These changes were dependent on the upregulation of reactive oxygen species (ROS) that was resulted from autophagy inhibition, and ultimately accelerated the process of hepatocarcinogenesis. However, in the Ts, autophagy inhibition restrained tumor formation by decreasing tumor cell survival and proliferation. In this stage, autophagy inhibition led to excessive ROS accumulation in the tumor, which promoted cell apoptosis, and prominently suppressed tumor cell metabolism. Taken together, our data suggested that autophagy suppressed hepatocarcinogenesis in the Ds by protecting normal cell stability and promoted hepatocarcinogenesis in the Ts by supporting tumor cells growth. Autophagy always had a role as a protector throughout the process of hepatocarcinoma development.

  18. The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy.

    Science.gov (United States)

    Lei, Yu; Wen, Haitao; Ting, Jenny P Y

    2013-03-01

    The NLR (nucleotide-binding domain leucine-rich repeat containing) proteins serve as regulators of inflammatory signaling pathways. NLRX1, a mitochondria-localized NLR protein, has been previously shown to negatively regulate inflammatory cytokine production activated via the MAVS-DDX58 (RIG-I) pathway. The literature also indicates that DDX58 has a negative impact upon autophagy. Consistent with the inhibitory role of NLRX1 on DDX58, our recent study indicates a role of NLRX1 in augmenting virus-induced autophagy. This effect is through its interaction with another mitochondrial protein TUFM (Tu translation elongation factor, mitochondrial, also known as EF-TuMT, COXPD4, and P43). TUFM also reduces DDX58-activated cytokines but augments autophagy. Additionally it interacts with ATG12-ATG5-ATG16L1 to form a molecular complex that modulates autophagy. The work shows that both NLRX1 and TUFM work in concert to reduce cytokine response and augment autophagy.

  19. Nutritional Status and Cardiac Autophagy

    Directory of Open Access Journals (Sweden)

    Jihyun Ahn

    2013-02-01

    Full Text Available Autophagy is necessary for the degradation of long-lasting proteins and nonfunctional organelles, and is activated to promote cellular survival. However, overactivation of autophagy may deplete essential molecules and organelles responsible for cellular survival. Lifelong calorie restriction by 40% has been shown to increase the cardiac expression of autophagic markers, which suggests that it may have a cardioprotective effect by decreasing oxidative damage brought on by aging and cardiovascular diseases. Although cardiac autophagy is critical to regulating protein quality and maintaining cellular function and survival, increased or excessive autophagy may have deleterious effects on the heart under some circumstances, including pressure overload-induced heart failure. The importance of autophagy has been shown in nutrient supply and preservation of energy in times of limitation, such as ischemia. Some studies have suggested that a transition from obesity to metabolic syndrome may involve progressive changes in myocardial inflammation, mitochondrial dysfunction, fibrosis, apoptosis, and myocardial autophagy.

  20. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  1. Targeting autophagy in neurodegenerative diseases.

    Science.gov (United States)

    Vidal, René L; Matus, Soledad; Bargsted, Leslie; Hetz, Claudio

    2014-11-01

    The most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process. Thus, a complex scenario is emerging where autophagy may play a dual role in neurodegenerative diseases by causing the downstream effect of promoting the degradation of misfolded proteins and an upstream effect where its deregulation perturbs global proteostasis, contributing to disease progression. Challenges in the future development of therapeutic strategies to target the autophagy pathway are discussed.

  2. LAPping up dead cells to prevent lupus nephritis: a novel role for noncanonical autophagy in autoimmunity.

    Science.gov (United States)

    Leventhal, Jeremy S; Ross, Michael J

    2016-08-01

    The mechanisms underlying the development of systemic lupus erythematosus and lupus nephritis remain poorly understood. A recent study demonstrates that deficiencies in the immune system's ability to degrade scavenged dead cells via noncanonical autophagy is sufficient to break immune tolerance and produce features commonly seen in lupus, including circulating autoantibodies, inflammatory cytokines, and nephritis. This work provides a possible mechanism for the association of polymorphisms in autophagy genes with the risk of lupus.

  3. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2

    NARCIS (Netherlands)

    Plantinga, T.S.; Crisan, T.O.; Oosting, M.; Veerdonk, F.L. van de; Jong, D.J. de; Philpott, D.J.; Meer, J.W. van der; Girardin, S.E.; Joosten, L.A.B.; Netea, M.G.

    2011-01-01

    OBJECTIVE: Autophagy has recently been shown to modulate the production of pro-inflammatory cytokine production and to contribute to antigen processing and presentation through the major histocompatibility complex. Genetic variation in the autophagy gene ATG16L1 has been recently implicated in Crohn

  4. Inflammatory Stress on Autophagy in Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease during 24 Months of Follow-Up.

    Directory of Open Access Journals (Sweden)

    Arnaud François

    Full Text Available Recent findings indicate that microglia in Alzheimer's disease (AD is senescent whereas peripheral blood mononuclear cells (PBMCs could infiltrate the brain to phagocyte amyloid deposits. However, the molecular mechanisms involved in the amyloid peptide clearance remain unknown. Autophagy is a physiological degradation of proteins and organelles and can be controlled by pro-inflammatory cytokines. The purpose of this study was to evaluate the impact of inflammation on autophagy in PBMCs from AD patients at baseline, 12 and 24 months of follow-up. Furthermore, PBMCs from healthy patients were also included and treated with 20 μM amyloid peptide 1-42 to mimic AD environment. For each patient, PBMCs were stimulated with the mitogenic factor, phytohaemagglutin (PHA, and treated with either 1 μM C16 as an anti-inflammatory drug or its vehicle. Autophagic markers (Beclin-1, p62/sequestosome 1 and microtubule-associated protein-light chain 3: LC3 were quantified by western blot and cytokines (Interleukin (IL-1β, Tumor necrosis Factor (TNF-α and IL-6 by Luminex X-MAP® technology. Beclin-1 and TNF-α levels were inversely correlated in AD PBMCs at 12 months post-inclusion. In addition, Beclin-1 and p62 increased in the low inflammatory environment induced by C16. Only LC3-I levels were inversely correlated with cognitive decline at baseline. For the first time, this study describes longitudinal changes in autophagic markers in PBMCs of AD patients under an inflammatory environment. Inflammation would induce autophagy in the PBMCs of AD patients while an anti-inflammatory environment could inhibit their autophagic response. However, this positive response could be altered in a highly aggressive environment.

  5. Autophagy and the (Pro)renin Receptor.

    Science.gov (United States)

    Binger, Katrina J; Muller, Dominik N

    2013-10-21

    The (pro)renin receptor (PRR) is a newly reported member of the renin-angiotensin system (RAS); a hormonal cascade responsible for regulating blood pressure. Originally, identification of PRR was heralded as the next drug target of the RAS, of which such therapies would have increased benefits against target-organ damage and hypertension. However, in the years since its discovery, several conditional knockout mouse models of PRR have demonstrated an essential role for this receptor unrelated to the RAS and blood pressure. Specific deletion of PRR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure and subsequently animal mortality after only a matter of weeks. In both cell types, loss of PRR resulted in the intracellular accumulation of autophagosomes and misfolded proteins, indicating a disturbance in autophagy. In light of the fact that the majority of PRR is located intracellularly, this molecular function appears to be more relevant than its ability to bind to high, non-physiological concentrations of (pro)renin. This review will focus on the role of PRR in autophagy and its importance in maintaining cellular homeostasis. Understanding the link between PRR, autophagy and how its loss results in cell death will be essential for deciphering its role in physiology and pathology.

  6. Modulation of Apoptosis Pathways by Oxidative Stress and Autophagy in β Cells

    Directory of Open Access Journals (Sweden)

    Maorong Wang

    2012-01-01

    Full Text Available Human islets isolated for transplantation are exposed to multiple stresses including oxidative stress and hypoxia resulting in significant loss of functional β cell mass. In this study we examined the modulation of apoptosis pathway genes in islets exposed to hydrogen peroxide, peroxynitrite, hypoxia, and cytokines. We observed parallel induction of pro- and antiapoptotic pathways and identified several novel genes including BFAR, CARD8, BNIP3, and CIDE-A. As BNIP3 is an inducer of autophagy, we examined this pathway in MIN6 cells, a mouse beta cell line and in human islets. Culture of MIN6 cells under low serum conditions increased the levels of several proteins in autophagy pathway, including ATG4, Beclin 1, LAMP-2, and UVRAG. Amino acid deprivation led to induction of autophagy in human islets. Preconditioning of islets with inducers of autophagy protected them from hypoxia-induced apoptosis. However, induction of autophagy during hypoxia exacerbated apoptotic cell death. ER stress led to induction of autophagy and apoptosis in β cells. Overexpression of MnSOD, an enzyme that scavenges free radicals, resulted in protection of MIN6 cells from cytokine-induced apoptosis. Ceramide, a mediator of cytokine-induced injury, reduced the active phosphorylated form of Akt and downregulated the promoter activity of the antiapoptotic gene bcl-2. Furthermore, cytokine-stimulated JNK pathway downregulated the bcl-2 promoter activity which was reversed by preincubation with SP600125, a JNK inhibitor. Our findings suggest that β cell apoptosis by multiple stresses in islets isolated for transplantation is the result of orchestrated gene expression in apoptosis pathway.

  7. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa.

    Directory of Open Access Journals (Sweden)

    Efrat Harel

    Full Text Available Therapeutic intervention in inflammatory bowel diseases (IBDs is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor.

  8. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    Science.gov (United States)

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  9. [Cytokines in bone diseases. What is cytokine?].

    Science.gov (United States)

    Murakami, Yousuke; Kohsaka, Hitoshi

    2010-10-01

    Cytokines have an essential role for cell-cell communication. They can regulate cell proliferation, differentiation, survival, and function. Interaction of cell surface receptor with cytokines is necessary for control of physiological responses. Activation of cytokine receptors transduces specific signal in the receptor-expressing cells, resulting that cytokines can regulate specific cell population. Thus, cytokines contribute directly or indirectly to morphogenesis, host defense and immune response, play critical roles for homeostasis and development.

  10. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  11. Autophagy: Regulation by Energy Sensing

    NARCIS (Netherlands)

    A.J. Meijer; P. Codogno

    2011-01-01

    Autophagy is inhibited by the mTOR signaling pathway, which is stimulated by increased amino acid levels. When cellular energy production is compromised, AMP-activated protein kinase is activated, mTOR is inhibited and autophagy is stimulated. Two recent studies have shed light on the molecular mech

  12. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  13. Neuronal autophagy in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Jin-Hua Gu; Zheng-Hong Qin

    2012-01-01

    Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components,such as long-lived proteins and organelles.In neurons,autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions,while it is upregulated in response to pathophysiological conditions,such as cerebral ischemic injury.However,the role of autophagy is more complex.It depends on age or brain maturity,region,severity of insult,and the stage of ischemia.Whether autophagy plays a beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions.In this review,we elucidate the role of neuronal autophagy in cerebral ischemia.

  14. Autophagy- An emerging target for melanoma therapy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Abibatou Ndoye

    2016-07-01

    Full Text Available Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation.

  15. Methamphetamine-induced toxicity: The role of autophagy?

    Science.gov (United States)

    Roohbakhsh, Ali; Shirani, Kobra; Karimi, Gholamreza

    2016-12-25

    Methamphetamine (METH) is a highly potent and addictive drug with major medical, psychiatric, cognitive, socioeconomic, and legal consequences. It is well absorbed following different routes of administration and distributed throughout the body. METH is known as psychomotor stimulant with potent physiological outcomes on peripheral and central nervous systems, resulting in physical and psychological disorders. Autophagy is a highly conserved and regulated catabolic pathway which is critical for maintaining cellular energy homeostasis and regulating cell growth. The mechanism of autophagy has attracted considerable attention in the last few years because of its recognition as a vital arbiter of death/survival decisions in cells and as a critical defense mechanism in undesirable physiological conditions. The purpose of the current article was to review available evidence to find a relationship between METH toxicity and mechanisms associated with autophagy in different organs.

  16. Evidence for selective mitochondrial autophagy and failure in aging.

    Science.gov (United States)

    Cavallini, Gabriella; Donati, Alessio; Taddei, Michele; Bergamini, Ettore

    2007-01-01

    Autophagy is a major intracellular degradation/recycling system ubiquitous in eukaryotic cells. It contributes to the turnover of cellular components by delivering portions of the cytoplasm and organelles to lysosomes, where they are digested. Starvation-induced autophagy is required for maintaining an amino acid pool for gluconeogenesis and for the synthesis of proteins essential to survival under starvation conditions. In addition, autophagy plays an important role in the degradation of excess or injured organelles, including mitochondria. To test the hypothesis of an involvement of a decrease in autophagy in the process of aging, we explored the antiaging effects of pharmacological stimulation of autophagy on the age-dependent accumulation of 8-OHdG-rich mitochondria in rat liver. Male 3-month and 16-month-old 24 hours-fasted Sprague Dawley rats were injected with the antilipolytic agent [3,5-dimethylpyrazole (DMP)] intraperitoneally. Results showed that drug injection rescued older cells from the accumulation of 8-OHdG in the mtDNA in less than 6 hours, but no significant decrease in the level of cytochrome c oxidase activity was observed. Together, these data provide indirect evidence that 8-OHdG might accumulate in a small pool of mitochondria with increasing age rather than be degraded by the autophagic machinery selectively.

  17. Autophagy in Macrophages: Impacting Inflammation and Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Ali Vural

    2014-01-01

    Full Text Available Macrophages are on the front line of host defense. They possess an array of germline-encoded pattern recognition receptors/sensors (PRRs that recognize pathogen-associated molecular patterns (PAMPs and which activate downstream effectors/pathways to help mediate innate immune responses and host defense. Innate immune responses include the rapid induction of transcriptional networks that trigger the production of cytokines, chemokines, and cytotoxic molecules; the mobilization of cells including neutrophils and other leukocytes; the engulfment of pathogens by phagocytosis and their delivery to lysosome for degradation; and the induction of autophagy. Autophagy is a catabolic process that normally maintains cellular homeostasis in a lysosome-dependent manner, but it also functions as a cytoprotective response that intersects with a variety of general stress-response pathways. This review focuses on the intimately linked molecular mechanisms that help govern the autophagic pathway and macrophage innate immune responses.

  18. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy.

    Science.gov (United States)

    Zhang, Lu; Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan; Guo, YuQi

    2016-03-01

    Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe3O4NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe3O4NPs (B-Fe3O4NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe3O4NPs did not induce cell death within 24h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe3O4NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe3O4NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe3O4NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe3O4NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe3O4NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe3O4NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  19. Autophagy and neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Evangelia Kesidou; Roza Lagoudaki; Olga Touloumi; Kyriaki-Nefeli Poulatsidou; Constantina Simeonidou

    2013-01-01

    Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracel ular mechanism that removes damaged organelles and misfolded proteins in order to maintain cel homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.

  20. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium.

    Science.gov (United States)

    Chen, Zhi-Hua; Wu, Yin-Fang; Wang, Ping-Li; Wu, Yan-Ping; Li, Zhou-Yang; Zhao, Yun; Zhou, Jie-Sen; Zhu, Chen; Cao, Chao; Mao, Yuan-Yuan; Xu, Feng; Wang, Bei-Bei; Cormier, Stephania A; Ying, Song-Min; Li, Wen; Shen, Hua-Hao

    2016-01-01

    Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux.

  1. Elaborating the role of natural products-induced autophagy in cancer treatment: achievements and artifacts in the state of the art.

    Science.gov (United States)

    Wang, Ning; Feng, Yibin

    2015-01-01

    Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.

  2. The influence of autophagy on mouse inflammatory responses caused by Salmonella enterica serovar Typhimurium with spv genes

    Institute of Scientific and Technical Information of China (English)

    LI Yuan-Yuan; WU Shu-Yan; CHU Yuan-Yuan; LIAO LI; LIQiong; HUANG Rui

    2011-01-01

    An investigation into the effects of Salmonella plasmid virulence genes (spv) on autophagy,apoptosis,and inflammation was carried out in mice,using a strain of Salmonella enterica serovar Typhimurium (S.typhimurium) SR-11 carrying spv.Strain BRD509 without spy was used as a control.Results showed that the expression of autophagy protein Beclin-1 in the livers and spleens in the SR-11 group was lower than that in the BRD509 group,while the apoptosis protein,Caspase-3,was higher in the SR-11 group.Inflammatory cytokine levels [interleukin 12 (IL-12) and interferon γ (IFN-γ)] were higher in the SR-11 group compared with those in the BRD509 group since 4 d post-infection.In addition,we found an increase in severe pathological changes and larger viable bacterial amounts in livers and spleens in the SR-11 group.After intervention with autophagy agonist rapamycin (RAPA),Beclin-1 expression increased in both groups,while Caspase-3 expression was different between the two groups: Caspase-3 decreased in the SR-11 group but increased in the BRD509 group.Moreover,RAPA decreased cytokine levels,bacterial quantity and organ-related injury in the SR-11 group whereas RAPA increased cytokine levels and aggravated organ injury in the BRD509 group.Results from these studies suggest that S.typhimurium with spv genes may exacerbate infection by inhibiting autophagy and affecting the production of inflammatory cytokines.RAPA-enhanced autophagy may improve the secretion of cytokines in order to protect the host from damaging by Salmonella infection.Our study suggests that the regulation of cellular autophagy may play a role in the prevention and control of certain infectious diseases.

  3. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangling; Luo, Peihua; Wang, Jincheng; Dai, Jiabin; Yang, Xiaochun; Wu, Honghai; Yang, Bo, E-mail: yang924@zju.edu.cn; He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn

    2014-01-15

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.

  4. Autophagy in colorectal cancer:An important switch from physiology to pathology

    Institute of Scientific and Technical Information of China (English)

    Florin; Burada; Elena; Raluca; Nicoli; Marius; Eugen; Ciurea; Daniel; Constantin; Uscatu; Mihai; Ioana; Dan; Ionut; Gheonea

    2015-01-01

    Colorectal cancer(CRC) remains a leading cause of cancer death in both men and women worldwide.Among the factors and mechanisms that are involved in the multifactorial etiology of CRC,autophagy is an important transformational switch that occurs when a cell shifts from normal to malignant.In recent years,multiple hypotheses have been considered regarding the autophagy mechanisms that are involved in cancer.The currently accepted hypothesis is that autophagy has dual and contradictory roles in carcinogenesis,but the precise mechanisms leading to autophagy in cancer are not yet fully defined and seem to be context dependent.Autophagy is a surveillance mechanism used by normal cells that protects them from the transformation to malignancy by removing damaged organelles and aggregated proteins and by reducing reactive oxygen species,mitochondrial abnormalities and DNA damage.However,autophagy also supports tumor formation by promoting access to nutrients that are critical to the metabolism and growth of tumor cells and by inhibiting cellular death and increasing drug resistance.Autophagy studies in CRC have focused on several molecules,mainly microtubule-associated protein 1 light chain 3,beclin 1,and autophagy related 5,with conflicting results.Beneficial effects were observed for some agents that modulate autophagy in CRC either alone or,more often,in combination with other agents.More extensive studies are needed in the future to clarify the roles of autophagy-related genes and modulators in colorectal carcinogenesis,and to develop potential beneficial agents for the prognosis and treatment of CRC.

  5. Circadian Rhythm in Cytokines Administration.

    Science.gov (United States)

    Trufakin, Valery A; Shurlygina, Anna V

    2016-01-01

    In recent times, a number of diseases involving immune system dysfunction have appeared. This increases the importance of research aimed at finding and developing optimized methods for immune system correction. Numerous studies have found a positive effect in using cytokines to treat a variety of diseases, yet the clinical use of cytokines is limited by their toxicity. Research in the field of chronotherapy, aimed at designing schedules of medicine intake using circadian biorhythms of endogenous production of factors, and receptors' expression to the factors on the target cells, as well as chronopharmacodynamics and chronopharmacokinetics of medicines may contribute to the solution of this problem. Advantages of chronotherapy include a greater effectiveness of treatment, reduced dose of required drugs, and minimized adverse effects. This review presents data on the presence of circadian rhythms of spontaneous and induced cytokine production, as well as the expression of cytokine receptors in the healthy body and in a number of diseases. The article reviews various effects of cytokines, used at different times of the day in humans and experimental animals, as well as possible mechanisms underlying the chronodependent effects of cytokines. The article presents the results of chronotherapeutic modes of administering IL-2, interferons, G-CSF, and GM-CSF in treatment of various types of cancer as well as in experimental models of immune suppression and inflammation, which lead to a greater effectiveness of therapy, the possibility of reducing or increasing the dosage, and reduced drug toxicity. Further research in this field will contribute to the effectiveness and safety of cytokine therapy.

  6. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells.

    Science.gov (United States)

    Martinez, Jennifer; Cunha, Larissa D; Park, Sunmin; Yang, Mao; Lu, Qun; Orchard, Robert; Li, Quan-Zhen; Yan, Mei; Janke, Laura; Guy, Cliff; Linkermann, Andreas; Virgin, Herbert W; Green, Douglas R

    2016-05-01

    Defects in clearance of dying cells have been proposed to underlie the pathogenesis of systemic lupus erythematosus (SLE). Mice lacking molecules associated with dying cell clearance develop SLE-like disease, and phagocytes from patients with SLE often display defective clearance and increased inflammatory cytokine production when exposed to dying cells in vitro. Previously, we and others described a form of noncanonical autophagy known as LC3-associated phagocytosis (LAP), in which phagosomes containing engulfed particles, including dying cells, recruit elements of the autophagy pathway to facilitate maturation of phagosomes and digestion of their contents. Genome-wide association studies have identified polymorphisms in the Atg5 (ref. 8) and possibly Atg7 (ref. 9) genes, involved in both canonical autophagy and LAP, as markers of a predisposition for SLE. Here we describe the consequences of defective LAP in vivo. Mice lacking any of several components of the LAP pathway show increased serum levels of inflammatory cytokines and autoantibodies, glomerular immune complex deposition, and evidence of kidney damage. When dying cells are injected into LAP-deficient mice, they are engulfed but not efficiently degraded and trigger acute elevation of pro-inflammatory cytokines but not anti-inflammatory interleukin (IL)-10. Repeated injection of dying cells into LAP-deficient, but not LAP-sufficient, mice accelerated the development of SLE-like disease, including increased serum levels of autoantibodies. By contrast, mice deficient in genes required for canonical autophagy but not LAP do not display defective dying cell clearance, inflammatory cytokine production, or SLE-like disease, and, like wild-type mice, produce IL-10 in response to dying cells. Therefore, defects in LAP, rather than canonical autophagy, can cause SLE-like phenomena, and may contribute to the pathogenesis of SLE.

  7. Defective Autophagy Initiates Malignant Transformation.

    Science.gov (United States)

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kroemer, Guido

    2016-05-19

    In this issue of Molecular Cell, Park et al. (2016) elegantly demonstrate that a partial defect in autophagy supports malignant transformation as it favors the production of genotoxic reactive oxygen species by mitochondria.

  8. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.

    LENUS (Irish Health Repository)

    Lawlor, Ciaran

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.

  9. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  10. Rapamycin Improves Palmitate-Induced ER Stress/NF κ B Pathways Associated with Stimulating Autophagy in Adipocytes

    Directory of Open Access Journals (Sweden)

    Jiajing Yin

    2015-01-01

    Full Text Available Obesity-induced endoplasmic reticulum (ER stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  11. Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes.

    Science.gov (United States)

    Yin, Jiajing; Gu, Liping; Wang, Yufan; Fan, Nengguang; Ma, Yuhang; Peng, Yongde

    2015-01-01

    Obesity-induced endoplasmic reticulum (ER) stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA) to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ) exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  12. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.

    Science.gov (United States)

    Morgan, Michael J; Gamez, Graciela; Menke, Christina; Hernandez, Ariel; Thorburn, Jacqueline; Gidan, Freddi; Staskiewicz, Leah; Morgan, Shellie; Cummings, Christopher; Maycotte, Paola; Thorburn, Andrew

    2014-10-01

    Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.

  13. A curated census of autophagy-modulating proteins and small molecules: candidate targets for cancer therapy.

    Science.gov (United States)

    Lorenzi, Philip L; Claerhout, Sofie; Mills, Gordon B; Weinstein, John N

    2014-07-01

    Autophagy, a programmed process in which cell contents are delivered to lysosomes for degradation, appears to have both tumor-suppressive and tumor-promoting functions; both stimulation and inhibition of autophagy have been reported to induce cancer cell death, and particular genes and proteins have been associated both positively and negatively with autophagy. To provide a basis for incisive analysis of those complexities and ambiguities and to guide development of new autophagy-targeted treatments for cancer, we have compiled a comprehensive, curated inventory of autophagy modulators by integrating information from published siRNA screens, multiple pathway analysis algorithms, and extensive, manually curated text-mining of the literature. The resulting inventory includes 739 proteins and 385 chemicals (including drugs, small molecules, and metabolites). Because autophagy is still at an early stage of investigation, we provide extensive analysis of our sources of information and their complex relationships with each other. We conclude with a discussion of novel strategies that could potentially be used to target autophagy for cancer therapy.

  14. You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia.

    Science.gov (United States)

    Sehgal, A R; Konig, H; Johnson, D E; Tang, D; Amaravadi, R K; Boyiadzis, M; Lotze, M T

    2015-03-01

    A deeper understanding of the role of autophagy, literally 'self-eating', in normal and cancer cell biology has emerged over the last few years. Autophagy serves as a vehicle for cells to respond to various stressors including genomic, hypoxic and nutrient stress, and to oppose mechanisms of 'programmed' cell death. Here, we review not only mechanisms of cell death and cell survival but also the early successes in applying autophagy inhibition strategies in solid tumors using the only currently available clinical inhibitor, oral hydroxychloroquine. In acute leukemia, currently available chemotherapy drugs promote cell death and demonstrate clinical benefit, but relapse and subsequent chemotherapy resistance is common. Increasing preclinical data suggest that autophagy is active in leukemia as a means of promoting cell survival in response to chemotherapy. We propose coupling autophagy inhibition strategies with current cytotoxic chemotherapy and discuss synergistic combinations of available anti-leukemic therapies with autophagy inhibition. Furthermore, novel autophagy inhibitors are in development and promise to provide new therapeutic opportunities for patients with leukemia.

  15. Macrophage Autophagy in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Maria Chiara Maiuri

    2013-01-01

    Full Text Available Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility.

  16. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    Science.gov (United States)

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  17. MicroRNA-146a Induced by Hypoxia Promotes Chondrocyte Autophagy through Bcl-2

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2015-10-01

    Full Text Available Background/Aims: There have been many studies on the etiology of osteoarthritis (OA with regard to the function of inflammatory cytokines, the process of cartilage degradation, the function of miR-146a, hypoxia stimulation and autophagy in OA chondrocytes, but there have been no reports on the relationship between miR-146a and autophagy in cartilage, especially under hypoxia. This study aimed to confirm the relationship of miR-146a and autophagy in cartilage under hypoxia. Methods: Chondrocytes were treated by hypoxia gradients, and the main factors including HIF-1α, HIF-2α, miR-146a and Bcl-2 and autophagy markers ULK-1, ATG-5 were detected by quantitative PCR (Q-PCR and western blotting. The autophagy marker LC-3 was detected by immunofluorescence. The reciprocal effects between miR-146a and Bcl-2 were confirmed by several combinations of shRNAs and adenovirus-gene systems followed by Q-PCR and western blot detection. Results: Hypoxia maintained the chondrocytes phenotype and promoted autophagy and miR-146a expression via HIF-1α, but not HIF-2α, while miR-146a did not reversely affect HIF-1α. The autophagy induced by hypoxia through HIF-1α, miR-146a and Bcl-2. Simply, hypoxia induced HIF-1α, and HIF-1α increased miR-146a, but miR-146a suppressed Bcl-2, an autophagy inhibitor. While Bcl-2 affected neither HIF-1α nor miR-146a. The absence of both HIF-1α and miR-146a or Bcl-2 over-expression inhibited hypoxia-induced autophagy. Conclusion: HIF-1α, miR-146a and Bcl-2 play crucial roles during hypoxia-induced autophagy, Hypoxia, HIF-1α and miR-146a promote chondrocytes autophagy via depressing Bcl-2. We conclude that miR-146a may serve as a novel therapeutic target for protecting cartilage from degeneration in OA.

  18. Cytokine profile in murine toxoplasmosis

    Institute of Scientific and Technical Information of China (English)

    Funda Dogruman-Al; Isil Fidan; Bekir Celebi; Emine Yesilyurt; Berna Erdal; Cahit Babur; Semra Kustimur

    2011-01-01

    Objective: To investigate which cytokines are produced after acute infection of mice withToxoplasma gondii (T. Gondii) RH strain. Methods: Mus domesticus domesticus mice in infected group were inoculated with with highly virulent T. Gondii RH strain by intraperitoneally. Serum samples were obtained from infected and non-infected mice for cytokine levels for ELISA assay. Results: The concentrations of tumor necrosis factor-α, interferonγ, interleukin (IL)-10 and IL-12 in the cardiac blood sample of the infected mice were significantly higher than those in uninfected controls (P0.05). Conclusions: According to our findings, immune response into T helper type 1 was predominant during acute T. gondii infection. Further characterization and purification of Toxoplasma molecule(s) implicated in the regulation of cytokines could lead to the development of new drug prospects to control Toxoplasma infection.

  19. Fluorescence microscopy: A tool to study autophagy

    Science.gov (United States)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  20. Autophagy and apoptosis: rivals or mates?

    Institute of Scientific and Technical Information of China (English)

    Yan Cheng; Jin-Ming Yang

    2013-01-01

    Autophagy,a cellular process of "self-eating" by which intracellular components are degraded within the lysosome,is an evolutionarily conserved response to various stresses.Autophagy is associated with numerous patho-physiological conditions,and dysregulation of autophagy contributes to the pathogenesis of a variety of human diseases including cancer.Depending on context,activation of autophagy may promote either cell survival or death,two major events that determine pathological process of many illnesses.Importantly,the activity of autophagy is often associated with apoptosis,another critical cellular process determining cellular fate.A better understanding of biology of autophagy and its implication in human health and disorder,as well as the relationship between autophagy and apoptosis,has the potential of facilitating the development of autophagy-based therapeutic interventions for human diseases such as cancer.

  1. Autophagy Mediates HBx-Induced Nuclear Factor-κB Activation and Release of IL-6, IL-8, and CXCL2 in Hepatocytes.

    Science.gov (United States)

    Luo, Millore X M; Wong, Sunny H; Chan, Matthew T V; Yu, Le; Yu, Sidney S B; Wu, Feng; Xiao, Zhangang; Wang, Xiaojuan; Zhang, Lin; Cheng, Alfred S L; Ng, Simon S M; Chan, Francis K L; Cho, Chi H; Yu, Jun; Sung, Joseph J Y; Wu, William K K

    2015-10-01

    Hepatitis B virus (HBV) and one of its encoded proteins, HBV X protein (HBx), have been shown to induce autophagy in hepatoma cells. Substantial evidence indicates that autophagy is a potent suppressor of inflammation. However, sporadic reports suggest that autophagy could promote pro-inflammatory cytokine expression and inflammation in some biological contexts. Here, we show that overexpression of HBx induces LC3B-positive autophagosome formation, increases autophagic flux and enhances the expression of ATG5, ATG7, and LC3B-II in normal hepatocytes. Abrogation of autophagy by small interfering RNA against ATG5 and ATG7 prevents HBx-induced formation of autophagosomes. Autophagy inhibition also abrogates HBx-induced activation of nuclear factor-κB (NF-κB) and production of interleukin-6 (IL-6), IL-8, and CXCL2. These findings suggest that autophagy is required for HBx-induced NF-κB activation and pro-inflammatory cytokine production and could shed new light on the complex role of autophagy in the modulation of inflammation.

  2. Lacritin and other autophagy associated proteins in ocular surface health.

    Science.gov (United States)

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.

  3. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  4. Insulin Influences Autophagy Response Distinctively in Macrophages of Different Compartments

    Directory of Open Access Journals (Sweden)

    Karen K. S. Sunahara

    2014-11-01

    Full Text Available Background/Aims: Diabetes mellitus (DM is characterized by hyperglycemia, associated to a lack or inefficiency of the insulin to regulate glucose metabolism. DM is also marked by alterations in a diversity of cellular processes that need to be further unraveled. In this study, we examined the autophagy pathway in diabetic rat macrophages before and after treatment with insulin. Methods: Bone marrow-derived macrophages (BMM, bronchoalveolar lavage (BAL and splenic tissue of diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days and control rats (physiological saline, i.v.. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c. 8 h before experiments. For characterization of the model and evaluation of the effect of insulin on the autophagic process, the following analyzes were performed: (a concentrations of cytokines: interleukin (IL-1β, tumor necrosis factor (TNF-α, IL-6, IL-4, IL-10, cytokine-induced neutrophil chemoattractant (CINC-1 and CINC-2 in the BAL supernatant was measured by ELISA; (b characterization of alveolar macrophage (AM of the BAL as surface antigens (MHCII, pan-macrophage KiM2R, CD11b and autophagic markers (protein microtubule-associated light chain (LC3, autophagy protein (Atg12 by flow cytometry and confocal microscopy (c study of macrophages differentiated from the bone marrow by flow cytometry and confocal microscopy (d histology of the spleen by immunohistochemistry associated with confocal microscopy. Results: Interestingly, insulin exerted antagonistic effects on macrophages from different tissues. Macrophages from bronchoalveolar lavage (BAL enhanced their LC3 autophagosome bound content after treatment with insulin whereas splenic macrophages from red pulp in diabetic rats failed to enhance their Atg 12 levels compared to control animals. Insulin treatment in diabetic rats did not change LC3 content in bone marrow derived macrophages (BMM. M1 and M2 macrophages behaved accordingly to the

  5. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling.

    Directory of Open Access Journals (Sweden)

    Dong-Min Shin

    Full Text Available The "enhanced intracellular survival" (eis gene of Mycobacterium tuberculosis (Mtb is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner.

