WorldWideScience

Sample records for autophagy cytokines drugs

  1. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  2. Cell death and autophagy: Cytokines, drugs, and nutritional factors

    International Nuclear Information System (INIS)

    Bursch, Wilfried; Karwan, Anneliese; Mayer, Miriam; Dornetshuber, Julia; Froehwein, Ulrike; Schulte-Hermann, Rolf; Fazi, Barbara; Di Sano, Federica; Piredda, Lucia; Piacentini, Mauro; Petrovski, Goran; Fesues, Laszlo; Gerner, Christopher

    2008-01-01

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, ≤1 μM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-π and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fesues, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 μM), resulting in the lysis of almost all cells within 24 h. However, a transient (1 h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 μM TAM, autophagy predominant; 7-9 μM, apoptosis predominant; 15 μM, necrosis. These phenomena might be

  3. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammantory cytokine expression.

    NARCIS (Netherlands)

    Jansen, H.J.; Essen, van P.; Koenen, T.; Joosten, L.A.; Netea, M.G.; Tack, C.J.; Stienstra, R.

    2012-01-01

    Autophagy, an evolutionary conserved process aimed at recycling damaged organelles and protein aggregates in the cell, also modulates proinflammatory cytokine production in peripheral blood mononuclear cells. Because adipose tissue inflammation accompanied by elevated levels of proinflammatory

  4. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages.

    Science.gov (United States)

    Dai, Jiezhi; Zhang, Xiaotian; Li, Li; Chen, Hua; Chai, Yimin

    2017-01-01

    Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Impairment of autophagy: From hereditary disorder to drug intoxication

    International Nuclear Information System (INIS)

    Aki, Toshihiko; Funakoshi, Takeshi; Unuma, Kana; Uemura, Koichi

    2013-01-01

    At first, the molecular mechanism of autophagy was unveiled in a unicellular organism Saccharomyces cerevisiae (budding yeast), followed by the discovery that the basic mechanism of autophagy is conserved in multicellular organisms including mammals. Although autophagy was considered to be a non-selective bulk protein degradation system to recycle amino acids during periods of nutrient starvation, it is also believed to be an essential mechanism for the selective elimination of proteins/organelles that are damaged under pathological conditions. Research advances made using autophagy-deficient animals have revealed that impairments of autophagy often underlie the pathogenesis of hereditary disorders such as Danon, Parkinson's, Alzheimer's, and Huntington's diseases, and amyotrophic lateral sclerosis. On the other hand, there are many reports that drugs and toxicants, including arsenic, cadmium, paraquat, methamphetamine, and ethanol, induce autophagy during the development of their toxicity on many organs including heart, brain, lung, kidney, and liver. Although the question as to whether autophagic machinery is involved in the execution of cell death or not remains controversial, the current view of the role of autophagy during cell/tissue injury is that it is an important, often essential, cytoprotective reaction; disturbances in cytoprotective autophagy aggravate cell/tissue injuries. The purpose of this review is to provide (1) a gross summarization of autophagy processes, which are becoming more important in the field of toxicology, and (2) examples of important studies reporting the involvement of perturbations in autophagy in cell/tissue injuries caused by acute as well as chronic intoxication

  6. DMH1 (4-[6-(4-isopropoxyphenylpyrazolo[1,5-a]pyrimidin-3-yl]quinoline inhibits chemotherapeutic drug-induced autophagy

    Directory of Open Access Journals (Sweden)

    Yue Sheng

    2015-07-01

    Full Text Available Our previous work found that DMH1 (4-[6-(4-isopropoxyphenylpyrazolo [1,5-a]pyrimidin-3-yl]quinoline was a novel autophagy inhibitor. Here, we aimed to investigate the effects of DMH1 on chemotherapeutic drug-induced autophagy as well as the efficacy of chemotherapeutic drugs in different cancer cells. We found that DMH1 inhibited tamoxifen- and cispcis-diaminedichloroplatinum (II (CDDP-induced autophagy responses in MCF-7 and HeLa cells, and potentiated the anti-tumor activity of tamoxifen and CDDP for both cells. DMH1 inhibited 5-fluorouracil (5-FU-induced autophagy responses in MCF-7 and HeLa cells, but did not affect the anti-tumor activity of 5-FU for these two cell lines. DMH1 itself did not induce cell death in MCF-7 and HeLa cells, but inhibited the proliferation of these cells. In conclusion, DMH1 inhibits chemotherapeutic drug-induced autophagy response and the enhancement of efficacy of chemotherapeutic drugs by DMH1 is dependent on the cell sensitivity to drugs.

  7. Autophagy in Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Alexander J. S. Choi

    2011-01-01

    Full Text Available Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.

  8. Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin?

    Science.gov (United States)

    Roth, Robert A; Maiuri, Ashley R; Ganey, Patricia E

    2017-02-01

    Idiosyncratic drug-induced liver injury continues to be a human health problem in part because drugs that cause these reactions are not identified in current preclinical testing and because progress in prevention is hampered by incomplete knowledge of mechanisms that underlie these adverse responses. Several hypotheses involving adaptive immune responses, inflammatory stress, inability to adapt to stress, and multiple, concurrent factors have been proposed. Yet much remains unknown about how drugs interact with the liver to effect death of hepatocytes. Evidence supporting hypotheses implicating adaptive or innate immune responses in afflicted patients has begun to emerge and is bolstered by results obtained in experimental animal models and in vitro systems. A commonality in adaptive and innate immunity is the production of cytokines, including interferon-γ (IFNγ). IFNγ initiates cell signaling pathways that culminate in cell death or inhibition of proliferative repair. Tumor necrosis factor-α, another cytokine prominent in immune responses, can also promote cell death. Furthermore, tumor necrosis factor-α interacts with IFNγ, leading to enhanced cellular responses to each cytokine. In this short review, we propose that the interaction of drugs with these cytokines contributes to idiosyncratic drug-induced liver injury, and mechanisms by which this could occur are discussed. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Sinomenine Hydrochloride Protects against Polymicrobial Sepsis via Autophagy

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2015-01-01

    Full Text Available Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs. The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl is widely used to treat rheumatoid arthritis (RA. However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3 puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM. 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.

  10. Cytotoxic Autophagy in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Khushboo Sharma

    2014-06-01

    Full Text Available Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.

  11. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  12. Autophagy in Trypanosomatids

    Directory of Open Access Journals (Sweden)

    Paul A. M. Michels

    2012-07-01

    Full Text Available Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments. Autophagy plays a major role during these transformations. Since inhibition of autophagy affects the transformation, survival and/or virulence of the parasites, the ATGs offer promise for development of drugs against tropical diseases. Furthermore, various trypanocidal drugs have been shown to trigger autophagy-like processes in the parasites. It is inferred that autophagy is used by the parasites in an—not always successful—attempt to cope with the stress caused by the toxic compounds.

  13. Modulation of Apoptosis Pathways by Oxidative Stress and Autophagy in β Cells

    Directory of Open Access Journals (Sweden)

    Maorong Wang

    2012-01-01

    Full Text Available Human islets isolated for transplantation are exposed to multiple stresses including oxidative stress and hypoxia resulting in significant loss of functional β cell mass. In this study we examined the modulation of apoptosis pathway genes in islets exposed to hydrogen peroxide, peroxynitrite, hypoxia, and cytokines. We observed parallel induction of pro- and antiapoptotic pathways and identified several novel genes including BFAR, CARD8, BNIP3, and CIDE-A. As BNIP3 is an inducer of autophagy, we examined this pathway in MIN6 cells, a mouse beta cell line and in human islets. Culture of MIN6 cells under low serum conditions increased the levels of several proteins in autophagy pathway, including ATG4, Beclin 1, LAMP-2, and UVRAG. Amino acid deprivation led to induction of autophagy in human islets. Preconditioning of islets with inducers of autophagy protected them from hypoxia-induced apoptosis. However, induction of autophagy during hypoxia exacerbated apoptotic cell death. ER stress led to induction of autophagy and apoptosis in β cells. Overexpression of MnSOD, an enzyme that scavenges free radicals, resulted in protection of MIN6 cells from cytokine-induced apoptosis. Ceramide, a mediator of cytokine-induced injury, reduced the active phosphorylated form of Akt and downregulated the promoter activity of the antiapoptotic gene bcl-2. Furthermore, cytokine-stimulated JNK pathway downregulated the bcl-2 promoter activity which was reversed by preincubation with SP600125, a JNK inhibitor. Our findings suggest that β cell apoptosis by multiple stresses in islets isolated for transplantation is the result of orchestrated gene expression in apoptosis pathway.

  14. Autophagy in protists

    Science.gov (United States)

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, Maria-Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris

    2011-01-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles and defense against parasitic invaders. During the past 10–20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  15. Drug targets in the cytokine universe for autoimmune disease.

    Science.gov (United States)

    Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z

    2013-03-01

    In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity

    International Nuclear Information System (INIS)

    Cosgrove, Benjamin D.; King, Bracken M.; Hasan, Maya A.; Alexopoulos, Leonidas G.; Farazi, Paraskevi A.; Hendriks, Bart S.; Griffith, Linda G.; Sorger, Peter K.; Tidor, Bruce; Xu, Jinghai J.

    2009-01-01

    Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFNγ, IL-1α, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.

  17. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Arwa S Kathiria

    Full Text Available Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα, both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB, which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A(1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells

  18. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    International Nuclear Information System (INIS)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-01-01

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer

  19. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  20. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  1. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy.

    Science.gov (United States)

    Linnemann, Amelia K; Blumer, Joseph; Marasco, Michelle R; Battiola, Therese J; Umhoefer, Heidi M; Han, Jee Young; Lamming, Dudley W; Davis, Dawn Belt

    2017-09-01

    IL-6 is a pleiotropic cytokine with complex roles in inflammation and metabolic disease. The role of IL-6 as a pro- or anti-inflammatory cytokine is still unclear. Within the pancreatic islet, IL-6 stimulates secretion of the prosurvival incretin hormone glucagon-like peptide 1 (GLP-1) by α cells and acts directly on β cells to stimulate insulin secretion in vitro Uncovering physiologic mechanisms promoting β-cell survival under conditions of inflammation and stress can identify important pathways for diabetes prevention and treatment. Given the established role of GLP-1 in promoting β-cell survival, we hypothesized that IL-6 may also directly protect β cells from apoptosis. Herein, we show that IL-6 robustly activates signal transducer and activator of transcription 3 (STAT3), a transcription factor that is involved in autophagy. IL-6 stimulates LC3 conversion and autophagosome formation in cultured β cells. In vivo IL-6 infusion stimulates a robust increase in lysosomes in the pancreas that is restricted to the islet. Autophagy is critical for β-cell homeostasis, particularly under conditions of stress and increased insulin demand. The stimulation of autophagy by IL-6 is regulated via multiple complementary mechanisms including inhibition of mammalian target of rapamycin complex 1 (mTORC1) and activation of Akt, ultimately leading to increases in autophagy enzyme production. Pretreatment with IL-6 renders β cells resistant to apoptosis induced by proinflammatory cytokines, and inhibition of autophagy with chloroquine prevents the ability of IL-6 to protect from apoptosis. Importantly, we find that IL-6 can activate STAT3 and the autophagy enzyme GABARAPL1 in human islets. We also see evidence of decreased IL-6 pathway signaling in islets from donors with type 2 diabetes. On the basis of our results, we propose direct stimulation of autophagy as a novel mechanism for IL-6-mediated protection of β cells from stress-induced apoptosis.-Linnemann, A. K

  2. Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia.

    Science.gov (United States)

    Zhuang, Pengwei; Zhang, Jinbao; Wang, Yan; Zhang, Mixia; Song, Lili; Lu, Zhiqiang; Zhang, Lu; Zhang, Fengqi; Wang, Jing; Zhang, Yanjun; Wei, Hongjun; Li, Hongyan

    2016-03-01

    Muscle atrophy is the prominent clinical feature of cancer-induced cachexia. Zhimu and Huangbai herb pair (ZBHP) has been used since ancient China times and have been phytochemically investigated for constituents that might cause anti-cancer, diabetes, and their complication. In this study, the effects and mechanisms of ZBHP on reversal of muscle atrophy were explored. C57BL/6 mice implanted with colon-26 adenocarcinoma were chosen to develop cancer cachexia for evaluating the effects of ZBHP on reversal of muscle atrophy. The body weight, survival time, inflammatory cytokines, and pathological changes of muscle were monitored. In addition, IGF-1/Akt and autophagy pathway members were analyzed to interpret the mechanism of drug response. The function and morphology of skeletal muscle in cachexia model were significantly disturbed, and the survival time was shortened. Consistently, inflammatory cytokines and muscle atrophy-related atrogin-1, MuRF1, and FOXO3 were significantly increased, and IGF-1/Akt and autophagy signal pathways were depressed. Treatment with ZBHP significantly alleviated tumor-free body weight reduction and cachexia-induced changes in cytokines and prolonged survival. ZBHP treatment not only inhibited the muscle atrophy-related genes but also activated the IGF-1/Akt and autophagy signal pathways to facilitate the protein synthesis. The results revealed that ZBHP treatment could inhibit the muscle atrophy induced by cancer cachexia and prolong the survival time, and ZBHP may be of value as a pharmacological alternative in treatment of cancer cachexia.

  3. The Mucosal Immune System and Its Regulation by Autophagy.

    Science.gov (United States)

    Kabat, Agnieszka M; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a "self-eating" survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.

  4. Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Lara Marrone

    2018-02-01

    Full Text Available Summary: Perturbations in stress granule (SG dynamics may be at the core of amyotrophic lateral sclerosis (ALS. Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments. : Sterneckert and colleagues generate isogenic FUS-eGFP reporter iPSCs that enable the identification of stress granule (SG phenotypes specifically induced by the ALS mutation FUS P525L. Compound screening shows that modulation of the PI3K/AKT/mTOR pathway regulating autophagy ameliorates SG phenotypes. A second screen identifies similarly acting brain-penetrant US FDA-approved drugs that could be repurposed to treat ALS. Keywords: amyotrophic lateral sclerosis, induced pluripotent stem cells, FUS, stress granules, autophagy, gene editing, CRISPR/Cas9n

  5. Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions

    Directory of Open Access Journals (Sweden)

    Elise Jacquin

    2018-05-01

    Full Text Available The catabolic process of autophagy plays important functions in inflammatory and immune responses by modulating innate immunity and adaptive immunity. Over the last decade, a cell-intrinsic role for autophagy in modulating CD4 T cell functions and differentiation was revealed. After the initial observation of autophagosomes in effector CD4 T cells, further work has shown that not only autophagy levels are modulated in CD4 T cells in response to environmental signals but also that autophagy critically affects the biology of these cells. Mouse models of autophagy deletion in CD4 T cells have indeed shown that autophagy is essential for CD4 T cell survival and homeostasis in peripheral lymphoid organs. Furthermore, autophagy is required for CD4 T cell proliferation and cytokine production in response to T cell receptor activation. Recent developments have uncovered that autophagy controls CD4 T cell differentiation and functions. While autophagy is required for the maintenance of immunosuppressive functions of regulatory T cells, it restrains the differentiation of TH9 effector cells, thus limiting their antitumor and pro-inflammatory properties. We will here discuss these findings that collectively suggest that therapeutic strategies targeting autophagy could be exploited for the treatment of cancer and inflammatory diseases.

  6. Changes of serum cytokines levels after drug therapy in epileptic patients

    International Nuclear Information System (INIS)

    Xie Jianping; Li Suping; Xiong Gang

    2004-01-01

    Objective: To explore the role of the cytokines interleukin-2 (IL-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the neuroimmune modulation of epilepsy through measurement of the changes of the serum levels of the these cytokines after drug therapy in epileptic patients. Methods: Serum IL-2, IL-6, TNF-α levels were measured with RIA in 43 patients with epilepsy both before and after drug therapy for 3-6 months as well as 32 controls. Results: Before treatment, serum levels of these cytokines in the patients were significantly higher than those in the controls (p<0.001). After treatment, 18 of the 43 patients were regarded as treatment very successful, with attack numbers decreased more than 75%. Some of this group of patient had their serum cytokines levels significantly dropped down, but the mean level for the group as a whole did not change much. In the rest 25 patients with less successful result, changes were not significant with the levels increased in a few cases. Among the cytokines, levels of IL-2 were significantly positively correlated to those of IL-6 and TNF-α (r=0.47, p<0.01, r=0.55, p<0.01). Conclusion: Increased levels of the cytokines in the epileptic patients suggest an activated immune state. However, the changes of levels after therapy are not predictable and do not necessarily drop down significantly even with very successful treatment

  7. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  8. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  9. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available Fusobacterium nucleatum (F. nucleatum plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α and reactive oxygen species (ROS in Caco-2 colorectal adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1 or RNA interference in essential autophagy genes (ATG5 or ATG12 in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.

  10. Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines

    International Nuclear Information System (INIS)

    Merk, Hans F.

    2005-01-01

    For all types of allergic reactions including immediate type of reactions, types II and III reactions as well as delayed-type reactions the recognition of the antigen by specifically sensitized T-lymphocytes is a prerequisite. Evidences for the key role of T-lymphocytes in the pathophysiology of allergic drug reactions are positive patch test reactions and the LTT. The proliferative response that can be measured by means of the incorporation of 3H-thymidine during DNA synthesis can be expressed as stimulation index (SI) which is the relation between the cell proliferation with antigen compared without antigen. In addition drug-specific activation of PBMC consistently resulted in IL-5 expression and secretion. The sensitivity of the LTT for the detection of drug sensitization could be improved up to 92% by the measurement of released interleukin-5. The expression and secretion of other cytokines such as IFN-γ and IL-10 was less consistently and had a diagnostic sensitivity of 36 and 50%, respectively. Microarrays are a promising new technical platform to look for better markers which can be used as a read out in the LTT and other similar assays and to study pharmacological interactions between drugs including cytokines such as interferons and the immune system

  11. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    OpenAIRE

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Bj?rklund, Ann-Charlotte; Zhivotovsky, Boris; Grand?r, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencin...