  6. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells

    Science.gov (United States)

    Pellegrini, Paola; Dyczynski, Matheus; Sbrana, Francesca Vittoria; Karlgren, Maria; Buoncervello, Maria; Hägg-Olofsson, Maria; Ma, Ran; Hartman, Johan; Bajalica-Lagercrantz, Svetlana; Grander, Dan; Kharaziha, Pedram; De Milito, Angelo

    2016-01-01

    Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits. PMID:27248168

  7. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy

    Science.gov (United States)

    Wei, Pengfei; Zhang, Li; Lu, Yang; Man, Na; Wen, Longping

    2010-12-01

    Autophagy, an evolutionally conserved intracellular process degrading cytoplasmic proteins and organelles for recycling, has become one of the most remarkable strategies applied in cancer research. The fullerene C60 nanoparticle (nC60) has been shown to induce autophagy and sensitize chemotherapeutic killing of cancer cells, but the details still remain unknown. Here we show that a water-dispersed nanoparticle solution of derivatized fullerene C60, C60(Nd) nanoparticles (nC60(Nd)), has greater potential in inducing autophagy and sensitizing chemotherapeutic killing of both normal and drug-resistant cancer cells than nC60 does in an autophagy-dependent fashion. Additionally we further demonstrated that autophagy induced by nC60/C60(Nd) and Rapamycin had completely different roles in cancer chemotherapy. Our results, for the first time, revealed a novel and more potent derivative of the C60 nanoparticle in enhancing the cytotoxicity of chemotherapeutic agents and reducing drug resistance through autophagy modulation, which may ultimately lead to novel therapeutic strategies in cancer therapy.

  8. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Pengfei; Zhang Li; Man Na; Wen Longping [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (China); Lu Yang, E-mail: lpwen@ustc.edu.cn [Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui (China)

    2010-12-10

    Autophagy, an evolutionally conserved intracellular process degrading cytoplasmic proteins and organelles for recycling, has become one of the most remarkable strategies applied in cancer research. The fullerene C60 nanoparticle (nC60) has been shown to induce autophagy and sensitize chemotherapeutic killing of cancer cells, but the details still remain unknown. Here we show that a water-dispersed nanoparticle solution of derivatized fullerene C60, C60(Nd) nanoparticles (nC60(Nd)), has greater potential in inducing autophagy and sensitizing chemotherapeutic killing of both normal and drug-resistant cancer cells than nC60 does in an autophagy-dependent fashion. Additionally we further demonstrated that autophagy induced by nC60/C60(Nd) and Rapamycin had completely different roles in cancer chemotherapy. Our results, for the first time, revealed a novel and more potent derivative of the C60 nanoparticle in enhancing the cytotoxicity of chemotherapeutic agents and reducing drug resistance through autophagy modulation, which may ultimately lead to novel therapeutic strategies in cancer therapy.

  9. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model

    Science.gov (United States)

    Nguyen, H G; Yang, J C; Kung, H-J; Shi, X-B; Tilki, D; Lara, P N; DeVere White, R W; Gao, A C; Evans, C P

    2014-01-01

    Macro-autophagy is associated with drug resistance in various cancers and can function as an adaptive response to maintain cell survival under metabolic stresses, including androgen deprivation. Androgen deprivation or treatment with androgen receptor (AR) signaling inhibitor (ARSI), Enzalutamide (MDV-3100, ENZA) or bicalutamide induced autophagy in androgen-dependent and in castration-resistant CaP (castration-resistant prostate cancer (CRPC)) cell lines. The autophagic cascade triggered by AR blockage, correlated with the increased light chain 3-II/I ratio and ATG-5 expression. Autophagy was observed in a subpopulation of C4-2B cells that developed insensitivity to ENZA after sustained exposure in culture. Using flow cytometry and clonogenic assays, we showed that inhibiting autophagy with clomipramine (CMI), chloroquine or metformin increased apoptosis and significantly impaired cell viability. This autophagic process was mediated by AMP-dependent protein kinase (AMPK) activation and the suppression of mammalian target of rapamycin (mTOR) through Raptor phosphorylation (Serine 792). Furthermore, small interfering RNA targeting AMPK significantly inhibited autophagy and promoted cell death in CaP cells acutely or chronically exposed to ENZA or androgen deprivation, suggesting that autophagy is an important survival mechanism in CRPC. Lastly, in vivo studies with mice orthotopically implanted with ENZA-resistant cells demonstrated that the combination of ENZA and autophagy modulators, CMI or metformin significantly reduced tumor growth when compared with control groups (P<0.005). In conclusion, autophagy is as an important mechanism of resistance to ARSI in CRPC. Antiandrogen-induced autophagy is mediated through the activation of AMPK pathway and the suppression of mTOR pathway. Blocking autophagy pharmacologically or genetically significantly impairs prostate cancer cell survival in vitro and in vivo, implying the therapeutics potential of autophagy inhibitors

  10. Brazilin Limits Inflammatory Responses through Induction of Prosurvival Autophagy in Rheumatoid Fibroblast-Like Synoviocytes.

    Directory of Open Access Journals (Sweden)

    Hyunji Lee

    Full Text Available Brazilin is an active compound of Caesalpinia sappan L. (Leguminosae, which possesses pro-apoptotic and anti-inflammation potentials depending on the specific cell type. However, it is largely unknown whether autophagy is implicated in the mechanism underlying its chemotherapeutic and anti-inflammatory effects in rheumatoid arthritis (RA. Here, we show that treatment of RA fibroblast-like synoviocytes (FLS with brazilin results in enhanced level of autophagic flux, evidenced by accumulation of autophagosome and increased level of lipidated LC3 (LC3-II, which is mainly mediated by enhanced production of reactive oxygen species (ROS. Interestingly, long-term exposure of brazilin was able to restore cell survival against the cytotoxity, exclusively in RA FLS, but not in normal fibroblast. Importantly, such a restoration from brazilin-induced cytotoxity in RA FLS was completely abrogated after co-treatment with autophagy inhibitors including NH4Cl or chloroquine. Furthermore, we found that the pretreatment of RA FLS with brazilin reduced LPS- or TNF-induced NF-κB activation and the secretion of inflammatory cytokines in parallel with the enhanced autophagic flux. Such anti-NF-κB potentials of brazilin were drastically masked in RA FLS when autophagy was suppressed. These results suggest that brazilin is capable of activating autophagy exclusively in RA FLS, and such inducible autophagy promotes cell survival and limits inflammatory response.

  11. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-04-01

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses.

  12. The cellular decision between apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    Yong-Jun Fan; Wei-Xing Zong

    2013-01-01

    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  13. Autophagy in cancer: good, bad, or both?

    Science.gov (United States)

    Hippert, Melanie M; O'Toole, Patrick S; Thorburn, Andrew

    2006-10-01

    Autophagy has been recognized as an important cellular process for at least 50 years; however, it is only with the recent identification of key regulators of autophagy (Atg genes) that we have begun a mechanistic exploration of its importance in cancer. Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. However, the role of autophagy in these processes is complicated and may, depending on the circumstances, have diametrically opposite consequences for the tumor. In this article, we discuss recent discoveries regarding autophagy in cancer.

  14. Cytokines in Drosophila immunity.

    Science.gov (United States)

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.

  15. The role of STAT3 in autophagy.

    Science.gov (United States)

    You, Liangkun; Wang, Zhanggui; Li, Hongsen; Shou, Jiawei; Jing, Zhao; Xie, Jiansheng; Sui, Xinbing; Pan, Hongming; Han, Weidong

    2015-01-01

    Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.

  16. The symphony of autophagy and calcium signaling.

    Science.gov (United States)

    Yao, Zhiyuan; Klionsky, Daniel J

    2015-01-01

    Posttranslational regulation of macroautophagy (hereafter autophagy), including phosphorylating and dephosphorylating components of the autophagy-related (Atg) core machinery and the corresponding upstream transcriptional factors, is important for the precise modulation of autophagy levels. Several kinases that are involved in phosphorylating autophagy-related proteins have been identified in both yeast and mammalian cells. However, there has been much less research published with regard to the identification of the complementary phosphatases that function in autophagy. A recent study identified PPP3/calcineurin, a calcium-dependent phosphatase, as a regulator of autophagy, and demonstrated that one of the key targets of PPP3/calcineurin is TFEB, a master transcriptional factor that controls autophagy and lysosomal function in mammalian cells.

  17. Autophagy mediated TiAl₆V₄ particle-induced peri-implant osteolysis by promoting expression of TNF-α.

    Science.gov (United States)

    Liu, Naicheng; Meng, Jia; Wang, Zhenheng; Zhou, Gang; Shi, Tongguo; Zhao, Jianning

    2016-04-22

    Peri-prosthetic osteolysis and the consequent aseptic loosening constitute the most common reason for total joint arthroplasty failure and surgical revision. Although numerous studies suggest that pro-inflammatory cytokines induced by wear particles is involved in the pathological process of aseptic loosening, the underlying mechanism linking wear particles to pro-inflammatory cytokines remains to be illustrated. In the present study, we investigated the effect of autophagy on TNF-α secretion induced by TiAl6V4 particles (TiPs) in macrophages and in a calvarial resorption animal model. Our study demonstrated that TiPs activated autophage in macrophages and particle-induced osteolysis animal models as well as periprosthetic membranes of patients with aseptic loosening. The autophagy inhibitor 3-MA (3-methyladenine) could dramatically reduce TiPs-induced TNF-α expression both in macrophages and in membranes from animal models. Furthermore, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Collectively, these results suggest that autophagy plays a key role in TiPs-induced osteolysis by promoting TNF-α expression and that blocking autophagy may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis.

  18. Sirtuin 1 Regulates Dendritic Cell Activation and Autophagy during Respiratory Syncytial Virus-Induced Immune Responses.

    Science.gov (United States)

    Owczarczyk, Anna B; Schaller, Matthew A; Reed, Michelle; Rasky, Andrew J; Lombard, David B; Lukacs, Nicholas W

    2015-08-15

    Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, has been associated with the induction of autophagy and the regulation of inflammatory mediators. We found that Sirt1 was upregulated in mouse lung after RSV infection. Infected animals that received EX-527, a selective SIRT1 inhibitor, displayed exacerbated lung pathology, with increased mucus production, elevated viral load, and enhanced Th2 cytokine production. Gene expression analysis of isolated cell populations revealed that Sirt1 was most highly upregulated in RSV-treated dendritic cells (DCs). Upon RSV infection, EX-527-treated DCs, Sirt1 small interfering RNA-treated DCs, or DCs from conditional knockout (Sirt1(f/f)-CD11c-Cre(+)) mice showed downregulated inflammatory cytokine gene expression and attenuated autophagy. Finally, RSV infection of Sirt1(f/f)-CD11c-Cre(+) mice resulted in altered lung and lymph node cytokine responses, leading to exacerbated pathology. These data indicate that SIRT1 promotes DC activation associated with autophagy-mediated processes during RSV infection, thereby directing efficient antiviral immune responses.

  19. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells

    Science.gov (United States)

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-01-01

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer – both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene. PMID:26802026

  20. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells.

    Science.gov (United States)

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-02-23

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer--both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene.

  1. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.

    Science.gov (United States)

    Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Pavlides, Stephanos; Chiavarina, Barbara; Bonuccelli, Gloria; Casey, Trimmer; Tsirigos, Aristotelis; Migneco, Gemma; Witkiewicz, Agnieszka; Balliet, Renee; Mercier, Isabelle; Wang, Chengwang; Flomenberg, Neal; Howell, Anthony; Lin, Zhao; Caro, Jaime; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2010-11-01

    The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an

  2. Anesthesiology and the cytokine network

    Directory of Open Access Journals (Sweden)

    Barbara Lisowska

    2013-08-01

    Full Text Available The immune response is a highly specific reaction carried out by means of specialized cells that belong to the immune system. There are two types of immune response mechanisms aimed towards pathogens: non-specific, innate reactions, and specific, acquired reactions. Acquired immunity, characterized by its specificity, is comprised of lymphocytes, including both T cell and B cell populations. The role of B lymphocytes is not limited to the humoral response, though the cellular immune response is carried out mainly by various T lymphocyte subpopulations. The reactions of the humoral and cellular responses complement and stimulate one another mutually – cytokines are their common linking element. The attachment of cytokines to their specific receptors activates a sequence of signals – either intracellular or between the cells of various systems. This organization of respective connections and reactions, including the functional relations between cells of the immune response, in its complexity, is best described as a cytokine network. The response of the immune system to surgical trauma can be looked at from both a local and a general perspective. Not only surgical trauma caused by tissue damage, however, influences the functioning of the immune system, but also the drugs and techniques used during anesthesia. Our article is a presentation of the effects of medications used in anesthesia with respect to their influence on the cytokine network.

  3. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  4. Sucrose induces vesicle accumulation and autophagy.

    Science.gov (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.

  5. Autophagy and cancer%自噬与肿瘤

    Institute of Scientific and Technical Information of China (English)

    王军; 邹晓平

    2012-01-01

    自噬是一种细胞通过膜结构降解胞质细胞器和大分子的动态过程,它受到依赖及非依赖雷帕霉素哺乳动物靶蛋白(mTOR)的多种信号通路调控.目前研究发现,自噬在多种肿瘤细胞中被激活或抑制,并对肿瘤细胞的存活及对化疗药物的耐药性产生重大影响.由于与细胞死亡的复杂关系,自噬在肿瘤的形成、治疗及耐药中的作用不尽相同,因此合理利用自噬可能成为治疗肿瘤的新手段之一.%Autophagy is a dynamic process which subcellular membranes undergo morphological changes that lead to the degradation of cellular cytoplasmic organelles and macromolecules.It is regulated by themammalian target of rapamycin ( mTOR ) -dependent or -independent signaling pathways.It has been demonstrated that autophagy is induced or inhibited in various tumor cells,and it is closely related with cell survival and drug resistance.Because of the complex relationships with cell death,the roles of autophagy in cancer developnent,treatment,and drug-resistance are not the same,and thus controlling autophagy properly may become one of new means of cancer therapy.

  6. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    Science.gov (United States)

    Chen, Weijia; Lu, Zhijun

    2016-12-21

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  7. 自噬调节与肿瘤治疗%Autophagy modulation in cancer therapy

    Institute of Scientific and Technical Information of China (English)

    杨晓亮

    2011-01-01

    自噬是一个细胞质成分被双层膜的囊泡包裹并与溶酶体融合降解的过程.肿瘤细胞利用自噬过程存活于代谢应激下,因此推测自噬抑制剂在肿瘤治疗中具有临床应用价值.与此相矛盾的是在人类乳腺肿瘤、卵巢肿瘤、前列腺肿瘤中,重要的自噬基因beclinl等位性丢失发生很频繁,表明自噬的受损促使肿瘤的发生.与自噬缺陷和对代谢应激损伤耐受有关的肿瘤,其发生的可能原因包括增加炎症反应导致的细胞死亡及细胞因子的产生,染色体组的损伤.这表明自噬诱导剂通过限制细胞基因组损伤、细胞死亡及炎症来预防肿瘤可能具有价值.因为自噬是细胞应激反应的重要组成部分,所以通过调节自噬过程进行肿瘤的预防及治疗将是一个很有前景的新领域.%Autophagy is a process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. Autophagy is utilized by tumor cells to survive meta bolic stress and as such autophagy inhibitors are predicted to have clinical value in the setting of cancer therapy. Paradoxically, allelic loss of the essential autophagy gene beclinl is found with high frequency in human breast, ovarian and prostate cancers, suggesting that impaired autophagy promotes cancer. Probable causes of cancer associated with defects in autophagy and impaired tolerance to stress include enhanced cell death resulting in an inflammatory response and cytokine production, and also genome damage. This suggests that autophagy inducers would also be valuable in the setting of cancer prevention to limit cellular genome damage, cell death and inflammation. As autophagy is a major component of the cellular stress response, modulating the autophagy pathway is a promising new area in cancer prevention and therapy.

  8. Feedback regulation between autophagy and PKA.

    Science.gov (United States)

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA.

  9. Feedback regulation between autophagy and PKA

    Science.gov (United States)

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA. PMID:26046386

  10. Molecular mechanism and regulation of autophagy

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Zhen-lun GU; Zheng-hong QIN

    2005-01-01

    Autophagy is a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles in eukaryotic cells. A large number of intracellular/extracellular stimuli, including amino acid starvation and invasion of microorganisms, are able to induce the autophagic response in cells. The discovery of the ATG genes in yeast has greatly advanced our understanding of the molecular mechanisms participating in autophagy and the genes involved in regulating the autophagic pathway. Many yeast genes have mammalian homologs,suggesting that the basic machinery for autophagy has been evolutionarily conserved along the eukaryotic phylum. The regulation of autophagy is a very complex process. Many signaling pathways, including target of rapamycin (TOR) or mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-I (PI3K-I)/PKB, GTPases, calcium and protein synthesis all play important roles in regulating autophagy. The molecular mechanisms and regulation of autophagy are discussed in this review.

  11. Autophagy gets in on the regulatory act

    Institute of Scientific and Technical Information of China (English)

    Steven K. Backues; Daniel J. Klionsky

    2011-01-01

    Autophagy down-regulates the Wnt signal transduction pathway via targeted degradation of a key signaling protein. This may provide an explanation for autophagy's role in tumor suppression.%@@ The eukaryotic cell has at its disposal two primary methods for getting rid of unwanted proteins: the proteasome and autophagy.The proteasome is a large protein complex comprising regulatory and proteolytic subunits whose core function is the degradation of damaged or misfolded proteins.

  12. Autophagy and apoptosis: where do they meet?

    Science.gov (United States)

    Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Durgesh Nandini; Bhutia, Sujit Kumar

    2014-04-01

    Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.

  13. The role of autophagy in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Yaru Dong; Xiaoheng Xu; Zhong Xu

    2012-01-01

    Although Parkinson's disease is the most common neurodegenerative movement disorder, the mechanisms of pathogenesis remain poorly understood. Recent findings have shown that deregulation of the autophagy-lysosome pathway is involved in the pathogenesis of Parkinson's disease. This review summarizes the most recent findings and discusses the unique role of the autophagy-lysosome pathway in Parkinson's disease to highlight the possibility of Parkinson's disease treatment strategies that incorporate autophagy-lysosome pathway modulation.

  14. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1.

    Science.gov (United States)

    Sosulski, Meredith L; Gongora, Rafael; Danchuk, Svitlana; Dong, Chunmin; Luo, Fayong; Sanchez, Cecilia G

    2015-10-01

    Aging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age-dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle-aged mice compared to younger animals. More importantly, older mice expose to lung injury are characterized by deficient autophagic response and reduced selective targeting of mitochondria for autophagy (mitophagy). Fibroblast to myofibroblast differentiation (FMD) is an important feature of pulmonary fibrosis in which the profibrotic cytokine TGFβ1 plays a pivotal role. Promotion of autophagy is necessary and sufficient to maintain normal lung fibroblasts' fate. On the contrary, FMD mediated by TGFβ1 is characterized by reduced autophagy flux, altered mitophagy, and defects in mitochondrial function. In accord with these findings, PINK1 expression appeared to be reduced in fibrotic lung tissue from bleomycin and a TGFβ1-adenoviral model of lung fibrosis. PINK1 expression is also reduced in the aging murine lung and biopsies from IPF patients compared to controls. Furthermore, deficient PINK1 promotes a profibrotic environment. Collectively, this study indicates that an age-related decline in autophagy and mitophagy responses to lung injury may contribute to the promotion and/or perpetuation of pulmonary fibrosis. We propose that promotion of autophagy and mitochondrial quality control may offer an intervention against age-related fibrotic diseases.

  15. Inhibition of Autophagy by Deguelin Sensitizes Pancreatic Cancer Cells to Doxorubicin

    Science.gov (United States)

    Xu, Xiao Dong; Zhao, Yan; Zhang, Min; He, Rui Zhi; Shi, Xiu Hui; Guo, Xing Jun; Shi, Cheng Jian; Peng, Feng; Wang, Min; Shen, Min; Wang, Xin; Li, Xu; Qin, Ren Yi

    2017-01-01

    Pancreatic cancer is the fourth most common cause of cancer mortality worldwide. Furthermore, patients with pancreatic cancer experience limited benefit from current chemotherapeutic approaches because of drug resistance. Therefore, an effective therapeutic strategy for patients with pancreatic cancer is urgently required. Deguelin is a natural chemopreventive drug that exerts potent antiproliferative activity in solid tumors by inducing cell death. However, the molecular mechanisms underlying this activity have not been fully elucidated. Here we show that deguelin blocks autophagy and induces apoptosis in pancreatic cancer cells in vitro. Autophagy induced by doxorubicin plays a protective role in pancreatic cancer cells, and suppressing autophagy by chloroquine or silencing autophagy protein 5 enhanced doxorubicin-induced cell death. Similarly, inhibition of autophagy by deguelin also chemosensitized pancreatic cancer cell lines to doxorubicin. These findings suggest that deguelin has potent anticancer effects against pancreatic cancer and potentiates the anti-cancer effects of doxorubicin. These findings provide evidence that combined treatment with deguelin and doxorubicin represents an effective strategy for treating pancreatic cancer. PMID:28208617

  16. Regulation of cytokines by small RNAs during skin inflammation

    Directory of Open Access Journals (Sweden)

    Mikkelsen Jacob G

    2010-07-01

    Full Text Available Abstract Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.

  17. Drug: D08857 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available atment of asthma Monoclonal antibody IL-13 [HSA:3596] [KO:K05435] hsa04060(3596) Cytokine-cytokine receptor ...t-based classification of drugs [BR:br08310] Cytokines Class I cytokines IL-13 [HSA:3596] [KO:K05435] Anrukinzumab D08857 Anrukinzumab (USAN) CAS: 910649-32-0 PubChem: 96025540 ...

  18. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  19. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.

  20. Autophagy in term normal human placentas.

    Science.gov (United States)

    Signorelli, P; Avagliano, L; Virgili, E; Gagliostro, V; Doi, P; Braidotti, P; Bulfamante, G P; Ghidoni, R; Marconi, A M

    2011-06-01

    Autophagy is an inducible catabolic process that responds to environment and is essential for cell survival during stress, starvation and hypoxia. Its function in the human placenta it is not yet understood. We collected 14 placentas: 7 at vaginal delivery and 7 at elective caesarean section after uneventful term pregnancies. The presence of autophagy was assessed in different placental areas by immunoblotting, immunohistochemistry and electron microscopy. We found that autophagy is significantly higher in placentas obtained from cesarean section than in those from vaginal delivery. Moreover there is a significant inverse relationship between autophagy and umbilical arterial glucose concentration.

  1. Autophagy : Moving Benchside Promises to Patient Bedsides.

    Science.gov (United States)

    Belaid, Amine; Ndiaye, Papa Diogop; Filippakis, Harilaos; Roux, Jérémie; Röttinger, Éric; Graba, Yacine; Brest, Patrick; Hofman, Paul; Mograbi, Baharia

    2015-01-01

    Survival rates of patients with metastatic or recurrent cancers have remained virtually unchanged during the past 30 years. This fact makes the need for new therapeutic options even more urgent. An attractive option would be to target autophagy, an essential quality control process that degrades toxic aggregates, damaged organelles, and signaling proteins, and acts as a tumor suppressor pathway of tumor initiation. Conversely, other fascinating observations suggest that autophagy supports cancer progression, relapse, metastasis, dormancy and resistance to therapy. This review provides an overview of the contradictory roles that autophagy plays in cancer initiation and progression and discusses the promises and challenges of current strategies that target autophagy for cancer therapy.

  2. Autophagy and the nutritional signaling pathway

    Directory of Open Access Journals (Sweden)

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  3. Modulating autophagy: a strategy for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jun-Lin Li; Shao-Liang Han; Xia Fan

    2011-01-01

    Autophagy is a process in which long-lived proteins,damaged cell organelles,and other cellular particles are sequestered and degraded.This process is important for maintaining the cellular microenvironment when the cell is under stress.Many studies have shown that autophagy plays a complex role in human diseases,especially in cancer,where it is known to have paradoxical effects.Namely,autophagy provides the energy for metabolism and tumor growth and leads to cell death that promotes tumor suppression.The link between autophagy and cancer is also evident in that some of the genes that regulate carcinogenesis,oncogenes and tumor suppressor genes,participate in or impact the autophagy process.Therefore,modulating autophagy will be a valuable topic for cancer therapy.Many studies have shown that autophagy can inhibit the tumor growth when autophagy modulators are combined with radiotherapy and/or chemotherapy.These findings suggest that autophagy may be a potent target for cancer therapy.

  4. Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2014-05-01

    Full Text Available Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose polymerase (PARP antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1 by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer.

  5. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination.

    Science.gov (United States)

    Zhan, Zhenzhen; Xie, Xuefeng; Cao, Hao; Zhou, Xiaohui; Zhang, Xu Dong; Fan, Huimin; Liu, Zhongmin

    2014-02-01

    Autophagy contributes to the pathogenesis of cancer, whereas toll-like receptors (TLRs) also play an important role in cancer development and immune escape. However, little is known about the potential interaction between TLR signaling and autophagy in cancer cells. Here we show that autophagy induced by TLR4 or TLR3 activation enhances various cytokine productions through promoting TRAF6 (TNF receptor-associated factor 6, E3 ubiquitin protein ligase) ubiquitination and thus facilitates migration and invasion of lung cancer cells. Stimulation of TLR4 and TLR3 with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid [poly(I:C)] respectively triggered autophagy in lung cancer cells. This was mediated by the adaptor protein, toll-like receptor adaptor molecule 1 (TICAM1/TRIF), and was required for TLR4- and TLR3-induced increases in the production of IL6, CCL2/MCP-1 [chemokine (C-C motif) ligand 2], CCL20/MIP-3α [chemokine (C-C motif) ligand 20], VEGFA (vascular endothelial growth factor A), and MMP2 [matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase)]. These cytokines appeared to be necessary for enhanced migration and invasion of lung cancer cells upon TLR activation. Remarkably, inhibition of autophagy by chemical or genetic approaches blocked TLR4- or TLR3-induced Lys63 (K63)-linked ubiquitination of TRAF6 that was essential for activation of MAPK and NFKB (nuclear factor of kappa light polypeptide gene enhancer in B-cells) pathways, both of which were involved in the increased production of the cytokines. Collectively, these results identify induction of autophagy by TLR4 and TLR3 as an important mechanism that drives lung cancer progression, and indicate that inhibition of autophagy may be a useful strategy in the treatment of lung cancer.

  6. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells.

    Directory of Open Access Journals (Sweden)

    Pei-Ching Chang

    Full Text Available Prostate cancer (PCa cells undergoing neuroendocrine differentiation (NED are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL-6 resulted in an induction of autophagy. In the absence of androgen, IL-6 caused an even stronger activation of autophagy. Similar result was identified in NED induction. Inhibition of autophagy with chloroquine (CQ markedly decreased NED. This observation was confirmed by beclin1 and Atg5 silencing experiments. Further supporting the role of autophagy in NED, we found that LC3 was up-regulated in PCa tissue that had relapsed after androgen-deprivation therapy when compared with their primary tumor counterpart. LC3 staining in relapsed PCa tissue showed punctate pattern similar to the staining of chromogranin A (CgA, a marker for NED cells. Moreover, autophagy inhibition induced the apoptosis of IL-6 induced NE differentiated PCa cells. Consistently, inhibition of autophagy by knockdown of beclin1 or Atg5 sensitized NE differentiated LNCaP cells to etoposide, a chemotherapy drug. To identify the mechanisms, phosphorylation of IL-6 downstream targets was analyzed. An increase in phospho-AMPK and a decrease in phospho-mTOR were found, which implies that IL-6 regulates autophagy through the AMPK/mTOR pathway. Most important to this study is the discovery of REST, a neuronal gene-specific transcriptional repressor that is involved in autophagy activation. REST was down-regulated in IL-6 treatment. Knockdown experiments suggest that REST is critical to NED and autophagy activation by IL-6. Together, our studies imply that autophagy is involved in PCa progression and plays a cytoprotective role when NED is induced in PCa cells by IL-6 treatment. These results

  7. Autophagy Pathway Is Required for IL-6 Induced Neuroendocrine Differentiation and Chemoresistance of Prostate Cancer LNCaP Cells

    Science.gov (United States)

    Chang, Yi-Ting; Chu, Cheng-Ying; Lee, Chin-Ling; Hsu, Hung-Wei; Zhou, Tyng-An; Wu, Zhaoju; Kim, Randie H.; Desai, Sonal J.; Liu, Shangqin; Kung, Hsing-Jien

    2014-01-01

    Prostate cancer (PCa) cells undergoing neuroendocrine differentiation (NED) are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE) tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL-6 resulted in an induction of autophagy. In the absence of androgen, IL-6 caused an even stronger activation of autophagy. Similar result was identified in NED induction. Inhibition of autophagy with chloroquine (CQ) markedly decreased NED. This observation was confirmed by beclin1 and Atg5 silencing experiments. Further supporting the role of autophagy in NED, we found that LC3 was up-regulated in PCa tissue that had relapsed after androgen-deprivation therapy when compared with their primary tumor counterpart. LC3 staining in relapsed PCa tissue showed punctate pattern similar to the staining of chromogranin A (CgA), a marker for NED cells. Moreover, autophagy inhibition induced the apoptosis of IL-6 induced NE differentiated PCa cells. Consistently, inhibition of autophagy by knockdown of beclin1 or Atg5 sensitized NE differentiated LNCaP cells to etoposide, a chemotherapy drug. To identify the mechanisms, phosphorylation of IL-6 downstream targets was analyzed. An increase in phospho-AMPK and a decrease in phospho-mTOR were found, which implies that IL-6 regulates autophagy through the AMPK/mTOR pathway. Most important to this study is the discovery of REST, a neuronal gene-specific transcriptional repressor that is involved in autophagy activation. REST was down-regulated in IL-6 treatment. Knockdown experiments suggest that REST is critical to NED and autophagy activation by IL-6. Together, our studies imply that autophagy is involved in PCa progression and plays a cytoprotective role when NED is induced in PCa cells by IL-6 treatment. These results reveal the

  8. Dynamical Systems, Cytokine Storms, and Blood Filtration

    Science.gov (United States)

    Foster, Glenn; Hubler, Alfred

    2008-03-01

    Various infections and non-infectious diseases can trigger immune cells and the proteins (cytokines) the cells use to communicate with each other to be caught in a positive feedback loop; this ``cytokine storm'' is frequently fatal. By examining the network of cytokine-immune cell interactions we will illustrate why anti-mediator drugs have been generally ineffective in stopping this feedback. A more effective approach may be to try and reduce interactions by dampening many signals at once by filtering the cytokines out of the blood directly (think dialysis). We will argue that feedback on an out of control nonlinear dynamical system is easier to understand than its normal healthy state and apply filtration to a toy model of immune response.

  9. Autophagy is involved in doxorubicin induced resistance of human myeloma cell line RP-MI8226

    Institute of Scientific and Technical Information of China (English)

    潘耀柱

    2013-01-01

    Objective To explore the role of autophagy in doxorubicin (DOX) -induced resistance of human myeloma cell line RPMI8226.Methods We established doxorubicin induced resistant subline of myeloma cell line RPMI8226/DOX by drug concentration step-elevation method.Resistant index of DOX was measured by MTT

  10. Cytokines: Names and Numbers You Should Care About.

    Science.gov (United States)

    Holdsworth, Stephen R; Gan, Poh-Yi

    2015-12-07

    Cytokines play an important role in host defense against microorganisms. They orchestrate innate immunity by inducing protective local inflammation and systemic acute phase responses. Cytokines are important in initiating, amplifying, directing, mediating, and regulating adaptive immunity. Unfortunately, they may also direct tissue damage if excessive responses occur or if they are involved in directing and mediating autoimmunity. Under these circumstances, cytokines are potential therapeutic targets. Over the last 20 years, we have seen the successful development and clinical implementation of biologic strategies that target key cytokines in specific inflammatory diseases with efficacy, specificity, and toxicity profiles challenging conventional drug therapies. These therapies are finding new applications and many new agents show promise. Unfortunately, these new cytokine-based therapies have had little effect on renal disease. This review provides evidence that common renal diseases, including those causing AKI and the autoimmune proliferative and crescentic forms of GN, have cytokine mediation profiles that suggest they would be susceptible to cytokine-targeting therapeutic strategies.

  11. Coffee induces autophagy in vivo

    Science.gov (United States)

    Pietrocola, Federico; Malik, Shoaib Ahmad; Mariño, Guillermo; Vacchelli, Erika; Senovilla, Laura; Chaba, Kariman; Niso-Santano, Mireia; Maiuri, Maria Chiara; Madeo, Frank; Kroemer, Guido

    2014-01-01

    Epidemiological studies and clinical trials revealed that chronic consumption coffee is associated with the inhibition of several metabolic diseases as well as reduction in overall and cause-specific mortality. We show that both natural and decaffeinated brands of coffee similarly rapidly trigger autophagy in mice. One to 4 h after coffee consumption, we observed an increase in autophagic flux in all investigated organs (liver, muscle, heart) in vivo, as indicated by the increased lipidation of LC3B and the reduction of the abundance of the autophagic substrate sequestosome 1 (p62/SQSTM1). These changes were accompanied by the inhibition of the enzymatic activity of mammalian target of rapamycin complex 1 (mTORC1), leading to the reduced phosphorylation of p70S6K, as well as by the global deacetylation of cellular proteins detectable by immunoblot. Immunohistochemical analyses of transgenic mice expressing a GFP–LC3B fusion protein confirmed the coffee-induced relocation of LC3B to autophagosomes, as well as general protein deacetylation. Altogether, these results indicate that coffee triggers 2 phenomena that are also induced by nutrient depletion, namely a reduction of protein acetylation coupled to an increase in autophagy. We speculate that polyphenols contained in coffee promote health by stimulating autophagy. PMID:24769862

  12. Coffee induces autophagy in vivo.

    Science.gov (United States)

    Pietrocola, Federico; Malik, Shoaib Ahmad; Mariño, Guillermo; Vacchelli, Erika; Senovilla, Laura; Chaba, Kariman; Niso-Santano, Mireia; Maiuri, Maria Chiara; Madeo, Frank; Kroemer, Guido

    2014-01-01

    Epidemiological studies and clinical trials revealed that chronic consumption coffee is associated with the inhibition of several metabolic diseases as well as reduction in overall and cause-specific mortality. We show that both natural and decaffeinated brands of coffee similarly rapidly trigger autophagy in mice. One to 4 h after coffee consumption, we observed an increase in autophagic flux in all investigated organs (liver, muscle, heart) in vivo, as indicated by the increased lipidation of LC3B and the reduction of the abundance of the autophagic substrate sequestosome 1 (p62/SQSTM1). These changes were accompanied by the inhibition of the enzymatic activity of mammalian target of rapamycin complex 1 (mTORC1), leading to the reduced phosphorylation of p70(S6K), as well as by the global deacetylation of cellular proteins detectable by immunoblot. Immunohistochemical analyses of transgenic mice expressing a GFP-LC3B fusion protein confirmed the coffee-induced relocation of LC3B to autophagosomes, as well as general protein deacetylation. Altogether, these results indicate that coffee triggers 2 phenomena that are also induced by nutrient depletion, namely a reduction of protein acetylation coupled to an increase in autophagy. We speculate that polyphenols contained in coffee promote health by stimulating autophagy.

  13. Autophagy selectivity through receptor clustering

    Science.gov (United States)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  14. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus.

    Science.gov (United States)

    Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto

    2015-08-14

    Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus.

  15. Natural Compounds and Aging: Between Autophagy and Inflammasome

    Directory of Open Access Journals (Sweden)

    Shih-Yi Chuang

    2014-01-01

    Full Text Available Aging, a natural physiological process, is characterized by a progressive loss of physiological integrity. Loss of cellular homeostasis in the aging process results from different sources, including changes in genes, cell imbalance, and dysregulation of the host-defense systems. Innate immunity dysfunctions during aging are connected with several human pathologies, including metabolic disorders and cardiovascular diseases. Recent studies have clearly indicated that the decline in autophagic capacity that accompanies aging results in the accumulation of dysfunctional mitochondria, reactive oxygen species (ROS production, and further process dysfunction of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3 inflammasome activation in the macrophages, which produce the proinflammatory cytokines. These factors impair cellular housekeeping and expose cells to higher risk in many age-related diseases, such as atherosclerosis and type 2 diabetes. In this review, we investigated the relationship between dysregulation of the inflammasome activation and perturbed autophagy with aging as well as the possible molecular mechanisms. We also summarized the natural compounds from food intake, which have potential to reduce the inflammasome activation and enhance autophagy and can further improve the age-related diseases discussed in this paper.

  16. Effects of autophagy regulation of tumor-associated macrophages on radiosensitivity of colorectal cancer cells.

    Science.gov (United States)

    Shao, Le-Ning; Zhu, Bao-Song; Xing, Chun-Gen; Yang, Xiao-Dong; Young, Wu; Cao, Jian-Ping

    2016-03-01

    Tumor‑associated macrophages (TAMs), a major component of the tumor microenvironment, are crucial to the processes of tumor growth, infiltration and metastasis, and contribute to drug resistance. The importance of TAMs in radiation resistance of colorectal cancer remains unclear. To investigate the effects of autophagy regulation of TAMs on the radiosensitivity of colorectal cancer cells, the current study induced TAM formation from THP‑1 monocyte cells. Sequential treatment of THP‑1 cells with PMA for 72 h and human recombinant interleukin‑4 for 24 h was used to stimulate THP‑1 differentiation to TAMs. Expression of the cell surface markers CD68, CD204 and CD206, and changes to cell morphology were used to confirm successful differentiation. The TAMs were stimulated to promote or inhibit autophagy during co‑culture with LoVo colorectal adenocarcinoma cells. The cells were irradiated, with subsequent measurement of LoVo colony formation and apoptosis. Additionally, the expression of p53, Bcl‑2, survivin and Smac proteins was assessed by western blotting. Monodansylcadaverin staining was used to analyze the presence of autophagic vacuoles in TAM, and western blot analysis was used to assess the expression of Beclin‑1, LC3B I and II, ATG‑3, ‑5 and ‑7. The results demonstrated TAM autophagy to be markedly altered by rapamycin and bafilomycin A1 treatment. Following co‑culture with TAMs, the colony formation rate and survival fraction of LoVo cells were significantly higher than those in the control group (PLoVo colorectal cancer cells. Upregulation of TAM autophagy using rapamycin exhibited more effective inhibition of LoVo colony formation than autophagy downregulation. Notably, apoptosis was significantly increased in LoVo cells when co‑cultured with TAMs only, or with rapamycin‑mediated autophagy upregulated TAMs, compared with LoVo cells cultured alone (PLoVo cells co‑cultured with TAMs, compared with the control group (P<0

  17. 细胞自噬的研究方法%Methods for Autophagy Detection

    Institute of Scientific and Technical Information of China (English)

    马泰; 孙国平; 李家斌

    2012-01-01

    Autophagy extensively participate in physiological and pathological processes, and has been focused by contemporary biomedicine scientists in recent years. Transmission electron microscopy, immunofluorescence and immunoblotting techniques were common used in detection of autophagy. Deeper research needs more accurate detection of autophagy. Dysfunction of autophagy involves formation and degeneration of autophosome, accordingly, accurate and comprehensive evaluation of autophagy includes autophosome detection, as well as the fluency of autophagic degeneration, I.e. Autophagic flux assay. Additionally, artificial up- or down-regulation of autophagy by drugs or gene interferences in in vitro or in vivo models has also been considered as important part of autophagy analysis. Any method currently used alone may not been as evidence of autophagy. More careful attention should be paid on results of any assays of autophagy, especially DO NOT interpret "increase or decrease of autophosome" (also "up- or down-expression of autophagy-related proteins") as "enhancement or attenuation of autophagic function".%细胞自噬的研究是目前生物医学领域热点之一,广泛参与各种生理和病理过程.目前普遍采用的自噬检测方法包括电镜、免疫荧光、蛋白质印迹等方法检测自噬体及其标志蛋白.研究的深入对自噬的检测方法也提出了更高的要求,自噬功能障碍包括自噬体形成和降解障碍,因此,准确全面地评估自噬不仅包括自噬体的检测,还包括动态观察整个自噬性降解的过程是否顺畅(即自噬潮分析).另外,通过药物或基因干预技术来人为地调控自噬以观察其在体内体外模型中的作用也是自噬分析的重要内容.需要注意的是,任何一种方法单独应用均不能作为自噬的依据,对任何方法得到的结果进行解释时必须慎重,特别是不能将自噬体的增多减少或自噬相关蛋白表达的高低等同于自噬的增强或减弱.

  18. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Rahul Navale

    Full Text Available Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8 employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64 and aspartic (pepstatin protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine, indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in

  19. Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus.

    Science.gov (United States)

    Zhao, Lixia; Zhu, Yushan; Wang, Dongmei; Chen, Ming; Gao, Ping; Xiao, Weiming; Rao, Guanhua; Wang, Xiaohui; Jin, Haijing; Xu, Lin; Sui, Nan; Chen, Quan

    2010-04-01

    Chronic exposure to morphine can induce drug addiction and neural injury, but the exact mechanism is not fully understood. Here we show that morphine induces autophagy in neuroblastoma SH-SY5Y cells and in the rat hippocampus. Pharmacological approach shows that this effect appears to be mediated by PTX-sensitive G protein-coupled receptors signaling cascade. Morphine increases Beclin 1 expression and reduces the interaction between Beclin 1 and Bcl-2, thus releasing Beclin 1 for its pro-autophagic activity. Bcl-2 overexpression inhibits morphine-induced autophagy, whereas knockdown of Beclin 1 or knockout of ATG5 prevents morphine-induced autophagy. In addition, chronic treatment with morphine induces cell death, which is increased by autophagy inhibition through Beclin 1 RNAi. Our data are the first to reveal that Beclin 1 and ATG5 play key roles in morphine-induced autophagy, which may contribute to morphine-induced neuronal injury.

  20. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells.

    Science.gov (United States)

    Bi, Yunke; Shen, Chen; Li, Chenguang; Liu, Yaohua; Gao, Dandan; Shi, Chen; Peng, Fei; Liu, Zhendong; Zhao, Boxian; Zheng, Zhixing; Wang, Xiaoxiong; Hou, Xu; Liu, Huailei; Wu, Jianing; Zou, Huichao; Wang, Kaikai; Zhong, Chen; Zhang, Jiakang; Shi, Changbin; Zhao, Shiguang

    2016-03-01

    Glioma is the most common primary brain tumor in the central nervous system (CNS) with high morbidity and mortality in adults. Although standardized comprehensive therapy has been adapted, the prognosis of glioma patients is still frustrating and thus novel therapeutic strategies are urgently in need. Quercetin (Quer), an important flavonoid compound found in many herbs, is shown to be effective in some tumor models including glioma. Recently, it is reported that adequate regulation of autophagy can strengthen cytotoxic effect of anticancer drugs. However, it is not yet fully clear how we should modulate autophagy to achieve a satisfactory therapeutic effect. 3-Methyladenine (3-MA) and Beclin1 short hairpin RNA (shRNA) were used to inhibit the early stage of autophage while chloroquine (CQ) to inhibit the late stage. MTT assay was implemented to determine cell viability. Transmission electron microscopy, western blot, and immunohistochemistry were adopted to evaluate autophagy. Western blot, flow cytometry, and immunohistochemistry were used to detect apoptosis. C6 glioma xenograft models were established to assess the therapeutic effect (the body weight change, the median survival time, and tumor volume) in vivo. Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner. Inhibition of early-stage autophagy by 3-MA or shRNA against Beclin1 attenuated the quercetin-induced cytotoxicity. In contrast, suppression of autophagy at a late stage by CQ enhanced the anti-glioma efficiency of quercetin. Therapeutic effect of quercetin for malignant glioma can be strengthened by inhibition of autophagy at a late stage, not initial stage, which may provide a novel opportunity for glioma therapy.

  1. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  2. Effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Xiang-Long Hong; Yue-Feng Chen; Ping-Xuan Ma

    2016-01-01

    Objective:To explore the effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia, and the role of autophagy in the cerebral ischemia injury. Methods:The healthy male SD rats were randomized into the sham operation group, the ischemia model group, baicalin treatment group (100 mg/kg), and 3MA group (15 mg/kg), with 10 rats in each group. Transient focal cerebral ischemia injury model in rats was induced by occlusion of middle cerebral artery (MCA) for 180 min. The rats were given the corresponding drugs through the tail veins 30 min before molding. Half of the specimens were used for TTC staining to analyze the cerebral infarction volume. The others were used to determine the expression of Beclin-1 in the brain tissues by Western-blot. Results:When compared with the ischemia model group, the cerebral infarction volume in 3MA group was significantly increased, while that in baicalin treatment group was significantly reduced, and the comparison among the groups was statistically significant. When compared with the ischemia model group, Beclin-1 expression level in baicalin treatment group was significantly elevated, while Beclin-1 expression level in 3MA group was significantly higher than that in the sham-operation group but lower than that in the ischemia model group. Conclusions:The autophagy level of brain tissues in normal rats is low. The cerebral ischemia can activate autophagy. The activated autophagy is probably involved in the neuroprotection of cerebral ischemia injury. Application of 3MA to inhibit the occurrence of autophagy can aggravate the cerebral injury. Baicalin can significantly improve the cerebral ischemia injury and promote the occurrence of autophagy, whose mechanism is probably associated with the up-regulation of Beclin-1 expression to promote the activation of type III PI3K signal transduction pathway.

  3. Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype.

    Science.gov (United States)

    Cufí, Sílvia; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Martin-Castillo, Begoña; Vellon, Luciano; Menendez, Javier A

    2011-11-15

    The molecular mechanisms used by breast cancer stem cells (BCSCs) to survive and/or maintain their undifferentiated CD44(+) CD24(-/low ) mesenchymal-like antigenic state remains largely unexplored. Autophagy, a key homeostatic process of cytoplasmic degradation and recycling evolved to respond to stress conditions, might be causally fundamental in the biology of BCSCs. Stable & specific knockdown of autophagy-regulatory genes by lentiviral-delivered small hairpin (sh) RNA drastically decreased the number of JIMT-1 epithelial BC cells bearing CD44(+) CD24(-/low) cell-surface antigens from ~75% in parental and control (-) shRNA-transduced cells to 26% and 7% in ATG8/LC3 shRNA- and ATG12 shRNA-transduced cells, respectively. Autophagy inhibition notably enhanced transcriptional activation of CD24 gene, potentiating the epithelial-like phenotype of CD44(+) CD24(+) cells versus the mesenchymal CD44(+) CD24(-/low ) progeny. EMT-focused Real Time RT-PCR profiling revealed that genetic ablation of autophagy transcriptionally repressed the gene coding for the mesenchymal filament vimentin (VIM). shRNA-driven silencing of the ATG12 gene and disabling the final step in the autophagy pathway by the antimalarial drug chloroquine both prevented TGFb1-induced accumulation of vimentin in JIMT-1 cells. Knockdown of autophagy-specific genes was sufficient also to increase by up to 11-times the number of CD24(+) cells in MDA-MB-231 cells, a BC model of mesenchymal origin that is virtually composed of CD44(+) CD24(-/low ) cells. Chloroquine treatment augmented the number of CD24(+) cells and concomitantly reduced constitutive overexpression of vimentin in MDA-MB-231 cells. This is the first report demonstrating that autophagy is mechanistically linked to the maintenance of tumor cells expressing high levels of CD44 and low levels of CD24, which are typical of BCSCs.

  4. Keeping autophagy in cheCK1

    Science.gov (United States)

    Cheong, Jit Kong; Virshup, David M.

    2016-01-01

    Abstract Mutant RAS-driven cancer cells cope with proliferative stress by increasing basal autophagy to maintain protein/organelle and energy homeostasis. We recently demonstrated that casein kinase 1 alpha (CK1α), a therapeutically tractable enzyme, is critical for fine-tuning the transcriptional regulation of mutant RAS-induced autophagy and the development of mutant RAS-driven cancers. PMID:27314070

  5. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  6. Tumor suppression and promotion by autophagy.

    Science.gov (United States)

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  7. Regulation of autophagy by cytoplasmic p53.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  8. The Retinoblastoma Tumor Suppressor Protein (pRb)/E2 Promoter Binding Factor 1 (E2F1) Pathway as a Novel Mediator of TGFβ-induced Autophagy.

    Science.gov (United States)

    Korah, Juliana; Canaff, Lucie; Lebrun, Jean-Jacques

    2016-01-29

    TGFβ is a multifunctional cytokine that regulates cell proliferation, cell immortalization, and cell death, acting as a key homeostatic mediator in various cell types and tissues. Autophagy is a programmed mechanism that plays a pivotal role in controlling cell fate and, consequently, many physiological and pathological processes, including carcinogenesis. Although autophagy is often considered a pro-survival mechanism that renders cells viable in stressful conditions and thus might promote tumor growth, emerging evidence suggests that autophagy is also a tumor suppressor pathway. The relationship between TGFβ signaling and autophagy is context-dependent and remains unclear. TGFβ-mediated activation of autophagy has recently been suggested to contribute to the growth inhibitory effect of TGFβ in hepatocarcinoma cells. In the present study, we define a novel process of TGFβ-mediated autophagy in cancer cell lines of various origins. We found that autophagosome initiation and maturation by TGFβ is dependent on the retinoblastoma tumor suppressor protein/E2 promoter binding factor (pRb/E2F1) pathway, which we have previously established as a critical signaling axis leading to various TGFβ tumor suppressive effects. We further determined that TGFβ induces pRb/E2F1-dependent transcriptional activation of several autophagy-related genes. Together, our findings reveal that TGFβ induces autophagy through the pRb/E2F1 pathway and transcriptional activation of autophagy-related genes and further highlight the central relevance of the pRb/E2F1 pathway downstream of TGFβ signaling in tumor suppression.

  9. Mechanisms of mitochondria and autophagy crosstalk.

    Science.gov (United States)

    Rambold, Angelika S; Lippincott-Schwartz, Jennifer

    2011-12-01

    Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson's disease. In addition to autophagy's significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria's ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.

  10. Emerging connections between RNA and autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lubas, Michal; Lund, Anders H

    2016-01-01

    Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority...... of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome....../vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy...

  11. Novel Directions for Diabetes Mellitus Drug Discovery

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui

    2012-01-01

    Introduction Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. Areas Covered We examine novel directions for drug discovery that involve the β-nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide, the cytokine erythropoietin, the NAD+-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival are presented. Expert Opinion Nicotinamide, erythropoietin, and the downstram pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder. PMID:23092114

  12. Cytokines and Liver Diseases

    Directory of Open Access Journals (Sweden)

    Herbert Tilg

    2001-01-01

    Full Text Available Cytokines are pleiotropic peptides produced by virtually every nucleated cell in the body. In most tissues, including the liver, constitutive production of cytokines is absent or minimal. There is increasing evidence that several cytokines mediate hepatic inflammation, apoptosis and necrosis of liver cells, cholestasis and fibrosis. Interestingly, the same mediators also mediate the regeneration of liver tissue after injury. Among the various cytokines, the proinflammatory cytokine tumour necrosis factor-alpha (TNF-a has emerged as a key factor in various aspects of liver disease, such as cachexia and/or cholestasis. Thus, antagonism of TNF-a and other injury-related cytokines in liver diseases merits evaluation as a treatment of these diseases. However, because the same cytokines are also necessary for the regeneration of the tissue after the liver has been injured, inhibition of these mediators might impair hepatic recovery. The near future will bring the exiting clinical challenge of testing new anticytokine strategies in various liver diseases.

  13. Relationship between autophagy and aging%细胞自噬与衰老

    Institute of Scientific and Technical Information of China (English)

    席兴字

    2011-01-01

    Aging is an intrinsic property of organism, which is characterized by the accumulation of damaged protein aggregates in cells and tissues. Clearance of protein aggregates mainly relies on ubiquitin-proteasome system and lysosome-dependent autophagy pathway.In recent years, some autophagy genes have been reported to play an important role in aging in models organisms, and these findings motivate interests in developing anti-aging drugs. This paper summarized the mechanisms of autophagy, and discussed the connections between aging and autophagy.%衰老是生物体内在的性质,细胞中损伤蛋白质积累是生物体衰老的一个重要特征.蛋门质聚集体的清除主要依赖于泛素-蛋白酶体途径和依赖溶酶体的细胞自噬(autophagy)途径.近年来,研究人员在许多模式生物中发现一些细胞自噬基因在衰老中起重要作用,这些研究激发人们利用细胞自噬开发抗衰老药物的兴趣.本文就细胞自噬的机理、衰老与自噬之间的联系等进行综述.

  14. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy

    Directory of Open Access Journals (Sweden)

    Betty Yuen Kwan Law

    2016-03-01

    Full Text Available Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM. For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri, Hu Zhang (Rhizoma polygoni cuspidati, Donglingcao (Rabdosia rubesens, Hou po (Cortex magnoliae officinalis and Chuan xiong (Rhizoma chuanxiong modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.

  15. Cytokines: The Good, the Bad, and the Deadly.

    Science.gov (United States)

    Ramani, Thulasi; Auletta, Carol S; Weinstock, Daniel; Mounho-Zamora, Barbara; Ryan, Patricia C; Salcedo, Theodora W; Bannish, Gregory

    2015-01-01

    Over the past 30 years, the world of pharmaceutical toxicology has seen an explosion in the area of cytokines. An overview of the many aspects of cytokine safety evaluation currently in progress and evolving strategies for evaluating these important entities was presented at this symposium. Cytokines play a broad role to help the immune system respond to diseases, and drugs which modulate their effect have led to some amazing therapies. Cytokines may be "good" when stimulating the immune system to fight a foreign pathogen or attack tumors. Other "good" cytokine effects include reduction of an immune response, for example interferon β reduction of neuron inflammation in patients with multiple sclerosis. They may be "bad" when their expression causes inflammatory diseases, such as the role of tumor necrosis factor α in rheumatoid arthritis or asthma and Crohn's disease. Therapeutic modulation of cytokine expression can help the "good" cytokines to generate or quench the immune system and block the "bad" cytokines to prevent damaging inflammatory events. However, care must be exercised, as some antibody therapeutics can cause "ugly" cytokine release which can be deadly. Well-designed toxicology studies should incorporate careful assessment of cytokine modulation that will allow effective therapies to treat unmet needs. This symposium discussed lessons learned in cytokine toxicology using case studies and suggested future directions.

  16. Novel Approach to Bile Duct Damage in Primary Biliary Cirrhosis: Participation of Cellular Senescence and Autophagy

    Directory of Open Access Journals (Sweden)

    Motoko Sasaki

    2012-01-01

    Full Text Available Primary biliary cirrhosis (PBC is characterized by antimitochondrial autoantibodies (AMAs in patients' sera and histologically by chronic nonsuppurative destructive cholangitis in small bile ducts, eventually followed by extensive bile duct loss and biliary cirrhosis. The autoimmune-mediated pathogenesis of bile duct lesions, including the significance of AMAs, triggers of the autoimmune process, and so on remain unclear. We have reported that cellular senescence in biliary epithelial cells (BECs may be involved in bile duct lesions and that autophagy may precede the process of biliary epithelial senescence in PBC. Interestingly, BECs in damaged bile ducts show characteristicsof cellular senescence and autophagy in PBC. A suspected causative factor of biliary epithelial senescence is oxidative stress. Furthermore, senescent BECs may modulate the microenvironment around bile ducts by expressing various chemokines and cytokines called senescence-associated secretory phenotypes and contribute to the pathogenesis in PBC.

  17. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...... to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients...

  18. Recombinant Cytokines from Plants

    OpenAIRE

    Patrycja Redkiewicz; Anna Góra-Sochacka; Tomas Vaněk; Agnieszka Sirko

    2011-01-01

    Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. S...

  19. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells.

    Science.gov (United States)

    Ullio, Chiara; Brunk, Ulf T; Urani, Chiara; Melchioretto, Pasquale; Bonelli, Gabriella; Baccino, Francesco M; Autelli, Riccardo

    2015-01-01

    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.

  20. Cytokines and Blastocyst Hatching.

    Science.gov (United States)

    Seshagiri, Polani B; Vani, Venkatappa; Madhulika, Pathak

    2016-03-01

    Blastocyst implantation into the uterine endometrium establishes early pregnancy. This event is regulated by blastocyst- and/or endometrium-derived molecular factors which include hormones, growth factors, cell adhesion molecules, cytokines and proteases. Their coordinated expression and function are critical for a viable pregnancy. A rate-limiting event that immediately precedes implantation is the hatching of blastocyst. Ironically, blastocyst hatching is tacitly linked to peri-implantation events, although it is a distinct developmental phenomenon. The exact molecular network regulating hatching is still unclear. A number of implantation-associated molecular factors are expressed in the pre-implanting blastocyst. Among others, cytokines, expressed by peri-implantation blastocysts, are thought to be important for hatching, making blastocysts implantation competent. Pro-inflammatory (IL-6, LIF, GM-CSF) and anti-inflammatory (IL-11, CSF-1) cytokines improve hatching rates; they modulate proteases (MMPs, tPAs, cathepsins and ISP1). However, functional involvement of cytokines and their specific mediation of hatching-associated proteases are unclear. There is a need to understand mechanistic roles of cytokines and proteases in blastocyst hatching. This review will assess the available knowledge on blastocyst-derived pro-inflammatory and anti-inflammatory cytokines and their role in potentially regulating blastocyst hatching. They have implications in our understanding of early embryonic loss and infertility in mammals, including humans.

  1. Association of Autophagy in the Cell Death Mediated by Dihydrotestosterone in Autoreactive T Cells Independent of Antigenic Stimulation.

    Science.gov (United States)

    Jia, Ting; Anandhan, Annandurai; Massilamany, Chandirasegaran; Rajasekaran, Rajkumar A; Franco, Rodrigo; Reddy, Jay

    2015-12-01

    Gender disparity is well documented in the mouse model of experimental autoimmune encephalomyelitis (EAE) induced with proteolipid protein (PLP) 139-151, in which female, but not male, SJL mice show a chronic relapsing-remitting paralysis. Furthermore, dihydrotestosterone (DHT) has been shown to ameliorate the severity of EAE, but the underlying mechanisms of its protective effects are unclear. Using major histocompatibility complex (MHC) class II dextramers for PLP 139-151, we tested the hypothesis that DHT selectively modulates the expansion and functionalities of antigen-specific T cells. Unexpectedly, we noted that DHT induced cell death in antigen-specific, autoreactive T cells, but the effects were not selective, because both proliferating and non-proliferating cells were equally affected independent of antigenic stimulation. Furthermore, DHT-exposed PLP 139-151-specific T cells did not show any shift in cytokine production; rather, frequencies of cytokine-producing PLP-specific T cells were significantly reduced, irrespective of T helper (Th) 1, Th2, and Th17 subsets of cytokines. By evaluating cell death and autophagy pathways, we provide evidence for the induction of autophagy to be associated with cell death caused by DHT. Taken together, the data provide new insights into the role of DHT and indicate that cell death and autophagy contribute to the therapeutic effects of androgens in autoreactive T cells.

  2. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  3. Autophagy in granular corneal dystrophy type 2.

    Science.gov (United States)

    Choi, Seung-Il; Kim, Eung Kweon

    2016-03-01

    Autophagy is a lysosomal degradative process that is essential for cellular homeostasis and metabolic stress adaptation. Defective autophagy is involved in the pathogenesis of many diseases including granular corneal dystrophy type 2 (GCD2). GCD2 is an autosomal dominant disorder caused by substitution of histidine for arginine at codon 124 (R124H) in the transforming growth factor β-induced gene (TGFBI) on chromosome 5q31. Transforming growth factor β-induced protein (TGFBIp) is degraded by autophagy, but mutant-TGFBIp accumulates in autophagosomes and/or lysosomes, despite significant activation of basal autophagy, in GCD2 corneal fibroblasts. Furthermore, inhibition of autophagy induces cell death of GCD2 corneal fibroblasts through active caspase-3. As there is currently no pharmacological treatment for GCD2, development of novel therapies is required. A potential strategy for preventing cytoplasmic accumulation of mutant-TGFBIp in GCD2 corneal fibroblasts is to enhance mutant-TGFBIp degradation. This could be achieved by activation of the autophagic pathway. Here, we will consider the role and the potential therapeutic benefits of autophagy in GCD2, with focus on TGFBIp degradation, in light of the recently established role of autophagy in protein degradation.

  4. Guidelines for monitoring autophagy in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Hong; Chang, Jessica T; Guo, Bin; Hansen, Malene; Jia, Kailiang; Kovács, Attila L; Kumsta, Caroline; Lapierre, Louis R; Legouis, Renaud; Lin, Long; Lu, Qun; Meléndez, Alicia; O'Rourke, Eyleen J; Sato, Ken; Sato, Miyuki; Wang, Xiaochen; Wu, Fan

    2015-01-01

    The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood.

  5. Coordination of autophagy with other cellular activities

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Zheng-hong QIN

    2013-01-01

    The cell biological phenomenon of autophagy has attracted increasing attention in recent years,partly as a consequence of the discovery of key components of its cellular machinery.Autophagy plays a crucial role in a myriad of cellular functions.Autophagy has its own regulatory mechanisms,but this process is not isolated.Autophagy is coordinated with other cellular activities to maintain cell homeostasis.Autophagy is critical for a range of human physiological processes.The multifunctional roles of autophagy are explained by its ability to interact with several key components of various cell pathways.In this review,we focus on the coordination between autophagy and other physiological processes,including the ubiquitin-proteasome system (UPS),energy homeostasis,aging,programmed cell death,the immune responses,microbial invasion and inflammation.The insights gained from investigating autophagic networks should increase our understanding of their roles in human diseases and their potential as targets for therapeutic intervention.

  6. Autophagy in lung disease pathogenesis and therapeutics

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2015-04-01

    Full Text Available Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics.

  7. Autophagy in Mycobacterium tuberculosis and HIV infections

    Directory of Open Access Journals (Sweden)

    Lucile eEspert

    2015-06-01

    Full Text Available Human Immunodeficiency Virus (HIV and Mycobacterium tuberculosis (M.tb are among the most lethal human pathogens worldwide, each being responsible for around 1.5 million deaths annually. Moreover, synergy between acquired immune deficiency syndrome (AIDS and tuberculosis (TB has turned HIV/M.tb co-infection into a major public health threat in developing countries. In the past decade, autophagy, a lysosomal catabolic process, has emerged as a major host immune defense mechanism against infectious agents like M.tb and HIV. Nevertheless, in some instances, autophagy machinery appears to be instrumental for HIV infection. Finally, there is mounting evidence that both pathogens deploy various countermeasures to thwart autophagy. This mini-review proposes an overview of the roles and regulations of autophagy in HIV and M.tb infections with an emphasis on microbial factors. We also discuss the role of autophagy manipulation in the context of HIV/M.tb co-infection. In future, a comprehensive understanding of autophagy interaction with these pathogens will be critical for development of autophagy-based prophylactic and therapeutic interventions for AIDS and TB.

  8. Autophagy: for better or for worse

    Institute of Scientific and Technical Information of China (English)

    Ellen Wirawan; Tom Vanden Berghe; Saskia Lippens; Patrizia Agostinis; Peter Vandenabeele

    2012-01-01

    Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules,which are then recycled back into the cytosol.In this respect,autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle.Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions.Current research clearly shows that autophagy fulfills numerous functions in vital biological processes.It is implicated in development,differentiation,innate and adaptive immunity,ageing and cell death.In addition,accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development.Therefore,autophagy seems to be an important player in the life and death of cells and organisms.Despite the mounting knowledge about autophagy,the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood.In this review,we give a comprehensive overview of the autophagic signaling pathway,its role in general cellular processes and its connection to cell death.In addition,we present a brief overview of the possible contribution of defective autophagic signaling to disease.

  9. Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: a novel apoptosis-independent autophagic signaling pathway.

    Science.gov (United States)

    Ghosh, Samrat; Bishayee, Kausik; Khuda-Bukhsh, Anisur Rahman

    2014-08-01

    Anti-cancer drugs generally kill cancer cells by apoptosis but fail to do so when they become resistant and escape apoptosis signals. But these resistant cells can still be killed by autophagy. Therefore, drugs having both apoptotic and autophagic abilities are solicited in effective cancer management. In search of such a drug, we examined the efficacy of graveoline, a bioactive compound isolated from Ruta graveolens on skin melanoma A375 cells through the use of specific signaling cascades and their inhibitors. Cytotoxicity of graveoline was tested by conducting MTT assay. Induction of autophagy and apoptosis was checked. Expression of related proteins and their localization were studied by conducting immunoblot assay and through confocal microscopy, respectively. We found graveoline-induced Beclin-1 associated autophagy in A375 cells and 3-methyladenine, an inhibitor of autophagy did not affect apoptosis. Conversely, caspase inhibitor that blocked apoptosis did not affect autophagic cell death, suggesting thereby that these two were independent events. Use of reactive oxygen species (ROS) scavengers inhibited cell death, but blocking autophagy did not affect graveoline-induced ROS generation, suggesting that ROS generation ensued autophagy. Thus, graveoline-induced both apoptotic and autophagic cell death in skin melanoma cells, a desirable quality in effective anti-cancer drug design.

  10. Intrinsically disordered regions in autophagy proteins.

    Science.gov (United States)

    Mei, Yang; Su, Minfei; Soni, Gaurav; Salem, Saeed; Colbert, Christopher L; Sinha, Sangita C

    2014-04-01

    Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein-protein interactions, and delineate the network of proteins that interact with each predicted IDR-containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α-helix upon binding to BCL2s, with the C-terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in-depth investigations of the biological role and mechanism of IDRs in autophagy proteins.

  11. The synergistic effect of everolimus and chloroquine on endothelial cell number reduction is paralleled by increased apoptosis and reduced autophagy occurrence.

    Directory of Open Access Journals (Sweden)

    Anna Grimaldi

    Full Text Available Endothelial Progenitor Cells (EPCs, a minor subpopulation of the mononuclear cell fraction in peripheral blood, play a critical role in cancer development as they contribute to angiogenesis-mediated pathological neovascularization. In response to tumor cytokines, including VEGF, EPCs mobilize from the bone marrow into the peripheral circulation and move to the tumor bed where they incorporate into sprouting neovessels. In the present study, we evaluated the effects of everolimus (Afinitor, Novartis, a rapamycin analogue, alone or in combination with chloroquine, a 4-alkylamino substituted quinoline family member, one of the autophagy inhibitors, on EPCs biological functions. We found that either everolimus or chloroquine induce growth inhibition on EPCs in a dose-dependent manner after 72 h from the beginning of incubation. The combined administration of the two drugs to EPC was synergistic in inducing growth inhibition; in details, the maximal pharmacological synergism between everolimus and chloroquine in inducing growth inhibition on EPCs cells was recorded when chloroquine was administered 24 h before everolimus. Moreover, we have studied the mechanisms of cell death induced by the two agents alone or in combination on EPCs and we have found that the synergistic effect of combination on EPC growth inhibition was paralleled by increased apoptosis induction and reduced autophagy. These effects occurred together with biochemical features that are typical of reduced autophagic death such as increased co-immunoprecipitation between Beclin 1 and Bcl-2. Chloroquine antagonized the inhibition of the activity of Akt→4EBP1 axis mediated by everolimus and at the same time it blocked the feed-back activation of Erk-1/2 induced by RAD in EPCs. These data suggest a new strategy in order to block angiogenesis in tumours in which this process plays a key role in both the sustainment and spreading of cancer cells.