  12. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver

    International Nuclear Information System (INIS)

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-01-01

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis

  13. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition

    Science.gov (United States)

    XU, KANG; CHEN, WEIJIAN; WANG, XIAOFEI; PENG, YAN; LIANG, ANJING; HUANG, DONGSHENG; LI, CHUNHAI; YE, WEI

    2015-01-01

    Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and inter-vertebral disc degeneration. However, the autophagy induced by TNF-α and IL-1β and the corresponding molecular mechanism appear to be cell-type dependent. The effect and mechanism of autophagy regulated by TNF-α and IL-1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF-α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy-related gene expression in rat NP cells following TNF-α and IL-1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases and p38 mitogen-activated protein kinase inhibitors and TNF-α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF-κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF-κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions. PMID:26165348

  14. A Negative Feedback Loop Between Autophagy and Immune Responses in Mycobacterium leprae Infection.

    Science.gov (United States)

    Ma, Yuelong; Zhang, Li; Lu, Jie; Shui, Tiejun; Chen, Jia; Yang, Jun; Yuan, Joanna; Liu, Yeqiang; Yang, Degang

    2017-01-01

    The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.

  15. Autophagy in breast cancer and its implications for therapy

    Science.gov (United States)

    Jain, Kirti; Paranandi, Krishna S; Sridharan, Savitha; Basu, Alakananda

    2013-01-01

    Autophagy is an evolutionarily conserved process of cellular self-digestion that serves as a mechanism to clear damaged organelles and recycle nutrients. Since autophagy can promote cell survival as well as cell death, it has been linked to different human pathologies, including cancer. Although mono-allelic deletion of autophagy-related gene BECN1 in breast tumors originally indicated a tumor suppressive role for autophagy in breast cancer, the intense research during the last decade suggests a role for autophagy in tumor progression. It is now recognized that tumor cells often utilize autophagy to survive various stresses, such as oncogene-induced transformation, hypoxia, endoplasmic reticulum (ER) stress and extracellular matrix detachment. Induction of autophagy by tumor cells may also contribute to tumor dormancy and resistance to anticancer therapies, thus making autophagy inhibitors promising drug candidates for breast cancer treatment. The scientific endeavors continue to define a precise role for autophagy in breast cancer. In this article, we review the current literature on the role of autophagy during the development and progression of breast cancer, and discuss the potential of autophagy modulators for breast cancer treatment. PMID:23841025

  16. Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis.

    Science.gov (United States)

    Chao, Chiao-Hsuan; Chen, Hong-Ru; Chuang, Yung-Chun; Yeh, Trai-Ming

    2018-07-01

    Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.

  17. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  18. Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy.

    Science.gov (United States)

    Ding, Li; Wang, Qi; Shen, Ming; Sun, Ying; Zhang, Xiangyu; Huang, Can; Chen, Jianhua; Li, Rongxin; Duan, Yourong

    2017-07-03

    Although the treatments of malignant glioma include surgery, radiotherapy and chemotherapy by oral drug administration, the prognosis of patients with glioma remains very poor. We developed a polyethylene glycol-dipalmitoylphosphatidyle- thanoiamine (mPEG-DPPE) calcium phosphate nanoparticles (NPs) injectable thermoresponsive hydrogel (nanocomposite gel) that could provide a sustained and local delivery of paclitaxel (PTX) and temozolomide (TMZ). In addition, the proportion of PTX and TMZ for the optimal synergistic antiglioma effect on C6 cells was determined to be 1:100 (w/w) by the Chou and Talalay method. Our results clearly indicated that the autophagy induced by PTX:TMZ NPs plays an important role in regulating tumor cell death, while autophagy inhibition dramatically reverses the antitumor effect of PTX:TMZ NPs, suggesting that antiproliferative autophagy occurs in response to PTX:TMZ NPs treatment. The antitumor efficacy of the PTX:TMZ NP-loaded gel was evaluated in situ using C6 tumor-bearing rats, and the PTX:TMZ NP-loaded gel exhibited superior antitumor performance. The antitumor effects of the nanocomposite gel in vivo were shown to correlate with autophagic cell death in this study. The in vivo results further confirmed the advantages of such a strategy. The present study may provide evidence supporting the development of nanomedicine for potential clinical application.

  19. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: chaperones@163.com [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Guo, YuQi [Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China)

    2016-03-05

    Highlights: • B-Fe{sub 3}O{sub 4}NPs did not induce cell apoptosis or necrosis in HUVECs within 24 h. • B-Fe{sub 3}O{sub 4}NPs induced HUVEC dysfunction and inflammation. • B-Fe{sub 3}O{sub 4}NPs induced enhanced autophagic activity and blockade of autophagy flux. • Suppression of autophagy dysfunction attenuated B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. - Abstract: Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe{sub 3}O{sub 4}NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe{sub 3}O{sub 4}NPs (B-Fe{sub 3}O{sub 4}NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe{sub 3}O{sub 4}NPs did not induce cell death within 24 h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe{sub 3}O{sub 4}NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe{sub 3}O{sub 4}NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe{sub 3}O{sub 4}NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe{sub 3}O{sub 4}NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe{sub 3}O{sub 4}NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  20. Inflammatory Stress on Autophagy in Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease during 24 Months of Follow-Up.

    Directory of Open Access Journals (Sweden)

    Arnaud François

    Full Text Available Recent findings indicate that microglia in Alzheimer's disease (AD is senescent whereas peripheral blood mononuclear cells (PBMCs could infiltrate the brain to phagocyte amyloid deposits. However, the molecular mechanisms involved in the amyloid peptide clearance remain unknown. Autophagy is a physiological degradation of proteins and organelles and can be controlled by pro-inflammatory cytokines. The purpose of this study was to evaluate the impact of inflammation on autophagy in PBMCs from AD patients at baseline, 12 and 24 months of follow-up. Furthermore, PBMCs from healthy patients were also included and treated with 20 μM amyloid peptide 1-42 to mimic AD environment. For each patient, PBMCs were stimulated with the mitogenic factor, phytohaemagglutin (PHA, and treated with either 1 μM C16 as an anti-inflammatory drug or its vehicle. Autophagic markers (Beclin-1, p62/sequestosome 1 and microtubule-associated protein-light chain 3: LC3 were quantified by western blot and cytokines (Interleukin (IL-1β, Tumor necrosis Factor (TNF-α and IL-6 by Luminex X-MAP® technology. Beclin-1 and TNF-α levels were inversely correlated in AD PBMCs at 12 months post-inclusion. In addition, Beclin-1 and p62 increased in the low inflammatory environment induced by C16. Only LC3-I levels were inversely correlated with cognitive decline at baseline. For the first time, this study describes longitudinal changes in autophagic markers in PBMCs of AD patients under an inflammatory environment. Inflammation would induce autophagy in the PBMCs of AD patients while an anti-inflammatory environment could inhibit their autophagic response. However, this positive response could be altered in a highly aggressive environment.

  1. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  2. Human vaginal epithelial cells augment autophagy marker genes in response to Candida albicans infection.

    Science.gov (United States)

    Shroff, Ankit; Sequeira, Roicy; Reddy, Kudumula Venkata Rami

    2017-04-01

    Autophagy plays an important role in clearance of intracellular pathogens. However, no information is available on its involvement in vaginal infections such as vulvo-vaginal candidiasis (VVC). VVC is intimately associated with the immune status of the human vaginal epithelial cells (VECs). The objective of our study is to decipher if autophagy process is involved during Candida albicans infection of VECs. In this study, C. albicans infection system was established using human VEC line (VK2/E6E7). Infection-induced change in the expression of autophagy markers like LC3 and LAMP-1 were analyzed by RT-PCR, q-PCR, Western blot, immunofluorescence and transmission electron microscopy (TEM) studies were carried out to ascertain the localization of autophagosomes. Multiplex ELISA was carried out to determine the cytokine profiles. Analysis of LC3 and LAMP-1 expression at mRNA and protein levels at different time points revealed up-regulation of these markers 6 hours post C. albicans infection. LC3 and LAMP-1 puncti were observed in infected VECs after 12 hours. TEM studies showed C. albicans entrapped in autophagosomes. Cytokines-TNF-α and IL-1β were up-regulated in culture supernatants of VECs at 12 hours post-infection. The results suggest that C. albicans invasion led to the activation of autophagy as a host defense mechanism of VECs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    International Nuclear Information System (INIS)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana

    2013-01-01

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies

  4. Multiple Roles of Autophagy in the Sorafenib Resistance of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ting Sun

    2017-11-01

    Full Text Available Hepatocellular carcinoma (HCC is the second leading cause of cancer-related death worldwide, and prognosis remains unsatisfactory since the disease is often diagnosed at the advanced stages. Currently, the multikinase inhibitor sorafenib is the only drug approved for the treatment of advanced HCC. However, primary or acquired resistance to sorafenib develops, generating a roadblock in HCC therapy. Autophagy is an intracellular lysosomal pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. Current understanding of the role of autophagy in the progression of cancer and the response to cancer therapy remains controversial. Sorafenib is able to induce autophagy in HCC, but the effect of autophagy is indistinct. Some studies established that sorafenib-induced autophagy serves as a pro-survival response. However, other studies found that sorafenib-induced autophagy improves the lethality of sorafenib against HCC cells. The mechanisms underlying autophagy and sorafenib resistance remain elusive. The purpose of this review is to summarize the progress of research focused on autophagy and sorafenib resistance and to update current knowledge of how cellular autophagy impacts sorafenib sensitivity in HCC treatment.

  5. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.

    LENUS (Irish Health Repository)

    Lawlor, Ciaran

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.

  6. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  7. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages.

    Science.gov (United States)

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; Loyola, Elva; Escobedo, Dante; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Torres, Martha; Sada, Eduardo

    2014-09-25

    Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.

  8. Non-canonical autophagy: an exception or an underestimated form of autophagy?

    Science.gov (United States)

    Scarlatti, Francesca; Maffei, Roberta; Beau, Isabelle; Ghidoni, Riccardo; Codogno, Patrice

    2008-11-01

    Macroautophagy (hereafter called autophagy) is a dynamic and evolutionarily conserved process used to sequester and degrade cytoplasm and entire organelles in a sequestering vesicle with a double membrane, known as the autophagosome, which ultimately fuses with a lysosome to degrade its autophagic cargo. Recently, we have unraveled two distinct forms of autophagy in cancer cells, which we term canonical and non-canonical autophagy. In contrast to classical or canonical autophagy, non-canonical autophagy is a process that does not require the entire set of autophagy-related (Atg) proteins in particular Beclin 1, to form the autophagosome. Non-canonical autophagy is therefore not blocked by the knockdown of Beclin 1 or of its binding partner hVps34. Moreover overexpression of Bcl-2, which is known to block canonical starvation-induced autophagy by binding to Beclin 1, is unable to reverse the non-canonical autophagy triggered by the polyphenol resveratrol in the breast cancer MCF-7 cell line. In MCF-7 cells, at least, non-canonical autophagy is involved in the caspase-independent cell death induced by resveratrol.

  9. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    International Nuclear Information System (INIS)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-01-01

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  10. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Jing, Qian; Yue, Jiaqi; Liu, Yang [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Cheng, Zhong [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Li, Jingyi, E-mail: li--jingyi@hotmail.com [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Song, Haixing [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Li, Guoyu, E-mail: liguoyulisa@163.com [School of Pharmacy, Shihezi University, Shihezi 832003 (China); Liu, Rui, E-mail: liurui_scu@hotmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Wang, Jinhui [School of Pharmacy, Shihezi University, Shihezi 832003 (China)

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  11. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  12. The roles of autophagy and hypoxia in human inflammatory periapical lesions.

    Science.gov (United States)

    Huang, H Y; Wang, W C; Lin, P Y; Huang, C P; Chen, C Y; Chen, Y K

    2018-02-01

    To determine the expressions of hypoxia-related [hypoxia-inducible transcription factors (HIF)-1α, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and phospho-adenosine monophosphate activated protein kinase (pAMPK)] and autophagy-related [microtubule-associated protein 1 light chain 3 (LC3), beclin-1 (BECN-1), autophagy-related gene (Atg)5-12, and p62] proteins in human inflammatory periapical lesions. Fifteen samples of radicular cysts (RCs) and 21 periapical granulomas (PGs), combined with 17 healthy dental pulp tissues, were examined. Enzyme-linked immunosorbent assay (ELISA) was used to detect interleukin (IL)-1β cytokine; immunohistochemical (IHC) and Western blot (WB) analyses were employed to examine autophagy-related and hypoxia-related proteins. Transmission electron microscopy (TEM) was used to explore the ultrastructural morphology of autophagy in periapical lesions. Nonparametric Kruskal-Wallis tests and Mann-Whitney U-tests were used for statistical analyses. ELISA revealed a significantly higher (P periapical lesions than in normal pulp tissue. Immunoscores of IHC expressions of pAMPK, HIF-1α, BNIP3, BECN-1 and Atg5-12 proteins in periapical lesions were significantly higher (P periapical lesions were noted as compared to normal pulp tissue. Upon TEM, ultrastructural double-membrane autophagosomes and autolysosomes were observed in PGs and RCs. Autophagy associated with hypoxia may play a potential causative role in the development and maintenance of inflamed periapical lesions. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Shian-Ren Lin

    2017-07-01

    Full Text Available Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds—curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin—are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.

  14. Anti-inflammatory homoeopathic drug dilutions restrain lipopolysaccharide-induced release of pro-inflammatory cytokines: In vitro and in vivo evidence

    Directory of Open Access Journals (Sweden)

    Umesh B Mahajan

    2017-01-01

    Full Text Available Context: The lipopolysaccharide (LPS-induced cytokine release and oxidative stress are validated experimental parameters used to test anti-inflammatory activity. We investigated the effects of homoeopathic mother tinctures, 6 CH, 30 CH and 200 CH dilutions of Arnica montana, Thuja occidentalis and Bryonia alba against LPS (1 μg/ml-induced cytokine release from RAW-264.7 cells and human whole-blood culture. Materials and Methods: For in vivo evaluations, mice were orally treated with 0.1 ml drug dilutions twice a day for 5 days followed by an intraperitoneal injection of 0.5 mg/kg LPS. After 24 h, the mice were sacrificed and serum levels of pro-inflammatory cytokines and nitric oxide were determined. The extent of oxidative stress was determined in the liver homogenates as contents of reduced glutathione, malondialdehyde, superoxide dismutase and catalase. Results: The tested drug dilutions significantly reduced in vitro LPS-induced release of tumour necrosis factor-α, interleukin-1 (IL-1 and IL-6 from the RAW-264.7 cells and human whole blood culture. Similar suppression of cytokines was evident in mice serum samples. These drugs also protected mice from the LPS-induced oxidative stress in liver tissue. Conclusions: Our findings substantiate the protective effects of Arnica, Thuja and Bryonia homoeopathic dilutions against LPS-induced cytokine elevations and oxidative stress. This study authenticates the claims of anti-inflammatory efficacy of these homoeopathic drugs.

  15. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

    Directory of Open Access Journals (Sweden)

    Xianzhi Qu

    Full Text Available The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.

  16. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  17. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  18. Diesel Exhaust Particles Contribute to Endothelia Apoptosis via Autophagy Pathway.

    Science.gov (United States)

    Wang, Jhih-Syuan; Tseng, Chia-Yi; Chao, Ming-Wei

    2017-03-01

    Epidemiological studies suggest that an increase of PM2.5 diesel exhaust particles (DEP) in ambient air corresponds to increased myocardial infarctions and atherosclerosis. When exposed to DEP, endothelial cells exhibit increases in oxidative stress and apoptosis, but the role of autophagy in this DEP-induced cell death remains unclear. Here, we suggest that acute DEP exposure produces intracellular reactive oxygen species (ROS) leading to induction of DEP internalization, endothelial dysfunction, and pro-inflammation in an in vitro human umbilical vein endothelial cells (HUVEC) model. This study found that increases in intracellular oxidative stress and cellular internalization of DEP occurred within 2 h of exposure to DEP. After 2 h of DEP exposure, Mdm2 expression was increased, which triggered cellular autophagy after 4 h of DEP exposure and suppressed cellular senescence. Unfortunately, phagocytized DEP could not be eliminated by cellular autophagy, which led to a continuous buildup of ROS, an increased release of cytokines, and an increased expression of anchoring molecules. After 12 h of DEP exposure, HUVEC reduced Mdm2 expression leading to increased p53 expression, which triggered apoptosis and ultimately resulted in endothelial dysfunction. On the other hand, when cells lacked the ability to induce autophagy, DEP was unable to induce cell senescence and most of the cells survived with only a small percentage of the cells undergoing necrosis. The results presented in this study clearly demonstrate the role cellular autophagy plays in DEP-induced atherosclerosis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Autophagy as a Molecular Target of Flavonoids Underlying their Protective Effects in Human Disease.

    Science.gov (United States)

    Prieto-Domínguez, Nestor; Garcia-Mediavilla, Maria V; Sanchez-Campos, Sonia; Mauriz, Jose L; Gonzalez-Gallego, Javier

    2018-01-01

    Autophagy is a cellular pathway with the ability to maintain cell homeostasis through the elimination of damaged or useless cellular components, and its deregulation may initiate or aggravate different human diseases. Flavonoids, a group of plant metabolites, are able to modulate different molecular and cellular processes including autophagy. To review the effects of flavonoids on autophagy pathway in both invasive and noninvasive human diseases, focusing on the global outcomes in their progression. Moreover, the efficacy of the combination of flavonoids with drugs or other natural nontoxic compounds was also reviewed. A literature search was performed to identify and analyze peer-reviewed publications containing in vitro and in vivo studies focused on autophagy deregulation in different proliferative and non-proliferative pathologies and the potential protective effects of flavonoids. Analyzed publications indicated that imbalance between cell death and survival induced by changes in autophagy play an important role in the pathophysiology of a number of human diseases. The use of different flavonoids as autophagy modulators, alone or in combination with other molecules, might be a worthy strategy in the treatment of cancer, neurodegenerative disorders, cardiovascular diseases, hepatic diseases, leishmaniasis, influenza, gastric ulcers produced by Helicobacter pylori infection, diabetes, asthma, age-related macular degeneration or osteoporosis. Flavonoids could potentially constitute important adjuvant agents of conventional therapies in the treatment of autophagy deregulation-related diseases. Moreover, combined therapy may help to diminish the doses of those conventional treatments, leading to reduced drug-derivative side effects and to improved patients' survival. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cytokines as cellular communicators

    Directory of Open Access Journals (Sweden)

    R. Debets

    1996-01-01

    Full Text Available Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.

  1. Nutrient-deprivation autophagy factor-1 (NAF-1: biochemical properties of a novel cellular target for anti-diabetic drugs.