  12. Autophagy induction by Bcr-Abl-expressing cells facilitates their recovery from a targeted or nontargeted treatment.

    LENUS (Irish Health Repository)

    Crowley, Lisa C

    2012-01-31

    Although Imatinib has transformed the treatment of chronic myeloid leukemia (CML), it is not curative due to the persistence of resistant cells that can regenerate the disease. We have examined how Bcr-Abl-expressing cells respond to two mechanistically different therapeutic agents, etoposide and Imatinib. We also examined Bcr-Abl expression at low and high levels as elevated expression has been associated with treatment failure. Cells expressing low levels of Bcr-Abl undergo apoptosis in response to the DNA-targeting agent (etoposide), whereas high-Bcr-Abl-expressing cells primarily induce autophagy. Autophagic populations engage a delayed nonapoptotic death; however, sufficient cells evade this and repopulate following the withdrawal of the drug. Non-Bcr-Abl-expressing 32D or Ba\\/F3 cells induce both apoptosis and autophagy in response to etoposide and can recover. Imatinib treatment induces both apoptosis and autophagy in all Bcr-Abl-expressing cells and populations rapidly recover. Inhibition of autophagy with ATG7 and Beclin1 siRNA significantly reduced the recovery of Imatinib-treated K562 cells, indicating the importance of autophagy for the recovery of treated cells. Combination regimes incorporating agents that disrupt Imatinib-induced autophagy would remain primarily targeted and may improve response to the treatment in CML.

  13. Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis.

    Science.gov (United States)

    Oh, S; Xiaofei, E; Ni, D; Pirooz, S D; Lee, J-Y; Lee, D; Zhao, Z; Lee, S; Lee, H; Ku, B; Kowalik, T; Martin, S E; Oh, B-H; Jung, J U; Liang, C

    2011-03-01

    The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.

  14. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  15. Effect of Autophagy Over Liver Diseases

    Institute of Scientific and Technical Information of China (English)

    Dong-qian Yi; Xue-feng Yang; Duan-fang Liao; Qing Wu; Nian Fu; Yang Hu; Ting Cao

    2016-01-01

    Abstract In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. Autophagy refers to the process through which the impaired organelles, misfolded protein, and intruding microorganisms is degraded by lysosomes to maintain stability inside cells. This article states the effect of autophagy on liver diseases (hepatic fibrosis, fatty liver, viral hepatitis, and liver cancer), which aims to provide a new direction for the treatment of liver diseases.

  16. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis

    Science.gov (United States)

    Karantza-Wadsworth, Vassiliki; Patel, Shyam; Kravchuk, Olga; Chen, Guanghua; Mathew, Robin; Jin, Shengkan; White, Eileen

    2007-01-01

    Autophagy is a catabolic process involving self-digestion of cellular organelles during starvation as a means of cell survival; however, if it proceeds to completion, autophagy can lead to cell death. Autophagy is also a haploinsufficient tumor suppressor mechanism for mammary tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in breast carcinomas. However, the mechanism by which autophagy suppresses breast cancer remains elusive. Here we show that allelic loss of beclin1 and defective autophagy sensitized mammary epithelial cells to metabolic stress and accelerated lumen formation in mammary acini. Autophagy defects also activated the DNA damage response in vitro and in mammary tumors in vivo, promoted gene amplification, and synergized with defective apoptosis to promote mammary tumorigenesis. Therefore, we propose that autophagy limits metabolic stress to protect the genome, and that defective autophagy increases DNA damage and genomic instability that ultimately facilitate breast cancer progression. PMID:17606641

  17. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  18. Autophagy as a Stress Response Pathway in the Immune System.

    Science.gov (United States)

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  19. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells

    Science.gov (United States)

    Li, Yubin; Wang, Shaofei; Wang, Ziyu; Qian, Xiaolu; Fan, Jiajun; Zeng, Xian; Sun, Yun; Song, Ping; Feng, Meiqing; Ju, Dianwen

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers are proposed as one of the most promising nanomaterials for biomedical applications because of their unique tree-like structure, monodispersity and tunable properties. In this study, we found that PAMAM dendrimers could induce the formation of autophagosomes and the conversion of microtubule-associated protein 1 light chain 3 (LC3) in hepatocellular carcinoma HepG2 cells, while the inhibition of the Akt/mTOR and activation of the Erk 1/2 signaling pathways were involved in autophagy-induced by PAMAM dendrimers. We also investigated the suppression of autophagy with the obviously enhanced cytotoxicity of PAMAM dendrimers. Moreover, the blockage of a reactive oxygen species (ROS) could enhance the growth inhibition and apoptosis of hepatocellular carcinoma cells, induced by PAMAM dendrimers through reducing autophagic effects. Taken together, these findings explored the role and mechanism of autophagy induced by PAMAM dendrimers in HepG2 cells, provided new insight into the effect of autophagy on drug delivery nanomaterials and tumor cells and contributed to the use of a drug delivery vehicle for hepatocellular carcinoma treatment.

  20. The role of cytokines in postmenopausal osteoporosis.

    Science.gov (United States)

    Brincat, S D; Borg, M; Camilleri, G; Calleja-Agius, J

    2014-08-01

    Postmenopausal osteoporosis is a silent systemic progressive disease characterised by a decrease in bone mass per unit volume. This condition compromises the physical strength of the skeleton and increases the susceptibility to fractures on minor trauma. The imbalance between bone formation and bone resorption is known to be responsible for postmenopausal bone loss. Estrogen deficiency contributes to bone loss by increasing the production of pro-inflammatory cytokines by bone marrow and bone cells. Clinical and molecular evidence indicates that estrogen-regulated cytokines exert regulatory effects on bone turnover implicating their role as being the primary mediators of the accelerated bone loss at menopause. The current perspective on the role and interaction of cytokines such as IL-1, IL-4, IL-6, IL-17, TNF, IFN-γ and TGF-β in bone loss linked with estrogen deficiency is reviewed. Current treatment options and emerging drug therapies in the management of postmenopausal osteoporosis are also evaluated.

  1. Cytokine and lipid mediator networks in tuberculosis.

    Science.gov (United States)

    Mayer-Barber, Katrin D; Sher, Alan

    2015-03-01

    A major approach for immunologic intervention in tuberculosis involves redirecting the outcome of the host immune response from the induction of disease to pathogen control. Cytokines and lipid mediators known as eicosanoids play key roles in regulating this balance and as such represent important targets for immunologic intervention. While the evidence for cytokine/eicosanoid function derives largely from the investigation of murine and zebrafish experimental infection models, clinical studies have confirmed the existence of many of the same pathways in tuberculosis patients. Here, we summarize new data that reveal important intersections between the cytokine and eicosanoid networks in the host response to mycobacteria and discuss how targeting this crosstalk can promote resistance to lethal Mycobacterium tuberculosis infection. This approach could lead to new host-directed therapies to be used either as an adjunct for improving the efficacy of standard antibiotic treatment or for the management of drug-resistant infections.

  2. Treatment of Cancer Pain by Targeting Cytokines.

    Science.gov (United States)

    Vendrell, I; Macedo, D; Alho, I; Dionísio, M R; Costa, L

    2015-01-01

    Inflammation is one of the most important causes of the majority of cancer symptoms, including pain, fatigue, cachexia, and anorexia. Cancer pain affects 17 million people worldwide and can be caused by different mediators which act in primary efferent neurons directly or indirectly. Cytokines can be aberrantly produced by cancer and immune system cells and are of particular relevance in pain. Currently, there are very few strategies to control the release of cytokines that seems to be related to cancer pain. Nevertheless, in some cases, targeted drugs are available and in use for other diseases. In this paper, we aim to review the importance of cytokines in cancer pain and targeted strategies that can have an impact on controlling this symptom.

  3. [Cytokines and asthma].

    Science.gov (United States)

    Gani, F; Senna, G; Piglia, P; Grosso, B; Mezzelani, P; Pozzi, E

    1998-10-01

    Asthma is a chronic inflammatory lung disease in which eosinophils are one of the most important involved cells. These cells accumulate in the lung because of cytokines, which are able to regulate cellular responses. The role of cytokines is well known in allergic asthma: IL4, IL5, IL3, GMCSF are the principally cytokine involved. IL4 regulate IgE synthesis while IL5, (and IL3) cause the activation and accumulation of eosinophils. In non allergic asthma, whilst only IL5 seemed to be important recent data, shows that also IL4 plays an important role. Therefore nowadays no relevant difference seems to exist between allergic and non allergic asthma; instead the primer is different: the allergen in allergic asthma and often an unknown factor in the non allergic asthma. Recently other cytokines have been proved to play a role in the pathogenesis of asthma. IL8 is chemotactic not only for neutrophils but also for eosinophils and might cause chronic inflammation in severe asthma. IL13 works like IL4, while RANTES seems to be a more important chemotactic agent than IL5. Finally IL10, which immunoregulates T lymphocyte responses, may reduce asthma inflammation. In conclusion cytokine made us to learn more about the pathogenesis of asthma even if we do not yet know when and how asthma inflammation develops.

  4. Nanomaterial-modulated autophagy: underlying mechanisms and functional consequences.

    Science.gov (United States)

    Zheng, Wei; Wei, Min; Li, Song; Le, Weidong

    2016-06-01

    Autophagy is an essential lysosome-dependent process that controls the quality of the cytoplasm and maintains cellular homeostasis, and dysfunction of this protein degradation system is correlated with various disorders. A growing body of evidence suggests that nanomaterials (NMs) have autophagy-modulating effects, thus predicting a valuable and promising application potential of NMs in the diagnosis and treatment of autophagy-related diseases. NMs exhibit unique physical, chemical and biofunctional properties, which may endow NMs with capabilities to modulate autophagy via various mechanisms. The present review highlights the impacts of various NMs on autophagy and their functional consequences. The possible underlying mechanisms for NM-modulated autophagy are also discussed.

  5. Mammalian Autophagy: How Does It Work?

    Science.gov (United States)

    Bento, Carla F; Renna, Maurizio; Ghislat, Ghita; Puri, Claudia; Ashkenazi, Avraham; Vicinanza, Mariella; Menzies, Fiona M; Rubinsztein, David C

    2016-06-02

    Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.

  6. Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

    Science.gov (United States)

    Shin, Ju-Hyun

    2016-01-01

    Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery. PMID:27847434

  7. Mechanisms of mitochondria and autophagy crosstalk

    OpenAIRE

    Rambold, Angelika S; Lippincott-Schwartz, Jennifer

    2011-01-01

    Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuro...

  8. Censored correlated cytokine concentrations

    DEFF Research Database (Denmark)

    Andersen, Andreas; Benn, Christine Stabell; Jørgensen, Mathias J;

    2013-01-01

    Interest in cytokines as markers for the function of the immune system is increasing. Methods quantifying cytokine concentrations are often subject to detection limits, which lead to non-detectable observations and censored distributions. When distributions are skewed, geometric mean ratios (GMRs...... for both homogeneous and inhomogeneous normal distributions. For skewed mixture and heavy-tailed distributions, they perform reasonably well if censoring is less than 30%. We recommend these methods to estimate GMRRs. At least one of the methods is available in Stata, R or SAS....

  9. Cytokiner og osteoporose

    DEFF Research Database (Denmark)

    Jørgensen, N R

    1997-01-01

    /testosterone, parathyroidhormone and 1,25(OH)2D3. Some of the cytokines primarily enhance osteoclastic bone resorption e.g. IL-1 (Interleukin-1), TNF (Tumor Necrosis Factor) and IL-6 (Interleukin-6), while others primarily stimulate bone formation e.g. TGF-beta (Transforming Growth Factor), IGF (Insulin-like Growth Factor......During the last few years, progress has been made towards the understanding of local regulation of bone remodelling especially in relation to osteoporosis. Cytokines have shown to be powerful regulators of bone resorption and formation, though under superior control from oestrogen...

  10. Autophagy in stem and progenitor cells.

    Science.gov (United States)

    Rodolfo, Carlo; Di Bartolomeo, Sabrina; Cecconi, Francesco

    2016-02-01

    Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.

  11. Autophagy and its neuroprotection in neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Ping Gu; Avaneesh Jakkoju; Mingwei Wang; Weidong Le

    2011-01-01

    It has been suggested that protein misfolding and aggregation contribute significantly to the development of neurodegenerative diseases. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and by both Micro and Macro autophagy lysosomal pathway (ALP). Autophagosomal dysfunction has been implicated in an increasing number of diseases including neurodegenerative diseases. Autophagy is a cellular self-eating process that plays an important role in neuroprotection as well as neuronal injury and death. While a decrease in autophagic activity interferes with protein degradation and possibly organelle turnover, increased autophagy has been shown to facilitate the clearance of aggregation-prone proteins and promote neuronal survival in a number of disease models. On the other hand, too much autophagic activity can be detrimental, suggesting the regulation of autophagy is critical in dictating cell fate. In this review paper, we will discuss various aspects of ALP biology and its dual functions in neuronal cell death and survival. We will also evaluate the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis. Finally, we will explore the therapeutic potential of autophagy modifiers in several neurodegenerative diseases.

  12. Control of autophagy by oncogenes and tumor suppressor genes.

    Science.gov (United States)

    Maiuri, M C; Tasdemir, E; Criollo, A; Morselli, E; Vicencio, J M; Carnuccio, R; Kroemer, G

    2009-01-01

    Multiple oncogenes (in particular phosphatidylinositol 3-kinase, PI3K; activated Akt1; antiapoptotic proteins from the Bcl-2 family) inhibit autophagy. Similarly, several tumor suppressor proteins (such as BH3-only proteins; death-associated protein kinase-1, DAPK1; the phosphatase that antagonizes PI3K, PTEN; tuberous sclerosic complex 1 and 2, TSC1 and TSC2; as well as LKB1/STK11) induce autophagy, meaning that their loss reduces autophagy. Beclin-1, which is required for autophagy induction acts as a haploinsufficient tumor suppressor protein, and other essential autophagy mediators (such as Atg4c, UVRAG and Bif-1) are bona fide oncosuppressors. One of the central tumor suppressor proteins, p53 exerts an ambiguous function in the regulation of autophagy. Within the nucleus, p53 can act as an autophagy-inducing transcription factor. Within the cytoplasm, p53 exerts a tonic autophagy-inhibitory function, and its degradation is actually required for the induction of autophagy. The role of autophagy in oncogenesis and anticancer therapy is contradictory. Chronic suppression of autophagy may stimulate oncogenesis. However, once a tumor is formed, autophagy inhibition may be a therapeutic goal for radiosensitization and chemosensitization. Altogether, the current state-of-the art suggests a complex relationship between cancer and deregulated autophagy that must be disentangled by further in-depth investigation.

  13. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling.

    Science.gov (United States)

    Gong, F; Peng, X; Sang, Y; Qiu, M; Luo, C; He, Z; Zhao, X; Tong, A

    2013-11-07

    Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase (PDK), and recently it has been shown as a promising nontoxic antineoplastic agent. In this study, we demonstrated that DCA could induce autophagy in LoVo cells, which were confirmed by the formation of autophagosomes, appearance of punctate patterns of LC3 immunoreactivity and activation of autophagy associated proteins. Moreover, autophagy inhibition by 3-methyladenine (3-MA) or Atg7 siRNA treatment can significantly enhance DCA-induced apoptosis. To determine the underlying mechanism of DCA-induced autophagy, target identification using drug affinity responsive target stability (DARTS) coupled with ESI-Q-TOF MS/MS analysis were utilized to profile differentially expressed proteins between control and DCA-treated LoVo cells. As a result, Cathepsin D (CTSD) and thioredoxin-like protein 1 (TXNL1) were identified with significant alterations compared with control. Further study indicated that DCA treatment significantly promoted abnormal reactive oxygen species (ROS) production. On the other hand, DCA-triggered autophagy could be attenuated by N-acetyl cysteine (NAC), a ROS inhibitor. Finally, we demonstrated that the Akt-mTOR signaling pathway, a major negative regulator of autophagy, was suppressed by DCA treatment. To our knowledge, it was the first study to show that DCA induced protective autophagy in LoVo cells, and the potential mechanisms were involved in ROS imbalance and Akt-mTOR signaling pathway suppression.

  14. Cytokines in Sjogren's syndrome

    NARCIS (Netherlands)

    N. Roescher; P.P. Tak; G.G. Illei

    2009-01-01

    Cytokines play a central role in the regulation of immunity and are often found to be deregulated in autoimmune diseases. Sjogren's syndrome is a chronic autoimmune disease characterized by inflammation and loss of secretory function of the salivary and lachrymal glands. This review highlights the c

  15. Modulation of inflammation by autophagy: consequences for Crohn's disease.

    NARCIS (Netherlands)

    Plantinga, T.S.; Joosten, L.A.B.; Meer, J.W.M. van der; Netea, M.G.

    2012-01-01

    Autophagy, the cellular machinery for targeting intracellular components for lysosomal degradation, is critically involved in the host defence to pathogenic microorganisms. Recent studies have unveiled several aspects of the immune response that are regulated by autophagy, including antigen presenta

  16. Autophagy in acute brain injury: feast, famine, or folly?

    Science.gov (United States)

    Smith, Craig M; Chen, Yaming; Sullivan, Mara L; Kochanek, Patrick M; Clark, Robert S B

    2011-07-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."

  17. Analysis of autophagy genes in microalgae: Chlorella as a potential model to study mechanism of autophagy.

    Directory of Open Access Journals (Sweden)

    Qiao Jiang

    Full Text Available BACKGROUND: Microalgae, with the ability to mitigate CO(2 emission and produce carbohydrates and lipids, are considered one of the most promising resources for producing bioenergy. Recently, we discovered that autophagy plays a critical role in the metabolism of photosynthetic system and lipids production. So far, more than 30-autophagy related (ATG genes in all subtypes of autophagy have been identified. However, compared with yeast and mammals, in silico and experimental research of autophagy pathways in microalgae remained limited and fragmentary. PRINCIPAL FINDINGS: In this article, we performed a genome-wide analysis of ATG genes in 7 microalgae species and explored their distributions, domain structures and evolution. Eighteen "core autophagy machinery" proteins, four mammalian-specific ATG proteins and more than 30 additional proteins (including "receptor-adaptor" complexes in all subtypes of autophagy were analyzed. Data revealed that receptor proteins in cytoplasm-to-vacuole targeting and mitophagy seem to be absent in microalgae. However, most of the "core autophagy machinery" and mammalian-specific proteins are conserved among microalgae, except for the ATG9-cycling system in Chlamydomonas reinhardtii and the second ubiquitin-like protein conjugation complex in several algal species. The catalytic and binding residues in ATG3, ATG5, ATG7, ATG8, ATG10 and ATG12 are also conserved and the phylogenetic tree of ATG8 coincides well with the phylogenies. Chlorella contains the entire set of the core autophagy machinery. In addition, RT-PCR analysis verified that all crucial ATG genes tested are expressed during autophagy in both Chlorella and Chlamydomonas reinhardtii. Finally, we discovered that addition of 3-Methyladenine (a PI3K specific inhibitor could suppress the formation of autophagic vacuoles in Chlorella. CONCLUSIONS: Taken together, Chlorella may represent a potential model organism to investigate autophagy pathways in

  18. Cytokine inhibition in the treatment of COPD

    Directory of Open Access Journals (Sweden)

    Caramori G

    2014-04-01

    COPD. The two largest studies that have been reported in the literature involve the use of blocking antibody to TNFα and CXCL8 (IL-8, and neither has provided benefit. Blocking the actions of CXCL8 through its CXCR2 receptor blockade was not successful either. Studies of antibodies against IL-17, IL-18, IL-1β, and TSLP are currently either being undertaken or planned. There is a need to carefully phenotype COPD and discover good biomarkers of drug efficacy for each specific target. Specific groups of COPD patients should be targeted with specific anticytokine therapy if there is evidence of high expression of that cytokine and there are features of the clinical expression of COPD that will respond. Keywords: airway inflammation, COPD, exacerbations, new drugs, cytokine blockers

  19. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy.

    Science.gov (United States)

    Chaudhary, Kapil; Shinde, Rahul; Liu, Haiyun; Gnana-Prakasam, Jaya P; Veeranan-Karmegam, Rajalakshmi; Huang, Lei; Ravishankar, Buvana; Bradley, Jillian; Kvirkvelia, Nino; McMenamin, Malgorzata; Xiao, Wei; Kleven, Daniel; Mellor, Andrew L; Madaio, Michael P; McGaha, Tracy L

    2015-06-15

    Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.

  20. Berberine attenuates autophagy in adipocytes by targeting BECN1

    OpenAIRE

    Deng, Yujie; Xu, Jun; Zhang, Xiaoyan; Yang, Jian; Zhang, Di; Huang, Jian; Lv, Pengfei; Shen, Weili; Yang, Ying

    2014-01-01

    The lysosomal degradation pathway, autophagy, is essential for the maintenance of cellular homeostasis. Recently, autophagy has been demonstrated to be required in the process of adipocyte conversion. However, its role in mature adipocytes under physiological and pathological conditions remains unclear. Here, we report a major function of BECN1 in the regulation of basal autophagy in mature adipocytes. We also show that berberine, a natural plant alkaloid, inhibits basal autophagy in adipocyt...

  1. From the urea cycle to autophagy: Alfred J. Meijer

    NARCIS (Netherlands)

    D.J. Klionsky; A.J. Meijer

    2011-01-01

    Now that many of the components of the autophagy machinery have been identified, in particular the autophagy-related (Atg) proteins, increasing focus is being directed toward the role of autophagy in health and disease. Accordingly, it is of ever-greater importance to understand the central role of

  2. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth

    DEFF Research Database (Denmark)

    Wild, Philipp; Farhan, Hesso; McEwan, David G;

    2011-01-01

    Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms...... be a general mechanism for regulation of cargo-selective autophagy....

  3. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  4. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy.

    Science.gov (United States)

    Yang, Minghua; Liu, Liying; Xie, Min; Sun, Xiaofang; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhu, Shan; Cao, Lizhi; Tang, Daolin

    2015-01-01

    Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.

  5. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission.

    Science.gov (United States)

    Zhou, Jing; Li, Guobing; Zheng, Yi; Shen, Han-Ming; Hu, Xiaoye; Ming, Qian-Liang; Huang, Cheng; Li, Peng; Gao, Ning

    2015-01-01

    Autophagy inhibition has been widely accepted as a promising therapeutic strategy in cancer, while the lack of effective and specific autophagy inhibitors hinders its application. Here we found that liensinine, a major isoquinoline alkaloid, inhibits late-stage autophagy/mitophagy through blocking autophagosome-lysosome fusion. This effect is likely achieved via inhibiting the recruitment of RAB7A to lysosomes but not to autophagosomes. We further investigated the effects of autophagy inhibition by liensinine on the therapeutic efficacy of chemotherapeutic drugs and found that cotreatment of liensinine markedly decreased the viability and increased apoptosis in breast cancer cells treated with various chemotherapeutic agents. Mechanistically, we found that inhibition of autophagy/mitophagy by liensinine enhanced doxorubicin-mediated apoptosis by triggering mitochondrial fission, which resulted from dephosphorylation and mitochondrial translocation of DNM1L. However, blocking autophagosome/mitophagosome formation by pharmacological or genetic approaches markedly attenuated mitochondrial fission and apoptosis in cells with combinatatorial treatment. Moreover, liensinine was synergized with doxorubicin to inhibit tumor growth in MDA-MB-231 xenograft in vivo. Our findings suggest that liensinine could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of liensinine with classical chemotherapeutic drugs could represent a novel therapeutic strategy for treatment of breast cancer.

  6. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  7. Cytokines and anti-cytokines as therapeutics--an update.

    Science.gov (United States)

    Tayal, Vandana; Kalra, Bhupinder Singh

    2008-01-28

    Cytokines which comprise of a family of proteins--interleukins, lymphokines, monokines, interferons, and chemokines, are important components of the immune system. They act in concert with specific cytokine inhibitors and soluble cytokine receptors to regulate the human immune response. Their physiologic role in inflammation and pathologic role in systemic inflammatory states are now well recognized. An imbalance in cytokine production or cytokine receptor expression and/or dysregulation of a cytokine process contributes to various pathological disorders. Research is progressing rapidly in the area of cytokines and their therapeutic targets, the two major therapeutic modalities being the administration of purified recombinant cytokines and the use of their antagonists in various inflammatory disorders. However, given the large number of cytokines, it is disappointing that only relatively few can be used clinically. In the present article, we have made an attempt to review and present a glimpse of the history as well as up to date information that is pertinent to cytokines and anti-cytokine therapies in the treatment of cancer, autoimmune disorders and various other related diseases.

  8. A molecular view of autophagy in Lepidoptera.

    Science.gov (United States)

    Romanelli, Davide; Casati, Barbara; Franzetti, Eleonora; Tettamanti, Gianluca

    2014-01-01

    Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications.

  9. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  10. Coordinate cytokine regulatory sequences

    Science.gov (United States)

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  11. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism.

    Science.gov (United States)

    Dangi, Anil; Huang, Chao; Tandon, Ashish; Stolz, Donna; Wu, Tong; Gandhi, Chandrashekhar R

    2016-01-01

    Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia.

  12. Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J.

    Science.gov (United States)

    Dai, Zhenkai; Huang, Jianfei; Lei, Xiaoya; Yan, Yiming; Lu, Piaopiao; Zhang, Huanmin; Lin, Wencheng; Chen, Weiguo; Ma, Jingyun; Xie, Qingmei

    2017-02-01

    Infection with the avian leukosis virus subgroup J (ALV-J) can lead to neoplastic disease in chickens, inflicting significant economic losses to the poultry industry. Recent reports have identified inhibitory effects of ALV-J on autophagy, a process involving in innate and adaptive immunity. Inspired by this connection between autophagy and immunity, we developed a novel DNA vaccine against ALV-J which includes co-administration of rapamycin to stimulate autophagy. To measure the efficacy of the developed prototype vaccine, five experimental groups of seven-day-old chickens was immunized three times at three-week intervals respectively with vector, pVAX1-gp85, pVAX1-gp85-LC3, pVAX1-gp85+rapamycin and pVAX1-gp85-LC3+rapamycin through electroporation. We then tested their antibody titers, cytokine levels and cellular immune responses. The immunoprotective efficacy of the prototype vaccines against the challenge of the ALV-J GD1109 strain was also examined. The results showed that the combination of pVAX1-gp85-LC3 and rapamycin was able to induce the highest antibody titers, and enhance interleukin(IL)-2, IL-10 and interferon (IFN)-γ expression, and the chickens immunized with the combination of pVAX1-gp85-LC3 and rapamycin showed the highest percentage of CD3+CD8+T lymphocytes. Based on our results, we suggest that stimulating autophagy can improve the efficacy of DNA vaccines and that our DNA vaccine shows the potential of being a candidate vaccine against ALV-J. This study provides a novel strategy for developing vaccines against ALV-J.

  13. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  14. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability.

    Science.gov (United States)

    Wang, Diya; Zhang, Jianbin; Jiang, Wenkai; Cao, Zipeng; Zhao, Fang; Cai, Tongjian; Aschner, Michael; Luo, Wenjing

    2017-02-27

    Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).

  15. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy

    Science.gov (United States)

    Hoo, Ruby L. C.; Shu, Lingling; Cheng, Kenneth K. Y.; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-01

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases. PMID:28094778

  16. Cytokine Therapies in Neurological Disease.

    Science.gov (United States)

    Azodi, Shila; Jacobson, Steven

    2016-07-01

    Cytokines are a heterogeneous group of glycoproteins that coordinate physiological functions. Cytokine deregulation is observed in many neurological diseases. This article reviews current research focused on human clinical trials of cytokine and anticytokine therapies in the treatment of several neurological disease including stroke, neuromuscular diseases, neuroinfectious diseases, demyelinating diseases, and neurobehavioral diseases. This research suggests that cytokine therapy applications may play an important role in offering new strategies for disease modulation and treatment. Further, this research provides insights into the causal link between cytokine deregulation and neurological diseases.

  17. Detection of autoantibodies to cytokines

    DEFF Research Database (Denmark)

    Bendtzen, K; Hansen, M B; Ross, C;

    2000-01-01

    Autoantibodies to various cytokines have been reported in normal individuals and in patients with various infectious and immunoinflammatory disorders, and similar antibodies (Ab) may be induced in patients receiving human recombinant cytokines. The clinical relevance of these Ab is often difficult...... to evaluate. Not only are in vitro neutralizing cytokine Ab not necessarily neutralizing in vivo, but assays for binding and neutralizing Ab to cytokines are often difficult to interpret. For example, denaturation of immobilized cytokines in immunoblotting techniques and immunometric assays may leave Ab...

  18. Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation.

    Science.gov (United States)

    Ji, Meng-Meng; Wang, Li; Zhan, Qin; Xue, Wen; Zhao, Yan; Zhao, Xia; Xu, Peng-Peng; Shen, Yang; Liu, Han; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2015-01-01

    Autophagy is closely related to tumor cell sensitivity to anticancer drugs. The HDAC (histone deacetylase) inhibitor valproic acid (VPA) interacted synergistically with chemotherapeutic agents to trigger lymphoma cell autophagy, which resulted from activation of AMPK (AMP-activated protein kinase) and inhibition of downstream MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling. In an HDAC-independent manner, VPA potentiated the effect of doxorubicin on lymphoma cell autophagy via reduction of cellular inositol 1,4,5 trisphosphate (IP3), blockade of calcium into mitochondria and modulation of PRKAA1/2-MTOR cascade. In murine xenograft models established with subcutaneous injection of lymphoma cells, dual treatment of VPA and doxorubicin initiated IP3-mediated calcium depletion and PRKAA1/2 activation, induced in situ autophagy and efficiently retarded tumor growth. Aberrant genes involving mitochondrial calcium transfer were frequently observed in primary tumors of lymphoma patients. Collectively, these findings suggested an HDAC-independent chemosensitizing activity of VPA and provided an insight into the clinical application of targeting autophagy in the treatment of lymphoma.

  19. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  20. Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Song, Lele; Liu, Hao; Ma, Linyan; Zhang, Xudng; Jiang, Zhiwen; Jiang, Chenchen

    2013-10-01

    Radiotherapy and adjuvant cisplatin chemotherapy are the mainstream treatments for nasopharyngeal carcinoma (NPC), which effectively improve the outcome and reduce tumor recurrence. However, the resistance mechanism(s) involved in radiotherapy and chemotherapy, which is the main barrier in NPC treatment, remains undefined. Therefore, there is an urgent requirement for the identification of new therapeutic strategies or adjuvant drugs. In the present study, the effects of autophagy inhibitors on endoplasmic reticulum (ER) stress-induced autophagy was investigated. Combining 3-methyladenine (3-MA) with cisplatin (DDP), ionizing radiation (IR), 2-deoxy-D-glucose (2-DG) or tunicamycin (TM) resulted in enhanced cell death, as revealed by MTT and colony formation assays. Flow cytometry results demonstrated that the sensitivity of NPC cells to DDP- and IR-induced apoptosis was not significant. DDP, IR, 2-DG and TM induced ER stress and autophagy. Using fluorescence microscopy, 3-MA was identified to increase the apoptotic cell death induced by DDP, IR, 2-DG or TM. In addition, 3-MA inhibited the increased autophagy induced by DDP, IR, 2-DG or TM, as demonstrated by western blot analysis and immunocytochemistry results. Results of the present study indicate that autophagy acts as a protective mechanism response to the apoptosis induced by DDP, IR, 2-DG or TM.

  1. Cytokine Levels in the Serum of Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Giulio Kleiner

    2013-01-01

    Full Text Available Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years with young children and children (1–6 and 7–17 years. We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.

  2. Cytokine levels in the serum of healthy subjects.

    Science.gov (United States)

    Kleiner, Giulio; Marcuzzi, Annalisa; Zanin, Valentina; Monasta, Lorenzo; Zauli, Giorgio

    2013-01-01

    Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years) with young children and children (1-6 and 7-17 years). We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.

  3. Induction of autophagy by spermidine promotes longevity.

    Science.gov (United States)

    Eisenberg, Tobias; Knauer, Heide; Schauer, Alexandra; Büttner, Sabrina; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Ring, Julia; Schroeder, Sabrina; Magnes, Christoph; Antonacci, Lucia; Fussi, Heike; Deszcz, Luiza; Hartl, Regina; Schraml, Elisabeth; Criollo, Alfredo; Megalou, Evgenia; Weiskopf, Daniela; Laun, Peter; Heeren, Gino; Breitenbach, Michael; Grubeck-Loebenstein, Beatrix; Herker, Eva; Fahrenkrog, Birthe; Fröhlich, Kai-Uwe; Sinner, Frank; Tavernarakis, Nektarios; Minois, Nadege; Kroemer, Guido; Madeo, Frank

    2009-11-01

    Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.

  4. IKK connects autophagy to major stress pathways.

    Science.gov (United States)

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-01-01

    Cells respond to stress by activating cytoplasmic mechanisms as well as transcriptional programs that can lead to adaptation or death. Autophagy represents an important cytoprotective response that is regulated by both transcriptional and transcription-independent pathways. NFkappaB is perhaps the transcription factor most frequently activated by stress and has been ascribed with either pro- or anti-autophagic functions, depending on the cellular context. Our results demonstrate that activation of the IKK (IkappaB kinase) complex, which is critical for the stress-elicited activation of NFkappaB, is sufficient to promote autophagy independent of NFkappaB, and that IKK is required for the optimal induction of autophagy by both physiological and pharmacological autophagic triggers.

  5. What to Eat: Evidence for Selective Autophagy in Plants

    Institute of Scientific and Technical Information of China (English)

    Brice E.Floyd; Stephanie C.Morriss; Gustavo C.Maclntosh; Diane C.Bassham

    2012-01-01

    Autophagy is a macromolecular degradation pathway by which cells recycle their contents as a developmental process,house-keeping mechanism,and response to environmental stress.In plants,autophagy involves the sequestration of cargo to be degraded,transport to the cell vacuole in a double-membrane bound autophagosome,and subsequent degradation by lytic enzymes.Autophagy has generally been considered to be a non-selective mechanism of degradation.However,studies in yeast and animals have found numerous examples of selective autophagy,with cargo including proteins,protein aggregates,and organelles.Recent work has also provided evidence for several types of selective autophagy in plants.The degradation of protein aggregates was the first selective autophagy described in plants,and,more recently,a hybrid protein of the mammalian selective autophagy adaptors p62 and NBR1,which interacts with the autophagy machinery and may function in autophagy of protein aggregates,was described in plants.Other intracellular components have been suggested to be selectively targeted by autophagy in plants,but the current evidence is limited.Here,we discuss recent findings regarding the selective targeting of cell components by autophagy in plants.

  6. Regulation of autophagy by the inositol trisphosphate receptor.

    Science.gov (United States)

    Criollo, A; Maiuri, M C; Tasdemir, E; Vitale, I; Fiebig, A A; Andrews, D; Molgó, J; Díaz, J; Lavandero, S; Harper, F; Pierron, G; di Stefano, D; Rizzuto, R; Szabadkai, G; Kroemer, G

    2007-05-01

    The reduction of intracellular 1,4,5-inositol trisphosphate (IP(3)) levels stimulates autophagy, whereas the enhancement of IP(3) levels inhibits autophagy induced by nutrient depletion. Here, we show that knockdown of the IP(3) receptor (IP(3)R) with small interfering RNAs and pharmacological IP(3)R blockade is a strong stimulus for the induction of autophagy. The IP(3)R is known to reside in the membranes of the endoplasmic reticulum (ER) as well as within ER-mitochondrial contact sites, and IP(3)R blockade triggered the autophagy of both ER and mitochondria, as exactly observed in starvation-induced autophagy. ER stressors such as tunicamycin and thapsigargin also induced autophagy of ER and, to less extent, of mitochondria. Autophagy triggered by starvation or IP(3)R blockade was inhibited by Bcl-2 and Bcl-X(L) specifically targeted to ER but not Bcl-2 or Bcl-X(L) proteins targeted to mitochondria. In contrast, ER stress-induced autophagy was not inhibited by Bcl-2 and Bcl-X(L). Autophagy promoted by IP(3)R inhibition could not be attributed to a modulation of steady-state Ca(2+) levels in the ER or in the cytosol, yet involved the obligate contribution of Beclin-1, autophagy-related gene (Atg)5, Atg10, Atg12 and hVps34. Altogether, these results strongly suggest that IP(3)R exerts a major role in the physiological control of autophagy.

  7. Emerging role of mammalian autophagy in ketogenesis to overcome starvation.

    Science.gov (United States)

    Takagi, Ayano; Kume, Shinji; Maegawa, Hiroshi; Uzu, Takashi

    2016-01-01

    Autophagy is essential for the survival of lower organisms under conditions of nutrient depletion. However, whether autophagy plays a physiological role in mammals experiencing starvation is unknown. Ketogenesis is critical for overcoming starvation in mammals. We recently revealed that hepatic and renal autophagy are involved in starvation-induced ketogenesis, by utilizing tissue-specific autophagy-deficient mouse models. The liver is the principal organ to regulate ketogenesis, and a deficiency of liver-specific autophagy partially but significantly attenuates starvation-induced ketogenesis. While deficiency of renal-specific autophagy does not affect starvation-induced ketogenesis, mice with deficiency of both liver and kidney autophagy have even lower blood ketone levels and physical activity under starvation conditions than those lacking autophagy in the liver alone. These results suggest that the kidney can compensate for impaired hepatic ketogenesis. Since ketone bodies are catabolized from fatty acids, the uptake of fatty acids, the formation of intracellular lipid droplets, and fatty acid oxidation are critical for ketogenesis. We found that starvation-induced lipid droplet formation is impaired in autophagy-deficient organs. Thus, hepatic and renal autophagy are required for starvation-induced ketogenesis. This process is essential for maintaining systemic energy homeostasis and physical activity during starvation. Our findings provide a novel insight into mammalian autophagy and the physiology of starvation.

  8. Role of the Crosstalk between Autophagy and Apoptosis in Cancer

    Directory of Open Access Journals (Sweden)

    Minfei Su

    2013-01-01

    Full Text Available Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.

  9. Autophagy-associated immune responses and cancer immunotherapy.

    Science.gov (United States)

    Pan, Hongming; Chen, Liuxi; Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-04-19

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed.

  10. Optineurin deficiency in mice contributes to impaired cytokine secretion and neutrophil recruitment in bacteria-driven colitis

    Directory of Open Access Journals (Sweden)

    Thean S. Chew

    2015-08-01

    Full Text Available Crohn's disease (CD is associated with delayed neutrophil recruitment and bacterial clearance at sites of acute inflammation as a result of impaired secretion of proinflammatory cytokines by macrophages. To investigate the impaired cytokine secretion and confirm our previous findings, we performed transcriptomic analysis in macrophages and identified a subgroup of individuals with CD who had low expression of the autophagy receptor optineurin (OPTN. We then clarified the role of OPTN deficiency in: macrophage cytokine secretion; mouse models of bacteria-driven colitis and peritonitis; and zebrafish Salmonella infection. OPTN-deficient bone-marrow-derived macrophages (BMDMs stimulated with heat-killed Escherichia coli secreted less proinflammatory TNFα and IL6 cytokines despite similar gene transcription, which normalised with lysosomal and autophagy inhibitors, suggesting that TNFα is mis-trafficked to lysosomes via bafilomycin-A-dependent pathways in the absence of OPTN. OPTN-deficient mice were more susceptible to Citrobacter colitis and E. coli peritonitis, and showed reduced levels of proinflammatory TNFα in serum, diminished neutrophil recruitment to sites of acute inflammation and greater mortality, compared with wild-type mice. Optn-knockdown zebrafish infected with Salmonella also had higher mortality. OPTN plays a role in acute inflammation and neutrophil recruitment, potentially via defective macrophage proinflammatory cytokine secretion, which suggests that diminished OPTN expression in humans might increase the risk of developing CD.

  11. Autophagy in the light of sphingolipid metabolism

    DEFF Research Database (Denmark)

    Harvald, Eva Bang; Olsen, Anne Sofie Braun; Færgeman, Nils J.

    2015-01-01

    , has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural......Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components...

  12. Autophagy and proteins involved in vesicular trafficking.

    Science.gov (United States)

    Amaya, Celina; Fader, Claudio Marcelo; Colombo, María Isabel

    2015-11-14

    Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.

  13. Drug: D04242 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04242 Drug Fontolizumab (USAN/INN) Immunoregulatory agent to treat auto-immune dis...[HSA:3458] [KO:K04687] Fontolizumab D04242 Fontolizumab (USAN/INN) CAS: 326859-36-3 PubChem: 47206188 ... ...interaction Target-based classification of drugs [BR:br08310] Cytokines Class II cytokines interferon gamma

  14. [Cytokines and hematopoiesis].

    Science.gov (United States)

    Mannoni, P

    1993-03-01

    The identification and purification of haemopoietic growth regulators have resulted in a better understanding of control mechanisms. Cloning and expression of the corresponding genes have shown that most of the activities observed correspond to specific glycoproteins produced by cells from numerous tissues, including those of bone marrow stroma and immune system. These cytokines activate the responsive cells through specific receptors expressed on their membranes. They exert an accurate control of haematopoiesis in a network of synergistic and antagonistic factors. The exact identification of their biological activities, together with the possibility of producing them in large amounts by genetic recombination, have already resulted in their therapeutic use with, in certain cases, a remarkable efficiency.

  15. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoko [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Sou, Yu-Shin; Kageyama, Shun [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Takahashi, Takao [Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Ueno, Takashi [Division of Proteomics and Biomolecular Science, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Tanaka, Keiji [Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510 (Japan); Ichimura, Yoshinobu, E-mail: ichimura-ys@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan)

    2014-03-28

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.

  16. [Cytokines in bone diseases. Cytokine and postmenopausal osteoporosis].

    Science.gov (United States)

    Inada, Masaki; Miyaura, Chisato

    2010-10-01

    Bone resorption is regulated by various cytokines. In postmenopausal osteoporosis, bone loss due to estrogen deficiency is closely related to the production of bone-resorbing cytokine. Especially, the increased production of IL-1, IL-6 and TNF-α could induce the expression of RANKL in bone tissues to enhance osteoclastogenesis. Relationship between estrogen deficiency and various cytokines is important to clarify the pathogenesis of postmenopausal osteoporosis.

  17. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells.

    Science.gov (United States)

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-03-21

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.

  18. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell.

    Science.gov (United States)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery.

  19. Chloroquine has a cytotoxic effect on Acanthamoeba encystation through modulation of autophagy.

    Science.gov (United States)

    Jha, Bijay Kumar; Jung, Hui-Jung; Seo, Incheol; Kim, Hyun Ah; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki

    2014-10-01

    Encystation of Acanthamoeba castellanii is associated with resistance to chemotherapeutic agents. Blocking the encystation process could potentiate the efficacy of chemotherapeutic agents and biocides. During encystation, autophagy is highly stimulated and required for proper encystation of Acanthamoeba. In this study, the cytotoxic effect of chloroquine, a well-known autophagy-inhibitory drug, was tested in A. castellanii. Chloroquine was able to selectively reduce cell survival during the encystation of A. castellanii. However, A. castellanii trophozoites and mature cysts were resistant to chloroquine. Chloroquine treatment led to an increase in the number and size of lysosomes in encysting cells. Moreover, chloroquine inhibited the degradation of long-lived proteins in the encysting cells. Decreased autophagic flux, indicated by an increased number of lysosomes and decreased degradation of long-lived proteins, may be the mechanism by which cell death is induced by chloroquine in encysting Acanthamoeba. These results suggest a potential novel therapeutic application of chloroquine as an anti-Acanthamoeba drug. Our findings also suggest that targeting autophagy could be a therapeutic strategy against Acanthamoeba infection.

  20. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model

    Institute of Scientific and Technical Information of China (English)

    Sylvie; Lagaye; Sonia; Brun; Jesintha; Gaston; Hong; Shen; Ruzena; Stranska; Claire; Camus; Clarisse; Dubray; Géraldine; Rousseau; Pierre-Philippe; Massault; Jer?me; Courcambeck; Firas; Bassisi; Philippe; Halfon; Stanislas; Pol

    2016-01-01

    AIM: To evaluate the antiviral potency of a new antihepatitis C virus(HCV) antiviral agent targeting the cellular autophagy machinery. METHODS: Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices(2.7 × 106 cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant(multiplicity of infection = 0.1) cultivated for up to ten days. HCV infected slices were treated at day 4 post-infection with GNS-396 for 6 d at different concentrations. HCV replication was evaluated by strand-specific real-time quantitative reverse transcription- polymerase chain reaction. The infectivity titers of supernatants were evaluated by foci formation upon inoculation into naive Huh-7.5.1 cells. The cytotoxic effect of the drugs was evaluated by lactate dehydrogenase leakage assays. RESULTS: The antiviral efficacy of a new antiviral drug, GNS-396, an autophagy inhibitor, on HCV infection of adult human liver slices was evidenced in a dosedependent manner. At day 6 post-treatment, GNS-396 EC50 was 158 nmol/L without cytotoxic effect(compared to hydroxychloroquine EC50 = 1.17 μmol/L).CONCLUSION: Our results demonstrated that our ex vivo model is efficient for evaluation the potency of autophagy inhibitors, in particular a new quinoline derivative GNS-396 as antiviral could inhibit HCV infection in a dosedependent manner without cytotoxic effect.

  1. Trehalose Accumulation Triggers Autophagy during Plant Desiccation.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2015-12-01

    Full Text Available Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.

  2. Avermectin induced autophagy in pigeon spleen tissues.

    Science.gov (United States)

    Liu, Ci; Zhao, Yanbing; Chen, Lijie; Zhang, Ziwei; Li, Ming; Li, Shu

    2015-12-05

    The level of autophagy is considered as an indicator for monitoring the toxic impact of pesticide exposure. Avermectin (AVM), a widely used insecticide, has immunotoxic effects on the pigeon spleen. The aim of this study was to investigate the status of autophagy and the expression levels of microtubule-associated protein1 light chain 3 (LC3), beclin-1, dynein, autophagy associated gene (Atg) 4B, Atg5, target of rapamycin complex 1 (TORC1) and target of rapamycin complex 2 (TORC2) in AVM-treated pigeon spleens. Eighty two-month-old pigeons were randomly divided into four groups: a control group, a low-dose group, a medium-dose group and a high-dose group, which were fed a basal diet spiked with 0, 20, 40 and 60 mg AVM/kg diet, respectively. Microscopic cellular morphology revealed a significant increase in autophagic structures in the AVM-treated groups. The expression of LC3, beclin-1, dynein, Atg4B and Atg5 increased, while mRNA levels of TORC1 and TORC2 were decreased in the AVM-treated groups relative to the control groups at 30, 60 and 90 days in the pigeon spleen. These results indicated that AVM exposure could up-regulate the level of autophagy in a dose-time-dependent manner in the pigeon spleen.

  3. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome

    DEFF Research Database (Denmark)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V

    2011-01-01

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy ...

  4. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  5. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    Science.gov (United States)

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair.

  6. Crosstalk of clock gene expression and autophagy in aging

    Science.gov (United States)

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  7. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiwen [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China); Bijie Pilot Area Research Institute of Bijie University, Bijie 551700 (China); Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China)

    2013-08-16

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity.

  8. Autophagy-related prognostic signature for breast cancer.

    Science.gov (United States)

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  9. Autophagy facilitates Salmonella replication in HeLa cells.

    Science.gov (United States)

    Yu, Hong B; Croxen, Matthew A; Marchiando, Amanda M; Ferreira, Rosana B R; Cadwell, Ken; Foster, Leonard J; Finlay, B Brett

    2014-03-11

    Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. IMPORTANCE As a host defense system, autophagy is known to target a population of Salmonella for degradation and hence restricting Salmonella replication. In contrast to this concept, a recent report showed that knockdown of Rab1, a GTPase required for autophagy of Salmonella, decreases Salmonella replication in HeLa cells. Here, we have reexamined the fate of Salmonella targeted by autophagy by various cell biology-based assays. We found that the association of autophagy components with cytosolic Salmonella increases shortly after initiation of intracellular bacterial replication. Furthermore, through a live-cell imaging method, a subset of cytosolic Salmonella was found to be extensively associated with autophagy components p62 and/or LC3, and they replicated quickly. Most importantly, depletion of autophagy components significantly reduced the replication of cytosolic Salmonella in HeLa cells. Hence, in contrast to previous reports, we propose

  10. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  11. Cytokines as biomarkers in depressive disorder: current standing and prospects.

    Science.gov (United States)

    Lichtblau, Nicole; Schmidt, Frank M; Schumann, Robert; Kirkby, Kenneth C; Himmerich, Hubertus

    2013-10-01

    The frequently observed co-occurrence of depressive disorders and inflammatory diseases suggests a close connection between the nervous and the immune systems. Increased pro-inflammatory and type 1 cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-α and interferon (IFN)-γ, appear to be an important link. Cytokines are synthesized by immune cells in the blood and peripheral tissues and by glial cells in the central nervous system (CNS). Evidence suggests that the blood-brain barrier (BBB) is permeable to cytokines and immune cells, and that afferent nerves, e.g. the vagus nerve, mediate the communication between peripheral inflammatory processes and CNS. Cytokines such as IL-1ß, TNF-α and IFN-γ seem to contribute to the pathophysiology of depression by activating monoamine reuptake, stimulating the hypothalamic-pituitary-adrenocortical (HPA) axis and decreasing production of serotonin due to increased activity of indolamine-2,3-dioxygenase (IDO). However, critical appraisal of these hypotheses is required, because cytokine elevation is not specific to depression. Moreover, several effective antidepressants such as amitriptyline and mirtazapine have been shown to increase cytokine production. When applying immunomodulatory therapies, these drugs may increase the risk of specific side effects such as infections or interact with antidepressant drugs on important functions of the body such as the coagulation system.

  12. Ulinastatin reduces the resistance of liver cancer cells to epirubicin by inhibiting autophagy.

    Directory of Open Access Journals (Sweden)

    Bin Song

    Full Text Available During chemotherapy, drug resistance caused by autophagy remains a major challenge to successful treatment of cancer patients. The purpose of this study is to show that ulinastatin (UTI, a trypsin inhibitor, could reduce the resistance of liver cancer cells to chemotherapeutic agent epirubicin (EPI. We achieved this conclusion by analyzing the effect of EPI alone or UTI plus EPI on SMMC-7721 and MHCC-LM3 liver cancer cells. We also generated an EPI-resistant liver cancer cell line (MHCC-LM3er cells, and found that UTI could sensitize the LM3er cells to EPI. Autophagy usually functions to protect cancer cells during chemotherapy. Our study showed that UTI inhibited the autophagy induced by EPI in liver cancer cells, which promoted apoptosis, and therefore, reduced the resistance of the cancer cells to EPI. Further studies showed that the UTI-mediated inhibition on autophagy was achieved by inhibiting transcriptional factor nuclear factor-κB (NF-κB signaling pathway. To verify our results in vivo, we injected MHCC-LM3 liver cancer cells or EPI-resistant LM3er cells into mice, and found that EPI could only effectively inhibit the growth of tumor in MHCC-LM3 cell-injected mice, but not in LM3er cell-injected mice. However, when UTI was also administered, the growth of tumor was inhibited in the MHCC-LM3er cell-injected mice as well. Our results suggest that UTI may be used in combination with anti-cancer drugs, such as EPI, to improve the outcome of cancer therapy.

  13. Polydatin regulates proliferation, apoptosis and autophagy in multiple myeloma cells through mTOR/p70s6k pathway

    Science.gov (United States)

    Yang, Baojun; Zhao, Shunxin

    2017-01-01

    Background Polydatin (PD) plays an important role in suppressing platelet aggregation, reducing blood lipid, restoring microcirculation and protecting from myocardial ischemia/reperfusion injury and shock. In addition, PD possesses anticancer activity. However, the effect and the mechanism of PD in regulating multiple myeloma (MM) cell survival and death are still unknown. Methods Cell proliferation and apoptosis of RPMI 8226 cells, respectively, were analyzed by cell counting kit8 (CCK-8) assay and flow cytometry. The levels of caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, Bcl-2 and Bax were analyzed by Western blot. Autophagy induced by PD was investigated by detecting the levels of Beclin 1, Atg5, LC3I, LC3II, HSP70 and HSP27. The autophagy inhibitor 3-methyladenine (3-MA), mTOR/p70s6k inhibitor rapamycin, and mTOR activator MHY1485 were used to analyze the mechanism of cell proliferation, apoptosis and autophagy influenced by PD. The phosphorylations of mTOR and p70s6k were detected by Western blot. Results A gradual decrease in cell proliferation of RPMI 8226 cells was observed with an increase in PD concentrations (Pcell apoptosis and autophagy in a concentration-dependent manner. Both 3-MA and MHY1485 reversed the inhibitory effect of PD on cell proliferation and attenuated the positive effect of PD on cell apoptosis and autophagy. The phosphorylation of mTOR and p70s6k was significantly suppressed by PD (Pcell viability (Pcell proliferation and induced apoptosis and autophagy of MM cells via the mTOR/p70s6k signaling pathway in a concentration-dependent manner in vitro, indicating that PD could be a potential anticancer drug for MM therapy.

  14. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance.

    Science.gov (United States)

    Song, Wensi; Soo Lee, Seung; Savini, Marzia; Popp, Lauren; Colvin, Vicki L; Segatori, Laura

    2014-10-28

    Cerium oxide nanoparticles (nanoceria) are widely used in a variety of industrial applications including UV filters and catalysts. The expanding commercial scale production and use of ceria nanoparticles have inevitably increased the risk of release of nanoceria into the environment as well as the risk of human exposure. The use of nanoceria in biomedical applications is also being currently investigated because of its recently characterized antioxidative properties. In this study, we investigated the impact of ceria nanoparticles on the lysosome-autophagy system, the main catabolic pathway that is activated in mammalian cells upon internalization of exogenous material. We tested a battery of ceria nanoparticles functionalized with different types of biocompatible coatings (N-acetylglucosamine, polyethylene glycol and polyvinylpyrrolidone) expected to have minimal effect on lysosomal integrity and function. We found that ceria nanoparticles promote activation of the transcription factor EB, a master regulator of lysosomal function and autophagy, and induce upregulation of genes of the lysosome-autophagy system. We further show that the array of differently functionalized ceria nanoparticles tested in this study enhance autophagic clearance of proteolipid aggregates that accumulate as a result of inefficient function of the lysosome-autophagy system. This study provides a mechanistic understanding of the interaction of ceria nanoparticles with the lysosome-autophagy system and demonstrates that ceria nanoparticles are activators of autophagy and promote clearance of autophagic cargo. These results provide insights for the use of nanoceria in biomedical applications, including drug delivery. These findings will also inform the design of engineered nanoparticles with safe and precisely controlled impact on the environment and the design of nanotherapeutics for the treatment of diseases with defective autophagic function and accumulation of lysosomal storage material.

  15. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  16. Identification and pharmacological induction of autophagy in the larval stages of Echinococcus granulosus: an active catabolic process in calcareous corpuscles.

    Science.gov (United States)

    Loos, Julia A; Caparros, Pedro A; Nicolao, María Celeste; Denegri, Guillermo M; Cumino, Andrea C

    2014-06-01

    Autophagy is a fundamental catabolic pathway conserved from yeast to mammals, but which remains unknown in parasite cestodes. In this work, the pharmacological induction of autophagy was cellularly and molecularly analysed in the larval stages of Echinococcus granulosus. Metacestode sensitivity to rapamycin and TORC1 expression in protoscoleces and metacestodes were shown. Ultrastructural studies showed that treated parasites had an isolation membrane, autophagosomes and autolysosomes, all of which evidenced the autophagic flux. Genes coding for key autophagy-related proteins were also identified in the Echinococcus genome. These genes were involved in autophagosome formation and transcriptional over-expression of Eg-atg5, Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16 and Eg-atg18 was shown in presence of rapamycin or arsenic trioxide. Thus, Echinococcus autophagy could be regulated by non-transcriptional inhibition through TOR and by transcription-dependent up-regulation via FoxO-like transcription factors and/or TFEB proteins. An increase in the punctate pattern and Eg-Atg8 polypeptide level in the tegument, parenchyma cells and excretory system of protoscoleces and in vesicularised parasites was detected after rapamycin treatment. This suggests the occurrence of basal autophagy in the larval stages and during vesicular development. In arsenic-treated protoscoleces, high Eg-Atg8 polypeptide levels within the free cytoplasmic matrix of calcareous corpuscles were observed, thus verifying the occurrence of autophagic events. These experiments also confirmed that the calcareous corpuscles are sites of arsenic trioxide accumulation. The detection of the autophagic machinery in this parasite represents a basic starting point to unravel the role of autophagy under both physiological and stress conditions which will allow identification of new strategies for drug discovery against neglected parasitic diseases caused by cestodes.

  17. Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases

    Directory of Open Access Journals (Sweden)

    Nayely Leyva-López

    2016-06-01

    Full Text Available High levels of cytokines, such as interleukin (IL-1β, tumor necrosis factor (TNF-α and IL-6, are associated with chronic diseases like rheumatoid arthritis, asthma, atherosclerosis, Alzheimer’s disease and cancer; therefore cytokine inhibition might be an important target for the treatment of these diseases. Most drugs used to alleviate some inflammation-related symptoms act by inhibiting cyclooxygenases activity or by blocking cytokine receptors. Nevertheless, these drugs have secondary effects when used on a long-term basis. It has been mentioned that flavonoids, namely quercetin, apigenin and luteolin, reduce cytokine expression and secretion. In this regard, flavonoids may have therapeutical potential in the treatment of inflammation-related diseases as cytokine modulators. This review is focused on current research about the effect of flavonoids on cytokine modulation and the description of the way these compounds exert their effect.

  18. Autophagy - Adaptive Molecular Mechanisms in Condition of Starvation

    Directory of Open Access Journals (Sweden)

    Pedrycz Agnieszka

    2015-09-01

    Full Text Available Autophagy is an extremely old process during which long-lived proteins and cellular organelles are removed by means of lysosomes. Autophagy may be caused by cellular stress mechanisms. Research has proven that autophagy plays a key role in obtaining nutrients and adapting to the conditions of starvation. Owing to this, it takes part in maintaining homeostasis in cytoplasm and cell nucleus. This objective may be achieved through a number of ways. Depending on the manner in which a substrate connects with the lysosome, we can talk about macroautophagy and microautophagy. Additionally, some authors also distinguish a chaperone-mediated autophagy. The article presented below describes molecular mechanisms of each type of autophagy and focuses particularly on macroautophagy, which is the best understood of all the autophagy types.

  19. Autophagy as a Therapeutic Target in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Yuki Tanaka

    2012-01-01

    Full Text Available Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field.

  20. Epigenetic modifications as regulatory elements of autophagy in cancer.

    Science.gov (United States)

    Sui, Xinbing; Zhu, Jing; Zhou, Jichun; Wang, Xian; Li, Da; Han, Weidong; Fang, Yong; Pan, Hongming

    2015-05-01

    Epigenetic modifications have been considered as hallmarks of cancer and play an important role in tumor initiation and development. Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, may regulate cell cycle and apoptosis, as well as macroautophagy (hereafter referred to as autophagy). Autophagy, as a crucial cellular homeostatic mechanism, performs a dual role, having pro-survival or pro-death properties. A variety of signaling pathways including epigenetic control have been implicated in the upregulation or downregulation of autophagy. However, the role of epigenetic regulation in autophagy is still less well acknowledged. Recent studies have linked epigenetic control to the autophagic process. Some epigenetic modifiers are also involved in the regulation of autophagy and potentiate the efficacy of traditional therapeutics. Thus, understanding the novel functions of epigenetic control in autophagy may allow us to develop potential therapeutic approaches for cancer treatment.

  1. Research Progression of Cellular Autophagy in Liver System Diseases

    Directory of Open Access Journals (Sweden)

    Chunyun Liu

    2013-09-01

    Full Text Available Autophagy is a basic biological phenomenon widely existed in eukaryotic cells and an important mechanism for cells to adjust to the surrounding environment, prevent invasion of pathogenic micro-organisms and maintain homeostasis, whose activity changes evidently in multiple liver system diseases, suggesting that there is close association between autophagy and the generation and development of liver system diseases. It is also reported that autophagy develops and exerts an important function in many liver-related diseases, such as hepatic carcinoma, non-alcoholic fatty liver disease, alcoholic liver disease, viral liver disease and acute liver injury. Therefore, this study aimed to summarize the relationship between autophagy and multiple liver diseases, hoping to explore the effect of autophagy in liver system diseases and further study the regulative effect of autophagy so as to provide new thoughts for their treatment.

  2. Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy

    Directory of Open Access Journals (Sweden)

    Leanne Pereira

    2012-01-01

    Full Text Available Autophagy is a highly conserved cellular process occurring during periods of stress to ensure a cell's survival by recycling cytosolic constituents and making products that can be used in energy generation and other essential processes. Three major forms of autophagy exist according to the specific mechanism through which cytoplasmic material is transported to a lysosome. Chaperone-mediated autophagy is a highly selective form of autophagy that delivers specific proteins for lysosomal degradation. Microautophagy is a less selective form of autophagy that occurs through lysosomal membrane invaginations, forming tubes and directly engulfing cytoplasm. Finally, macroautophagy involves formation of new membrane bilayers (autophagosomes that engulf cytosolic material and deliver it to lysosomes. This review provides new insights on the crosstalks between different forms of autophagy and the significance of bilayer-forming phospholipid synthesis in autophagosomal membrane formation.

  3. Methods for assessing autophagy and autophagic cell death.

    Science.gov (United States)

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  4. Research Progression of Cellular Autophagy in Liver System Diseases

    Institute of Scientific and Technical Information of China (English)

    Liu Chunyun; Gong Xiangwen; Xiao Xinfa; Yuan Xiangying

    2013-01-01

    Autophagy is a basic biological phenomenon widely existed in eukaryotic cells and an important mechanism for cells to adjust to the surrounding environment, prevent invasion of pathogenic micro-organisms and maintain homeostasis, whose activity changes evidently in multiple liver system diseases, suggesting that there is close association between autophagy and the generation and development of liver system diseases. It is also reported that autophagy develops and exerts an important function in many liver-related diseases, such as hepatic carcinoma, non-alcoholic fatty liver disease, alcoholic liver disease, viral liver disease and acute liver injury. Therefore, this study aimed to summarize the relationship between autophagy and multiple liver diseases, hoping to explore the effect of autophagy in liver system diseases and further study the regulative effect of autophagy so as to provide new thoughts for their treatment.

  5. Targeting Pediatric Glioma with Apoptosis and Autophagy Manipulation

    Science.gov (United States)

    2014-10-01

    shRNA against RAB7. We chose this because RAB7 similar to chloroquine, effects late stage autophagy with lysosomal fusion to the autophagosome. Thus...hypothesis that late stage autophagosome fusion with the lysosome and degradation of the components and recycling of the macronutrients is critical to...of autophagy, Rab7 and Lamp 2. We are now introducing siRNA against Rab7 and Lamp2 to reiterate the effects of Chloroquine inhibition of autophagy

  6. Characterization of early autophagy signaling by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer Tg; Zarei, Mostafa; Sprenger, Adrian;

    2014-01-01

    Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux....... To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon...

  7. Beclin 1 complex in autophagy and Alzheimer disease.

    Science.gov (United States)

    Jaeger, Philipp A; Wyss-Coray, Tony

    2010-10-01

    Beclin 1 is a protein involved in the regulation of autophagy and has been shown to be reduced in patients with Alzheimer disease. This review summarizes the current research data that link disturbances in autophagy, a cellular degradation and maintenance pathway, to the development of Alzheimer disease and related neurodegenerative diseases. It also provides a brief overview of the existing pharmacological interventions available to modulate autophagy activity in mammalian cells.

  8. Small-molecule control of cytokine function: new opportunities for treating immune disorders

    Science.gov (United States)

    Sundberg, Thomas B.; Xavier, Ramnik J.; Schreiber, Stuart L.; Shamji, Alykhan F.

    2016-01-01

    Manipulating cytokine function with protein-based drugs has proven effective for treating a wide variety of autoimmune and auto-inflammatory disorders. However, the limited ability of protein-based drugs to modulate intracellular targets, including many implicated by studies of the genetics and physiology of these diseases, and to coordinately neutralize redundant inflammatory cytokines, suggest an important and complementary role for small molecules in immunomodulatory drug development. The recent clinical approval of Janus kinase and phosphodiesterase inhibitors, along with emerging evidence from other compound classes, firmly establish small molecules as effective tools for modulating therapeutically relevant proteins that give rise to aberrant cytokine signaling or mediate its downstream consequences. PMID:25222143

  9. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Li, Chunyang; Chen, Jie; Lu, Bangmin; Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment.

  10. 4th International Symposium on Autophagy: exploiting the frontiers of autophagy research.

    Science.gov (United States)

    Eskelinen, Eeva-Liisa; Deretic, Vojo; Neufeld, Thomas; Levine, Beth; Cuervo, Ana Maria

    2007-01-01

    The 4th International Symposium on Autophagy was held in Mishima, a small town between Tokyo and Kyoto, October 1-5, 2006 (http://isa4th.umin.jp/). The meeting was organized by the group of Eiki Kominami. Approximately 150 participants took part in this well-organized meeting in the spacious and comfortable Toray Conference Hall (Fig. 1). The social program offered opportunities for informal discussions, Japanese culture (from karaoke singing to traditional drumming; Fig. 2), history and nature (a visit to a steaming volcano; Fig. 3), as well as delicious Japanese food. The scientific program started with two plenary lectures on Sunday evening. Daniel Klionsky gave an overview of Atg9 cycling in yeast and Shigekazu Nagata talked about apoptosis and engulfment of dead cells by macrophages. The meeting consisted of five oral sessions and two poster sessions covering a wide range of autophagy-related topics. Exciting unpublished results were presented in all sessions, showing how quickly autophagy research is progressing. Two themes were discussed in many sessions during the symposium: the role of autophagy in the degradation of aggregate-prone proteins and protein aggregates, and the possible role of p62 in autophagy.

  11. Does autophagy take a front seat in lifespan extension?

    OpenAIRE

    Petrovski, Goran; Das, Dipak K

    2010-01-01

    Abstract This review focuses on the interrelationship between ageing and autophagy. There is a striking similarity between the signalling aspects of these two processes. Both ageing and autophagy involve several of the signalling components such as insulin/IGF-1, AMPK, Ras-cAMP-PKA, Sch9 and mTOR. Ageing and ageing-mediated defective autophagy involve accumulation of lipofuscin. Components of anti-ageing and autophagy include SirTs and FoxOs. Nutritional deprivation or calorie restriction as ...

  12. Autophagy and bacterial infection: an evolving arms race.

    Science.gov (United States)

    Choy, Augustine; Roy, Craig R

    2013-09-01

    Autophagy is an important membrane transport pathway that is conserved among eukaryotic cells. Although first described as an intracellular catabolic pathway used to break down self-components, autophagy has been found to play an important role in the elimination of intracellular pathogens. A variety of host mechanisms exist for recognizing and targeting intracellular bacteria to autophagosomes. Several intracellular bacteria have evolved ways to manipulate, inhibit, or avoid autophagy in order to survive in the cell. Thus, the autophagy pathway can be viewed as an evolutionarily conserved host response to infection.

  13. Autophagy is essential for cardiac morphogenesis during vertebrate development.

    Science.gov (United States)

    Lee, Eunmyong; Koo, Yeon; Ng, Aylwin; Wei, Yongjie; Luby-Phelps, Kate; Juraszek, Amy; Xavier, Ramnik J; Cleaver, Ondine; Levine, Beth; Amatruda, James F

    2014-04-01

    Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis. Using zebrafish that transgenically express the fluorescent autophagy reporter protein, GFP-LC3, we found that autophagy is active in multiple tissues, including the heart, during the embryonic period. Inhibition of autophagy by morpholino knockdown of essential autophagy genes (including atg5, atg7, and becn1) resulted in defects in morphogenesis, increased numbers of dead cells, abnormal heart structure, and reduced organismal survival. Further analyses of cardiac development in autophagy-deficient zebrafish revealed defects in cardiac looping, abnormal chamber morphology, aberrant valve development, and ectopic expression of critical transcription factors including foxn4, tbx5, and tbx2. Consistent with these results, Atg5-deficient mice displayed abnormal Tbx2 expression and defects in valve development and chamber septation. Thus, autophagy plays an essential, conserved role in cardiac morphogenesis during vertebrate development.