    Directory of Open Access Journals (Sweden)

    Sagi Tamir

    Full Text Available Nutrient-deprivation autophagy factor-1 (NAF-1 (synonyms: Cisd2, Eris, Miner1, and Noxp70 is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2 and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria. Importantly, the drug pioglitazone abrogates NAF-1's ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.

  2. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer.

    Science.gov (United States)

    Patel, Sukeshi; Hurez, Vincent; Nawrocki, Steffan T; Goros, Martin; Michalek, Joel; Sarantopoulos, John; Curiel, Tyler; Mahalingam, Devalingam

    2016-09-13

    Hydroxychloroquine (HCQ) enhances the anti-cancer activity of the histone deacetylase inhibitor, vorinostat (VOR), in pre-clinical models and early phase clinical studies of metastatic colorectal cancer (mCRC). Mechanisms could include autophagy inhibition, accumulation of ubiquitinated proteins, and subsequent tumor cell apoptosis. There is growing evidence that autophagy inhibition could lead to improved anti-cancer immunity. To date, effects of autophagy on immunity have not been reported in cancer patients. To address this, we expanded an ongoing clinical study to include patients with advanced, refractory mCRC to evaluate further the clinical efficacy and immune effects of VOR plus HCQ. Refractory mCRC patients received VOR 400 milligrams orally with HCQ 600 milligrams orally daily, in a 3-week cycle. The primary endpoint was median progression-free survival (mPFS). Secondary endpoints include median overall survival (mOS), adverse events (AE), pharmacodynamic of inhibition of autophagy in primary tumors, immune cell analyses, and cytokine levels. Twenty patients were enrolled (19 evaluable for survival) with a mPFS of 2.8 months and mOS of 6.7 months. Treatment-related grade 3-4 AEs occurred in 8 patients (40%), with fatigue, nausea/vomiting, and anemia being the most common. Treatment significantly reduced CD4+CD25hiFoxp3+ regulatory and PD-1+ (exhausted) CD4+ and CD8+ T cells and decreased CD45RO-CD62L+ (naive) T cells, consistent with improved anti-tumor immunity. On-study tumor biopsies showed increases in lysosomal protease cathepsin D and p62 accumulation, consistent with autophagy inhibition. Taken together, VOR plus HCQ is active, safe and well tolerated in refractory CRC patients, resulting in potentially improved anti-tumor immunity and inhibition of autophagy.

  3. The Role of Autophagy in the Pathogenesis of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Kosuke Yamahara

    2013-01-01

    Full Text Available Diabetic nephropathy is a leading cause of end-stage renal disease worldwide. The multipronged drug approach targeting blood pressure and serum levels of glucose, insulin, and lipids fails to fully prevent the onset and progression of diabetic nephropathy. Therefore, a new therapeutic target to combat diabetic nephropathy is required. Autophagy is a catabolic process that degrades damaged proteins and organelles in mammalian cells and plays a critical role in maintaining cellular homeostasis. The accumulation of proteins and organelles damaged by hyperglycemia and other diabetes-related metabolic changes is highly associated with the development of diabetic nephropathy. Recent studies have suggested that autophagy activity is altered in both podocytes and proximal tubular cells under diabetic conditions. Autophagy activity is regulated by both nutrient state and intracellular stresses. Under diabetic conditions, an altered nutritional state due to nutrient excess may interfere with the autophagic response stimulated by intracellular stresses, leading to exacerbation of organelle dysfunction and diabetic nephropathy. In this review, we discuss new findings showing the relationships between autophagy and diabetic nephropathy and suggest the therapeutic potential of autophagy in diabetic nephropathy.

  4. Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells.

    Science.gov (United States)

    Delk, Nikki A; Farach-Carson, Mary C

    2012-04-01

    Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.

  5. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    Science.gov (United States)

    Chen, Weijia; Lu, Zhijun

    2017-02-01

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  6. Spermidine: a novel autophagy inducer and longevity elixir.

    Science.gov (United States)

    Madeo, Frank; Eisenberg, Tobias; Büttner, Sabrina; Ruckenstuhl, Christoph; Kroemer, Guido

    2010-01-01

    Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.

  7. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  8. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages.

    Science.gov (United States)

    Aflaki, Elma; Moaven, Nima; Borger, Daniel K; Lopez, Grisel; Westbroek, Wendy; Chae, Jae Jin; Marugan, Juan; Patnaik, Samarjit; Maniwang, Emerson; Gonzalez, Ashley N; Sidransky, Ellen

    2016-02-01

    Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer-amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL-1β and IL-6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase-1, led to the maturation of IL-1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small-molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL-1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65-NF-kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL-1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...... as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR...

  10. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy

    Directory of Open Access Journals (Sweden)

    Betty Yuen Kwan Law

    2016-03-01

    Full Text Available Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM. For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri, Hu Zhang (Rhizoma polygoni cuspidati, Donglingcao (Rabdosia rubesens, Hou po (Cortex magnoliae officinalis and Chuan xiong (Rhizoma chuanxiong modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.

  11. Cigarette Smoke Exposure Inhibits Bacterial Killing via TFEB-Mediated Autophagy Impairment and Resulting Phagocytosis Defect

    Directory of Open Access Journals (Sweden)

    Garrett Pehote

    2017-01-01

    Full Text Available Introduction. Cigarette smoke (CS exposure is the leading risk factor for COPD-emphysema pathogenesis. A common characteristic of COPD is impaired phagocytosis that causes frequent exacerbations in patients leading to increased morbidity. However, the underlying mechanism is unclear. Hence, we investigated if CS exposure causes autophagy impairment as a mechanism for diminished bacterial clearance via phagocytosis by utilizing murine macrophages (RAW264.7 cells and Pseudomonas aeruginosa (PA01-GFP as an experimental model. Methods. Briefly, RAW cells were treated with cigarette smoke extract (CSE, chloroquine (autophagy inhibitor, TFEB-shRNA, CFTR(inh-172, and/or fisetin prior to bacterial infection for functional analysis. Results. Bacterial clearance of PA01-GFP was significantly impaired while its survival was promoted by CSE (p<0.01, autophagy inhibition (p<0.05; p<0.01, TFEB knockdown (p<0.01; p<0.001, and inhibition of CFTR function (p<0.001; p<0.01 in comparison to the control group(s that was significantly recovered by autophagy-inducing antioxidant drug, fisetin, treatment (p<0.05; p<0.01; and p<0.001. Moreover, investigations into other pharmacological properties of fisetin show that it has significant mucolytic and bactericidal activities (p<0.01; p<0.001, which warrants further investigation. Conclusions. Our data suggests that CS-mediated autophagy impairment as a critical mechanism involved in the resulting phagocytic defect, as well as the therapeutic potential of autophagy-inducing drugs in restoring is CS-impaired phagocytosis.

  12. Autophagy in Measles Virus Infection

    Directory of Open Access Journals (Sweden)

    Aurore Rozières

    2017-11-01

    Full Text Available Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1 or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2, which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  13. Autophagy in C. elegans development.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2018-04-27

    Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    Science.gov (United States)

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3

  15. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  16. Autophagy in photodynamic therapy

    African Journals Online (AJOL)

    Autophagy is a conserved intracellular degradation process in which cellular organelles, proteins and invading microbes are degraded by lysosomes. There are three types of autophagy: macroautophagy, mitoautophagy and chaperone- mediated autophagy. This review is focused on macroautophagy which is referred to ...

  17. Immunologic manifestations of autophagy

    DEFF Research Database (Denmark)

    Deretic, Vojo; Kimura, Tomonori; Timmins, Graham

    2015-01-01

    The broad immunologic roles of autophagy span innate and adaptive immunity and are often manifested in inflammatory diseases. The immune effects of autophagy partially overlap with its roles in metabolism and cytoplasmic quality control but typically expand further afield to encompass unique...... immunologic adaptations. One of the best-appreciated manifestations of autophagy is protection against microbial invasion, but this is by no means limited to direct elimination of intracellular pathogens and includes a stratified array of nearly all principal immunologic processes. This Review summarizes...... the broad immunologic roles of autophagy. Furthermore, it uses the autophagic control of Mycobacterium tuberculosis as a paradigm to illustrate the breadth and complexity of the immune effects of autophagy....

  18. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  19. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    Science.gov (United States)

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Leonardo Iula

    2018-02-01

    Full Text Available Interleukin-1β (IL-1β, a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1β in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1β by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1β secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1β secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1β secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1β secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1β was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1β-LC3B in a vesicular compartment peaked before IL-1β increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1β and LC3B and then promoted neutrophil IL-1β secretion. In addition, specific ELISAs indicated that although both IL-1β and pro-IL-1β are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1β secretion. Furthermore, the serine proteases inhibitor

  1. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway.

    Science.gov (United States)

    Liu, Kuang-Kai; Qiu, Wei-Ru; Naveen Raj, Emmanuel; Liu, Huei-Fang; Huang, Hou-Syun; Lin, Yu-Wei; Chang, Chien-Jen; Chen, Ting-Hua; Chen, Chinpiao; Chang, Huan-Cheng; Hwang, Jenn-Kang; Chao, Jui-I

    2017-01-02

    Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.

  2. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  3. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  4. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  5. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  6. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Rahul Navale

    Full Text Available Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8 employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64 and aspartic (pepstatin protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine, indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in

  7. TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-11-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life. Current studies on tumor invasion focused on roles of cytokines in tumor microenvironment and numerous evidence suggests that TGF-β2 is abundant in glioma microenvironment and vital for glioma invasion. Autopagy is also emerging as a critical factor in aggressive behaviors of cancer cells; however, the relationship between TGF-β2 and autophagy in glioma has been poorly understood. Methods U251, T98 and U87 GBM cell lines as well as GBM cells from a primary human specimen were used in vitro and in vivo to evaluate the effect of TGF-β2 on autophagy. Western blot, qPCR, immunofluorescence and transmission-electron microscope were used to detect target molecular expression. Lentivirus and siRNA vehicle were introduced to establish cell lines, as well as mitotracker and seahorse experiment to study the metabolic process in glioma. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. Results Here we demonstrated that TGF-β2 activated autophagy in human glioma cell lines and knockdown of Smad2 or inhibition of c-Jun NH2-terminal kinase, attenuated TGF-β2-induced autophagy. TGF-β2-induced autophagy is important for glioma invasion due to the alteration of epithelial-mesenchymal transition and metabolism conversion, particularly influencing mitochondria trafficking and membrane potential (△Ψm. Autopaghy also initiated a feedback on TGF-β2 in glioma by keeping its autocrine loop and affecting Smad2/3/7 expression. A xenograft model provided additional confirmation on combination of TGF-β inhibitor (Galunisertib and autophagy inhibitor (CQ to better “turn off” tumor growth. Conclusion Our findings elucidated a potential mechanism of autophagy-associated glioma invasion that TGF-β2 could initiate autophagy via Smad and non

  8. Suberoylanilide hydroxamic acid sensitizes neuroblastoma to paclitaxel by inhibiting thioredoxin-related protein 14-mediated autophagy.

    Science.gov (United States)

    Zhen, Zijun; Yang, Kaibin; Ye, Litong; You, Zhiyao; Chen, Rirong; Liu, Ying; He, Youjian

    2017-07-01

    Paclitaxel is not as effective for neuroblastoma as most of the front-line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel-associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy-associated proteins were assessed by western blot. Autophagy was induced and the autophagy-associated proteins LC3-I, LC3-II, Beclin 1, and thioredoxin-related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1-mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel-induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel-induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines.

    Science.gov (United States)

    Massimini, M; Palmieri, C; De Maria, R; Romanucci, M; Malatesta, D; De Martinis, M; Maniscalco, L; Ciccarelli, A; Ginaldi, L; Buracco, P; Bongiovanni, L; Della Salda, L

    2017-05-01

    Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.

  11. Antioxidant Supplement Inhibits Skeletal Muscle Constitutive Autophagy rather than Fasting-Induced Autophagy in Mice

    Directory of Open Access Journals (Sweden)

    Zhengtang Qi

    2014-01-01

    Full Text Available In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD and TP53-induced glycolysis and apoptosis regulator (TIGAR, both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.

  12. Elaborating the Role of Natural Products-Induced Autophagy in Cancer Treatment: Achievements and Artifacts in the State of the Art

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2015-01-01

    Full Text Available Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.

  13. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  14. Tumor suppression and promotion by autophagy.

    Science.gov (United States)

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  15. Autophagy and the nutritional signaling pathway

    Directory of Open Access Journals (Sweden)

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  16. Autophagy Facilitates Metadherin-Induced Chemotherapy Resistance Through the AMPK/ATG5 Pathway in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Guoqing Pei

    2018-04-01

    Full Text Available Background/Aims: Metadherin (MTDH is overexpressed in some malignancies and enhances drug resistance; however, its role in gastric cancer (GC and the underlying mechanisms remain largely unexplored. Here, we explore the mechanism by which MTDH induces drug resistance in GC. Methods: We analysed the level of MTDH in GC and adjacent normal gastric mucosal tissues by real-time quantitative PCR (q-PCR. We also analysed the level of autophagy by western blot analysis, confocal microscopy, and transmission electron microscopy after MTDH knockdown and overexpression, and examined fluorouracil (5-FU resistance by Cell Counting Kit-8 at the same time. Finally, GC patient-derived xenograft tumours were used to demonstrate 5-FU resistance. An AMPK pathway inhibitor was applied to determine the molecular mechanisms of autophagy. Results: MTDH expression was significantly increased in the GC specimens compared with that in the adjacent normal gastric mucosal tissues. Further study showed a positive correlation between the expression level of MTDH and 5-FU resistance. MTDH overexpression in MKN45 cells increased the levels of P-glycoprotein (P-gp and promoted 5-FU resistance, while inhibition of MTDH showed the opposite result. The simultaneous inhibition of autophagy and overexpression of MTDH decreased the levels of P-gp and inhibited 5-FU resistance. Moreover, MTDH induced AMPK phosphorylation, regulated ATG5 expression, and finally influenced autophagy, suggesting that MTDH may activate autophagy via the AMPK/ATG5 signalling pathway. Our findings reveal a unique mechanism by which MTDH promotes GC chemoresistance and show that MTDH is a potential target for improved chemotherapeutic sensitivity and GC patient survival. Conclusions: MTDH-stimulated cancer resistance to 5-FU may be mediated through autophagy activated by the AMPK/ATG5 pathway in GC.

  17. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.

    Directory of Open Access Journals (Sweden)

    Vera Levina

    2008-08-01

    Full Text Available Cancer stem cells (CSCs are thought to be responsible for tumor regeneration after chemotherapy, although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation.Treatment of lung tumor cells with doxorubicin, cisplatin, or etoposide resulted in the selection of drug surviving cells (DSCs. These cells expressed CD133, CD117, SSEA-3, TRA1-81, Oct-4, and nuclear beta-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18. DSCs were able to grow as tumor spheres, maintain self-renewal capacity, and differentiate. Differentiated progenitors lost expression of CD133, gained CK 8/18 and acquired drug sensitivity. In the presence of drugs, differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice, which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF, bFGF, IL-6, IL-8, HGF, PDGF-BB, G-CSF, and SCGF-beta. CSCs also showed elevated levels of expression of human VEGFR2, FGFR2, CXCR1, 2 and 4 receptors. Moreover, human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors.These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent

  18. Synergistic Cytotoxicity from Drugs and Cytokines In Vitro as an Approach to Classify Drugs According to Their Potential to Cause Idiosyncratic Hepatotoxicity: A Proof-of-Concept Study.

    Science.gov (United States)

    Maiuri, Ashley R; Wassink, Bronlyn; Turkus, Jonathan D; Breier, Anna B; Lansdell, Theresa; Kaur, Gurpreet; Hession, Sarah L; Ganey, Patricia E; Roth, Robert A

    2017-09-01

    Idiosyncratic drug-induced liver injury (IDILI) typically occurs in a small fraction of patients and has resulted in removal of otherwise efficacious drugs from the market. Current preclinical testing methods are ineffective in predicting which drug candidates have IDILI liability. Recent results suggest that immune mediators such as tumor necrosis factor- α (TNF) and interferon- γ (IFN) interact with drugs that cause IDILI to kill hepatocytes. This proof-of-concept study was designed to test the hypothesis that drugs can be classified according to their ability to cause IDILI in humans using classification modeling with covariates derived from concentration-response relationships that describe cytotoxic interaction with cytokines. Human hepatoma (HepG2) cells were treated with drugs associated with IDILI or with drugs lacking IDILI liability and cotreated with TNF and/or IFN. Detailed concentration-response relationships were determined for calculation of parameters such as the maximal cytotoxic effect, slope, and EC 50 for use as covariates for classification modeling using logistic regression. These parameters were incorporated into multiple classification models to identify combinations of covariates that most accurately classified the drugs according to their association with human IDILI. Of 14 drugs associated with IDILI, almost all synergized with TNF to kill HepG2 cells and were successfully classified by statistical modeling. IFN enhanced the toxicity mediated by some IDILI-associated drugs in the presence of TNF. In contrast, of 10 drugs with little or no IDILI liability, none synergized with inflammatory cytokines to kill HepG2 cells and were classified accordingly. The resulting optimal model classified the drugs with extraordinary selectivity and specificity. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Interleukin-6 Reduces β-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response.

    Science.gov (United States)

    Marasco, Michelle R; Conteh, Abass M; Reissaus, Christopher A; Cupit V, John E; Appleman, Evan M; Mirmira, Raghavendra G; Linnemann, Amelia K

    2018-05-21

    Production of reactive oxygen species (ROS) is a key instigator of β-cell dysfunction in diabetes. The pleiotropic cytokine IL-6 has previously been linked to β-cell autophagy but has not been studied in the context of β-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent β-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response to reduce β-cell and human islet ROS. β cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death by the selective β-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient drop in cellular cAMP, likely contributing to the stimulation of mitophagy for ROS mitigation. Our findings suggest that coupling autophagy to antioxidant response in the β cell leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for β-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention. © 2018 by the American Diabetes Association.