  14. Autophagy is required for IL-2-mediated fibroblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Rui [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Lotze, Michael T., E-mail: lotzemt@upcm.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Zeh III, Herbert J., E-mail: zehh@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States)

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  15. Autophagy and the Cell Cycle: A Complex Landscape

    Science.gov (United States)

    Mathiassen, Søs Grønbæk; De Zio, Daniela; Cecconi, Francesco

    2017-01-01

    Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.

  16. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    Science.gov (United States)

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.

  17. MicroRNA regulation of Autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lund, Anders H

    2012-01-01

    recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these small non......-coding RNAs have been closely linked to virtually all known fundamental biological pathways. Deregulation of miRNAs can contribute to the development of human diseases, including cancer, where they can function as bona fide oncogenes or tumor suppressors.In this review, we highlight recent advances linking miRNAs...... perspective, but also from a therapeutic view, where miRNAs can be harnessed experimentally to alter autophagy levels in human tumors, affecting parameters such as tumor survival and treatment sensitivity....

  18. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption.

    Directory of Open Access Journals (Sweden)

    Chih-Peng Chang

    Full Text Available Interferon-gamma (IFN-γ, a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1 translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ(-/- mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.

  19. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  20. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    Science.gov (United States)

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  1. Cytokine receptors and hematopoietic differentiation.

    Science.gov (United States)

    Robb, L

    2007-10-15

    Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

  2. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Berlinda Verdoodt

    Full Text Available BACKGROUND: Salinomycin is a polyether ionophore antibiotic that has recently been shown to induce cell death in human cancer cells displaying multiple mechanisms of drug resistance. The underlying mechanisms leading to cell death after salinomycin treatment have not been well characterized. We therefore investigated the role of salinomycin in caspase dependent and independent cell death in colon cancer (SW480, SW620, RKO and breast cancer cell lines (MCF-7, T47D, MDA-MB-453. METHODOLOGY/PRINCIPAL FINDINGS: We detected features of apoptosis in all cell lines tested, but the executor caspases 3 and 7 were only strongly activated in RKO and MDA-MB-453 cells. MCF-7 and SW620 cells instead presented features of autophagy such as cytoplasmic vacuolization and LC3 processing. Caspase proficient cell lines activated autophagy at lower salinomycin concentrations and before the onset of caspase activation. Salinomycin also led to the formation of reactive oxygen species (ROS eliciting JNK activation and induction of the transcription factor JUN. Salinomycin mediated cell death could be partially inhibited by the free radical scavenger N-acetyl-cysteine, implicating ROS formation in the mechanism of salinomycin toxicity. CONCLUSIONS: Our data indicate that, in addition to its previously reported induction of caspase dependent apoptosis, the initiation of autophagy is an important and early effect of salinomycin in tumor cells.

  3. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer.

    Science.gov (United States)

    Zhang, Song-Fa; Wang, Xin-Yu; Fu, Zhi-Qin; Peng, Qiao-Hua; Zhang, Jian-Yang; Ye, Feng; Fu, Yun-Feng; Zhou, Cai-Yun; Lu, Wei-Guo; Cheng, Xiao-Dong; Xie, Xing

    2015-01-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.

  4. Rapamycin inhibits cardiac hypertrophy by promoting autophagy via the MEK/ERK/Beclin-1 pathway

    Directory of Open Access Journals (Sweden)

    Changqian eWang

    2016-03-01

    Full Text Available Rapamycin, also known as sirolimus, is an antifungal agent and immunosuppressant drug used to prevent organ rejection in transplantation. However, little is known about the role of rapamycin in cardiac hypertrophy and the signaling pathways involved. Here, the effect of rapamycin was examined using phenylephrine (PE induced cardiomyocyte hypertrophy in vitro and in a rat model of aortic banding (AB-induced hypertrophy in vivo. Inhibition of MEK/ERK signaling reversed the effect of rapamycin on the upregulation of LC3-II, Beclin-1 and Noxa, and the downregulation of Mcl-1 and p62. Silencing of Noxa or Beclin-1 suppressed rapamycin-induced autophagy, and co-immunoprecipitation experiments showed that Noxa abolishes the inhibitory effect of Mcl-1 on Beclin-1, promoting autophagy. In vivo experiments showed that rapamycin decreased AB-induced cardiac hypertrophy in a MEK/ERK dependent manner. Taken together, our results indicate that rapamycin attenuates cardiac hypertrophy by promoting autophagy through a mechanism involving the modulation of Noxa and Beclin-1 expression by the MEK/ERK signaling pathway.

  5. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    . This and the facts that Acb1p-depleted cells are hypersensitive to the immunosuppressive drug rapamycin and accumulate the transcription factor Msn2p in  the nucleus, indicate that perturbation of intracellular acyl-CoA metabolism leads to  a starvation response that upregulate autophagy, which involves both Ras...

  6. Autophagy and ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Terrence M Donohue Jr

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism.Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients,endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury.

  7. Regulation of autophagy by nucleoporin Tpr.

    Science.gov (United States)

    Funasaka, Tatsuyoshi; Tsuka, Eriko; Wong, Richard W

    2012-01-01

    The nuclear pore complex (NPC) consists of a conserved set of ~30 different proteins, termed nucleoporins, and serves as a gateway for the exchange of materials between the cytoplasm and nucleus. Tpr (translocated promoter region) is a component of NPC that presumably localizes at intranuclear filaments. Here, we show that Tpr knockdown caused a severe reduction in the number of nuclear pores. Furthermore, our electron microscopy studies indicated a significant reduction in the number of inner nuclear filaments. In addition, Tpr siRNA treatment impaired cell growth and proliferation compared to control siRNA-treated cells. In Tpr-depleted cells, the levels of p53 and p21 proteins were enhanced. Surprisingly, Tpr depletion increased p53 nuclear accumulation and facilitated autophagy. Our study demonstrates for the first time that Tpr plays a role in autophagy through controlling HSP70 and HSF1 mRNA export, p53 trafficking with karyopherin CRM1, and potentially through direct transcriptional regulation of autophagy factors.

  8. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells.

    Science.gov (United States)

    Martin, S; Dudek-Perić, A M; Maes, H; Garg, A D; Gabrysiak, M; Demirsoy, S; Swinnen, J V; Agostinis, P

    2015-02-01

    Vemurafenib (PLX4032), an inhibitor of BRAF(V600E), has demonstrated significant clinical anti-melanoma effects. However, the majority of treated patients develop resistance, due to a variety of molecular mechanisms including MAPK reactivation through MEK. The induction of a cancer cell death modality associated with danger-signalling resulting in surface mobilization of crucial damage-associated-molecular-patterns (DAMPs), e.g. calreticulin (CRT) and heat shock protein-90 (HSP90), from dying cells, is emerging to be crucial for therapeutic success. Both cell death and danger-signalling are modulated by autophagy, a key adaptation mechanism stimulated during melanoma progression. However, whether melanoma cell death induced by MAPK inhibition is associated with danger-signalling, and the reliance of these mechanisms on autophagy, has not yet been scrutinized. Using a panel of isogenic PLX4032-sensitive and resistant melanoma cell lines we show that PLX4032-induced caspase-dependent cell death and DAMPs exposure in the drug-sensitive cells, but failed to do so in the drug-resistant cells, displaying heightened MEK activation. MEK inhibitor, U0126, treatment sensitized PLX4032-resistant cells to death and re-established their danger-signalling capacity. Only melanoma cells exposing death-induced danger-signals were phagocytosed and induced DC maturation. Although the PLX4032-resistant melanoma cells displayed higher basal and drug-induced autophagy, compromising autophagy, pharmacologically or by ATG5 knockdown, was insufficient to re-establish their PLX4032 sensitivity. Interestingly, autophagy abrogation was particularly efficacious in boosting cell death and ecto-CRT/ecto-HSP90 in PLX4032-resistant cells upon blockage of MEK hyper-activation by U0126. Thus combination of MEK inhibitors with autophagy blockers may represent a novel treatment regime to increase both cell death and danger-signalling in Vemurafenib-resistant metastatic melanoma.

  9. Cytokine-Leukotriene Receptor Interactions

    Directory of Open Access Journals (Sweden)

    Marek Rola-Pleszczynski

    2007-01-01

    Full Text Available Biochemical and pharmacological studies have identified the structure of leukotrienes, the pathways that lead to their synthesis, and the signaling events they trigger when they interact with their cognate receptors. A privileged interaction exists between these lipid mediators and another group of molecules essential for inflammation and immune modulation, namely, cytokines. Whereas leukotrienes can trigger the synthesis and release of selected cytokines in distinct cell populations, many cytokines can affect cellular responsiveness to leukotrienes by modulating leukotriene receptor expression. As we progressively begin to unravel these complex interactions, new areas of cell-cell communication and eventual therapeutic interventions will emerge.

  10. mTOR: Driving apoptosis and autophagy for neurocardiaccomplications of diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Kenneth Maiese

    2015-01-01

    The World Health Organization estimates that diabetesmellitus (DM) will become the seventh leading causeof death during the next two decades. DM affectsapproximately 350 million individuals worldwideand additional millions that remain undiagnosedare estimated to suffer from the complications ofDM. Although the complications of DM can be seenthroughout the body, the nervous, cardiac, andvascular systems can be significantly affected andlead to disorders that include cognitive loss, stroke,atherosclerosis, cardiac failure, and endothelialstem cell impairment. At the cellular level, oxidativestress is a significant determinant of cell fate duringDM and leads to endoplasmic reticulum stress,mitochondrial dysfunction, apoptosis, and autophagy.Multiple strategies are being developed to combat thecomplications of DM, but it is the mechanistic targetof rapamycin (mTOR) that is gaining interest in drugdevelopment circles especially for protective therapiesthat involve cytokines and growth factors such aserythropoietin. The pathways of mTOR linked to mTORcomplex 1, mTOR complex 2, AMP activated proteinkinase, and the hamartin (tuberous sclerosis 1)/tuberin(tuberous sclerosis 2) complex can ultimately influenceneuronal, cardiac, and vascular cell survival duringoxidant stress in DM through a fine interplay betweenapoptosis and autophagy. Further understanding ofthese mTOR regulated pathways should foster novelstrategies for the complications of DM that impactmillions of individuals with death and disability.

  11. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy.

    Science.gov (United States)

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy.

  12. MicroRNA-141 Targets Sirt1 and Inhibits Autophagy to Reduce HBV Replication

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Background/Aims: About 400 million individuals are chronically infected with hepatitis B virus, at high risk of developing liver cirrhosis and hepatocellular carcinoma. Recent studies have demonstrated an interaction between hepatitis B virus replication and autophagy activity of hepatocytes. In the present study, we aimed to investigate the role of miR-141 in regulating autophagy and hepatitis B virus replication. Methods: The expression of HBV-DNA, miR-141 and Sirt1 mRNA was determined by quantitative real-time PCR analysis. The expression of HBsAg and HBeAg was determined by ELISA. Western blotting was performed to detect protein expression. The LC3 puncta was determined by immunofluorescence. To test whether miR-141 directly regulate the expression level of Sirt1 mRNA, dual-luciferase reporter gene assay was performed. Results: In vitro studies showed that miR-141 mimic inhibited the autophagic response, hepatitis B virus and the expression of Sirt1 in hepatocytes. And transfection with miR-141 inhibitor enhanced autophagic response and Sirt1 expression. The autophagy induced by overexpression of Sirt1 was inhibited by miR-141 mimic. In addition, miR-141 mimic also decreased the expression of Sirt1 mRNA. Sirt1 was predicted as a potential miR-141 target by bioinformatic analysis of its 3'-UTR, and confirmed by luciferase reporter assays which analyzing the interaction of miR-141 with the wild- type or the mutated Sirt1 3’-UTR. Conclusion: We have therefore demonstrated a role of miR-141 in regulating autophagy-mediated hepatitis B virus inhibition by targeting Sirt1, and may provide potential targets for drug development.

  13. Cytokines and cytokine-specific therapy in asthma.

    Science.gov (United States)

    Desai, Dhananjay; Brightling, Christopher

    2012-01-01

    Asthma is increasing in prevalence worldwide. It is characterized by typical symptoms and variable airway obstruction punctuated with episodes of worsening symptoms known as exacerbations. Underlying this clinical expression of disease is airway inflammation and remodeling. Cytokines and their networks are implicated in the innate and adaptive immune responses driving airway inflammation in asthma and are modulated by host-environment interactions. Asthma is a complex heterogeneous disease, and the paradigm of Th2 cytokine-mediated eosinophilic inflammation as a consequence of allergic sensitization has been challenged and probably represents a subgroup of asthma. Indeed, as attention has switched to the importance of severe asthma, which represents the highest burden both to the patient and health care provider, there is an increasing recognition of inflammatory subphenotypes that are likely to be driven by different cytokine networks. Interestingly, these networks may be specific to aspects of clinical expression as well as inflammatory cell profiles and therefore present novel phenotype-specific therapeutic strategies. Here, we review the breadth of cytokines implicated in the pathogenesis of asthma and focus upon the outcomes of early clinical trials conducted using cytokines or cytokine-blocking therapies.

  14. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation.

    Science.gov (United States)

    Argüello, Rafael J; Reverendo, Marisa; Gatti, Evelina; Pierre, Philippe

    2016-07-01

    Antigenic peptides presented in the context of major histocompatibility complex (MHC) molecules originate from the degradation of both self and non-self proteins. T cells can therefore recognize at the surface of surveyed cells, the self-peptidome produced by the cell itself (mostly inducing tolerance) or immunogenic peptides derived from exogenous origins. The initiation of adaptive immune responses by dendritic cells (DCs), through the antigenic priming of naïve T cells, is associated to microbial pattern recognition receptors engagement. Activation of DCs by microbial product or inflammatory cytokines initiates multiple processes that maximize DC capacity to present exogenous antigens and stimulate T cells by affecting major metabolic and membrane traffic pathways. These include the modulation of protein synthesis, the regulation of MHC and co-stimulatory molecules transport, as well as the regulation of autophagy, that, all together promote exogenous antigen presentation while limiting the display of self-antigens by MHC molecules.

  15. Autophagy in the human placenta throughout gestation.

    Directory of Open Access Journals (Sweden)

    Tai-Ho Hung

    Full Text Available BACKGROUND: Autophagy has been reported to be essential for pre-implantation development and embryo survival. However, its role in placental development and regulation of autophagy during pregnancy remain unclear. The aims of this study were to (1 study autophagy by characterizing changes in levels of beclin-1, DRAM, and LC3B in human placenta throughout gestation; (2 determine whether autophagy is involved in regulation of trophoblast invasion in JEG-3 cells (a choriocarcinoma cell line; (3 examine the effects of reduced oxygen and glucose on the autophagic changes; and (4 investigate the effect of reoxygenation and supplementation of glucose after oxygen-glucose deprivation (OGD on the autophagic changes in primary cytotrophoblasts obtained from normal term pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: An analysis of 40 placental samples representing different gestational stages showed (1 no significant differences in beclin-1, DRAM, and LC3B-II levels in placentas between early and mid-gestation, and late gestation with vaginal delivery; (2 placentas from late gestation with cesarean section had lower levels of LC3B-II compared to early and mid-gestation, and late gestation with vaginal delivery; levels of DRAM were also lower compared to placentas from early and mid-gestation; and (3 using explant cultures, villous tissues from early and late gestation had similar rates of autophagic flux under physiological oxygen concentrations. Knockdown of BECN1, DRAM, and LC3B had no effects on viability and invasion activity of JEG-3 cells. On the other hand, OGD caused a significant increase in the levels of LC3B-II in primary cytotrophoblasts, while re-supplementation of oxygen and glucose reduced these changes. Furthermore, there were differential changes in levels of beclin-1, DRAM, and LC3B-II in response to changes in oxygen and glucose levels. CONCLUSIONS/SIGNIFICANCE: Our results indicate that autophagy is involved in development of the human

  16. Combined therapy with m-TOR-dependent and -independent autophagy inducers causes neurotoxicity in a mouse model of Machado-Joseph disease.

    Science.gov (United States)

    Duarte-Silva, S; Silva-Fernandes, A; Neves-Carvalho, A; Soares-Cunha, C; Teixeira-Castro, A; Maciel, P

    2016-01-28

    A major pathological hallmark in several neurodegenerative disorders, like polyglutamine disorders (polyQ), including Machado-Joseph disease (MJD), is the formation of protein aggregates. MJD is caused by a CAG repeat expansion in the ATXN3 gene, resulting in an abnormal protein, which is prone to misfolding and forms cytoplasmic and nuclear aggregates within neurons, ultimately inducing neurodegeneration. Treatment of proteinopathies with drugs that up-regulate autophagy has shown promising results in models of polyQ diseases. Temsirolimus (CCI-779) inhibits the mammalian target of rapamycin (m-TOR), while lithium chloride (LiCl) acts by inhibiting inositol monophosphatase, both being able to induce autophagy. We have previously shown that chronic treatment with LiCl (10.4 mg/kg) had limited effects in a transgenic MJD mouse model. Also, others have shown that CCI-779 had mild positive effects in a different mouse model of the disease. It has been suggested that the combination of mTOR-dependent and -independent autophagy inducers could be a more effective therapeutic approach. To further explore this avenue toward therapy, we treated CMVMJD135 transgenic mice with a conjugation of CCI-779 and LiCl, both at concentrations known to induce autophagy and not to be toxic. Surprisingly, this combined treatment proved to be deleterious to both wild-type (wt) and transgenic animals, failing to rescue their neurological symptoms and actually exerting neurotoxic effects. These results highlight the possible dangers of manipulating autophagy in the nervous system and suggest that a better understanding of the potential disruption in the autophagy pathway in MJD is required before successful long-term autophagy modulating therapies can be developed.

  17. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  18. Plasma cytokines in acute stroke

    DEFF Research Database (Denmark)

    Christensen, Hanne Krarup; Boysen, Gudrun; Christensen, Erik

    2011-01-01

    GOALS: The aim of this study was to test the relations between plasma cytokines and the clinical characteristics, course, and risk factors in acute stroke. PATIENTS AND METHODS: The analysis was based on 179 patients with acute stroke included within 24 hours of stroke onset. On inclusion and 3...... measured by enzyme-linked immunoassay (ELISA). FINDINGS: The levels of most cytokines were significantly different in acute stroke from the levels 3 months later; but only IL-10 was positively associated with stroke severity. C-reactive protein and white blood cell count were positively associated...... with the cytokine response. CONCLUSIONS: We found a substantial overall cytokine reaction that reflected the stroke incident. However, these results do not, at present, suggest a potential for clinical use, as they do not seem to add to the information obtained from the clinical workup of the individual patient....

  19. Autophagy: A double-edged sword in Alzheimer's disease

    Indian Academy of Sciences (India)

    Ying-Tsen Tung; Bo-Jeng Wang; Ming-Kuan Hu; Wen-Ming Hsu; Hsinyu Lee; Wei-Pang Huang; Yung-Feng Liao

    2012-03-01

    Autophagy is a major protein degradation pathway that is essential for stress-induced and constitutive protein turnover. Accumulated evidence has demonstrated that amyloid- (A) protein can be generated in autophagic vacuoles, promoting its extracellular deposition in neuritic plaques as the pathological hallmark of Alzheimer’s disease (AD). The molecular machinery for A generation, including APP, APP-C99 and -/-secretases, are all enriched in autophagic vacuoles. The induction of autophagy can be vividly observed in the brain at early stages of sporadic AD and in an AD transgenic mouse model. Accumulated evidence has also demonstrated a neuroprotective role of autophagy in mediating the degradation of aggregated proteins that are causative of various neurodegenerative diseases. Autophagy is thus widely regarded as an intracellular hub for the removal of the detrimental A peptides and Tau aggregates. Nonetheless, compelling data also reveal an unfavorable function of autophagy in facilitating the production of intracellular A. The two faces of autophagy on the homeostasis of A place it in a very unique and intriguing position in ADpathogenesis. This article briefly summarizes seminal discoveries that are shedding new light on the critical and unique roles of autophagy in AD and potential therapeutic approaches against autophagy-elicited AD.

  20. Role of autophagy in the pathogenesis of multiple sclerosis.

    Science.gov (United States)

    Liang, Peizhou; Le, Weidong

    2015-08-01

    Autophagy plays an important role in maintaining the cellular homeostasis. One of its functions is to degrade unnecessary organelles and proteins for energy recycling or amino-acids for cell survival. Ablation of autophagy leads to neurodegeneration. Multiple sclerosis (MS), a permanent neurological impairment typical of chronic inflammatory demyelinating disorder, is an auto-immune disease of the central nervous system (CNS). Autophagy is tightly linked to the innate and adaptive immune systems during the autoimmune process, and several studies have shown that autophagy directly participates in the progress of MS or experimental autoimmune encephalomyelitis (EAE, a mouse model of MS). Dysfunction of mitochondria that intensively influences the autophagy pathway is one of the important factors in the pathogenesis of MS. Autophagy-related gene (ATG) 5 and immune-related GTPase M (IRGM) 1 are increased, while ATG16L2 is decreased, in T-cells in EAE and active relapsing-remitting MS brains. Administration of rapamycin, an inhibitor of mammalian target of rapamycin ( mTOR), ameliorates relapsing-remitting EAE. Inflammation and oxidative stress are increased in MS lesions and EAE, but Lamp2 and the LC3-II/LC3-I ratio are decreased. Furthermore, autophagy in various glial cells plays important roles in regulating neuro-inflammation in the CNS, implying potential roles in MS. In this review, we discuss the role of autophagy in the peripheral immune system and the CNS in neuroinflammation associated with the pathogenesis of MS.

  1. Autophagy in ageing and ageing-associated diseases

    Institute of Scientific and Technical Information of China (English)

    Li-qiang HE; Jia-hong LU; Zhen-yu YUE

    2013-01-01

    Autophagy is a cell self-digestion process via lysosomes that clears "cellular waste",including aberrantly modified proteins or protein aggregates and damaged organelles.Therefore,autophagy is considered a protein and organelle quality control mechanism that maintains normal cellular homeostasis.Dysfunctional autophagy has been observed in ageing tissues and several ageing-associated diseases.Lifespan of model organisms such as yeast,worms,flies,and mice can be extended through promoting autophagy,either by genetic manipulations such as over-expression of Sirtuin 1,or by administrations of rapamycin,resveratrol or spermidine.The evidence supports that autophagy may play an important role in delaying ageing or extending lifespan.In this review,we summarize the current knowledge about autophagy and its regulation,outline recent developments ie the genetic and pharmacological manipulations of autophagy that affects the lifespan,and discuss the role of autophagy in the ageing-related diseases.ow in Center for Neurodegenerative and Neuroimmunologic Diseases,Department of Neurology,University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School,Piscataway,NJ 08854,USA

  2. Exercise induces autophagy in peripheral tissues and in the brain.

    Science.gov (United States)

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  3. Autophagy: A Potential Link between Obesity and Insulin Resistance

    NARCIS (Netherlands)

    P. Codogno; A.J. Meijer

    2010-01-01

    Dysregulation of autophagy contributes to aging and to diseases such as neurodegeneration, cardiomyopathy, and cancer. The paper by Yang et al. (2010) in this issue of Cell Metabolism indicates that defective autophagy may also underlie impaired insulin sensitivity in obesity and that upregulating a

  4. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  5. Polymorphisms in autophagy genes and susceptibility to tuberculosis.

    NARCIS (Netherlands)

    Songane, M.; Kleinnijenhuis, J.; Alisjahbana, B.; Sahiratmadja, E.; Parwati, I.; Oosting, M.; Plantinga, T.S.; Joosten, L.A.B.; Netea, M.G.; Ottenhoff, T.H.; Vosse, E. van de; Crevel, R. van

    2012-01-01

    Recent data suggest that autophagy is important for intracellular killing of Mycobacterium tuberculosis, and polymorphisms in the autophagy gene IRGM have been linked with susceptibility to tuberculosis (TB) among African-Americans, and with TB caused by particular M. tuberculosis genotypes in Ghana

  6. Autophagy Is Associated with Pathogenesis of Haemophilus parasuis

    Science.gov (United States)

    Zhang, Yaning; Li, Yufeng; Yuan, Wentao; Xia, Yuting; Shen, Yijuan

    2016-01-01

    Haemophilus parasuis (H. parasuis) is a common commensal Gram-negative extracellular bacterium in the upper respiratory tract of swine, which can cause Glässer's disease in stress conditions. Research on the pathogenicity of H. parasuis has mainly focused on immune evasion and bacterial virulence factors, while few studies have examined the interactions of H. parasuis and its host. Autophagy is associated with the replication and proliferation of many pathogenic bacteria, but whether it plays a role during infection by H. parasuis is unknown. In this study, an adenovirus construct expressing GFP, RFP, and LC3 was used to infect H. parasuis. Western blotting, laser confocal microscopy, and electron microscopy showed that Hps5 infection induced obvious autophagy in PK-15 cells. In cells infected with strains of H. parasuis differing in invasiveness, the levels of autophagy were positively correlated with the presence of alive bacteria in PK-15 cells. In addition, autophagy inhibited the invasion of Hps5 in PK-15 cells. Autophagy related genes Beclin, Atg5 and Atg7 were silenced with RNA interference, the results showed that autophagy induced by H. parasuis infection is a classical pathway. Our observations demonstrate that H. parasuis can induce autophagy and that the levels of autophagy are associated with the presence of alive bacteria in cells, which opened novel avenues to further our understanding of H. parasuis-host interplay and pathogenesis. PMID:27703447

  7. Role of Autophagy in the Control of Body Metabolism

    Directory of Open Access Journals (Sweden)

    Wenying Quan

    2013-03-01

    Full Text Available Autophagy plays a crucial role in the maintenance of cellular nutrient balance and the function of organelles such as mitochondria or the endoplasmic reticulum, which are important in intracellular metabolism, insulin release, and insulin sensitivity. In the insulin-producing pancreatic β-cells, autophagy is important in the maintenance of β-cell mass, structure, and function. Mice with deficiencies in β-cell-specific autophagy show reduced β-cell mass and defects in insulin secretion that lead to hypoinsulinemia and hyperglycemia but not diabetes. However, these mice developed diabetes when bred with ob/ob mice, suggesting that autophagy-deficient β-cells have defects in dealing with the increased metabolic stress imposed by obesity. These results also imply that autophagy deficiency in β-cells could be a factor in the progression from obesity to diabetes. Another important function of autophagy is in hypothalamic neurons for the central control of energy expenditure, appetite, and body weight. In addition, mice with autophagy deficiencies in the target tissues of insulin have yielded diverse phenotypes. Taken together, these results suggest that autophagy is important in the control of whole body energy and nutrient homeostasis, and its dysregulation could play a role in the development of metabolic disorders and diabetes.

  8. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  9. Anti- and pro-tumor functions of autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Vicencio, José-Miguel; Criollo, Alfredo; Maiuri, Maria Chiara; Kroemer, Guido

    2009-09-01

    Autophagy constitutes one of the major responses to stress in eukaryotic cells, and is regulated by a complex network of signaling cascades. Not surprisingly, autophagy is implicated in multiple pathological processes, including infection by pathogens, inflammatory bowel disease, neurodegeneration and cancer. Both oncogenesis and tumor survival are influenced by perturbations of the molecular machinery that controls autophagy. Numerous oncoproteins, including phosphatidylinositol 3-kinase, Akt1 and anti-apoptotic members of the Bcl-2 family suppress autophagy. Conversely, several tumor suppressor proteins (e.g., Atg4c; beclin 1; Bif-1; BH3-only proteins; death-associated protein kinase 1; LKB1/STK11; PTEN; UVRAG) promote the autophagic pathway. This does not entirely apply to p53, one of the most important tumor suppressor proteins, which regulates autophagy in an ambiguous fashion, depending on its subcellular localization. Irrespective of the controversial role of p53, basal levels of autophagy appear to inhibit tumor development. On the contrary, chemotherapy- and metabolic stress-induced activation of the autophagic pathway reportedly contribute to the survival of formed tumors, thereby favoring resistance. In this context, autophagy inhibition would represent a major therapeutic target for chemosensitization. Here, we will review the current knowledge on the dual role of autophagy as an anti- and pro-tumor mechanism.

  10. Puquitinib mesylate (XC-302) induces autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells.

    Science.gov (United States)

    Wang, Ke-Feng; Yang, Hang; Jiang, Wen-Qi; Li, Su; Cai, Yu-Chen

    2015-12-01

    There are numerous studies that demonstrate the anti-neoplastic activity of phosphatidylinositol 3-kinase (PI3K) inhibitors and the mechanisms of inducing autophagy in cancer cells. The new anticancer drug puquitinib mesylate (XC-302) is a molecular-targeted drug, which suppresses the activity of PI3K directly. However, it remains unclear whether XC‑302 can develop an antitumor effect by inducing autophagy in nasopharyngeal cancer cells. The MTT assay was used to study the anti-proliferative effects of XC-302. Subsequently, autophagy was determined by monodansylcadaverine (MDC) staining, punctate localization of green fluorescent protein (GFP)-light chain 3 (LC3), LC3 protein blotting and electron microscopy. The expression levels of beclin 1, p62, protein kinase B (AKT), phospho (p)‑AKT, mechanistic target of rapamycin (mTOR) and p‑mTOR in XC-302‑induced autophagy were detected. Autophagy inhibition was assayed by 3-methyladenine (3‑MA) or small interfering RNA (siRNA) silencing of beclin 1. XC-302 inhibited the viability of CNE‑2 in a dose-dependent manner and the IC50 of 72 h was 5.2 µmol/l. After cells were exposed to XC-302 for 24 h, MDC-labeled autophagolysosomes were evident in CNE-2 cells by fluorescence microscope. Autophagosomes and autolysosomes were identified by transmission electron microscopy. Following transfection with GFP‑LC3, XC-302 induced a significant accumulation of GFP‑LC3, as monitored by a confocal microscope, which was reduced by 3-MA. XC-302 induced the formation of LC3‑II, increased beclin 1 levels and decreased the expression of p62. Additionally, the expression levels of p‑AKT and p‑mTOR were reduced with the elevation of XC-302. Knockdown of beclin 1 with siRNA or co-treatment with 3-MA enhanced significantly the survival of CNE-2 and promoted the ability of clone formation. XC-302 also induced apoptosis in CNE-2, and when autophagy was inhibited by 3-MA, the apoptosis rate was decreased. The present data

  11. Evaluating the Effectiveness of GTM-1, Rapamycin, and Carbamazepine on Autophagy and Alzheimer Disease

    Science.gov (United States)

    Zhang, Lijuan; Wang, Lina; Wang, Run; Gao, Yuan; Che, Haoyue; Pan, Yonghua; Fu, Peng

    2017-01-01

    Background This study was proposed to compare the efficacy and safety of GTM-1, Rapamycin (Rap), and Carbamazepine (CBZ) in managing Alzheimer disease (AD). The impact of the above mentioned therapeutic drugs on autophagy was also investigated in our study. Material/Methods Firstly, 3×Tg AD mice were randomly allocated into 4 groups (each group with 10 mice), in which AD mice were separately treated with dimethylsulfoxide (DMSO, vehicle group), GTM-1 (6 mg/kg), Rap (1 mg/kg), and CBZ (100 mg/kg). Then spatial memory and learning ability of mice was tested using the Morris water maze. Routine blood tests were performed to evaluate the toxicity of these drugs. Amyloid-β42 (Aβ42) concentration was detected by ELISA and immunohistochemistry. Proteins related to autophagy were detected by Western blot. Results GTM-1, Rap, and CBZ significantly improved the spatial memory of 3×Tg AD mice compared to that in the vehicle group (all P<0.05). Moreover, this study revealed that CBZ dosage was related to toxicity in mice. All of the above drugs significantly increased the expression of LC3-II and reduced Aβ42 levels in hippocampi of 3×Tg AD mice (all P<0.05). On the other hand, neither GTM-1 nor CBZ had significant influence on the expression of proteins on the mTOR pathway. Conclusions GTM-1 can alleviate the AD syndrome by activating autophagy in a manner that is dependent on the mTOR pathway and it therefore can be considered as an alternative to Rap. PMID:28193995

  12. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  13. Astaxanthin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy via the ROS/MAPK Pathway in Mice

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2015-05-01

    Full Text Available Background: Hepatic ischemia reperfusion (IR is an important issue in complex liver resection and liver transplantation. The aim of the present study was to determine the protective effect of astaxanthin (ASX, an antioxidant, on hepatic IR injury via the reactive oxygen species/mitogen-activated protein kinase (ROS/MAPK pathway. Methods: Mice were randomized into a sham, IR, ASX or IR + ASX group. The mice received ASX at different doses (30 mg/kg or 60 mg/kg for 14 days. Serum and tissue samples at 2 h, 8 h and 24 h after abdominal surgery were collected to assess alanine aminotransferase (ALT, aspartate aminotransferase (AST, inflammation factors, ROS, and key proteins in the MAPK family. Results: ASX reduced the release of ROS and cytokines leading to inhibition of apoptosis and autophagy via down-regulation of the activated phosphorylation of related proteins in the MAPK family, such as P38 MAPK, JNK and ERK in this model of hepatic IR injury. Conclusion: Apoptosis and autophagy caused by hepatic IR injury were inhibited by ASX following a reduction in the release of ROS and inflammatory cytokines, and the relationship between the two may be associated with the inactivation of the MAPK family.

  14. Modulation of Autophagy-Like Processes by Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Karl Munger

    2012-06-01

    Full Text Available Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.