  20. Cell Death-Autophagy Loop and Glutamate-Glutamine Cycle in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Shu Yuan

    2017-07-01

    Full Text Available Although we know that amyotrophic lateral sclerosis (ALS is correlated with the glutamate-mediated corticomotor neuronal hyperexcitability, detailed ALS pathology remains largely unexplained. While a number of drugs have been developed, no cure exists so far. Here, we propose a hypothesis of neuronal cell death—incomplete autophagy positive-feedback loop—and summarize the role of the neuron-astrocyte glutamate-glutamine cycle in ALS. The disruption of these two cycles might ideally retard ALS progression. Cerebrovascular injuries (such as multiple embolization sessions and strokes induce neuronal cell death and the subsequent autophagy. ALS impairs autophagosome-lysosome fusion and leads to magnified cell death. Trehalose rescues this impaired fusion step, significantly delaying the onset of the disease, although it does not affect the duration of the disease. Therefore, trehalose might be a prophylactic drug for ALS. Given that a major part of neuronal glutamate is converted from glutamine through neuronal glutaminase (GA, GA inhibitors may decrease the neuronal glutamate accumulation, and, therefore, might be therapeutic ALS drugs. Of these, Ebselen is the most promising one with strong antioxidant properties.

  1. Dengue Virus and Autophagy

    Directory of Open Access Journals (Sweden)

    Nicholas S. Heaton

    2011-08-01

    Full Text Available Several independent groups have published that autophagy is required for optimal RNA replication of dengue virus (DENV. Initially, it was postulated that autophagosomes might play a structural role in replication complex formation. However, cryo-EM tomography of DENV replication complexes showed that DENV replicates on endoplasmic reticulum (ER cisternae invaginations and not on classical autophagosomes. Recently, it was reported that autophagy plays an indirect role in DENV replication by modulating cellular lipid metabolism. DENV-induced autophagosomes deplete cellular triglycerides that are stored in lipid droplets, leading to increased β-oxidation and energy production. This is the first example of a virus triggering autophagy to modulate cellular physiology. In this review, we summarize these data and discuss new questions and implications for autophagy during DENV replication.

  2. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    International Nuclear Information System (INIS)

    Maruyama, Yoko; Sou, Yu-Shin; Kageyama, Shun; Takahashi, Takao; Ueno, Takashi; Tanaka, Keiji; Komatsu, Masaaki; Ichimura, Yoshinobu

    2014-01-01

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs

  3. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoko [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Sou, Yu-Shin; Kageyama, Shun [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Takahashi, Takao [Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Ueno, Takashi [Division of Proteomics and Biomolecular Science, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Tanaka, Keiji [Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510 (Japan); Ichimura, Yoshinobu, E-mail: ichimura-ys@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan)

    2014-03-28

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.

  4. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  5. Autophagy in Negative-Strand RNA Virus Infection

    Directory of Open Access Journals (Sweden)

    Yupeng Wang

    2018-02-01

    Full Text Available Autophagy is a homoeostatic process by which cytoplasmic material is targeted for degradation by the cell. Viruses have learned to manipulate the autophagic pathway to ensure their own replication and survival. Although much progress has been achieved in dissecting the interplay between viruses and cellular autophagic machinery, it is not well understood how the cellular autophagic pathway is utilized by viruses and manipulated to their own advantage. In this review, we briefly introduce autophagy, viral xenophagy and the interaction among autophagy, virus and immune response, then focus on the interplay between NS-RNA viruses and autophagy during virus infection. We have selected some exemplary NS-RNA viruses and will describe how these NS-RNA viruses regulate autophagy and the role of autophagy in NS-RNA viral replication and in immune responses to virus infection. We also review recent advances in understanding how NS-RNA viral proteins perturb autophagy and how autophagy-related proteins contribute to NS-RNA virus replication, pathogenesis and antiviral immunity.

  6. A role for autophagy in long-term spatial memory formation in male rodents.

    Science.gov (United States)

    Hylin, Michael J; Zhao, Jing; Tangavelou, Karthikeyan; Rozas, Natalia S; Hood, Kimberly N; MacGowan, Jacalyn S; Moore, Anthony N; Dash, Pramod K

    2018-03-01

    A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation. © 2017 Wiley Periodicals, Inc.

  7. Chemical Inhibition of Autophagy

    DEFF Research Database (Denmark)

    Baek, Eric; Lin Kim, Che; Gyeom Kim, Mi

    2016-01-01

    Chinese hamster ovary (CHO) cells activate and undergo apoptosis and autophagy for various environmental stresses. Unlike apoptosis, studies on increasing the production of therapeutic proteins in CHO cells by targeting the autophagy pathway are limited. In order to identify the effects of chemical...... autophagy inhibitors on the specific productivity (qp), nine chemical inhibitors that had been reported to target three different phases of autophagy (metformin, dorsomorphin, resveratrol, and SP600125 against initiation and nucleation; 3-MA, wortmannin, and LY294002 against elongation, and chloroquine...... and bafilomycin A1 against autophagosome fusion) were used to treat three recombinant CHO (rCHO) cell lines: the Fc-fusion protein-producing DG44 (DG44-Fc) and DUKX-B11 (DUKX-Fc) and antibody-producing DG44 (DG44-Ab) cell lines. Among the nine chemical inhibitors tested, 3-MA, dorsomorphin, and SP600125...

  8. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  9. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  10. Sorafenib-induced defective autophagy promotes cell death by necroptosis.

    Science.gov (United States)

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-11-10

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

  11. 17-AAG enhances the cytotoxicity of flavopiridol in mantle cell lymphoma via autophagy suppression.

    Science.gov (United States)

    Xiao, Y; Guan, J

    2015-01-01

    Flavopiridol, a cyclin-dependent kinase inhibitor (CDKI), shows promising anti-tumor activity in hematologic malignancies. However, Flavopiridol-induced protective autophagy may lead to drug resistance. Here we found that Hsp90 inhibitor 17-AAG can sensitize mantle cell lymphoma (MCL) cells to flavopiridol by suppressing flavopiridol-triggered protective autophagy. The suppressing effect of 17-AAG on autophgy was mediated by Beclin1 degradation and ERK inactivation. Furthermore, 17-AAG enhanced flavopiridol-induced apoptosis and growth suppression in MCL cells. Our study may provide some insights into CDKI -targeted chemotherapies.

  12. Regulation of cytokines by small RNAs during skin inflammation

    Directory of Open Access Journals (Sweden)

    Mikkelsen Jacob G

    2010-07-01

    Full Text Available Abstract Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.

  13. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Science.gov (United States)

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Regulation of autophagy by cytoplasmic p53.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  15. Autophagy induction by Bcr-Abl-expressing cells facilitates their recovery from a targeted or nontargeted treatment.

    LENUS (Irish Health Repository)

    Crowley, Lisa C

    2012-01-31

    Although Imatinib has transformed the treatment of chronic myeloid leukemia (CML), it is not curative due to the persistence of resistant cells that can regenerate the disease. We have examined how Bcr-Abl-expressing cells respond to two mechanistically different therapeutic agents, etoposide and Imatinib. We also examined Bcr-Abl expression at low and high levels as elevated expression has been associated with treatment failure. Cells expressing low levels of Bcr-Abl undergo apoptosis in response to the DNA-targeting agent (etoposide), whereas high-Bcr-Abl-expressing cells primarily induce autophagy. Autophagic populations engage a delayed nonapoptotic death; however, sufficient cells evade this and repopulate following the withdrawal of the drug. Non-Bcr-Abl-expressing 32D or Ba\\/F3 cells induce both apoptosis and autophagy in response to etoposide and can recover. Imatinib treatment induces both apoptosis and autophagy in all Bcr-Abl-expressing cells and populations rapidly recover. Inhibition of autophagy with ATG7 and Beclin1 siRNA significantly reduced the recovery of Imatinib-treated K562 cells, indicating the importance of autophagy for the recovery of treated cells. Combination regimes incorporating agents that disrupt Imatinib-induced autophagy would remain primarily targeted and may improve response to the treatment in CML.

  16. Feedback regulation between autophagy and PKA.

    Science.gov (United States)

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA.

  17. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  18. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2018-04-01

    Full Text Available Kidney ischemia and hypoxia can cause renal cell apoptosis and activation of inflammatory cells, which lead to the release of inflammatory factors and ultimately result in the damage of kidney tissue and the whole body. Renal tubular cell and macrophage autophagy can reduce the production of reactive oxygen species (ROS, thereby reducing the activation of inflammatory cytoplasm and its key effector protein, caspase-1, which reduces the expression of IL-1β and IL-18 and other inflammatory factors. Ulinastatin (UTI, as a glycoprotein drug, inhibits the activity of multiple proteases and reduces myocardial damage caused by ischemia-reperfusion by upregulating autophagy. However, it can be raised by macrophage autophagy, reduce the production of ROS, and ultimately reduce the expression of inflammatory mediators, thereby reducing renal cell injury, promote renal function recovery is not clear. In this study, a series of cell experiments have shown that ulinastatin is reduced by regulating the autophagy of renal tubular epithelial cells and macrophages to reduce the production of reactive oxygen species and inflammatory factors (TNF-α, IL-1β and IL-1, and then, increase the activity of the cells under the sugar oxygen deprivation model. The simultaneous use of cellular autophagy agonists Rapamycin (RAPA and ulinastatin has a synergistic effect on the production of reactive oxygen species and the expression of inflammatory factors.

  19. Proteomics Insights into Autophagy.

    Science.gov (United States)

    Cudjoe, Emmanuel K; Saleh, Tareq; Hawkridge, Adam M; Gewirtz, David A

    2017-10-01

    Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance. The induction and consequent completion of the process of autophagy results in wide ranging changes to the cellular proteome as well as the secretome. MS-based proteomics affords the ability to measure, in an unbiased manner, the ubiquitous changes that occur when autophagy is initiated and progresses in the cell. The continuous improvements and advances in mass spectrometers, especially relating to ionization sources and detectors, coupled with advances in proteomics experimental design, has made it possible to study autophagy, among other process, in great detail. Innovative labeling strategies and protein separation techniques as well as complementary methods including immuno-capture/blotting/staining have been used in proteomics studies to provide more specific protein identification. In this review, we will discuss recent advances in proteomics studies focused on autophagy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Autophagy, lipophagy and lysosomal lipid storage disorders.

    Science.gov (United States)

    Ward, Carl; Martinez-Lopez, Nuria; Otten, Elsje G; Carroll, Bernadette; Maetzel, Dorothea; Singh, Rajat; Sarkar, Sovan; Korolchuk, Viktor I

    2016-04-01

    Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Intersection of autophagy with pathways of antigen presentation.

    Science.gov (United States)

    Patterson, Natalie L; Mintern, Justine D

    2012-12-01

    Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.

  2. Autophagy-dependent secretion: contribution to tumor progression

    Directory of Open Access Journals (Sweden)

    Tom Keulers

    2016-11-01

    Full Text Available Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e. the effect on inflammation and insulin/ hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumour microenvironment and tumour progression. The autophagy mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy mediated release of immune modulating proteins change the immunosuppresive tumor microenvironment and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking or alterations in homeostasis and/or autonomous cell signaling.

  3. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  4. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling.

    Directory of Open Access Journals (Sweden)

    Aruna D Balgi

    Full Text Available BACKGROUND: Mammalian target of rapamycin complex 1 (mTORC1 is a protein kinase that relays nutrient availability signals to control numerous cellular functions including autophagy, a process of cellular self-eating activated by nutrient depletion. Addressing the therapeutic potential of modulating mTORC1 signaling and autophagy in human disease requires active chemicals with pharmacologically desirable properties. METHODOLOGY/PRINCIPAL FINDINGS: Using an automated cell-based assay, we screened a collection of >3,500 chemicals and identified three approved drugs (perhexiline, niclosamide, amiodarone and one pharmacological reagent (rottlerin capable of rapidly increasing autophagosome content. Biochemical assays showed that the four compounds stimulate autophagy and inhibit mTORC1 signaling in cells maintained in nutrient-rich conditions. The compounds did not inhibit mTORC2, which also contains mTOR as a catalytic subunit, suggesting that they do not inhibit mTOR catalytic activity but rather inhibit signaling to mTORC1. mTORC1 inhibition and autophagosome accumulation induced by perhexiline, niclosamide or rottlerin were rapidly reversed upon drug withdrawal whereas amiodarone inhibited mTORC1 essentially irreversibly. TSC2, a negative regulator of mTORC1, was required for inhibition of mTORC1 signaling by rottlerin but not for mTORC1 inhibition by perhexiline, niclosamide and amiodarone. Transient exposure of immortalized mouse embryo fibroblasts to these drugs was not toxic in nutrient-rich conditions but led to rapid cell death by apoptosis in starvation conditions, by a mechanism determined in large part by the tuberous sclerosis complex protein TSC2, an upstream regulator of mTORC1. By contrast, transient exposure to the mTORC1 inhibitor rapamycin caused essentially irreversible mTORC1 inhibition, sustained inhibition of cell growth and no selective cell killing in starvation. CONCLUSION/SIGNIFICANCE: The observation that drugs already

  5. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma.

    Science.gov (United States)

    Follo, Carlo; Cheng, Yao; Richards, William G; Bueno, Raphael; Broaddus, Virginia Courtney

    2018-03-01

    The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer. © 2017 Wiley Periodicals, Inc.

  6. Gemfibrozil, a Lipid-lowering Drug, Induces Suppressor of Cytokine Signaling 3 in Glial Cells

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-01-01

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders. PMID:22685291

  7. Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro

    Science.gov (United States)

    Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Cheol; Kim, Hyeon Hoe

    2014-01-01

    Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer. PMID:24815071

  8. Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots.

    Science.gov (United States)

    Fan, Jiajun; Sun, Yun; Wang, Shaofei; Li, Yubin; Zeng, Xian; Cao, Zhonglian; Yang, Ping; Song, Ping; Wang, Ziyu; Xian, Zongshu; Gao, Hongjian; Chen, Qicheng; Cui, Daxiang; Ju, Dianwen

    2016-02-01

    Cadmium-based quantum dots (QDs) have shown their values in disease diagnosis, cellular and molecular tracking, small-animal imaging, and therapeutic drug delivery. However, the potential safety problems of QDs, mainly due to their nanotoxicities by unclear mechanisms, have greatly limited its applications. To reverse this situation, we investigated the underlying biological mechanisms of the toxicity of Quantum Dots CdTe/CdS 655 (QDs 655) in this work. QDs 655 was found to elicit nanotoxicity in vitro and in vivo. During the process, autophagy was activated, which was characterized by three main stages of autophagic flux including formation of autophagosomes, lysosomes fused with autophagosomes, and degradation of autophagosomes by lysosomes. Furthermore, the autophagic cell death was demonstrated in vitro under QDs 655 treatment while inhibition of autophagy by pharmacological inhibitors or genetic approaches could attenuate the toxicity induced by QDs 655 in vitro and in vivo. These results indicated that autophagic flux and autophagic cell death were triggered by QDs 655, which elucidated the critical role of autophagy in QDs 655 induced toxicity. Our data may suggest the approach to overcome the toxicity of QDs and other nanoparticles by autophagy inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Osteoporosis and autophagy: What is the relationship?

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    Full Text Available Summary Autophagy is a survival pathway wherein non-functional proteins and organelles are degraded in lysosomes for recycling and energy production. Therefore, autophagy is fundamental for the maintenance of cell viability, acting as a quality control process that prevents the accumulation of unnecessary structures and oxidative stress. Increasing evidence has shown that autophagy dysfunction is related to several pathologies including neurodegenerative diseases and cancer. Moreover, recent studies have shown that autophagy plays an important role for the maintenance of bone homeostasis. For instance, in vitro and animal and human studies indicate that autophagy dysfunction in bone cells is associated with the onset of bone diseases such as osteoporosis. This review had the purpose of discussing the issue to confirm whether a relationship between autophagy dysfunction and osteoporosis exits.

  10. Autophagy: More Than a Nonselective Pathway

    Directory of Open Access Journals (Sweden)

    Fulvio Reggiori

    2012-01-01

    Full Text Available Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs. For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.

  11. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  12. WNK1 is an unexpected autophagy inhibitor

    Science.gov (United States)

    Gallolu Kankanamalage, Sachith; Lee, A-Young; Wichaidit, Chonlarat; Lorente-Rodriguez, Andres; Shah, Akansha M.; Stippec, Steve; Whitehurst, Angelique W.; Cobb, Melanie H.

    2017-01-01

    ABSTRACT Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions. PMID:28282258

  13. Approaches for Studying Autophagy in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yanfang Chen

    2017-08-01

    Full Text Available Macroautophagy (hereafter referred to as autophagy is an intracellular degradative process, well conserved among eukaryotes. By engulfing cytoplasmic constituents into the autophagosome for degradation, this process is involved in the maintenance of cellular homeostasis. Autophagy induction triggers the formation of a cup-shaped double membrane structure, the phagophore, which progressively elongates and encloses materials to be removed. This double membrane vesicle, which is called an autophagosome, fuses with lysosome and forms the autolysosome. The inner membrane of the autophagosome, along with engulfed compounds, are degraded by lysosomal enzymes, which enables the recycling of carbohydrates, amino acids, nucleotides, and lipids. In response to various factors, autophagy can be induced for non-selective degradation of bulk cytoplasm. Autophagy is also able to selectively target cargoes and organelles such as mitochondria or peroxisome, functioning as a quality control system. The modification of autophagy flux is involved in developmental processes such as resistance to stress conditions, aging, cell death, and multiple pathologies. So, the use of animal models is essential for understanding these processes in the context of different cell types throughout the entire lifespan. For almost 15 years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. This review presents a rapid overview of physiological processes involving autophagy in Caenorhabditis elegans, the different assays used to monitor autophagy, their drawbacks, and specific tools for the analyses of selective autophagy.

  14. Anti- and pro-tumor functions of autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Vicencio, José-Miguel; Criollo, Alfredo; Maiuri, Maria Chiara; Kroemer, Guido

    2009-09-01

    Autophagy constitutes one of the major responses to stress in eukaryotic cells, and is regulated by a complex network of signaling cascades. Not surprisingly, autophagy is implicated in multiple pathological processes, including infection by pathogens, inflammatory bowel disease, neurodegeneration and cancer. Both oncogenesis and tumor survival are influenced by perturbations of the molecular machinery that controls autophagy. Numerous oncoproteins, including phosphatidylinositol 3-kinase, Akt1 and anti-apoptotic members of the Bcl-2 family suppress autophagy. Conversely, several tumor suppressor proteins (e.g., Atg4c; beclin 1; Bif-1; BH3-only proteins; death-associated protein kinase 1; LKB1/STK11; PTEN; UVRAG) promote the autophagic pathway. This does not entirely apply to p53, one of the most important tumor suppressor proteins, which regulates autophagy in an ambiguous fashion, depending on its subcellular localization. Irrespective of the controversial role of p53, basal levels of autophagy appear to inhibit tumor development. On the contrary, chemotherapy- and metabolic stress-induced activation of the autophagic pathway reportedly contribute to the survival of formed tumors, thereby favoring resistance. In this context, autophagy inhibition would represent a major therapeutic target for chemosensitization. Here, we will review the current knowledge on the dual role of autophagy as an anti- and pro-tumor mechanism.