  15. Autophagy process is associated with anti-neoplastic function

    Institute of Scientific and Technical Information of China (English)

    Chong Wang; Yachen Wang; Michael A. McNutt; Wei-Guo Zhu

    2011-01-01

    Autophagy is a highly conserved process of cellular degradation, which is present in yeast, plants, and mammals.Under normal physiological conditions, autophagy acts to maintain cellular homeostasis and regulate the turnover of organelles.In response to cellular stresses, autophagy prevents the accumulation of impaired proteins and organelles, which serves to inhibit carcinogenesis.On this basis,it is widely accepted that most tumor suppressors, such as beclin 1 associated proteins, forkhead box class O (FoxO)family proteins, multiple mammalian target of Rapamycin (mTOR) inactivators, and nuclear p53 play a role in indu cing autophagy.Here, we focus on how the process of autophagy is associated with anti-neoplastic function.

  16. Autophagy in Plants--What's New on the Menu?

    Science.gov (United States)

    Michaeli, Simon; Galili, Gad; Genschik, Pascal; Fernie, Alisdair R; Avin-Wittenberg, Tamar

    2016-02-01

    Autophagy is a major cellular degradation pathway in eukaryotes. Recent studies have revealed the importance of autophagy in many aspects of plant life, including seedling establishment, plant development, stress resistance, metabolism, and reproduction. This is manifested by the dual ability of autophagy to execute bulk degradation under severe environmental conditions, while simultaneously to be highly selective in targeting specific compartments and protein complexes to regulate key cellular processes, even during favorable growth conditions. Delivery of cellular components to the vacuole enables their recycling, affecting the plant metabolome, especially under stress. Recent research in Arabidopsis has further unveiled fundamental mechanistic aspects in autophagy which may have relevance in non-plant systems. We review the most recent discoveries concerning autophagy in plants, touching upon all these aspects.

  17. Targeting autophagy to sensitive glioma to temozolomide treatment.

    Science.gov (United States)

    Yan, Yuanliang; Xu, Zhijie; Dai, Shuang; Qian, Long; Sun, Lunquan; Gong, Zhicheng

    2016-02-02

    Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, the efficacy of TMZ is often limited by the development of resistance. Recently, studies have found that TMZ treatment could induce autophagy, which contributes to therapy resistance in glioma. To enhance the benefit of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma cells to TMZ. In this regard, as autophagy could promote cell survival or autophagic cell death, modulating autophagy using a pharmacological inhibitor, such as chloroquine, or an inducer, such as rapamycin, has received considerably more attention. To understand the effectiveness of regulating autophagy in glioblastoma treatment, this review summarizes reports on glioblastoma treatments with TMZ and autophagic modulators from in vitro and in vivo studies, as well as clinical trials. Additionally, we discuss the possibility of using autophagy regulatory compounds that can sensitive TMZ treatment as a chemotherapy for glioma treatment.

  18. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, Rodney, E-mail: rodney.rouse@fda.hhs.gov; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  19. Redox regulation of autophagy in healthy brain and neurodegeneration.

    Science.gov (United States)

    Hensley, Kenneth; Harris-White, Marni E

    2015-12-01

    Autophagy and redox biochemistry are two major sub disciplines of cell biology which are both coming to be appreciated for their paramount importance in the etiology of neurodegenerative diseases including Alzheimer's disease (AD). Thus far, however, there has been relatively little exploration of the interface between autophagy and redox biology. Autophagy normally recycles macro-molecular aggregates produced through oxidative-stress mediated pathways, and also may reduce the mitochondrial production of reactive oxygen species through recycling of old and damaged mitochondria. Conversely, dysfunction in autophagy initiation, progression or clearance is evidenced to increase aggregation-prone proteins in neural and extraneural tissues. Redox mechanisms of autophagy regulation have been documented at the level of cross-talk between the Nrf2/Keap1 oxidant and electrophilic defense pathway and p62/sequestosome-1 (SQSTM1)-associated autophagy, at least in extraneural tissue; but other mechanisms of redox autophagy regulation doubtless remain to be discovered and the relevance of such processes to maintenance of neural homeostasis remains to be determined. This review summarizes current knowledge regarding the relationship of redox signaling, autophagy control, and oxidative stress as these phenomena relate to neurodegenerative disease. AD is specifically addressed as an example of the theme and as a promising indication for new therapies that act through engagement of autophagy pathways. To exemplify one such novel therapeutic entity, data is presented that the antioxidant and neurotrophic agent lanthionine ketimine-ethyl ester (LKE) affects autophagy pathway proteins including beclin-1 in the 3xTg-AD model of Alzheimer's disease where the compound has been shown to reduce pathological features and cognitive dysfunction.

  20. Crystal Structure of Oxidative Stress Sensor Keap1 in Complex with Selective Autophagy Substrate p62

    Science.gov (United States)

    Kurokawa, Hirofumi

    Keap1, an adaptor protein of cullin-RING ubiquitin ligase complex, represses cytoprotective transcription factor Nrf2 in an oxidative stress-dependent manner. The accumulation of selective autophagy substrate p62 also activates Nrf2 target genes, but the detailed mechanism has not been elucidated. Crystal structure of Keap1-p62 complex revealed the structural basis for the Nrf2 activation in which Keap1 is inactivated by p62. The accumulation of p62 is observed in hepatocellular carcinoma. The activation of Nrf2 target genes, including detoxifying enzymes and efflux transporters, by p62 may protect the cancer cells from anti-cancer drugs.

  1. Drug: D09737 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 9-33) Peptide Therapeutic category: 3999 ATC code: B03XA01 See Epoetin alfa [DR:D03231] erythropoietin recep...ietin family receptors) erythropoietin receptor [HSA:2057] [KO:K05079] Erythropoi...N) Target-based classification of drugs [BR:br08310] Cytokine receptors Class I cytokine receptors (hematopo

  2. Drug: D09633 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available HQGLSSPVT KSFNRGEC (Disulfide bridge: 23-92; 138-198; H132-L218) Peptide Monoclonal antibody IL-13...) Jak-STAT signaling pathway hsa05310(3596) Asthma Target-based classification of drugs [BR:br08310] Cytokines Class I cytokines IL-1

  3. Drug: D09979 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available reatment of asthma and inflammatory diseases Monoclonal antibody IL-13 [HSA:3596] [KO:K05435] hsa04060(3596)...n of drugs [BR:br08310] Cytokines Class I cytokines IL-13 [HSA:3596] [KO:K05435] Tralokinumab D09979 Tralokinumab (USAN/INN) CAS: 1044515-88-9 PubChem: 135626700 ...

  4. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    Science.gov (United States)

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  5. Cytokines in Sjogren's syndrome: potential therapeutic targets

    NARCIS (Netherlands)

    Roescher, N.; Tak, P.P.; Illei, G.G.

    2010-01-01

    The dysregulated cytokine network in Sjogren's Syndrome (SS) is reflected by local and systemic overexpression of pro-inflammatory cytokines and absent or low levels of anti-inflammatory cytokines. To date, the use of cytokine based therapies in SS has been disappointing. Oral administration of low

  6. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Mateen, Somaiya; Zafar, Atif; Moin, Shagufta; Khan, Abdul Qayyum; Zubair, Swaleha

    2016-04-01

    Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anti-citrullinated peptide antibodies. Initial phase of RA involves the activation of both T and B cells. Cytokines have a crucial role in the pathophysiology of RA as pro-inflammatory cytokines such as TNFα, IL-1, IL-17 stimulates inflammation and degradation of bone and cartilage. There occurs an imbalance between the pro- and anti-inflammatory cytokine activities which leads to multisystem immune complications. There occurs a decline in the number of Treg cells which may also play an important role in pathophysiology of the disease. In RA patients, serum or plasma level of cytokines may indicate the severity of disease. Cytokine gene polymorphism could be used as markers of susceptibility and severity of RA. Anti-cytokine agents seem to emerge as potent drug molecules to treat RA. Many clinical trials are ongoing and several positive results have been obtained. There is a need to develop potential anti-cytokine agents that target numerous pathways involved in the pathogenesis of RA. This review article describes the effector functions of pro- and anti-inflammatory cytokines and the role of cytokine gene polymorphism in the pathogenesis of RA. Anti-cytokine agents that are currently available and those that are still in clinical trials have also been summarized.

  7. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death

    Science.gov (United States)

    Huo, Ruichao; Wang, Lili; Liu, Peijuan; Zhao, Yong; Zhang, Caiqin; Bai, Bing; Liu, Xueying; Shi, Changhong; Wei, Sanhua; Zhang, Hai

    2016-01-01

    Cabazitaxel has been used to treat castration-resistant prostate cancer since its approval by the US Food and Drug Administration in 2010. However, whether cabazitaxel may inhibit the proliferation of other tissue-derived cancer cells, and its underlying mechanism, remains unknown. In the present study, the A549 lung adenocarcinoma cancer cell line was exposed to cabazitaxel, in order to investigate its cytotoxic effect and determine the underlying mechanism. The results demonstrated that cabazitaxel was able to induce autophagy in A549 cells, as evidenced by the formation of autophagosomes, upregulated LC3-II expression and increased LC3 puncta. Cabazitaxel-induced autophagy had a cytotoxic effect on A549 cells, as evidenced by the induction of cell death and cell cycle arrest at G2/M phase, which was independent of the apoptotic pathway. Furthermore, transfection with Beclin1 small interfering RNA and treatment with the autophagy inhibitor 3-methyladenine protected cells from cabazitaxel-induced cell death, thus confirming that cabazitaxel-induced autophagy contributed to A549 cell death. In addition, cabazitaxel targeted the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway to induce autophagy, as indicated by reduced phosphorylation of Akt and mTOR. In conclusion, the present study demonstrated that cabazitaxel exerts a cytotoxic effect on A549 cells by acting on the PI3K/Akt/mTOR pathway to promote autophagic cell death. This result supports the potential use of cabazitaxel as a chemotherapeutic agent for the treatment of lung cancer. PMID:27572899

  8. SESN2/sestrin 2 induction-mediated autophagy and inhibitory effect of isorhapontigenin (ISO) on human bladder cancers.

    Science.gov (United States)

    Liang, Yuguang; Zhu, Junlan; Huang, Haishan; Xiang, Daimin; Li, Yang; Zhang, Dongyun; Li, Jingxia; Wang, Yulei; Jin, Honglei; Jiang, Guosong; Liu, Zeyuan; Huang, Chuanshu

    2016-08-02

    Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, thereby led to a significant transcriptional induction of SESN2. Importantly, we found that SESN2 expression was dramatically downregulated or even lost in human bladder cancer tissues as compared to their paired adjacent normal tissues. Collectively, our results demonstrate that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers and suggests that ISO might act as a promising preventive and/or therapeutic drug against human bladder cancer.

  9. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death.

    Science.gov (United States)

    Huo, Ruichao; Wang, Lili; Liu, Peijuan; Zhao, Yong; Zhang, Caiqin; Bai, Bing; Liu, Xueying; Shi, Changhong; Wei, Sanhua; Zhang, Hai

    2016-10-01

    Cabazitaxel has been used to treat castration-resistant prostate cancer since its approval by the US Food and Drug Administration in 2010. However, whether cabazitaxel may inhibit the proliferation of other tissue‑derived cancer cells, and its underlying mechanism, remains unknown. In the present study, the A549 lung adenocarcinoma cancer cell line was exposed to cabazitaxel, in order to investigate its cytotoxic effect and determine the underlying mechanism. The results demonstrated that cabazitaxel was able to induce autophagy in A549 cells, as evidenced by the formation of autophagosomes, upregulated LC3‑II expression and increased LC3 puncta. Cabazitaxel‑induced autophagy had a cytotoxic effect on A549 cells, as evidenced by the induction of cell death and cell cycle arrest at G2/M phase, which was independent of the apoptotic pathway. Furthermore, transfection with Beclin1 small interfering RNA and treatment with the autophagy inhibitor 3‑methyladenine protected cells from cabazitaxel‑induced cell death, thus confirming that cabazitaxel‑induced autophagy contributed to A549 cell death. In addition, cabazitaxel targeted the phosphoinositide 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway to induce autophagy, as indicated by reduced phosphorylation of Akt and mTOR. In conclusion, the present study demonstrated that cabazitaxel exerts a cytotoxic effect on A549 cells by acting on the PI3K/Akt/mTOR pathway to promote autophagic cell death. This result supports the potential use of cabazitaxel as a chemotherapeutic agent for the treatment of lung cancer.

  10. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress.

    Science.gov (United States)

    Bu, Xuefeng; Zhao, Yinghai; Zhang, Zhijian; Wang, Mubin; Li, Mi; Yan, Yulan

    2016-01-01

    results suggest that rL-RVG increased ER stress in three branch pathways (ATF6, inositol-requiring enzyme 1 (IRE1), and PKR-like ER protein kinase (PERK)) that are upstream regulators of autophagy and apoptosis. Moreover, the IRE1-JNK pathway played an important role in switching ER stress to autophagy. These findings will provide molecular bases for developing rL-RVG into a drug candidate for the treatment of gastric carcinoma.

  11. Drug: D05393 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available e conditions (e.g. rheumatoid arthritis, Crohn's disease) [binds and therapy inhi...hsa05323(7124) Rheumatoid arthritis Target-based classification of drugs [BR:br08310] Cytokines TNF family T

  12. Laser stimulation can activate autophagy in HeLa cells

    Science.gov (United States)

    Wang, Yisen; Lan, Bei; He, Hao; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-10-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  13. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  14. Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans.

    Science.gov (United States)

    Hashimoto, Yasufumi; Ookuma, Sadatsugu; Nishida, Eisuke

    2009-06-01

    Lifespan is regulated by a complex combination of environmental and genetic factors. Autophagy, which is a bulk degradation system of macromolecules and organelles, has an important role in various biological events. In Caenorhabditis elegans, several autophagy genes have been shown to have a role in promoting longevity, but many other autophagy genes have not been examined for their role in the lifespan regulation. Here we have systematically examined the effect of RNAi suppression of 14 autophagy genes on lifespan. While maternal RNAi of autophagy genes in wild-type worms tended to reduce lifespan, maternal RNAi of each of seven autophagy genes in the insulin/IGF-1 receptor daf-2 mutants extended lifespan. Remarkably, RNAi of unc-51/atg-1, bec-1/atg-6 or atg-9, from young adult, i.e. after development, extended lifespan in both wild-type animals and daf-2 mutants, although RNAi of one or two genes shortened it. Moreover, our analysis suggests that the lifespan extension, which is induced by RNAi of unc-51, bec-1 or atg-9 after development, does not require the transcription factor daf-16, the NAD(+)-dependent protein deacetylase sir-2.1 or the genes related to mitochondrial functions. Collectively, our results suggest that autophagy may not always be beneficial to longevity, but may also function to restrict lifespan in C. elegans.

  15. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity.

    Science.gov (United States)

    Pizarro, Marcela; Troncoso, Rodrigo; Martínez, Gonzalo J; Chiong, Mario; Castro, Pablo F; Lavandero, Sergio

    2016-08-31

    Doxorubicin (Doxo) is one of the most effective anti-neoplastic agents but its cardiotoxicity has been an important clinical limitation. The major mechanism of Doxo-induced cardiotoxicity is associated to its oxidative capacity. However, other processes are also involved with significant consequences for the cardiomyocyte. In recent years, a number of studies have investigated the role of autophagy on Doxo-induced cardiotoxicity but to date it is not clear how Doxo alters that process and its consequence on cardiomyocytes viability. Here we investigated the effect of Doxo 1uM for 24h of stimulation on cultured neonatal rat cardiomyocytes. We showed that Doxo inhibits basal autophagy. This inhibition is due to both Akt/mTOR signaling pathway activation and Beclin 1 level decrease. To assess the role of autophagy on Doxo-induced cardiomyocyte death, we evaluated the effects 3-methyladenine (3-MA), bafilomycin A1 (BafA), siRNA Beclin 1 (siBeclin 1) and rapamycin (Rapa) on cell viability. Inhibition of autophagy with 3-MA, BafA and siBeclin 1 increased lactate dehydrogenase (LDH) release but, when autophagy was induced by Rapa, Doxo-induced cardiomyocyte death was decreased. These results suggest that Doxo inhibits basal autophagy and contributes to cardiomyocyte death. Activation of autophagy could be used as a strategy to protect the heart against Doxo toxicity.

  16. The Regulation of Autophagy by Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Rong Zhang

    2014-01-01

    Full Text Available Influenza A virus is a dreadful pathogen of animals and humans, causing widespread infection and severe morbidity and mortality. It is essential to characterize the influenza A virus-host interaction and develop efficient counter measures against the viral infection. Autophagy is known as a catabolic process for the recycling of the cytoplasmic macromolecules. Recently, it has been shown that autophagy is a critical mechanism underlying the interaction between influenza A virus and its host. Autophagy can be induced by the infection with influenza A virus, which is considered as a necessary process for the viral proliferation, including the accumulation of viral elements during the replication of influenza A virus. On the other hand, influenza A virus can inhibit the autophagic formation via interaction with the autophagy-related genes (Atg and signaling pathways. In addition, autophagy is involved in the influenza virus-regulated cell deaths, leading to significant changes in host apoptosis. Interestingly, the high pathogenic strains of influenza A virus, such as H5N1, stimulate autophagic cell death and appear to interplay with the autophagy in distinct ways as compared with low pathogenic strains. This review discusses the regulation of autophagy, an influenza A virus driven process.

  17. TOR-dependent post-transcriptional regulation of autophagy.

    Science.gov (United States)

    Hu, Guowu; McQuiston, Travis; Bernard, Amélie; Park, Yoon-Dong; Qiu, Jin; Vural, Ali; Zhang, Nannan; Waterman, Scott R; Blewett, Nathan H; Myers, Timothy G; Maraia, Richard J; Kehrl, John H; Uzel, Gulbu; Klionsky, Daniel J; Williamson, Peter R

    2015-01-01

    Regulation of autophagy is required to maintain cellular equilibrium and prevent disease. While extensive study of post-translational mechanisms has yielded important insights into autophagy induction, less is known about post-transcriptional mechanisms that could potentiate homeostatic control. In our study, we showed that the RNA-binding protein, Dhh1 in Saccharomyces cerevisiae and Vad1 in the pathogenic yeast Cryptococcus neoformans is involved in recruitment and degradation of key autophagy mRNAs. In addition, phosphorylation of the decapping protein Dcp2 by the target of rapamycin (TOR), facilitates decapping and degradation of autophagy-related mRNAs, resulting in repression of autophagy under nutrient-replete conditions. The post-transcriptional regulatory process is conserved in both mouse and human cells and plays a role in autophagy-related modulation of the inflammasome product IL1B. These results were then applied to provide mechanistic insight into autoimmunity of a patient with a PIK3CD/p110δ gain-of-function mutation. These results thus identify an important new post-transcriptional mechanism of autophagy regulation that is highly conserved between yeast and mammals.

  18. The inositol trisphosphate receptor in the control of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.

  19. The IKK complex contributes to the induction of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-02-03

    In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.

  20. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases.

    Science.gov (United States)

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; Hoffmann, Georg F; Kölker, Stefan

    2014-01-01

    Pediatric neurodegenerative diseases are a heterogeneous group of diseases that result from specific genetic and biochemical defects. In recent years, studies have revealed a wide spectrum of abnormal cellular functions that include impaired proteolysis, abnormal lipid trafficking, accumulation of lysosomal content, and mitochondrial dysfunction. Within neurons, elaborated degradation pathways such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway are critical for maintaining homeostasis and normal cell function. Recent evidence suggests a pivotal role for autophagy in major adult and pediatric neurodegenerative diseases. We herein review genetic, pathological, and molecular evidence for the emerging link between autophagy dysfunction and lysosomal storage disorders such as Niemann-Pick type C, progressive myoclonic epilepsies such as Lafora disease, and leukodystrophies such as Alexander disease. We also discuss the recent discovery of genetically deranged autophagy in Vici syndrome, a multisystem disorder, and the implications for the role of autophagy in development and disease. Deciphering the exact mechanism by which autophagy contributes to disease pathology may open novel therapeutic avenues to treat neurodegeneration. To this end, an outlook on novel therapeutic approaches targeting autophagy concludes this review.

  1. Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells

    Directory of Open Access Journals (Sweden)

    Al-Daghri Nasser M

    2012-10-01

    Full Text Available Abstract Background Drugs used both in classical chemotherapy and the more recent targeted therapy do not have cancer cell specificity and, hence, cause severe systemic side effects. Tumors also develop resistance to such drugs due to heterogeneity of cell types and clonal selection. Several traditional dietary ingredients from plants, on the other hand, have been shown to act on multiple targets/pathways, and may overcome drug resistance. The dietary agents are safe and readily available. However, application of plant components for cancer treatment/prevention requires better understanding of anticancer functions and elucidation of their mechanisms of action. The current study focuses on the anticancer properties of fenugreek, a herb with proven anti-diabetic, antitumor and immune-stimulating functions. Method Jurkat cells were incubated with 30 to 1500 μg/mL concentrations of 50% ethanolic extract of dry fenugreek seeds and were followed for changes in viability (trypan blue assay, morphology (microscopic examination and autophagic marker LC3 transcript level (RT-PCR. Results Incubation of Jurkat cells with fenugreek extract at concentrations ranging from 30 to 1500 μg/mL for up to 3 days resulted in cell death in a dose- and time-dependent manner. Jurkat cell death was preceded by the appearance of multiple large vacuoles, which coincided with transcriptional up-regulation of LC3. GC-MS analysis of fenugreek extract indicated the presence of several compounds with anticancer properties, including gingerol (4.82%, cedrene (2.91%, zingerone (16.5%, vanillin (1.52% and eugenol (1.25%. Conclusions Distinct morphological changes involving appearance of large vacuoles, membrane disintegration and increased expression of LC3 transcripts indicated that fenugreek extract induced autophagy and autophagy-associated death of Jurkat cells. In addition to the already known apoptotic activation, induction of autophagy may be an additional mechanism

  2. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  3. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization

    Science.gov (United States)

    Andrade, Priscila Ribeiro; Ferreira, Helen; Nery, José Augusto da Costa; Côrte-Real, Suzana; da Silva, Gilberto Marcelo Sperandio; Rosa, Patricia Sammarco; Fabri, Mario; Sarno, Euzenir Nunes

    2017-01-01

    Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. PMID:28056107

  4. A Review: Inflammatory Process in Alzheimer's Disease, Role of Cytokines

    Directory of Open Access Journals (Sweden)

    Jose Miguel Rubio-Perez

    2012-01-01

    Full Text Available Alzheimer's disease (AD is the most common neurodegenerative disorder to date. Neuropathological hallmarks are β-amyloid (Aβ plaques and neurofibrillary tangles, but the inflammatory process has a fundamental role in the pathogenesis of AD. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the complement system, as well as cytokines and chemokines. Cytokines play a key role in inflammatory and anti-inflammatory processes in AD. An important factor in the onset of inflammatory process is the overexpression of interleukin (IL-1, which produces many reactions in a vicious circle that cause dysfunction and neuronal death. Other important cytokines in neuroinflammation are IL-6 and tumor necrosis factor (TNF-α. By contrast, other cytokines such as IL-1 receptor antagonist (IL-1ra, IL-4, IL-10, and transforming growth factor (TGF-β can suppress both proinflammatory cytokine production and their action, subsequently protecting the brain. It has been observed in epidemiological studies that treatment with nonsteroidal anti-inflammatory drugs (NSAIDs decreases the risk for developing AD. Unfortunately, clinical trials of NSAIDs in AD patients have not been very fruitful. Proinflammatory responses may be countered through polyphenols. Supplementation of these natural compounds may provide a new therapeutic line of approach to this brain disorder.

  5. 自噬参与心脏疾病调控的研究进展%The Progress of Autophagy Involved in Heart Disease

    Institute of Scientific and Technical Information of China (English)

    谢凤; 柳威; 陈临溪

    2012-01-01

    damaged, modified or aging proteins and organdies are transported to the lysosome/vacuole for degradation. Autophagy is not only a widespread normal physiological process, but also a cell defense mechanism to adverse environment, involved in the pathological process of diseases. The normal level of autophagy can protect cells from environmental stimuli, however, continued excessive or insufficient autophagy could lead to disease. In the heart, myocardial autophagy plays a vital role to maintain myocardial function, but dysfunctional autophagy contributes to a diverse set of heart diseases, such as Danon disease. Multiple forms of cardiovascular stress can increase autophagic activity in cardiomyocytes, including chronic ischemia, reperfusion injury and Chronic hypoxia. The function of autophagy in these conditions is poorly understood: Does it serve a pro-survival function or contribute to disease pathogenesis, cell death, or both? Heart disease is the abnormal myocardia function when to produce a variety of pathological state. In the state of disease, cardiac autophagy degree will change, related to the occurrence and development of disease. As in Hypertrophic cardiomyopathy process, cell autophagy is reduced and aggravate myocardial hypertrophy. In heart failure process, autophagy increases can lead to cell death; And in myocardial infarction process, autophagy is enhanced and reduce the infarction area. But the real role of autophagy in the myocardium depending on the level of autophagic activation and the context in which it is induced. Currently, more and more people begin to pay close attention to the relationship between drugs and autophagy regulation, particularly on antitumor drugs and cardiovascular drugs. In addition, there are reports of estrogen receptor antagonists tamoxifen and vitamins also has a regulatory role for autophagy. To research of the relationship between autophagy and heart disease, and drugs on the regulation of autophagy will benefit for the

  6. Cytokines, STATs and Liver Disease

    Institute of Scientific and Technical Information of China (English)

    BinGao

    2005-01-01

    The Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, activated by more than 50 cytokines or growth factors, plays critical roles in a wide variety of cellular functions in the hematopoietic, immune, neuronal and hepatic systems. In the liver, this signaling pathway, activated by more than 20 cytokines, growth factors, hormones, and hepatitis viral proteins, plays critical roles in antiviral defense, acute phase response, hepatic injury, repair, inflammation, transformation, and hepatitis. This article reviews the biological significance of STAT1, 2, 3, 4, 5, 6 in hepatic functions and diseases. Cellular & Molecular Immunology. 2005;2(2):92-100.

  7. Cytokines, STATs and Liver Disease

    Institute of Scientific and Technical Information of China (English)

    Bin Gao

    2005-01-01

    The Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, activated by more than 50 cytokines or growth factors, plays critical roles in a wide variety of cellular functions in the hematopoietic, immune, neuronal and hepatic systems. In the liver, this signaling pathway, activated by more than 20 cytokines, growth factors, hormones, and hepatitis viral proteins, plays critical roles in antiviral defense, acute phase response, hepatic injury, repair, inflammation, transformation, and hepatitis. This article reviews the biological significance of STAT1, 2, 3, 4, 5, 6 in hepatic functions and diseases. Cellular & Molecular Immunology.2005;2(2):92-100.

  8. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines.

    Science.gov (United States)

    Busman-Sahay, Kathleen O; Walrath, Travis; Huber, Samuel; O'Connor, William

    2015-03-01

    In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues.

  9. Autophagy and immunity – insights from human herpesviruses

    Directory of Open Access Journals (Sweden)

    Luke eWilliams

    2012-07-01

    Full Text Available The herpesviruses are a family of double-stranded DNA viruses that infect a large variety of organisms. Having co-evolved with their hosts over millennia, herpesviruses have developed a large repertoire of mechanisms to manipulate normal cellular processes. Given the important role of autophagy in cells, this pathway is a target for manipulation by herpesviruses. Here we describe the ways that human herpesviruses interact and interfere with the cellular autophagy machinery in order to escape innate and adaptive immunity. Recent research on the human herpesvirus Epstein-Barr Virus (EBV suggesting that localisation within the nucleus can shelter viral proteins from autophagy is also discussed.

  10. Alternative autophagy, brefeldin A and viral trafficking pathways

    Science.gov (United States)

    Grose, Charles; Klionsky, Daniel J.

    2016-01-01

    ABSTRACT Two topics that have attracted recent attention in the field of autophagy concern the source of the membrane that is used to form the autophagosome during macroautophagy and the role of noncanonical autophagic pathways. The 2 topics may converge when considering the intersection of autophagy with viral infection. We suggest that noncanonical autophagy, which is sensitive to treatment with brefeldin A, may converge with the infectious cycles of certain DNA and RNA viruses that utilize membrane from the ER and cis-Golgi. PMID:27439673

  11. Role of autophagy in acute myeloid leukemia therapy

    Institute of Scientific and Technical Information of China (English)

    Su-Ping Zhang; Yu-Na Niu; Na Yuan; Ai-Hong Zhang; Dan Chao; Qiu-Ping Xu; Li-Jun Wang

    2013-01-01

    Despite its dual role in determining cell fate in a wide array of solid cancer cell lines,autophagy has been robustly shown to suppress or kill acute myeloid leukemia cells via degradation of the oncogenic fusion protein that drives leukemogenesis.However,autophagy also induces the demise of acute leukemia cells that do not express the known fusion protein,though the molecular mechanism remains elusive.Nevertheless,since it can induce cooperation with apoptosis and differentiation in response to autophagic signals,autophagy can be manipulated for a better therapy on acute myeloid leukemia.

  12. The protective roles of autophagy in ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Wen-jun YAN; Hai-long DONG; Li-ze XIONG

    2013-01-01

    Autophagy,a process for the degradation of protein aggregates and dysfunctional organelles,is required for cellular homeostasis and cell survival in response to stress and is implicated in endogenous protection.Ischemic preconditioning is a brief and nonlethal episode of ischemia,confers protection against subsequent ischemia-repenfusion through the up-regulation of endogenous protective mechanisms.Emerging evidence shows that autophagy is associated with the protective effect of ischemic preconditioning.This review summarizes recent progress in research on the functions and regulations of the autophagy pathway in preconditioning-induced protection and cellular survival.

  13. Regulation of autophagy by some natural products as a potential therapeutic strategy for cardiovascular disorders.

    Science.gov (United States)

    Hashemzaei, Mahmoud; Entezari Heravi, Reza; Rezaee, Ramin; Roohbakhsh, Ali; Karimi, Gholamreza

    2017-02-24

    Autophagy is a lysosomal degradation process through which long-lived and misfolded proteins and organelles are sequestered, degraded by lysosomes, and recycled. Autophagy is an essential part of cardiomyocyte homeostasis and increases the survival of cells following cellular stress and starvation. Recent studies made clear that dysregulation of autophagy in the cardiovascular system leads to heart hypertrophy and failure. In this manner, autophagy seems to be an attractive target in the new treatment of cardiovascular diseases. Although limited activation of autophagy is generally considered to be cardioprotective, excessive autophagy leads to cell death and cardiac atrophy. Natural products such as resveratrol, berberine, and curcumin that are present in our diet, can trigger autophagy via canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in the cardioprotective effects of these compounds.

  14. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.

    Science.gov (United States)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V; Eisenberg, Tobias; Megalou, Evgenia; Schroeder, Sabrina; Cabrera, Sandra; Bénit, Paule; Rustin, Pierre; Criollo, Alfredo; Kepp, Oliver; Galluzzi, Lorenzo; Shen, Shensi; Malik, Shoaib Ahmad; Maiuri, Maria Chiara; Horio, Yoshiyuki; López-Otín, Carlos; Andersen, Jens S; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2011-02-21

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate the autophagic cascade. At doses at which neither resveratrol nor spermidine stimulated autophagy alone, these agents synergistically induced autophagy. Altogether, these data underscore the importance of an autophagy regulatory network of antagonistic deacetylases and acetylases that can be pharmacologically manipulated.

  15. ER stress, autophagy, and RNA viruses

    Directory of Open Access Journals (Sweden)

    Jia-Rong eJheng

    2014-08-01

    Full Text Available Endoplasmic reticulum (ER stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR, which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell’s response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host’s defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.

  16. Zymophagy: Selective Autophagy of Secretory Granules

    Directory of Open Access Journals (Sweden)

    Maria I. Vaccaro

    2012-01-01

    Full Text Available Timing is everything. That's especially true when it comes to the activation of enzymes created by the pancreas to break down food. Pancreatic enzymes are packed in secretory granules as precursor molecules called zymogens. In physiological conditions, those zymogens are activated only when they reach the gut, where they get to work releasing and distributing nutrients that we need to survive. If this process fails and the enzymes are prematurely activated within the pancreatic cell, before they are released from the gland, they break down the pancreas itself causing acute pancreatitis. This is a painful disease that ranges from a mild and autolimited process to a severe and lethal condition. Recently, we demonstrated that the pancreatic acinar cell is able to switch on a refined mechanism that could explain the autolimited form of the disease. This is a novel selective form of autophagy named zymophagy, a cellular process to specifically detect and degrade secretory granules containing activated enzymes before they can digest the organ. In this work, we revise the molecules and mechanisms that mediate zymophagy, a selective autophagy of secretory granules.

  17. Crosstalk between Beclin-1-dependent autophagy and caspase-dependent apoptosis induced by tanshinone IIA in human osteosarcoma MG-63 cells

    Science.gov (United States)

    Ma, Kun; Zhang, Chuan; Huang, Man-Yu; Guo, Yan-Xing; Hu, Guo-Qiang

    2016-01-01

    The aim of the present study was to ascertain whether or not autophagy is induced by tanshinone IIA (TanIIA), and to explore the crosstalk between autophagy and apoptosis in regards to the antitumor effects of TanIIA on MG-63 cells and the potential mechanism. MG-63 cells were cultured in vitro with various concentrations of TanIIA (0, 2.5, 5, 10 and 20 mg/l) for 0, 24, 48 and 72 h, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay was used to evaluate the inhibition of the proliferation of osteosarcoma MG-63 cells by TanIIA or in the presence/absence of chloroquine (CQ). Autophagic vacuoles and characteristic autophagosomes were observed by transmission electron microscopy (TEM). TanIIA-induced autophagy in MG-63 cells was confirmed by GFP-LC3 punctate fluorescence. The expression levels of apoptosis-related proteins caspase-3, caspase-8, caspase-9 and cleaved-PARP and autophagy-related proteins LC3II/LC3I and Beclin-1 were detected by western blotting. FITC-Annexin V/propidium iodide (PI) staining, flow cytometry and Hoechst 33258 staining were used to analyze the apoptotic rate. Fluorescence intensity of reactive oxygen species (ROS) was examined under a fluorescence microscope using an analysis software system. Cell proliferation was obviously inhibited by TanIIA in a dose- and time-dependent manner. Generation of autophagy was triggered by TanIIA (0–20 mg/l) treatment, and in a Beclin-1-dependent manner. Compared with the control group, the apoptosis ratio following treatment with 2.5 mg/l TanIIA failed to achieve statistical significance. Expression of caspase-3, -8 and -9, and cleaved-PARP in the other groups was gradually enhanced in dose-dependent manner. Our analysis also suggested that the influence of autophagy on TanIIA cytotoxicity had a phase effect; with low-dose drugs and shorter treatment periods, autophagy functioned as a damage repair mechanism. In conrast, when the cells were treated with higher doses of Tan

  18. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojun [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zhong, Xiaomin [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Tanyi, Janos L.; Shen, Jianfeng [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Xu, Congjian [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Gao, Peng [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zheng, Tim M. [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); DeMichele, Angela [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhang, Lin, E-mail: linzhang@mail.med.upenn.edu [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  19. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence

    Directory of Open Access Journals (Sweden)

    Marchal JA

    2013-10-01

    Full Text Available Juan Antonio Marchal,1,2 Esther Carrasco,1 Alberto Ramirez,1,3 Gema Jiménez,1,2 Carmen Olmedo,4 Macarena Peran,1,3 Ahmad Agil,5 Ana Conejo-García,6 Olga Cruz-López,6 Joaquin María Campos,6 María Ángel García4,7 1Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, 2Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 3Department of Health Sciences, University of Jaén, Jaén, 4Experimental Surgery Research Unit, Virgen de las Nieves University Hospital, Granada, 5Department of Pharmacology and Neurosciences Institute, Faculty of Medicine, 6Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, 7Department of Oncology, Virgen de las Nieves University Hospital, Granada, Spain Abstract: Bozepinib [(RS-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl-1,2,3,5-tetrahydro-4,1- benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50 values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to

  20. Malaria: toxins, cytokines and disease

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bate, C A; Taverne, J;

    1995-01-01

    In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while hypoglyc...

  1. Cytokines in human lung fibrosis.

    Science.gov (United States)

    Martinet, Y; Menard, O; Vaillant, P; Vignaud, J M; Martinet, N

    1996-01-01

    Fibrosis is a pathological process characterized by the replacement of normal tissue by mesenchymal cells and the extracellular matrix produced by these cells. The sequence of events leading to fibrosis of an organ involves the subsequent processes of injury with inflammation and disruption of the normal tissue architecture, followed by tissue repair with accumulation of mesenchymal cells in the area of derangement. The same sequence of events occurs in wound healing with normal granulation tissue and scar formation, but, while normal scar formation is very localized and transient, in contrast, in fibrosis, the repair process is exaggerated and usually widespread and can be chronic. Inflammatory cells (mainly mononuclear phagocytes), platelets, endothelial cells, and type II pneumocytes play a direct and indirect role in tissue injury and repair. The evaluation of three human fibrotic lung diseases, two diffuse [idiopathic pulmonary fibrosis (IPF), and the adult respiratory distress syndrome (ARDS)], and one focal (tumor stroma in lung cancer), has shown that several cytokines participate to the local injury and inflammatory reaction [interleukin-1 (IL-1), interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-alpha)], while other cytokines are involved in tissue repair and fibrosis [platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-beta), and basic-fibroblast growth factor (b-FGF)]. A better understanding of the cytokines and cytokine networks involved in lung fibrosis leads to the possibility of new therapeutic approaches.

  2. Formulation and stability of cytokine therapeutics.

    Science.gov (United States)

    Lipiäinen, Tiina; Peltoniemi, Marikki; Sarkhel, Sanjay; Yrjönen, Teijo; Vuorela, Heikki; Urtti, Arto; Juppo, Anne

    2015-02-01

    Cytokines are messenger proteins that regulate the proliferation and differentiation of cells and control immune responses. Interferons, interleukins, and growth factors have applications in cancer, autoimmune, and viral disease treatment. The cytokines are susceptible to chemical and physical instability. This article reviews the structure and stability issues of clinically used cytokines, as well as formulation strategies for improved stability. Some general aspects for identifying most probable stability concerns, selecting excipients, and developing stable cytokine formulations are presented. The vast group of cytokines offers possibilities for new biopharmaceuticals. The formulation approaches of the current cytokine products could facilitate development of new biopharmaceuticals.

  3. Cytokine responses during chronic denervation

    Directory of Open Access Journals (Sweden)

    Olsson Tomas

    2005-11-01

    Full Text Available Abstract Background The aim of the present study was to examine inflammatory responses during Wallerian degeneration in rat peripheral nerve when the regrowth of axons was prevented by suturing. Methods Transected rat sciatic nerve was sutured and ligated to prevent reinnervation. The samples were collected from the left sciatic nerve distally and proximally from the point of transection. The endoneurium was separated from the surrounding epi- and perineurium to examine the expression of cytokines in both of these compartments. Macrophage invasion into endoneurium was investigated and Schwann cell proliferation was followed as well as the expression of cytokines IL-1β, IL-10, IFN-γ and TNF-α mRNA. The samples were collected from 1 day up to 5 weeks after the primary operation. Results At days 1 to 3 after injury in the epi-/perineurium of the proximal and distal stump, a marked expression of the pro-inflammatory cytokines TNF-α and IL-1β and of the anti-inflammatory cytokine IL-10 was observed. Concurrently, numerous macrophages started to gather into the epineurium of both proximal and distal stumps. At day 7 the number of macrophages decreased in the perineurium and increased markedly in the endoneurium of both stumps. At this time point marked expression of TNF-α and IFN-γ mRNA was observed in the endo- and epi-/perineurium of the proximal stump. At day 14 a marked increase in the expression of IL-1β could be noted in the proximal stump epi-/perineurium and in the distal stump endoneurium. At that time point many macrophages were observed in the longitudinally sectioned epineurium of the proximal 2 area as well as in the cross-section slides from the distal stump. At day 35 TNF-α, IL-1β and IL-10 mRNA appeared abundantly in the proximal epi-/perineurium together with macrophages. Conclusion The present studies show that even during chronic denervation there is a cyclic expression pattern for the studied cytokines. Contrary to the

  4. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness?

    Science.gov (United States)

    Jeon, Sang Won; Kim, Yong Ku

    2016-01-01

    Depression results from changes in the central nervous system (CNS) that may result from immunological abnormalities. The immune system affects the CNS through cytokines, which regulate brain activities and emotions. Cytokines affect two biological systems that are most associated with the pathophysiology of depression: The hypothalamic-pituitary-adrenal axis and the catecholamine/sympathetic nervous system. Neuroinflammation and cytokines affect the brain signal patterns involved in the psychopathology of depression and the mechanisms of antidepressants, and they are associated with neurogenesis and neural plasticity. These observations suggest that neuroinflammation and cytokines might cause and/or maintain depression, and that they might be useful in the diagnosis and prognosis of depression. This psychoneuroimmunologic perspective might compensate for some of the limitations of the monoamine theory by suggesting that depression is a result of a failure to adapt to stress and that inflammatory responses and cytokines are involved in this process. In this review, the interactions of cytokines with the CNS, neuroendocrine system, neurotransmitters, neurodegeneration/neurogenesis, and antidepressants are discussed. The roles of cytokines in the etiology and psychopathology of depression are examined. The use of cytokine inhibitors or anti-inflammatory drugs in depression treatment is explored. Finally, the significance and limitations of the cytokine hypothesis are discussed. PMID:27679767

  5. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness?

    Science.gov (United States)

    Jeon, Sang Won; Kim, Yong Ku

    2016-09-22

    Depression results from changes in the central nervous system (CNS) that may result from immunological abnormalities. The immune system affects the CNS through cytokines, which regulate brain activities and emotions. Cytokines affect two biological systems that are most associated with the pathophysiology of depression: The hypothalamic-pituitary-adrenal axis and the catecholamine/sympathetic nervous system. Neuroinflammation and cytokines affect the brain signal patterns involved in the psychopathology of depression and the mechanisms of antidepressants, and they are associated with neurogenesis and neural plasticity. These observations suggest that neuroinflammation and cytokines might cause and/or maintain depression, and that they might be useful in the diagnosis and prognosis of depression. This psychoneuroimmunologic perspective might compensate for some of the limitations of the monoamine theory by suggesting that depression is a result of a failure to adapt to stress and that inflammatory responses and cytokines are involved in this process. In this review, the interactions of cytokines with the CNS, neuroendocrine system, neurotransmitters, neurodegeneration/neurogenesis, and antidepressants are discussed. The roles of cytokines in the etiology and psychopathology of depression are examined. The use of cytokine inhibitors or anti-inflammatory drugs in depression treatment is explored. Finally, the significance and limitations of the cytokine hypothesis are discussed.

  6. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    Directory of Open Access Journals (Sweden)

    Lim Chuan

    2012-07-01

    Full Text Available Abstract Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show

  7. A role for TOR complex 2 signaling in promoting autophagy.

    Science.gov (United States)

    Vlahakis, Ariadne; Powers, Ted

    2014-01-01

    The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca(2+)- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.

  8. The emerging role of acid sphingomyelinase in autophagy.

    Science.gov (United States)

    Perrotta, Cristiana; Cervia, Davide; De Palma, Clara; Assi, Emma; Pellegrino, Paolo; Bassi, Maria Teresa; Clementi, Emilio

    2015-05-01

    Autophagy, the main intracellular process of cytoplasmic material degradation, is involved in cell survival and death. Autophagy is regulated at various levels and novel modulators of its function are being continuously identified. An intriguing recent observation is that among these modulators is the sphingolipid metabolising enzyme, Acid Sphingomyelinase (A-SMase), already known to play a fundamental role in apoptotic cell death participating in several pathophysiological conditions. In this review we analyse and discuss the relationship between autophagy and A-SMase describing how A-SMase may regulate it and defining, for the first time, the existence of an A-SMase-autophagy axis. The imbalance of this axis plays a role in cancer, nervous system, cardiovascular, and hepatic disorders.

  9. Autophagy-modulating aminosteroids isolated from the sponge Cliona celata

    NARCIS (Netherlands)

    R.A. Keyzers; J. Daoust; M.T. Davies-Coleman; R. van Soest; A. Balgi; E. Donohue; M. Roberge; R.J. Andersen

    2008-01-01

    Clionamines A−D (1−4), new aminosteroids that modulate autophagy, have been isolated from South African specimens of the sponge Cliona celata. Clionamine D (4) has an unprecedented spiro bislactone side chain.

  10. Monitoring of autophagy is complicated--salinomycin as an example.

    Science.gov (United States)

    Jangamreddy, Jaganmohan Reddy; Panigrahi, Soumya; Łos, Marek J

    2015-03-01

    Monitoring of autophagy is challenging because of its multiple steps and lack of single befitting technique for a complete mechanistic understanding, which makes the task complicated. Here, we evaluate the functionality of autophagy triggered by salinomycin (anti-cancer stem cell agent) using flow cytometry and advanced microscopy. We show that salinomycin does induce functional autophagy at lower concentrations and such a dose is cell type-dependent. For example, PC3 cells show active autophagic flux at 10 μM concentration of salinomycin while murine embryonic fibroblasts already show an inhibition of flux at such doses. A higher concentration of salinomycin (i.e. 30 μM) inhibits autophagic flux in both cell types. The data confirms our previous findings that salinomycin is an inducer of autophagy, whereas autophagic flux inhibition is a secondary response.

  11. Role of autophagy in liver physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Autophagy is a highly conserved intracellular degradation pathway by which bulk cytoplasm and superfluous or damaged organelles are enveloped by double membrane structures termed autophagosomes. The autophago-somes then fuse with lysosomes for degradation of their contents, and the resulting amino acids can then recycle back to the cytosol. Autophagy is normally activated in response to nutrient deprivation and other stressors and occurs in all eukaryotes. In addition to maintaining energy and nutrient balance in the liver, it is now clear that autophagy plays a role in liver protein aggregates related diseases, hepatocyte cell death, steatohepatitis, hepatitis virus infection and hepatocellular carcinoma. In this review, I discuss the recent findings of autophagy with a focus on its role in liver pathophysiology.

  12. Heat shock response and autophagy--cooperation and control.

    Science.gov (United States)

    Dokladny, Karol; Myers, Orrin B; Moseley, Pope L

    2015-01-01

    Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.

  13. Ultrastructure of autophagy in plant cells: a review.

    Science.gov (United States)

    van Doorn, Wouter G; Papini, Alessio

    2013-12-01

    Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.

  14. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides.

    Science.gov (United States)

    Seino, Junichi; Wang, Li; Harada, Yoichiro; Huang, Chengcheng; Ishii, Kumiko; Mizushima, Noboru; Suzuki, Tadashi

    2013-09-13

    Macroautophagy is an essential, homeostatic process involving degradation of a cell's own components; it plays a role in catabolizing cellular components, such as protein or lipids, and damaged or excess organelles. Here, we show that in Atg5(-/-) cells, sialyloligosaccharides specifically accumulated in the cytosol. Accumulation of these glycans was observed under non-starved conditions, suggesting that non-induced, basal autophagy is essential for their catabolism. Interestingly, once accumulated in the cytosol, sialylglycans cannot be efficiently catabolized by resumption of the autophagic process, suggesting that functional autophagy is important for preventing sialyloligosaccharides from accumulating in the cytosol. Moreover, knockdown of sialin, a lysosomal transporter of sialic acids, resulted in a significant reduction of sialyloligosaccharides, implying that autophagy affects the substrate specificity of this transporter. This study thus provides a surprising link between basal autophagy and catabolism of N-linked glycans.

  15. JNK-Bcl-2/Bcl-xL-Bax/Bak Pathway Mediates the Crosstalk between Matrine-Induced Autophagy and Apoptosis via Interplay with Beclin 1

    Directory of Open Access Journals (Sweden)

    Jiong Yang

    2015-10-01

    Full Text Available Autophagy is associated with drug resistance which has been a threat in chemotherapy of hepatocellular carcinoma (HCC. The interconnected molecular regulators between autophagy and apoptosis serve as switching points critical to the ultimate outcome of the cell. Our study was performed to investigate the crosstalk between autophagy and apoptosis in HCC after the treatment of matrine. Flow cytometry and TUNEL (terminal dexynucleotidyl transferase (TdT-mediated dUTP nick end labeling assay were used to detect apoptosis in vitro and in vivo, respectively. Bax oligomerization and Cytochrome c release assay were performed. Immunoprecipitation and siRNA transfection were used to detect the interplay between Bcl-2/Bcl-xL,Bax, and Beclin 1. Our results showed that: (1 matrine not only activated caspase and PARP (poly ADP-ribose polymerase cleavage, but also triggered autophagy as shown by the increased levels of LC3II, Beclin 1, and PI3KC3, and the decreased level of p62; (2 matrine treatment promoted the JNK-Bcl-2/ Bcl-xL-Bax/Bak pathway; (3 Bax was oligomerized, the mitochondrial membrane potential altered, and Cytochrome c was released subsequently; (4 Bax interacts with Beclin 1 and inhibits autophagy, which may be a new crosstalk point; and (5 finally, we showed that matrine suppressed the growth of a MHCC97L xenograft in vivo for the first time. In conclusion, the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1.

  16. JNK-Bcl-2/Bcl-xL-Bax/Bak Pathway Mediates the Crosstalk between Matrine-Induced Autophagy and Apoptosis via Interplay with Beclin 1.

    Science.gov (United States)

    Yang, Jiong; Yao, Shukun

    2015-10-27

    Autophagy is associated with drug resistance which has been a threat in chemotherapy of hepatocellular carcinoma (HCC). The interconnected molecular regulators between autophagy and apoptosis serve as switching points critical to the ultimate outcome of the cell. Our study was performed to investigate the crosstalk between autophagy and apoptosis in HCC after the treatment of matrine. Flow cytometry and TUNEL (terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling) assay were used to detect apoptosis in vitro and in vivo, respectively. Bax oligomerization and Cytochrome c release assay were performed. Immunoprecipitation and siRNA transfection were used to detect the interplay between Bcl-2/Bcl-xL,Bax, and Beclin 1. Our results showed that: (1) matrine not only activated caspase and PARP (poly ADP-ribose polymerase) cleavage, but also triggered autophagy as shown by the increased levels of LC3II, Beclin 1, and PI3KC3, and the decreased level of p62; (2) matrine treatment promoted the JNK-Bcl-2/ Bcl-xL-Bax/Bak pathway; (3) Bax was oligomerized, the mitochondrial membrane potential altered, and Cytochrome c was released subsequently; (4) Bax interacts with Beclin 1 and inhibits autophagy, which may be a new crosstalk point; and (5) finally, we showed that matrine suppressed the growth of a MHCC97L xenograft in vivo for the first time. In conclusion, the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1.

  17. Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex

    Directory of Open Access Journals (Sweden)

    Shi M

    2014-12-01

    Full Text Available Min Shi,1,* Liang Cheng,2,* Zubin Zhang,1 Zhuang Liu,2 Xinliang Mao1,31Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, 2Functional Nano and Soft Material (FUNSOM, Collaborative Innovation Center of Suzhou, Nano Science and Technology, 3Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, People’s Republic of China*These authors contributed equally to this studyAbstract: Magnetic iron oxide nanoparticles (NPs are emerging as novel materials with great potentials for various biomedical applications, but their biological activities are largely unknown. In the present study, we found that ferroferric oxide nanoparticles (Fe3O4 NPs induced autophagy in blood cells. Both naked and modified Fe3O4 NPs induced LC3 lipidation and degraded p62, a monitor of autophagy flux. And this change could be abolished by autophagy inhibitors. Mechanistically, Fe3O4 NP-induced autophagy was accompanied by increased Beclin 1 and VPS34 and decreased Bcl-2, thus promoting the formation of the critical complex in autophagy initiation. Further studies demonstrated that Fe3O4 NPs attenuated cell death induced by anticancer drugs bortezomib and doxorubicin. Therefore, this study suggested that Fe3O4 NPs can induce prosurvival autophagy in blood cells by modulating the Beclin l/Bcl-2/VPS34 complex. This study suggests that caution should be taken when Fe3O4 NPs are used in blood cancer patients.Keywords: iron oxide nanoparticle, autophagic pathway, anti-apoptosis

  18. Detection of Autophagy in Caenorhabditis elegans Using GFP::LGG-1 as an Autophagy Marker.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-01-04

    In yeast and mammalian cells, the autophagy protein Atg8/LC3 (microtubule-associated proteins 1A/1B light chain 3B encoded by MAP1LC3B) has been the marker of choice to detect double-membraned autophagosomes that are produced during the process of autophagy. A lipid-conjugated form of Atg8/LC3B is localized to the inner and outer membrane of the early-forming structure known as the phagophore. During maturation of autophagosomes, Atg8/LC3 bound to the inner autophagosome membrane remains in situ as the autophagosomes fuse with lysosomes. The nematode Caenorhabditis elegans is thought to conduct a similar process, meaning that tagging the nematode ortholog of Atg8/LC3-known as LGG-1-with a fluorophore has become a widely accepted method to visualize autophagosomes. Under normal growth conditions, GFP-modified LGG-1 displays a diffuse expression pattern throughout a variety of tissues, whereas, when under conditions that induce autophagy, the GFP::LGG-1 tag labels positive punctate structures, and its overall level of expression increases. Here, we present a protocol for using fluorescent reporters of LGG-1 coupled to GFP to monitor autophagosomes in vivo. We also discuss the use of alternative fluorescent markers and the possible utility of the LGG-1 paralog LGG-2.

  19. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy......Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...

  20. Autophagy Deficiency Promotes β-Lactam Production in Penicillium chrysogenum

    OpenAIRE

    Bartoszewska, Magdalena; Kiel, Jan A.K.W.; Bovenberg, Roel A. L.; Veenhuis, Marten; van der Klei, Ida J.

    2011-01-01

    We have investigated the significance of autophagy in the production of the β-lactam antibiotic penicillin (PEN) by the filamentous fungus Penicillium chrysogenum. In this fungus PEN production is compartmentalized in the cytosol and in peroxisomes. We demonstrate that under PEN-producing conditions significant amounts of cytosolic and peroxisomal proteins are degraded via autophagy. Morphological analysis, based on electron and fluorescence microscopy, revealed that this phenomenon might con...

  1. ROLE OF AUTOPHAGY IN AGE-RELATED MUSCLE LOSS

    OpenAIRE

    Lo Verso, Francesca

    2014-01-01

    Autophagy is an ubiquitous degradation system, that is conserved through species. Cells activate autophagy to degrade long-lived proteins, damaged organelles or portions of cytoplasm, that are engulfed in double-membrane vesicles called autophagosomes, that ultimately fuse to lysosomes, where the cargo is degraded and breakdown products are recycled to sustain cellular energetic demands. Skeletal muscle is the most abundant tissue in mammals and controls 80% of the blood glucose. We have r...

  2. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  3. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment.

    Science.gov (United States)

    Ren, Xiaojia; St Clair, Daret K; Butterfield, D Allan

    2017-03-01

    One of the major complaints patients who survive cancer often make is chemotherapy induced cognitive impairment (CICI), which survivors often call "chemo brain." CICI is a side effect of chemotherapy due to the cytotoxicity and neurotoxicity of anti-cancer drugs causing structural and functional changes in brain, even when drugs that do not cross the blood brain barrier (BBB) are used. Diminished cognitive functions including diminution of learning and memory, concentration and attention, processing speed and executive functions that reduce quality of life and ability to work are common signs and symptoms of CICI. There still is not a clarified and complete mechanism for CICI, but researchers have pointed to several biochemical candidates. Chemotherapy-induced, cytokine-mediated involvement in CICI will be mainly discussed in this review paper with emphasis on different types of cytokines, correlated with BBB and epigenetic changes. Mechanisms of ROS-generating, anti-cancer drugs and their relation to cytokine-mediated CICI will be emphasized.

  4. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  5. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  6. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  7. Autophagy inhibitors as a potential antiamoebic treatment for Acanthamoeba keratitis.

    Science.gov (United States)

    Moon, Eun-Kyung; Kim, So-Hee; Hong, Yeonchul; Chung, Dong-Il; Goo, Youn-Kyoung; Kong, Hyun-Hee

    2015-07-01

    Acanthamoeba cysts are resistant to extreme physical and chemical conditions. Autophagy is an essential pathway for encystation of Acanthamoeba cells. To evaluate the possibility of an autophagic Acanthamoeba encystation mechanism, we evaluated autophagy inhibitors, such as 3-methyladenine (3MA), LY294002, wortmannin, bafilomycin A, and chloroquine. Among these autophagy inhibitors, the use of 3MA and chloroquine showed a significant reduction in the encystation ratio in Acanthamoeba cells. Wortmannin also inhibited the formation of mature cysts, while LY294002 and bafilomycin A did not affect the encystation of Acanthamoeba cells. Transmission electron microscopy revealed that 3MA and wortmannin inhibited autophagy formation and that chloroquine interfered with the formation of autolysosomes. Inhibition of autophagy or autolysosome formation resulted in a significant block in the encystation in Acanthamoeba cells. Clinical treatment with 0.02% polyhexamethylene biguanide (PHMB) showed high cytopathic effects on Acanthamoeba trophozoites and cysts; however, it also revealed high cytopathic effects on human corneal epithelial cells. In this study, we investigated effects of the combination of a low (0.00125%) concentration of PHMB with each of the autophagy inhibitors 3MA, wortmannin, and chloroquine on Acanthamoeba and human corneal epithelial cells. These new combination treatments showed low cytopathic effects on human corneal cells and high cytopathic effects on Acanthamoeba cells. Taken together, these results provide fundamental information for optimizing the treatment of Acanthamoeba keratitis.

  8. The role of autophagy in microbial infection and immunity

    Directory of Open Access Journals (Sweden)

    Desai M

    2015-01-01

    Full Text Available Mayura Desai,1 Rong Fang,2 Jiaren Sun11Department of Microbiology and Immunology, 2Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USAAbstract: The autophagy pathway represents an evolutionarily conserved cell recycling process that is activated in response to nutrient deprivation and other stress signals. Over the years, it has been linked to an array of cellular functions. Equally, a wide range of cell-intrinsic, as well as extracellular, factors have been implicated in the induction of the autophagy pathway. Microbial infections represent one such factor that can not only activate autophagy through specific mechanisms but also manipulate the response to the invading microbe's advantage. Moreover, in many cases, particularly among viruses, the pathway has been shown to be intricately involved in the replication cycle of the pathogen. Conversely, autophagy also plays a role in combating the infection process, both through direct destruction of the pathogen and as one of the key mediating factors in the host defense mechanisms of innate and adaptive immunity. Further, the pathway also plays a role in controlling the pathogenesis of infectious diseases by regulating inflammation. In this review, we discuss various interactions between pathogens and the cellular autophagic response and summarize the immunological functions of the autophagy pathway.Keywords: autophagy, xenophagy, antiviral, antibacterial

  9. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome.

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Kroemer, Guido

    2010-02-03

    Although the essential genes for autophagy (Atg) have been identified, the molecular mechanisms through which Atg proteins control 'self eating' in mammalian cells remain elusive. Beclin 1 (Bec1), the mammalian orthologue of yeast Atg6, is part of the class III phosphatidylinositol 3-kinase (PI3K) complex that induces autophagy. The first among an increasing number of Bec1-interacting proteins that has been identified is the anti-apoptotic protein Bcl-2. The dissociation of Bec1 from Bcl-2 is essential for its autophagic activity, and Bcl-2 only inhibits autophagy when it is present in the endoplasmic reticulum (ER). A paper in this issue of the EMBO Journal has identified a novel protein, NAF-1 (nutrient-deprivation autophagy factor-1), that binds Bcl-2 at the ER. NAF-1 is a component of the inositol-1,4,5 trisphosphate (IP3) receptor complex, which contributes to the interaction of Bcl-2 with Bec1 and is required for Bcl-2 to functionally antagonize Bec1-mediated autophagy. This work provides mechanistic insights into how autophagy- and apoptosis-regulatory molecules crosstalk at the ER.

  10. Role of autophagy in prion protein-induced neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Hao Yao; Deming Zhao; Sher Hayat Khan; Lifeng Yang

    2013-01-01

    Prion diseases,characterized by spongiform degeneration and the accumulation of misfolded and aggregated PrPSc in the central nervous system,are one of fatal neurodegenerative and infectious disorders of humans and animals.In earlier studies,autophagy vacuoles in neurons were frequently observed in neurodegenerative diseases such as Alzheimer's,Parkinson's,and Huntington's diseases as well as prion diseases.Autophagy is a highly conserved homeostatic process by which several cytoplasmic components (proteins or organelles) are sequestered in a doublemembrane-bound vesicle termed 'autophagosome' and degraded upon their fusion with lysosome.The pathway of intercellular self-digestion at basal physiological levels is indispensable for maintaining the healthy status of tissues and organs.In case of prion infection,increasing evidence indicates that autophagy has a crucial ability of eliminating pathological PrPSc accumulated within neurons.In contrast,autophagy dysfunction in affected neurons may contribute to the formation of spongiform changes.In this review,we summarized recent findings about the effect of mammalian autophagy in neurodegenerative disorders,particularly in prion diseases.We also summarized the therapeutic potential of some small molecules (such as lithium,rapamycin,Sirtuin 1 and resveratrol) targets to mitigate such diseases on brain function.Furthermore,we discussed the controversial role of autophagy,whether it mediates neuronal toxicity or serves a protective function in neurodegenerative disorders.

  11. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy.

    Science.gov (United States)

    Tagawa, Atsuko; Yasuda, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-Ichi; Koya, Daisuke; Asanuma, Katsuhiko; Kim, Eun-Hee; Haneda, Masakazu; Kajiwara, Nobuyuki; Hayashi, Kazuyuki; Ohashi, Hiroshi; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2016-03-01

    Overcoming refractory massive proteinuria remains a clinical and research issue in diabetic nephropathy. This study was designed to investigate the pathogenesis of massive proteinuria in diabetic nephropathy, with a special focus on podocyte autophagy, a system of intracellular degradation that maintains cell and organelle homeostasis, using human tissue samples and animal models. Insufficient podocyte autophagy was observed histologically in patients and rats with diabetes and massive proteinuria accompanied by podocyte loss, but not in those with no or minimal proteinuria. Podocyte-specific autophagy-deficient mice developed podocyte loss and massive proteinuria in a high-fat diet (HFD)-induced diabetic model for inducing minimal proteinuria. Interestingly, huge damaged lysosomes were found in the podocytes of diabetic rats with massive proteinuria and HFD-fed, podocyte-specific autophagy-deficient mice. Furthermore, stimulation of cultured podocytes with sera from patients and rats with diabetes and massive proteinuria impaired autophagy, resulting in lysosome dysfunction and apoptosis. These results suggest that autophagy plays a pivotal role in maintaining lysosome homeostasis in podocytes under diabetic conditions, and that its impairment is involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy. These results may contribute to the development of a new therapeutic strategy for advanced diabetic nephropathy.

  12. Divergent effects of Tenofovir and Retrovir (AZT) on TLR-mediated cytokine production

    DEFF Research Database (Denmark)

    Melchjorsen, Jesper; Tolstrup, Martin; Paludan, Søren Riis

      Pathogen-recognizing Toll-like receptors 2 (TLR2) and TLR4 are known to recognize a number of pathogens, including E.Coli, S. Pneumoniae and N. Meningitidis. We have studied whether a number of HIV therapeutics affect immediate proinflammatory cytokine responses in cell cultures. Preliminary...... results suggest an opposing effect of the drugs Tenofovir and Retrovir (AZT) on TLR-mediated proinflammatory cytokine production. We present data on the mechanisms behind the drug-mediated remodeling of innate immune activation and how the drugs effect early host-pathogen interactions....

  13. TLR-mediated NF-kB-dependent cytokine production is differently affected by HIV therapeutics

    DEFF Research Database (Denmark)

    Melchjorsen, Jesper; Paludan, Søren Riis; Mogensen, Trine

      Pathogen-recognizing Toll-like receptors 2 (TLR2) and TLR4 are known to recognize a number of pathogens, including E.Coli, S. Pneumonia and N. Meningococcus. We have studied whether a number of HIV therapeutics affect immediate proinflammatory cytokine responses in cell cultures. Preliminary...... results suggest an opposing effect of the drugs Tenofovir and Retrovir (AZT) on TLR-mediated production of NF-kappaB-dependent proinflammatory cytokines. We present data on the mechanisms behind the drug-mediated remodeling of innate immune activation and how the drugs effect early host...

  14. Nociceptive neurons detect cytokines in arthritis

    OpenAIRE

    Schaible, Hans-Georg

    2014-01-01

    Proinflammatory cytokines are major mediators in the pathogenesis of diseases of joints such as rheumatoid arthritis and osteoarthritis. This review emphasizes that proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6 and interleukin-17 are also mediators of pain by directly acting on the nociceptive system. Proportions of nociceptive sensory neurons express receptors for these cytokines, and the application of cytokines rapidly changes the excitabil...

  15. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    P Wigley

    2003-04-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  16. 细胞自噬与肿瘤的研究进展%Research progress of autophagy and tumor

    Institute of Scientific and Technical Information of China (English)

    徐俊杰; 王志莲; 郝敏

    2016-01-01

    autophagy have also become the target of antitumor drugs, and the new method of tumor prevention and treatment has been expanded.

  17. Cytokines and perinatal brain injury.

    Science.gov (United States)

    Silverstein, F S; Barks, J D; Hagan, P; Liu, X H; Ivacko, J; Szaflarski, J

    1997-01-01

    A rapidly expanding body of data provides support for the hypothesis that pro-inflammatory cytokines including interleukin-1 beta (IL-1 beta), and tumor necrosis factor-alpha (TNF-alpha) are expressed acutely in injured brain and contribute to progressive neuronal damage. Little is known about the pathogenetic role of these cytokines in perinatal brain injury. Recent experimental studies have incorporated two closely related in vivo perinatal rodent brain injury models to evaluate the role(s) of pro-inflammatory cytokines in the progression of neuronal injury: a perinatal stroke model, elicited by unilateral carotid artery ligation and subsequent timed exposure to 8% oxygen in 7-day-old rats, and a model of excitotoxic injury, elicited by stereotactic intra-cerebral injection of the selective excitatory amino acid agonist NMDA. Each of these lesioning methods results in reproducible, quantifiable focal forebrain injury at this developmental stage. Acute brain injury, evoked by cerebral hypoxia-ischemia or excitotoxin lesioning, results in transient marked increases in expression of IL-1 beta, and TNF-alpha mRNA in brain regions susceptible to irreversible injury, and there is evidence that pharmacological antagonism of IL-1 receptors can attenuate injury in both models. Recent studies also suggest that complementary strategies, based on pharmacological antagonism of platelet activating factor and on neutrophil depletion can also limit the extent of irreversible injury. In summary, current data suggest that pro-inflammatory cytokines contribute to the progression of perinatal brain injury, and that these mediators are important targets for neuroprotective interventions in the acute post-injury period.

  18. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure.

    Science.gov (United States)

    Oka, Takafumi; Hikoso, Shungo; Yamaguchi, Osamu; Taneike, Manabu; Takeda, Toshihiro; Tamai, Takahito; Oyabu, Jota; Murakawa, Tomokazu; Nakayama, Hiroyuki; Nishida, Kazuhiko; Akira, Shizuo; Yamamoto, Akitsugu; Komuro, Issei; Otsu, Kinya

    2012-05-10

    Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure. However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA. Mitochondria damaged by external haemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes. Here we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts showed infiltration of inflammatory cells and increased messenger RNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA, or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9 ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.