  15. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    International Nuclear Information System (INIS)

    Li, Jun; Qin, Zhenghong; Liang, Zhongqin

    2009-01-01

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  16. Lysine-specific demethylase 1 (LSD1) destabilizes p62 and inhibits autophagy in gynecologic malignancies.

    Science.gov (United States)

    Chao, Angel; Lin, Chiao-Yun; Chao, An-Ning; Tsai, Chia-Lung; Chen, Ming-Yu; Lee, Li-Yu; Chang, Ting-Chang; Wang, Tzu-Hao; Lai, Chyong-Huey; Wang, Hsin-Shih

    2017-09-26

    Lysine-specific demethylase 1 (LSD1) - also known as KDM1A - is the first identified histone demethylase. LSD1 is highly expressed in numerous human malignancies and has recently emerged as a target for anticancer drugs. Owing to the presence of several functional domains, we speculated that LSD1 could have additional functions other than histone demethylation. P62 - also termed sequestasome 1 (SQSTM1) - plays a key role in malignant transformation, apoptosis, and autophagy. Here, we show that a high LSD1 expression promotes tumorigenesis in gynecologic malignancies. Notably, LSD1 inhibition with either siRNA or pharmacological agents activates autophagy. Mechanistically, LSD1 decreases p62 protein stability in a demethylation-independent manner. Inhibition of LSD1 reduces both tumor growth and p62 protein degradation in vivo . The combination of LSD1 inhibition and p62 knockdown exerts additive anticancer effects. We conclude that LSD1 destabilizes p62 and inhibits autophagy in gynecologic cancers. LSD1 inhibition reduces malignant cell growth and activates autophagy. The combinations of LSD1 inhibition and autophagy blockade display additive inhibitory effect on cancer cell viability. A better understanding of the role played by p62 will shed more light on the anticancer effects of LSD1 inhibitors.

  17. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Karen K Y Lam

    Full Text Available Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  18. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Lam, Karen K Y; Zheng, Xingji; Forestieri, Roberto; Balgi, Aruna D; Nodwell, Matt; Vollett, Sarah; Anderson, Hilary J; Andersen, Raymond J; Av-Gay, Yossef; Roberge, Michel

    2012-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  19. The interplay between autophagy and ROS in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kongara, Sameera [Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States); The Cancer Institute of New Jersey, New Brunswick, NJ (United States); Karantza, Vassiliki, E-mail: karantva@umdnj.edu [Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States); The Cancer Institute of New Jersey, New Brunswick, NJ (United States); Division of Medical Oncology, Department of Internal Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States)

    2012-11-21

    Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1{sup +/-} mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5{sup -/-} and Atg7{sup -/-} livers give rise to adenomas, Atg4C{sup -/-} mice are susceptible to chemical carcinogenesis, and Bif1{sup -/-} mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions

  20. The interplay between autophagy and ROS in tumorigenesis

    International Nuclear Information System (INIS)

    Kongara, Sameera; Karantza, Vassiliki

    2012-01-01

    Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1 +/- mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5 -/- and Atg7 -/- livers give rise to adenomas, Atg4C -/- mice are susceptible to chemical carcinogenesis, and Bif1 -/- mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions in tumorigenesis.

  1. Fentanyl induces autophagy via activation of the ROS/MAPK pathway and reduces the sensitivity of cisplatin in lung cancer cells.

    Science.gov (United States)

    Yao, Jiaqi; Ma, Chi; Gao, Wei; Liang, Jinxiao; Liu, Chang; Yang, Hongfang; Yan, Qiu; Wen, Qingping

    2016-12-01

    Cancer pain is the most common complication of lung carcinoma. Opioid agonist fentanyl is widely used for relieving pain in cancer patients, and cisplatin (DDP)‑based chemotherapy is commonly used for the treatment of advanced lung cancer; these two drugs are always used together in lung carcinoma patients. However, the mechanisms and related biological pathways by which fentanyl influences cisplatin sensitivity are relatively poorly reported. Here, we found that fentanyl reduces the sensitivity of cisplatin in human lung cancer cells and induces autophagy. Fentanyl induced reactive oxygen species (ROS) generation and JNK activation. N-acetyl‑L‑cysteine is a ROS scavenger and antioxidant, and the inhibition of JNK with SP600125 prevented fentanyl‑induced autophagy. We also found that 3-methyladenine (3-MA; an autophagy inhibitor) increased the sensitivity of DDP and weakened the inhibition of fentanyl. In conclusion, fentanyl reduces the sensitivity of cisplatin in lung cancer cells through the ROS-JNK-autophagy pathway, whereas the autophagy inhibitor 3-MA may weaken this effect.

  2. Autophagy is essential for hearing in mice.

    Science.gov (United States)

    Fujimoto, Chisato; Iwasaki, Shinichi; Urata, Shinji; Morishita, Hideaki; Sakamaki, Yuriko; Fujioka, Masato; Kondo, Kenji; Mizushima, Noboru; Yamasoba, Tatsuya

    2017-05-11

    Hearing loss is the most frequent sensory disorder in humans. Auditory hair cells (HCs) are postmitotic at late-embryonic differentiation and postnatal stages, and their damage is the major cause of hearing loss. There is no measurable HC regeneration in the mammalian cochlea, and the maintenance of cell function is crucial for preservation of hearing. Here we generated mice deficient in autophagy-related 5 (Atg5), a gene essential for autophagy, in the HCs to investigate the effect of basal autophagy on hearing acuity. Deletion of Atg5 resulted in HC degeneration and profound congenital hearing loss. In autophagy-deficient HCs, polyubiquitinated proteins and p62/SQSTM1, an autophagy substrate, accumulated as inclusion bodies during the first postnatal week, and these aggregates increased in number. These findings revealed that basal autophagy has an important role in maintenance of HC morphology and hearing acuity.

  3. Autophagy-related genes in Helicobacter pylori infection.

    Science.gov (United States)

    Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio

    2017-06-01

    In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.

  4. Emerging connections between RNA and autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lubas, Michal; Lund, Anders H

    2017-01-01

    in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge......Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority...... of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease....

  5. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    Science.gov (United States)

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  6. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  7. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  8. [Advances in the Research of the Regulation of Chinese Traditional Medicine Monomer and Its Derivatives on Autophagy in Non-small Cell Lung Cancer].

    Science.gov (United States)

    Xiang, Meiyi; Li, Ruilei; Zhang, Zhiwei; Song, Xin

    2017-03-20

    The high morbidity and mortality of non-small cell lung cancer (NSCLC) did influence the quality of life of tumor patients world-wide. There is an urgent need to develop new therapies that have high anti-tumor activity and low toxicity side effects. It is widely accepted that autophagy can play diverse roles in carcinogenesis, such as induces pro-death of lung cancer cells or helps the escape from cell death, making it become a proper anticancer target. It's believed that various monomers of Chinese traditional medicine closely correlates to anti-NSCLC activities, and that even could affect the acquired multiple drug resistance (MDR). Furthermore, autophagy might be the underling mechanisms which could play a role as the candidate targets of natural active compounds. Recent studies of terpenoids, alkaloid, dietary polyphenols, saponins and other active ingredients that extracted from a large variety of herbs suggest that different monomer compounds could either regulate the activity of pro-death autophagy or influence the level of protective autophagy of NSCLC cells, thus changing their drug sensitivity and cell viability. This paper aims to give a systemic description of the latest advances about natural compounds and their derivatives that involved in tumorigenesis of NSCLC via inducing the autophagy.

  9. Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Zhongxia Wang

    2014-01-01

    Full Text Available Background. Hepatocellular carcinoma (HCC remains a disastrous disease and the treatment for HCC is rather limited. Separation and identification of active compounds from traditionally used herbs in HCC treatment may shed light on novel therapeutic drugs for HCC. Methods. Cell viability and colony forming assay were conducted to determine anti-HCC activity. Morphology of cells and activity of caspases were analyzed. Antiapoptotic Bcl-2 family proteins and JNK were also examined. Levels of unfolded protein response (UPR markers were determined and intracellular calcium was assayed. Small interfering RNAs (siRNAs were used to investigate the role of UPR and autophagy in baicalein-induced cell death. Results. Among four studied flavonoids, only baicalein exhibited satisfactory inhibition of viability and colony formation of HCC cells within water-soluble concentration. Baicalein induced apoptosis via endoplasmic reticulum (ER stress, possibly by downregulating prosurvival Bcl-2 family, increasing intracellular calcium, and activating JNK. CHOP was the executor of cell death during baicalein-induced ER stress while eIF2α and IRE1α played protective roles. Protective autophagy was also triggered by baicalein in HCC cells. Conclusion. Baicalein exhibits prominent anti-HCC activity. This flavonoid induces apoptosis and protective autophagy via ER stress. Combination of baicalein and autophagy inhibitors may represent a promising therapy against HCC.

  10. Autophagy in endometriosis: Friend or foe?

    Science.gov (United States)

    Zhan, Lei; Li, Jun; Wei, Bing

    2018-01-01

    Endometriosis is a chronic, estrogen-dependent disease and characterized by the implantation of endometrial glands and stroma deep and haphazardly into the outside the uterine cavity. It affects an estimated 10% of the female population of reproductive age and results in obvious reduction in health-related quality of life. Unfortunately, there is no a consistent theory for the etiology of endometriosis. Furthermore, the endometriosis is hard to diagnose in early stage and the treatment methods are limited. Importantly, emerging evidence has investigated that there is a close relationship between endometriosis and autophagy. However, autophagy is a friend or foe in endometriosis is puzzling, the precise mechanism underlying autophagy in endometriosis has not been fully elucidated yet. Here, we provide an integrated view on the acquired findings of the connections between endometriosis and autophagy. We also discuss which may contribute to the abnormal level of autophagy in endometriosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  12. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  13. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  14. ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice.

    Science.gov (United States)

    Kurdi, Ammar; Cleenewerck, Matthias; Vangestel, Christel; Lyssens, Sophie; Declercq, Wim; Timmermans, Jean-Pierre; Stroobants, Sigrid; Augustyns, Koen; De Meyer, Guido R Y; Van Der Veken, Pieter; Martinet, Wim

    2017-08-15

    Autophagy is a cell survival mechanism hijacked by advanced tumors to endure a rough microenvironment. Late autophagy inhibitors such as (hydroxy)chloroquine have been used clinically to halt tumor progression with modest success. However, given the toxic nature of these compounds and their lack of specificity, novel targets should be considered. We recently identified a benzotropolone derivative that significantly inhibited the essential autophagy protein ATG4B. Therefore, we synthesized and tested additional benzotropolone compounds to identify a promising ATG4B inhibitor that impairs autophagy both in vitro and in vivo. A compound library containing 27 molecules with a benzotropolone backbone was synthesized and screened for inhibition of recombinant ATG4B. Depending on the benzotropolone compound, inhibition of recombinant ATG4B ranged from 3 to 82%. Active compounds were evaluated in cellular assays to confirm inhibition of ATG4B and suppression of autophagy. Seven compounds inhibited processing of the autophagy protein LC3 and autophagosome formation. Compound UAMC-2526 was selected for further in vivo use because of its fair plasma stability. This compound abolished autophagy both in nutrient-deprived GFP-LC3 mice and in CD1 -/- Foxn1nu mice bearing HT29 colorectal tumor xenografts. Moreover, addition of UAMC-2526 to the chemotherapy drug oxaliplatin significantly improved inhibition of tumor growth. Our data indicate that suppression of autophagy via ATG4B inhibition is a feasible strategy to augment existing chemotherapy efficacy and to halt tumor progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    International Nuclear Information System (INIS)

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-01-01

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy

  16. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  17. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Xinran Li

    2018-02-01

    Full Text Available Drug abuse during pregnancy is a serious problem. Like alcohol, anticonvulsants, sedatives, and anesthetics, such as ketamine, can pass through the placental barrier and affect the growing fetus. However, the mechanism by which ketamine causes damage to fetal rats is not well understood. Therefore, in this study, we anesthetized pregnant rats with ketamine and evaluated the Total Antioxidant Capacity (T-AOC, Reactive Oxygen Species (ROS, and Malondialdehyde (MDA. Moreover, we determined changes in the levels of Cleaved-Caspase-3 (C-Caspase-3, Beclin-1, B-cell lymphoma-2 (Bcl-2, Bcl-2 Associated X Protein (Bax, Autophagy-related gene 4 (Atg4, Atg5, p62 (SQSTM1, and marker of autophagy Light Chain 3 (LC3. In addition, we cultured PC12 cells in vitro to determine the relationship between ROS, autophagy, and apoptosis following ketamine treatment. The results showed that ketamine induced changes in autophagy- and apoptosis-related proteins, reduced T-AOC, and generated excessive levels of ROS and MDA. In vitro experiments showed similar results, indicating that apoptosis levels can be inhibited by 3-MA. We also found that autophagy and apoptosis can be inhibited by N-acetyl-L-cysteine (Nac. Thus, anesthesia with ketamine in pregnant rats may increase the rate of autophagy and apoptosis in the fetal hippocampus and the mechanism may be through inhibition of antioxidant activity and ROS accumulation.

  18. Regulation of Autophagy by Glucose in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Erwin Knecht

    2012-07-01

    Full Text Available Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focus on the signalling pathways by which environmental glucose directly, i.e., independently of insulin and glucagon, regulates autophagy in mammalian cells, but we will also briefly mention some data in yeast. Although glucose deprivation mainly induces autophagy via AMPK activation and the subsequent inhibition of mTORC1, we will also comment other signalling pathways, as well as evidences indicating that, under certain conditions, autophagy can be activated by glucose. A better understanding on how glucose regulates autophagy not only will expand our basic knowledge of this important cell process, but it will be also relevant to understand common human disorders, such as cancer and diabetes, in which glucose levels play an important role.

  19. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  20. Hypercholesterolemia downregulates autophagy in the rat heart.

    Science.gov (United States)

    Giricz, Zoltán; Koncsos, Gábor; Rajtík, Tomáš; Varga, Zoltán V; Baranyai, Tamás; Csonka, Csaba; Szobi, Adrián; Adameová, Adriana; Gottlieb, Roberta A; Ferdinandy, Péter

    2017-03-23

    We have previously shown that efficiency of ischemic conditioning is diminished in hypercholesterolemia and that autophagy is necessary for cardioprotection. However, it is unknown whether isolated hypercholesterolemia disturbs autophagy or the mammalian target of rapamycin (mTOR) pathways. Therefore, we investigated whether isolated hypercholesterolemia modulates cardiac autophagy-related pathways or programmed cell death mechanisms such as apoptosis and necroptosis in rat heart. Male Wistar rats were fed either normal chow (NORM; n = 9) or with 2% cholesterol and 0.25% cholic acid-enriched diet (CHOL; n = 9) for 12 weeks. CHOL rats exhibited a 41% increase in plasma total cholesterol level over that of NORM rats (4.09 mmol/L vs. 2.89 mmol/L) at the end of diet period. Animals were sacrificed, hearts were excised and briefly washed out. Left ventricles were snap-frozen for determination of markers of autophagy, mTOR pathway, apoptosis, and necroptosis by Western blot. Isolated hypercholesterolemia was associated with a significant reduction in expression of cardiac autophagy markers such as LC3-II, Beclin-1, Rubicon and RAB7 as compared to controls. Phosphorylation of ribosomal S6, a surrogate marker for mTOR activity, was increased in CHOL samples. Cleaved caspase-3, a marker of apoptosis, increased in CHOL hearts, while no difference in the expression of necroptotic marker RIP1, RIP3 and MLKL was detected between treatments. This is the first comprehensive analysis of autophagy and programmed cell death pathways of apoptosis and necroptosis in hearts of hypercholesterolemic rats. Our data show that isolated hypercholesterolemia suppresses basal cardiac autophagy and that the decrease in autophagy may be a result of an activated mTOR pathway. Reduced autophagy was accompanied by increased apoptosis, while cardiac necroptosis was not modulated by isolated hypercholesterolemia. Decreased basal autophagy and elevated apoptosis may be responsible for the

  1. Autophagy as a potential target for sarcoma treatment.

    Science.gov (United States)

    Min, Li; Choy, Edwin; Pollock, Raphael E; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-08-01

    Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-?-mediated signaling

    OpenAIRE

    Peng, X; Gong, F; Chen, Y; Jiang, Y; Liu, J; Yu, M; Zhang, S; Wang, M; Xiao, G; Liao, H

    2014-01-01

    Paclitaxel is one of the most effective chemotherapy drugs for advanced cervical cancer. However, acquired resistance of paclitaxel represents a major barrier to successful anticancer treatment. In this study, paclitaxel-resistant HeLa sublines (HeLa-R cell lines) were established by continuous exposure and increased autophagy level was observed in HeLa-R cells. 3-Methyladenine or ATG7 siRNA, autophagy inhibitors, could restore sensitivity of HeLa-R cells to paclitaxel compared with parental ...

  3. Regulation of Autophagy by Glucose in Mammalian Cells

    OpenAIRE

    Moruno, Félix; Pérez-Jiménez, Eva; Knecht, Erwin

    2012-01-01

    Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focu...

  4. Effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Xiang-Long Hong

    2016-07-01

    Full Text Available Objective: To explore the effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia, and the role of autophagy in the cerebral ischemia injury. Methods: The healthy male SD rats were randomized into the sham operation group, the ischemia model group, baicalin treatment group (100 mg/kg, and 3MA group (15 mg/kg, with 10 rats in each group. Transient focal cerebral ischemia injury model in rats was induced by occlusion of middle cerebral artery (MCA for 180 min. The rats were given the corresponding drugs through the tail veins 30 min before molding. Half of the specimens were used for TTC staining to analyze the cerebral infarction volume. The others were used to determine the expression of Beclin-1 in the brain tissues by Western-blot. Results: When compared with the ischemia model group, the cerebral infarction volume in 3MA group was significantly increased, while that in baicalin treatment group was significantly reduced, and the comparison among the groups was statistically significant. When compared with the ischemia model group, Beclin-1 expression level in baicalin treatment group was significantly elevated, while Beclin-1 expression level in 3MA group was significantly higher than that in the sham-operation group but lower than that in the ischemia model group. Conclusions: The autophagy level of brain tissues in normal rats is low. The cerebral ischemia can activate autophagy. The activated autophagy is probably involved in the neuroprotection of cerebral ischemia injury. Application of 3MA to inhibit the occurrence of autophagy can aggravate the cerebral injury. Baicalin can significantly improve the cerebral ischemia injury and promote the occurrence of autophagy, whose mechanism is probably associated with the up-regulation of Beclin-1 expression to promote the activation of type III PI3K signal transduction pathway.

  5. Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: Implications for drug development and basic cytokine biology.

    Science.gov (United States)

    Tatzel, Katharina; Kuroki, Lindsay; Dmitriev, Igor; Kashentseva, Elena; Curiel, David T; Goedegebuure, S Peter; Powell, Matthew A; Mutch, David G; Hawkins, William G; Spitzer, Dirk

    2016-03-03

    TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the "peaceful" coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics.

  6. TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana.

    Science.gov (United States)

    Pu, Yunting; Luo, Xinjuan; Bassham, Diane C

    2017-01-01

    Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR), which is activated in response to nutrients and in turn upregulates cell growth and translation and inhibits autophagy. Down-regulation of TOR in Arabidopsis thaliana leads to constitutive autophagy and to decreased growth, but the relationship to stress conditions is unclear. Here, we assess the extent to which TOR controls autophagy activation by abiotic stress. Overexpression of TOR inhibited autophagy activation by nutrient starvation, salt and osmotic stress, indicating that activation of autophagy under these conditions requires down-regulation of TOR activity. In contrast, TOR overexpression had no effect on autophagy induced by oxidative stress or ER stress, suggesting that activation of autophagy by these conditions is independent of TOR function. The plant hormone auxin has been shown previously to up-regulate TOR activity. To confirm the existence of two pathways for activation of autophagy, dependent on the stress conditions, auxin was added exogenously to activate TOR, and the effect on autophagy under different conditions was assessed. Consistent with the effect of TOR overexpression, the addition of the auxin NAA inhibited autophagy during nutrient deficiency, salt and osmotic stress, but not during oxidative or ER stress. NAA treatment was unable to block autophagy induced by a TOR inhibitor or by a mutation in the TOR complex component RAPTOR1B , indicating that auxin is upstream of TOR in the regulation of autophagy. We conclude that repression of auxin-regulated TOR activity is required for autophagy activation in response to a subset of abiotic stress conditions.

  7. Autophagy Proteins in Phagocyte Endocytosis and Exocytosis

    Directory of Open Access Journals (Sweden)

    Christian Münz

    2017-09-01

    Full Text Available Autophagy was initially described as a catabolic pathway that recycles nutrients of cytoplasmic constituents after lysosomal degradation during starvation. Since the immune system monitors products of lysosomal degradation via major histocompatibility complex (MHC class II restricted antigen presentation, autophagy was found to process intracellular antigens for display on MHC class II molecules. In recent years, however, it has become apparent that the molecular machinery of autophagy serves phagocytes in many more membrane trafficking pathways, thereby regulating immunity to infectious disease agents. In this minireview, we will summarize the recent evidence that autophagy proteins regulate phagocyte endocytosis and exocytosis for myeloid cell activation, pathogen replication, and MHC class I and II restricted antigen presentation. Selective stimulation and inhibition of the respective functional modules of the autophagy machinery might constitute valid therapeutic options in the discussed disease settings.

  8. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Sierra-Torre, Virginia; Sierra, Amanda

    2017-03-09

    Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.

  9. Exploring autophagy with Gene Ontology

    Science.gov (United States)

    2018-01-01

    ABSTRACT Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of ‘annotations’ that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study. PMID:29455577

  10. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Science.gov (United States)

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  11. Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK

    Directory of Open Access Journals (Sweden)

    Defeng Wu

    2013-01-01

    Full Text Available Autophagy has been shown to be protective against drug and alcohol-induced liver injury. CYP2E1 plays a role in the toxicity of ethanol, carcinogens and certain drugs. Inhibition of autophagy increased ethanol-toxicity and accumulation of fat in wild type and CYP2E1 knockin mice but not in CYP2E1 knockout mice as well as in HepG2 cells expressing CYP2E1 (E47 cells but not HepG2 cells lacking CYP2E1 (C34 cells. The goal of the current study was to evaluate whether modulation of autophagy can affect CYP2E1-dependent cytotoxicity in the E47 cells. The agents used to promote CYP2E1 –dependent toxicity were a polyunsaturated fatty acid, arachidonic acid (AA, buthionine sulfoximine (BSO, which depletes GSH, and CCl4, which is metabolized to the CCl3 radical. These three agents produced a decrease in E47 cell viability which was enhanced upon inhibition of autophagy by 3-methyladenine (3-MA or Atg 7 siRNA. Toxicity was lowered by rapamycin which increased autophagy and was much lower to the C34 cells which do not express CYP2E1. Toxicity was mainly necrotic and was associated with an increase in reactive oxygen production and oxidative stress; 3-MA increased while rapamycin blunted the oxidative stress. The enhanced toxicity and ROS formation produced when autophagy was inhibited was prevented by the antioxidant N-Acetyl cysteine. AA, BSO and CCl4 produced mitochondrial dysfunction, lowered cellular ATP levels and elevated mitochondrial production of ROS. This mitochondrial dysfunction was enhanced by inhibition of autophagy with 3-MA but decreased when autophagy was increased by rapamycin. The mitogen activated protein kinases p38 MAPK and JNK were activated by AA especially when autophagy was inhibited and chemical inhibitors of p38 MAPK and JNK lowered the elevated toxicity of AA produced by 3-MA. These results show that autophagy was protective against the toxicity produced by several agents known to be activated by CYP2E1. Since CYP2E1 plays an

  12. Does autophagy work in synaptic plasticity and memory?

    Science.gov (United States)

    Shehata, Mohammad; Inokuchi, Kaoru

    2014-01-01

    Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.

  13. Modulation of Autophagy-Like Processes by Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Karl Munger

    2012-06-01

    Full Text Available Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.

  14. Chikungunya virus–induced autophagy delays caspase-dependent cell death

    Science.gov (United States)

    Joubert, Pierre-Emmanuel; Werneke, Scott W.; de la Calle, Claire; Guivel-Benhassine, Florence; Giodini, Alessandra; Peduto, Lucie; Levine, Beth; Schwartz, Olivier; Lenschow, Deborah J.

    2012-01-01

    Autophagy is an important survival pathway and can participate in the host response to infection. Studying Chikungunya virus (CHIKV), the causative agent of a major epidemic in India, Southeast Asia, and southern Europe, we reveal a novel mechanism by which autophagy limits cell death and mortality after infection. We use biochemical studies and single cell multispectral assays to demonstrate that direct infection triggers both apoptosis and autophagy. CHIKV-induced autophagy is mediated by the independent induction of endoplasmic reticulum and oxidative stress pathways. These cellular responses delay apoptotic cell death by inducing the IRE1α–XBP-1 pathway in conjunction with ROS-mediated mTOR inhibition. Silencing of autophagy genes resulted in enhanced intrinsic and extrinsic apoptosis, favoring viral propagation in cultured cells. Providing in vivo evidence for the relevance of our findings, Atg16LHM mice, which display reduced levels of autophagy, exhibited increased lethality and showed a higher sensitivity to CHIKV-induced apoptosis. Based on kinetic studies and the observation that features of apoptosis and autophagy were mutually exclusive, we conclude that autophagy inhibits caspase-dependent cell death but is ultimately overwhelmed by viral replication. Our study suggests that inducers of autophagy may limit the pathogenesis of acute Chikungunya disease. PMID:22508836

  15. PICALM modulates autophagy activity and tau accumulation

    Science.gov (United States)

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  16. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage.

    Science.gov (United States)

    Moussa, Mayssam; Lajeunesse, Daniel; Hilal, George; El Atat, Oula; Haykal, Gaby; Serhal, Rim; Chalhoub, Antonio; Khalil, Charbel; Alaaeddine, Nada

    2017-03-01

    Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1-2-3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  18. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption.

    Directory of Open Access Journals (Sweden)

    Chih-Peng Chang

    Full Text Available Interferon-gamma (IFN-γ, a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1 translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ(-/- mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.

  19. Role of autophagy in development and progression of acute pancreatitis

    Directory of Open Access Journals (Sweden)

    YANG Shuli

    2014-08-01

    Full Text Available Acute pancreatitis is considered an autodigestive disorder in which inappropriate activation of trypsinogen to trypsin within pancreatic acinar cells leads to the development of pancreatitis. Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, and it is one of the early pathological processes in acute pancreatitis. Autophagic flux is impaired in acute pancreatitis, which mediates the key pathologic responses of this disease. Impaired autophagy, dysfunction of lysosomes, and dysregulation of autophagy suggest a disorder of the endolysosomal pathway in acute pancreatitis. The role of autophagy in acute pancreatitis is discussed from the aspects of autophagic process, autophagy and activation of trypsinogen, impaired autophagy and acute pancreatitis, and defective autophagy promoting inflammation.

  20. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ren-Jie [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Lin, Su-Shuan [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Wu, Wen-Ren [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Chen, Lih-Ren [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Division of Physiology, Livestock Research Institute, Council of Agriculture, Taiwan (China); Li, Chien-Feng [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan (China); National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan (China); Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Liang, Shih-Shin [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chien, Shang-Tao [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Shiue, Yow-Ling, E-mail: ylshiue@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2016-11-15

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7 cells.

  1. Methods for assessing autophagy and autophagic cell death.

    Science.gov (United States)

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  2. Autophagy in human embryonic stem cells

    NARCIS (Netherlands)

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of

  3. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  4. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    International Nuclear Information System (INIS)

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-01-01

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity

  5. Parkinson disease: a role for autophagy?

    Science.gov (United States)

    Yang, Qian; Mao, Zixu

    2010-08-01

    Autophagy is a term used to describe the process by which lysosomes degrade intracellular components. Known originally as an adaptive response to nutrient deprivation, autophagy has now been recognized to play important roles in several human disorders including neurodegenerative diseases. Experimental results from genetic, cellular, and toxicological studies indicate that many of the etiological factors associated with Parkinson disease (PD) can perturb the autophagic process in various model systems. Thus, the emerging data support the view that dysregulation of autophagy may play a critical role in the pathogenic process of PD.

  6. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts

    International Nuclear Information System (INIS)

    Ahn, Jun-Ho; Ahn, Soon Kil; Lee, Michael

    2012-01-01

    Highlights: ► We recently discovered a potent and selective B-Raf inhibitor, UI-152. ► UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. ► UI-152-induced growth inhibition was largely meditated by autophagy. ► UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformed with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective therapeutic strategy for v-Ha-ras-transformed cells harboring wild-type B-Raf.

  7. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  8. Autophagy in the control of food intake

    OpenAIRE

    Singh, Rajat

    2012-01-01

    The cellular nutrient sensing apparatus detects nutritional depletion and transmits this information to downstream effectors that generate energy from alternate sources. Autophagy is a crucial catabolic pathway that turns over redundant cytoplasmic components in lysosomes to provide energy to the starved cell. Recent studies have described a role for hypothalamic autophagy in the control of food intake and energy balance. Activated autophagy in hypothalamic neurons during starvation mobilized...

  9. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  10. Are mitochondrial reactive oxygen species required for autophagy?

    International Nuclear Information System (INIS)

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-01-01

    Highlights: → Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. → Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. → Autophagy was detectable in mitochondrial DNA deficient ρ 0 cells. → Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H 2 O 2 was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient ρ o HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  11. Comparative gene and protein expression analyses of a panel of cytokines in acute and chronic drug-induced liver injury in rats

    International Nuclear Information System (INIS)

    Hanafusa, Hiroyuki; Morikawa, Yuji; Uehara, Takeki; Kaneto, Masako; Ono, Atsushi; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2014-01-01

    Drug-induced liver injury (DILI) is a significant safety issue associated with medication use, and is the major cause of failures in drug development and withdrawal in post marketing. Cytokines are signaling molecules produced and secreted by immune cells and play crucial roles in the progression of DILI. Although there are numerous reports of cytokine changes in several DILI models, a comprehensive analysis of cytokine expression changes in rat liver injury induced by various compounds has, to the best of our knowledge, not been performed. In the past several years, we have built a public, free, large-scale toxicogenomics database, called Open TG-GATEs, containing microarray data and toxicity data of the liver of rats treated with various hepatotoxic compounds. In this study, we measured the protein expression levels of a panel of 24 cytokines in frozen liver of rats treated with a total of 20 compounds, obtained in the original study that formed the basis of the Open TG-GATEs database and analyzed protein expression profiles combined with mRNA expression profiles to investigate the correlation between mRNA and protein expression levels. As a result, we demonstrated significant correlations between mRNA and protein expression changes for interleukin (IL)-1β, IL-1α, monocyte chemo-attractant protein (MCP)-1/CC-chemokine ligand (Ccl)2, vascular endothelial growth factor A (VEGF-A), and regulated upon activation normal T cell expressed and secreted (RANTES)/Ccl5 in several different types of DILI. We also demonstrated that IL-1β protein and MCP-1/Ccl2 mRNA were commonly up-regulated in the liver of rats treated with different classes of hepatotoxicants and exhibited the highest accuracy in the detection of hepatotoxicity. The results also demonstrate that hepatic mRNA changes do not always correlate with protein changes of cytokines in the liver. This is the first study to provide a comprehensive analysis of mRNA–protein correlations of factors involved in

  12. Stimulation of autophagy by the p53 target gene Sestrin2.

    Science.gov (United States)

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  13. Kinases Involved in Both Autophagy and Mitosis.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  14. Kinases Involved in Both Autophagy and Mitosis

    Directory of Open Access Journals (Sweden)

    Zhiyuan Li

    2017-08-01

    Full Text Available Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases, Aurora kinases, PLK-1 (polo-like kinase 1, BUB1 (budding uninhibited by benzimidazoles 1, MAPKs (mitogen-activated protein kinases, mTORC1 (mechanistic target of rapamycin complex 1, AMPK (AMP-activated protein kinase, PI3K (phosphoinositide-3 kinase and protein kinase B (AKT. By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  15. Role of Autophagy in the Control of Body Metabolism

    Directory of Open Access Journals (Sweden)

    Wenying Quan

    2013-03-01

    Full Text Available Autophagy plays a crucial role in the maintenance of cellular nutrient balance and the function of organelles such as mitochondria or the endoplasmic reticulum, which are important in intracellular metabolism, insulin release, and insulin sensitivity. In the insulin-producing pancreatic β-cells, autophagy is important in the maintenance of β-cell mass, structure, and function. Mice with deficiencies in β-cell-specific autophagy show reduced β-cell mass and defects in insulin secretion that lead to hypoinsulinemia and hyperglycemia but not diabetes. However, these mice developed diabetes when bred with ob/ob mice, suggesting that autophagy-deficient β-cells have defects in dealing with the increased metabolic stress imposed by obesity. These results also imply that autophagy deficiency in β-cells could be a factor in the progression from obesity to diabetes. Another important function of autophagy is in hypothalamic neurons for the central control of energy expenditure, appetite, and body weight. In addition, mice with autophagy deficiencies in the target tissues of insulin have yielded diverse phenotypes. Taken together, these results suggest that autophagy is important in the control of whole body energy and nutrient homeostasis, and its dysregulation could play a role in the development of metabolic disorders and diabetes.

  16. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-01-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca 2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  17. Distinct Contributions of Autophagy Receptors in Measles Virus Replication.

    Science.gov (United States)

    Petkova, Denitsa S; Verlhac, Pauline; Rozières, Aurore; Baguet, Joël; Claviere, Mathieu; Kretz-Remy, Carole; Mahieux, Renaud; Viret, Christophe; Faure, Mathias

    2017-05-22

    Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO₂ and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.

  18. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  19. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  20. CD4 T cell autophagy is integral to memory maintenance.

    Science.gov (United States)

    Murera, Diane; Arbogast, Florent; Arnold, Johan; Bouis, Delphine; Muller, Sylviane; Gros, Frédéric

    2018-04-13

    Studies of mice deficient for autophagy in T cells since thymic development, concluded that autophagy is integral to mature T cell homeostasis. Basal survival and functional impairments in vivo, limited the use of these models to delineate the role of autophagy during the immune response. We generated Atg5 f/f distal Lck (dLck)-cre mice, with deletion of autophagy only at a mature stage. In this model, autophagy deficiency impacts CD8 + T cell survival but has no influence on CD4 + T cell number and short-term activation. Moreover, autophagy in T cells is dispensable during early humoral response but critical for long-term antibody production. Autophagy in CD4 + T cells is required to transfer humoral memory as shown by injection of antigen-experienced cells in naive mice. We also observed a selection of autophagy-competent cells in the CD4 + T cell memory compartment. We performed in vitro differentiation of memory CD4 + T cells, to better characterize autophagy-deficient memory cells. We identified mitochondrial and lipid load defects in differentiated memory CD4 + T cells, together with a compromised survival, without any collapse of energy production. We then propose that memory CD4 + T cells rely on autophagy for their survival to regulate toxic effects of mitochondrial activity and lipid overload.

  1. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  2. Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy.

    Science.gov (United States)

    Kagebeck, Patrik; Nikiforova, Violetta; Brunken, Lars; Easwaranathan, Arrabi; Ruegg, Joelle; Cotgreave, Ian; Munic Kos, Vesna

    2018-04-05

    Some cationic amphiphilic drugs (CADs) have been individually reported to interfere with the differentiation of immune system cells, such as macrophages and dendritic cells. To investigate the possible generic nature of this process, in this study we aimed to see whether these drugs are capable of interfering with the differentiation of adipocytes. Further, we investigated whether this feature might be connected to the lysosomotropic character of these drugs, and their disturbance of intracellular membrane trafficking rather than to the individual pharmacologic properties of each drug. Thus, for the selected set of compounds consisting of seven structurally and pharmacologically diverse CADs and three non-CAD controls we have measured the impact on differentiation of 3T3-L1K murine preadipocytes to adipocytes. We conclude that CADs indeed inhibit adipocyte differentiation, as shown morphologically, at the level of lipid droplet formation and on the expression of genetic markers of adipocytes. Furthermore, the intensity of this inhibitory effect was found to strongly positively correlate with the extent of drug accumulation in adipocytes, with their affinity for phospholipid membranes, as well as with their ability to induce phospholipidosis and inhibit autophagy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    Science.gov (United States)

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  4. Emerging role of autophagy in kidney function, diseases and aging

    Science.gov (United States)

    Huber, Tobias B.; Edelstein, Charles L.; Hartleben, Björn; Inoki, Ken; Jiang, Man; Koya, Daisuke; Kume, Shinji; Lieberthal, Wilfred; Pallet, Nicolas; Quiroga, Alejandro; Ravichandran, Kameswaran; Susztak, Katalin; Yoshida, Sei; Dong, Zheng

    2012-01-01

    Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy. PMID:22692002

  5. Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in Echinococcus granulosus larval stage.

    Directory of Open Access Journals (Sweden)

    María Celeste Nicolao

    Full Text Available Cystic echinococcosis (CE is a worldwide distributed helminthic zoonosis caused by Echinococcus granulosus. Benzimidazole derivatives are currently the only drugs for chemotherapeutic treatment of CE. However, their low efficacy and the adverse effects encourage the search for new therapeutic targets. We evaluated the in vitro efficacy of Bortezomib (Bz, a proteasome inhibitor, in the larval stage of the parasite. After 96 h, Bz showed potent deleterious effects at a concentration of 5 μM and 0.5 μM in protoscoleces and metacestodes, respectively (P < 0.05. After 48 h of exposure to this drug, it was triggered a mRNA overexpression of chaperones (Eg-grp78 and Eg-calnexin and of Eg-ire2/Eg-xbp1 (the conserved UPR pathway branch in protoscoleces. No changes were detected in the transcriptional expression of chaperones in Bz-treated metacestodes, thus allowing ER stress to be evident and viability to highly decrease in comparison with protoscoleces. We also found that Bz treatment activated the autophagic process in both larval forms. These facts were evidenced by the increase in the amount of transcripts of the autophagy related genes (Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16 together with the increase in Eg-Atg8-II detected by western blot and by in toto immunofluorescence labeling. It was further confirmed by direct observation of autophagic structures by electronic microscopy. Finally, in order to determine the impact of autophagy induction on Echinococcus cell viability, we evaluated the efficacy of Bz in combination with rapamycin and a synergistic cytotoxic effect on protoscolex viability was observed when both drugs were used together. In conclusion, our findings demonstrated that Bz induced endoplasmic reticulum stress, autophagy and subsequent death allowing to identify unstudied parasite-host pathways that could provide a new insight for control of parasitic diseases.

  6. Na/K Pump and Beyond: Na/K-ATPase as a Modulator of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    2017-04-01

    Full Text Available Lung cancer is a leading cause of global cancer deaths. Na/K-ATPase has been studied as a target for cancer treatment. Cardiotonic steroids (CS trigger intracellular signalling upon binding to Na/K-ATPase. Normal lung and tumour cells frequently express different pump isoforms. Thus, Na/K-ATPase is a powerful target for lung cancer treatment. Drugs targeting Na/K-ATPase may induce apoptosis and autophagy in transformed cells. We argue that Na/K-ATPase has a role as a potential target in chemotherapy in lung cancer treatment. We discuss the effects of Na/K-ATPase ligands and molecular pathways inducing deleterious effects on lung cancer cells, especially those leading to apoptosis and autophagy.

  7. Na/K Pump and Beyond: Na/K-ATPase as a Modulator of Apoptosis and Autophagy.

    Science.gov (United States)

    Felippe Gonçalves-de-Albuquerque, Cassiano; Ribeiro Silva, Adriana; Ignácio da Silva, Camila; Caire Castro-Faria-Neto, Hugo; Burth, Patrícia

    2017-04-21

    Lung cancer is a leading cause of global cancer deaths. Na/K-ATPase has been studied as a target for cancer treatment. Cardiotonic steroids (CS) trigger intracellular signalling upon binding to Na/K-ATPase. Normal lung and tumour cells frequently express different pump isoforms. Thus, Na/K-ATPase is a powerful target for lung cancer treatment. Drugs targeting Na/K-ATPase may induce apoptosis and autophagy in transformed cells. We argue that Na/K-ATPase has a role as a potential target in chemotherapy in lung cancer treatment. We discuss the effects of Na/K-ATPase ligands and molecular pathways inducing deleterious effects on lung cancer cells, especially those leading to apoptosis and autophagy.

  8. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells.

    Science.gov (United States)

    Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa

    2018-02-15

    Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.

  9. The potential regulatory roles of NAD(+) and its metabolism in autophagy.

    Science.gov (United States)

    Zhang, Dong-Xia; Zhang, Jia-Ping; Hu, Jiong-Yu; Huang, Yue-Sheng

    2016-04-01

    (Macro)autophagy mediates the bulk degradation of defective organelles, long-lived proteins and protein aggregates in lysosomes and plays a critical role in cellular and tissue homeostasis. Defective autophagy processes have been found to contribute to a variety of metabolic diseases. However, the regulatory mechanisms of autophagy are not fully understood. Increasing data indicate that nicotinamide adenine nucleotide (NAD(+)) homeostasis correlates intimately with autophagy. NAD(+) is a ubiquitous coenzyme that functions primarily as an electron carrier of oxidoreductase in multiple redox reactions. Both NAD(+) homeostasis and its metabolism are thought to play critical roles in regulating autophagy. In this review, we discuss how the regulation of NAD(+) and its metabolism can influence autophagy. We focus on the regulation of NAD(+)/NADH homeostasis and the effects of NAD(+) consumption by poly(ADP-ribose) (PAR) polymerase-1 (PARP-1), NAD(+)-dependent deacetylation by sirtuins and NAD(+) metabolites on autophagy processes and the underlying mechanisms. Future studies should provide more direct evidence for the regulation of autophagy processes by NAD(+). A better understanding of the critical roles of NAD(+) and its metabolites on autophagy will shed light on the complexity of autophagy regulation, which is essential for the discovery of new therapeutic tools for autophagy-related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Molecular View of Autophagy in Lepidoptera

    Directory of Open Access Journals (Sweden)

    Davide Romanelli

    2014-01-01

    Full Text Available Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications.

  11. Silencing of BAG3 promotes the sensitivity of ovarian cancer cells to cisplatin via inhibition of autophagy.

    Science.gov (United States)

    Qiu, Shuang; Sun, Liang; Jin, Ye; An, Qi; Weng, Changjiang; Zheng, Jianhua

    2017-07-01

    Ovarian cancer is the most lethal disease among all gynecological malignancies. Interval cytoreductive surgery and cisplatin‑based chemotherapy are the recommended therapeutic strategies. However, acquired resistance to cisplatin remains a big challenge for the overall survival and prognosis in ovarian cancer. Complicated molecular mechanisms are involved in the process. At present, increasing evidence indicates that autophagy plays an important role in the prosurvival and resistance against chemotherapy. In the present study, as a novel autophagy regulator, BCL2‑associated athanogene 3 (BAG3) was investigated to study its role in cisplatin sensitivity in epithelial ovarian cancer. However, whether BAG3 participates in cisplatin sensitivity by inducing autophagy and the underlying mechanism in ovarian cancer cells remain to be clarified. Through the use of quantitative real-time PCR, western blot analysis, CCK-8 and immunofluorescence assays our data revealed that cisplatin-induced autophagy protected ovarian cancer cells from the toxicity of the drug and that this process was regulated by BAG3. Silencing of BAG3 increased cisplatin-induced apoptosis. The results also revealed BAG3 as a potential therapeutic target which enhanced the efficacy of cisplatin in ovarian cancer.

  12. Canonical autophagy does not contribute to cellular radioresistance

    International Nuclear Information System (INIS)

    Schaaf, Marco B.E.; Jutten, Barry; Keulers, Tom G.; Savelkouls, Kim G.M.; Peeters, Hanneke J.M.; Beucken, Twan van den; Schooten, Frederik-Jan van; Godschalk, Roger W.; Vooijs, Marc; Rouschop, Kasper M.A.

    2015-01-01

    Background: (Pre)clinical studies indicate that autophagy inhibition increases response to anti-cancer therapies. Although promising, due to contradicting reports, it remains unclear if radiation therapy changes autophagy activity and if autophagy inhibition changes the cellular intrinsic radiosensitivity. Discrepancies may result from different assays and models through off-target effects and influencing other signaling routes. In this study, we directly compared the effects of genetic and pharmacological inhibition of autophagy after irradiation in human cancer cell lines. Materials and methods: Changes in autophagy activity after ionizing radiation (IR) were assessed by flux analysis in eight cell lines. Clonogenic survival, DNA damage (COMET-assay) and H2AX phosphorylation were assessed after chloroquine or 3-methyladenine pretreatment and after ATG7 or LC3b knockdown. Results: IR failed to induce autophagy and chloroquine failed to change intrinsic radiosensitivity of cells. Interestingly, 3-methyladenine and ATG7- or LC3b-deficiency sensitized cancer cells to irradiation. Surprisingly, the radiosensitizing effect of 3-methyladenine was also observed in ATG7 and LC3b deficient cells and was associated with attenuated γ-H2AX formation and DNA damage repair. Conclusion: Our data demonstrate that the anti-tumor effects of chloroquine are independent of changes in intrinsic radioresistance. Furthermore, ATG7 and LC3b support radioresistance independent of canonical autophagy that involves lysosomal degradation

  13. Autophagy in the eye: implications for ocular cell health.

    Science.gov (United States)

    Frost, Laura S; Mitchell, Claire H; Boesze-Battaglia, Kathleen

    2014-07-01

    Autophagy, a catabolic process by which a cell "eats" itself, turning over its own cellular constituents, plays a key role in cellular homeostasis. In an effort to maintain normal cellular function, autophagy is often up-regulated in response to environmental stresses and excessive organelle damage to facilitate aggregated protein removal. In the eye, virtually all cell types from those comprising the cornea in the front of the eye to the retinal pigment epithelium (RPE) providing a protective barrier for the retina at the back of the eye, rely on one or more aspects of autophagy to maintain structure and/or normal physiological function. In the lens autophagy plays a critical role in lens fiber cell maturation and the formation of the organelle free zone. Numerous studies delineating the role of Atg5, Vsp34 as well as FYCO1 in maintenance of lens transparency are discussed. Corneal endothelial dystrophies are also characterized as having elevated levels of autophagic proteins. Therefore, novel modulators of autophagy such as lithium and melatonin are proposed as new therapeutic strategies for this group of dystrophies. In addition, we summarize how corneal Herpes Simplex Virus (HSV-1) infection subverts the cornea's response to infection by inhibiting the normal autophagic response. Using glaucoma models we analyze the relative contribution of autophagy to cell death and cell survival. The cytoprotective role of autophagy is further discussed in an analysis of photoreceptor cell heath and function. We focus our analysis on the current understanding of autophagy in photoreceptor and RPE health, specifically on the diverse role of autophagy in rods and cones as well as its protective role in light induced degeneration. Lastly, in the RPE we highlight hybrid phagocytosis-autophagy pathways. This comprehensive review allows us to speculate on how alterations in various stages of autophagy contribute to glaucoma and retinal degenerations. Copyright © 2014 Elsevier Ltd

  14. A Primary Human Trophoblast Model to Study the Effect of Inflammation Associated with Maternal Obesity on Regulation of Autophagy in the Placenta.

    Science.gov (United States)

    Simon, Bailey; Bucher, Matthew; Maloyan, Alina

    2017-09-27

    Maternal obesity is associated with an increased risk of adverse perinatal outcomes that are likely mediated by compromised placental function that can be attributed to, in part, the dysregulation of autophagy. Aberrant changes in the expression of autophagy regulators in the placentas from obese pregnancies may be regulated by inflammatory processes associated with both obesity and pregnancy. Described here is a protocol for sampling of villous tissue and isolation of villous cytotrophoblasts from the term human placenta for primary cell culture. This is followed by a method for simulating the inflammatory milieu in the obese intrauterine environment by treating primary trophoblasts from lean pregnancies with tumor necrosis factor alpha (TNFα), a proinflammatory cytokine that is elevated in obesity and in pregnancy. Through the implementation of the protocol described here, it is found that exposure to exogenous TNFα regulates the expression of Rubicon, a negative regulator of autophagy, in trophoblasts from lean pregnancies with female fetuses. While a variety of biological factors in the obese intrauterine environment maintain the potential to modulate critical pathways in trophoblasts, this ex vivo system is especially useful for determining if expression patterns observed in vivo in human placentas with maternal obesity are a direct result of TNFα signaling. Ultimately, this approach affords the opportunity to parse out the regulatory and molecular implications of inflammation associated with maternal obesity on autophagy and other critical cellular pathways in trophoblasts that have the potential to impact placental function.

  15. A dual role of p53 in the control of autophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Chiara Maiuri, M; Morselli, Eugenia; Criollo, Alfredo; D'Amelio, Marcello; Djavaheri-Mergny, Mojgan; Cecconi, Francesco; Tavernarakis, Nektarios; Kroemer, Guido

    2008-08-01

    Genotoxic stress can induce autophagy in a p53-dependent fashion and p53 can transactivate autophagy-inducing genes. We have observed recently that inactivation of p53 by deletion, depletion or inhibition can trigger autophagy. Thus, human and mouse cells subjected to knockout, knockdown or pharmacological inhibition of p53 manifest signs of autophagy such as depletion of p62/SQSTM1, LC3 lipidation, redistribution of GFP-LC3 in cytoplasmic puncta, and accumulation of autophagosomes and autolysosomes, both in vitro and in vivo. Inhibition of p53 causes autophagy in enucleated cells, indicating that the cytoplasmic, non-nuclear pool of p53 can regulate autophagy. Accordingly, retransfection of p53(-/-) cells with wild-type p53 as well as a p53 mutant that is excluded from the nucleus (due to the deletion of the nuclear localization sequence) can inhibit autophagy, whereas retransfection with a nucleus-restricted p53 mutant (in which the nuclear localization sequence has been deleted) does not inhibit autophagy. Several distinct autophagy inducers (e.g., starvation, rapamycin, lithium, tunicamycin and thapsigargin) stimulate the rapid degradation of p53. In these conditions, inhibition of the p53-specific E3 ubiquitin ligase HDM2 can avoid p53 depletion and simultaneously prevent the activation of autophagy. Moreover, a p53 mutant that lacks the HDM2 ubiquitinylation site and hence is more stable than wild-type p53 is particularly efficient in suppressing autophagy. In conclusion, p53 plays a dual role in the control of autophagy. On the one hand, nuclear p53 can induce autophagy through transcriptional effects. On the other hand, cytoplasmic p53 may act as a master repressor of autophagy.

  16. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  17. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  18. Polycystin-2-dependent control of cardiomyocyte autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Altamirano, Francisco; Pedrozo, Zully; Schiattarella, Gabriele G; Li, Dan L; Rivera-Mejías, Pablo; Sotomayor-Flores, Cristian; Parra, Valentina; Villalobos, Elisa; Battiprolu, Pavan K; Jiang, Nan; May, Herman I; Morselli, Eugenia; Somlo, Stefan; de Smedt, Humbert; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2018-05-01

    Considerable evidence points to critical roles of intracellular Ca 2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca 2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca 2+ homeostasis and autophagy. Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2 F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca 2+ chelation using BAPTA-AM, whereas removal of extracellular Ca 2+ had no effect, pointing to a role of intracellular Ca 2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca 2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca 2+ -channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca 2+ . Furthermore, PC2 ablation was associated with impaired Ca 2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca 2+ stores. Finally, we provide evidence that Ca 2+ -mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. Together, this study unveils PC2 as a novel regulator of autophagy acting

  19. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    International Nuclear Information System (INIS)

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-01-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G 2 /M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21 Waf1/Cip1 . In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B 1 , a cyclin required for progression through the G 2 /M phase. Taken together, DHA induces G 2 /M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  20. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    Science.gov (United States)

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  1. The inositol trisphosphate receptor in the control of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.

  2. The IKK complex contributes to the induction of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-02-03

    In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.

  3. Autophagy: A Sweet Process in Diabetes

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2008-01-01

    Autophagy is inhibited by the insulin-amino acid-mTOR signaling pathway. Two papers in this issue of Cell Metabolism (Ebato et al., 2008; Jung et al., 2008) provide evidence that basal autophagy is necessary to maintain the architecture and function of pancreatic beta cells and that its induction in

  4. Molecular Interactions of Autophagy with the Immune System and Cancer

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2017-08-01

    Full Text Available Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B are modulated by autophagy, which represent innate and adaptive immune responses, respectively. Numerous studies have demonstrated beneficial roles for autophagy induction as well as its suppression of cancer cells. Autophagy may induce either survival or death depending on the cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating programmed cell death. In this review, we summarize the current understanding of autophagy and its regulation in cancer.

  5. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    Directory of Open Access Journals (Sweden)

    Li S

    2016-02-01

    Full Text Available Sainan Li, Yujing Xia, Kan Chen, Jingjing Li, Tong Liu, Fan Wang, Jie Lu, Yingqun Zhou, Chuanyong Guo Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China Background: Epigallocatechin-3-gallate (EGCG is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA-induced hepatitis in mice and explored the possible mechanisms involved in these effects.Methods: Balb/C mice were injected with ConA (25 mg/kg to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration.Results: BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway.Conclusion: EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. Keywords: concanavalin A, hepatitis, EGCG, autophagy, apoptosis, BNIP3, STAT3, JAKs, IL-6

  6. Here, there be dragons: charting autophagy-related alterations in human tumors.

    Science.gov (United States)

    Lebovitz, Chandra B; Bortnik, Svetlana B; Gorski, Sharon M

    2012-03-01

    Macroautophagy (or autophagy) is a catabolic cellular process that is both homeostatic and stress adaptive. Normal cells rely on basal levels of autophagy to maintain cellular integrity (via turnover of long-lived proteins and damaged organelles) and increased levels of autophagy to buoy cell survival during various metabolic stresses (via nutrient and energy provision through lysosomal degradation of cytoplasmic components). Autophagy can function in both tumor suppression and tumor progression, and is under investigation in clinical trials as a novel target for anticancer therapy. However, its role in cancer pathogenesis has yet to be fully explored. In particular, it remains unknown whether in vitro observations will be applicable to human cancer patients. Another outstanding question is whether there exists tumor-specific selection for alterations in autophagy function. In this review, we survey reported mutations in autophagy genes and key autophagy regulators identified in human tumor samples and summarize the literature regarding expression levels of autophagy genes and proteins in various cancer tissues. Although it is too early to draw inferences from this collection of in vivo studies of autophagy-related alterations in human cancers, their results highlight the challenges that must be overcome before we can accurately assess the scope of autophagy's predicted role in tumorigenesis.

  7. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  8. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  9. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.

    Science.gov (United States)

    Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan

    2018-01-01

    Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.

  10. Human Papilloma Virus and Autophagy

    Directory of Open Access Journals (Sweden)

    Domenico Mattoscio

    2018-06-01

    Full Text Available Human papilloma viruses (HPVs are a group of double-stranded DNA viruses known to be the primary cause of cervical cancer. In addition, evidence has now established their role in non-melanoma skin cancers, head and neck cancer (HNC, and the development of other anogenital malignancies. The prevalence of HPV-related HNC, in particular oropharyngeal cancers, is rapidly increasing, foreseeing that HPV-positive oropharyngeal cancers will outnumber uterine cervical cancers in the next 15–20 years. Therefore, despite the successful advent of vaccines originally licensed for cervical cancer prevention, HPV burden is still very high, and a better understanding of HPV biology is urgently needed. Autophagy is the physiological cellular route that accounts for removal, degradation, and recycling of damaged organelles, proteins, and lipids in lysosomal vacuoles. In addition to this scavenger function, autophagy plays a fundamental role during viral infections and cancers and is, therefore, frequently exploited by viruses to their own benefit. Recently, a link between HPV and autophagy has clearly emerged, leading to the conceivable development of novel anti-viral strategies aimed at restraining HPV infectivity. Here, recent findings on how oncogenic HPV16 usurp autophagy are described, highlighting similarities and differences with mechanisms adopted by other oncoviruses.

  11. Hyperosmotic stress stimulates autophagy via polycystin-2.

    Science.gov (United States)

    Peña-Oyarzun, Daniel; Troncoso, Rodrigo; Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo

    2017-08-22

    Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.

  12. Autophagy induction for the treatment of cancer.

    Science.gov (United States)

    Pietrocola, Federico; Pol, Jonathan; Vacchelli, Erika; Baracco, Elisa E; Levesque, Sarah; Castoldi, Francesca; Maiuri, Maria Chiara; Madeo, Frank; Kroemer, Guido

    2016-10-02

    Cancer can be viewed in 2 rather distinct ways, namely (i) as a cell-autonomous disease in which malignant cells have escaped control from cell-intrinsic barriers against proliferation and dissemination or (ii) as a systemic disease that involves failing immune control of aberrant cells. Since macroautophagy/autophagy generally increases the fitness of cells as well as their resistance against endogenous or iatrogenic (i.e., relating to illness due to medical intervention) stress, it has been widely proposed that inhibition of autophagy would constitute a valid strategy for sensitizing cancer cells to chemotherapy or radiotherapy. Colliding with this cell-autonomous vision, however, we found that immunosurveillance against transplantable, carcinogen-induced or genetically engineered cancers can be improved by pharmacologically inducing autophagy with caloric restriction mimetics. This positive effect depends on autophagy induction in cancer cells and is mediated by alterations in extracellular ATP metabolism, namely increased release of immunostimulatory ATP and reduced adenosine-dependent recruitment of immunosuppressive regulatory T cells into the tumor bed. The combination of autophagy inducers and chemotherapeutic agents is particularly efficient in reducing cancer growth through the stimulation of CD8 + T lymphocyte-dependent anticancer immune responses.

  13. Blue-Print Autophagy: Potential for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Nadia Ruocco

    2016-07-01

    Full Text Available The marine environment represents a very rich source of biologically active compounds with pharmacological applications. This is due to its chemical richness, which is claiming considerable attention from the health science communities. In this review we give a general overview on the marine natural products involved in stimulation and inhibition of autophagy (a type of programmed cell death linked to pharmacological and pathological conditions. Autophagy represents a complex multistep cellular process, wherein a double membrane vesicle (the autophagosome captures organelles and proteins and delivers them to the lysosome. This natural and destructive mechanism allows the cells to degrade and recycle its cellular components, such as amino acids, monosaccharides, and lipids. Autophagy is an important mechanism used by cells to clear pathogenic organism and deal with stresses. Therefore, it has also been implicated in several diseases, predominantly in cancer. In fact, pharmacological stimulation or inhibition of autophagy have been proposed as approaches to develop new therapeutic treatments of cancers. In conclusion, this blue-print autophagy (so defined because it is induced and/or inhibited by marine natural products represents a new strategy for the future of biomedicine and of biotechnology in cancer treatment.

  14. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever.

    Science.gov (United States)

    Castro, J E Z; Vado-Solis, I; Perez-Osorio, C; Fredeking, T M

    2011-01-01

    Dengue virus infection can lead to dengue fever (DF) or dengue hemorrhagic fever (DHF). Disease severity has been linked to an increase in various cytokine levels. In this study, we evaluated the effectiveness of doxycycline and tetracycline to modulate serum levels of IL-6, IL-1B, and TNF and cytokine receptor/receptor antagonist TNF-R1 and IL-1RA in patients with DF or DHF. Hospitalized patients were randomized to receive standard supportive care or supportive care combined with doxycycline or tetracycline therapy. Serum cytokine and cytokine receptor/antagonist levels were determined at the onset of therapy and after 3 and 7 days. Cytokine and cytokine receptor/antagonist levels were substantially elevated at day 0. IL-6, IL-1β, and TNF remained at or above day 0 levels throughout the study period in untreated patients. Treatment with tetracycline or doxycycline resulted in a significant decline in cytokine levels. Similarly, IL-1RA and TNF-R1 serum concentrations were elevated at baseline and showed a moderate increase among untreated patients. Both drugs resulted in a significant rise in IL-1Ra levels by day 3 in patients. In contrast, treatment did not affect a similar result for TNF-R1. When compared to the control group, however, a significant rise post-treatment was seen upon intragroup analysis. Further analysis demonstrated that doxycycline was significantly more effective at modulating cytokine and cytokine receptor/antagonist levels than tetracycline.

  15. Targeting Pediatric Glioma with Apoptosis and Autophagy Manipulation

    Science.gov (United States)

    2014-10-01

    that chloroquine treatments give the most reliable inhibition of autophagy without being directly cytotoxic. Bafilomycin can continue to be used for...in pediatric glioma and its interaction with RTK inhibition and apoptotic pathway activation will enable us to develop efficacious clinical trials...of autophagy, Rab7 and Lamp 2. We are now introducing siRNA against Rab7 and Lamp2 to reiterate the effects of Chloroquine inhibition of autophagy

  16. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Mayssam, E-mail: Moussa-mayssam@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Lajeunesse, Daniel, E-mail: daniel.lajeunesse@umontreal.ca [Research Centre in Osteoarthritis, Research Centre in Monteral University (Canada); Hilal, George, E-mail: George2266@gmail.com [Cancer and metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); El Atat, Oula, E-mail: oulaatat@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Haykal, Gaby, E-mail: Gaby.haykal@hdf.usj.edu.lb [Hotel Dieu de France, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Serhal, Rim, E-mail: rim.basbous@gmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Chalhoub, Antonio, E-mail: Mava.o@hotmail.com [Carantina Hospital, Beirut (Lebanon); Khalil, Charbel, E-mail: charbelk3@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Alaaeddine, Nada, E-mail: Nada.aladdin@gmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon)

    2017-03-01

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is

  17. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    International Nuclear Information System (INIS)

    Moussa, Mayssam; Lajeunesse, Daniel; Hilal, George; El Atat, Oula; Haykal, Gaby; Serhal, Rim; Chalhoub, Antonio; Khalil, Charbel; Alaaeddine, Nada

    2017-01-01

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is

  18. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis.

    Science.gov (United States)

    Cadwell, Ken

    2016-11-01

    Autophagy has broad functions in immunity, ranging from cell-autonomous defence to coordination of complex multicellular immune responses. The successful resolution of infection and avoidance of autoimmunity necessitates efficient and timely communication between autophagy and pathways that sense the immune environment. The recent literature indicates that a variety of immune mediators induce or repress autophagy. It is also becoming increasingly clear that immune signalling cascades are subject to regulation by autophagy, and that a return to homeostasis following a robust immune response is critically dependent on this pathway. Importantly, examples of non-canonical forms of autophagy in mediating immunity are pervasive. In this article, the progress in elucidating mechanisms of crosstalk between autophagy and inflammatory signalling cascades is reviewed. Improved mechanistic understanding of the autophagy machinery offers hope for treating infectious and inflammatory diseases.

  19. Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart

    International Nuclear Information System (INIS)

    Li, Chen; Yu, Lu; Xue, Han; Yang, Zheng; Yin, Yue; Zhang, Bo; Chen, Mai; Ma, Heng

    2017-01-01

    Senescence-associated autophagy downregulation leads to cardiomyocyte dysfunction. Coactivator-associated arginine methyltransferase 1 (CARM1) participates in many cellular processes, including autophagy in mammals. However, the effect of CARM1 in aging-related cardiac autophagy decline remains undefined. Moreover, AMP-activated protein kinase (AMPK) is a key regulator in metabolism and autophagy, however, the role of nuclear AMPK in autophagy outcome in aged hearts still unclear. Hers we identify the correlation between nuclear AMPK and CARM1 in aging heart. We found that fasting could promote autophagy in young hearts but not in aged hearts. The CARM1 stabilization is markedly decrease in aged hearts, which impaired nucleus TFEB-CARM1 complex and autophagy flux. Further, S-phase kinase-associated protein 2(SKP2), responsible for CARM1 degradation, was increased in aged hearts. We further validated that AMPK dependent FoxO3 phosphorylation was markedly reduced in nucleus, the decreased nuclear AMPK-FoxO3 activity fails to suppress SKP2-E3 ubiquitin ligase. This loss of repression leads to The CARM1 level and autophagy in aged hearts could be restored through AMPK activation. Taken together, AMPK deficiency results in nuclear CARM1 decrease mediated in part by SKP2, contributing to autophagy dysfunction in aged hearts. Our results identified nuclear AMPK controlled CARM1 stabilization as a new actor that regulates cardiac autophagy. - Highlights: • AMPK-dependent CARM1 stabilization is an important nuclear mechanism in cardiac autophagy. • AMPK deficiency lead to SKP2-mediated decrease in CARM1. • AMPK–SKP2–CARM1 in the regulation of autophagy dysfunction in aged heart.

  20. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.

    Science.gov (United States)

    Menzies, Fiona M; Fleming, Angeleen; Caricasole, Andrea; Bento, Carla F; Andrews, Stephen P; Ashkenazi, Avraham; Füllgrabe, Jens; Jackson, Anne; Jimenez Sanchez, Maria; Karabiyik, Cansu; Licitra, Floriana; Lopez Ramirez, Ana; Pavel, Mariana; Puri, Claudia; Renna, Maurizio; Ricketts, Thomas; Schlotawa, Lars; Vicinanza, Mariella; Won, Hyeran; Zhu, Ye; Skidmore, John; Rubinsztein, David C

    2017-03-08

    Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enhanced myometrial autophagy in postpartum uterine involution

    Directory of Open Access Journals (Sweden)

    Keng-Fu Hsu

    2014-09-01

    Conclusion: Autophagy of myocytes may play an important role in uterine involution. These results have implications for our understanding of myometrial functional adaptations during pregnancy and the physiological role of autophagy in the uterine remodeling events in the postpartum period.

  2. Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy.

    Directory of Open Access Journals (Sweden)

    Angèle Nalbandian

    Full Text Available Mutations in the valosin containing protein (VCP gene cause hereditary Inclusion body myopathy (hIBM associated with Paget disease of bone (PDB, frontotemporal dementia (FTD, more recently termed multisystem proteinopathy (MSP. Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem

  3. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization

    Science.gov (United States)

    Andrade, Priscila Ribeiro; Ferreira, Helen; Nery, José Augusto da Costa; Côrte-Real, Suzana; da Silva, Gilberto Marcelo Sperandio; Rosa, Patricia Sammarco; Fabri, Mario; Sarno, Euzenir Nunes

    2017-01-01

    Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. PMID:28056107

  4. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.

    Science.gov (United States)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V; Eisenberg, Tobias; Megalou, Evgenia; Schroeder, Sabrina; Cabrera, Sandra; Bénit, Paule; Rustin, Pierre; Criollo, Alfredo; Kepp, Oliver; Galluzzi, Lorenzo; Shen, Shensi; Malik, Shoaib Ahmad; Maiuri, Maria Chiara; Horio, Yoshiyuki; López-Otín, Carlos; Andersen, Jens S; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2011-02-21

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate the autophagic cascade. At doses at which neither resveratrol nor spermidine stimulated autophagy alone, these agents synergistically induced autophagy. Altogether, these data underscore the importance of an autophagy regulatory network of antagonistic deacetylases and acetylases that can be pharmacologically manipulated.

  5. Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy

    Directory of Open Access Journals (Sweden)

    Leanne Pereira

    2012-01-01

    Full Text Available Autophagy is a highly conserved cellular process occurring during periods of stress to ensure a cell's survival by recycling cytosolic constituents and making products that can be used in energy generation and other essential processes. Three major forms of autophagy exist according to the specific mechanism through which cytoplasmic material is transported to a lysosome. Chaperone-mediated autophagy is a highly selective form of autophagy that delivers specific proteins for lysosomal degradation. Microautophagy is a less selective form of autophagy that occurs through lysosomal membrane invaginations, forming tubes and directly engulfing cytoplasm. Finally, macroautophagy involves formation of new membrane bilayers (autophagosomes that engulf cytosolic material and deliver it to lysosomes. This review provides new insights on the crosstalks between different forms of autophagy and the significance of bilayer-forming phospholipid synthesis in autophagosomal membrane formation.

  6. Characterization of a novel autophagy-specific gene, ATG29

    International Nuclear Information System (INIS)

    Kawamata, Tomoko; Kamada, Yoshiaki; Suzuki, Kuninori; Kuboshima, Norihiro; Akimatsu, Hiroshi; Ota, Shinichi; Ohsumi, Mariko; Ohsumi, Yoshinori

    2005-01-01

    Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Δ cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins

  7. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  8. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  9. Autophagy: Friend or Foe in Breast Cancer Development, Progression, and Treatment

    International Nuclear Information System (INIS)

    Berardi, D.E.; Campodonico, P.B.; Bessone, M.I.D.; Urtreger, A.J.; Todaro, L.B.

    2011-01-01

    Autophagy is a catabolic process responsible for the degradation and recycling of long-lived proteins and organelles by lysosomes. This degradative pathway sustains cell survival during nutrient deprivation, but in some circumstances, autophagy leads to cell death. Thereby, autophagy can serve as tumor suppressor, as the reduction in autophagic capacity causes malignant transformation and spontaneous tumors. On the other hand, this process also functions as a protective cell-survival mechanism against environmental stress causing resistance to antineoplastic therapies. Although autophagy inhibition, combined with anticancer agents, could be therapeutically beneficial in some cases, autophagy induction by itself could lead to cell death in some apoptosis-resistant cancers, indicating that autophagy induction may also be used as a therapy. This paper summarizes the most important findings described in the literature about autophagy and also discusses the importance of this process in clinical settings

  10. Autophagy in health and disease: focus on the cardiovascular system.

    Science.gov (United States)

    Mialet-Perez, Jeanne; Vindis, Cécile

    2017-12-12

    Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. How Parkinsonian Toxins Dysregulate the Autophagy Machinery

    Directory of Open Access Journals (Sweden)

    Ruben K. Dagda

    2013-11-01

    Full Text Available Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD. Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.

  12. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy

    DEFF Research Database (Denmark)

    Farkas, Thomas; Daugaard, Mads; Jaattela, Marja

    2011-01-01

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered...... for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new...

  13. Interplay between apoptosis and autophagy in colorectal cancer.

    Science.gov (United States)

    Qian, Hao-Ran; Shi, Zhao-Qi; Zhu, He-Pan; Gu, Li-Hu; Wang, Xian-Fa; Yang, Yi

    2017-09-22

    Autophagy and apoptosis are two pivotal mechanisms in mediating cell survival and death. Cross-talk of autophagy and apoptosis has been documented in the tumorigenesis and progression of cancer, while the interplay between the two pathways in colorectal cancer (CRC) has not yet been comprehensively summarized. In this study, we outlined the basis of apoptosis and autophagy machinery firstly, and then reviewed the recent evidence in cellular settings or animal studies regarding the interplay between them in CRC. In addition, several key factors that modulate the cross-talk between autophagy and apoptosis as well as its significance in clinical practice were discussed. Understanding of the interplay between the cell death mechanisms may benefit the translation of CRC treatment from basic research to clinical use.

  14. System-wide Benefits of Intermeal Fasting by Autophagy.

    Science.gov (United States)

    Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E; Schwartz, Gary J; Kersten, Sander; Singh, Rajat

    2017-12-05

    Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  16. The antimalarial drug, Ro 42-1611 (arteflene), does not affect cytoadherence and cytokine-inducing properties of Plasmodium falciparum malaria parasites

    DEFF Research Database (Denmark)

    Jakobsen, P H; Staalsø, T; Bendtzen, K

    1995-01-01

    The purpose of this study was to investigate the ability of the antimalarial drug, Ro 42-1611 to block parasite mediated cytokine induction in vitro as well as cytoadherence of infected erythrocytes to melanoma cells in vitro. The biological activity of Ro 42-1611 was confirmed as it blocked...... to melanoma cells. The therapeutic effect of To 42-1611 appears to be confined to its parasite killing activity....

  17. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    Science.gov (United States)

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

    Science.gov (United States)

    Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2018-06-25

    Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q

  19. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, Rodney, E-mail: rodney.rouse@fda.hhs.gov; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  20. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    International Nuclear Information System (INIS)

    Rouse, Rodney; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-01-01

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment

  1. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  2. Targeting autophagy in cancer management – strategies and developments

    International Nuclear Information System (INIS)

    Ozpolat, Bulent; Benbrook, Doris M

    2015-01-01

    Autophagy is a highly regulated catabolic process involving lysosomal degradation of intracellular components, damaged organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress and protecting cells from damage. The process is also induced in response to various conditions, including nutrient deprivation, metabolic stress, hypoxia, anticancer therapeutics, and radiation therapy to adapt cellular conditions for survival. Autophagy can function as a tumor suppressor mechanism in normal cells and dysregulation of this process (ie, monoallelic Beclin-1 deletion) may lead to malignant transformation and carcinogenesis. In tumors, autophagy is thought to promote tumor growth and progression by helping cells to adapt and survive in metabolically-challenged and harsh tumor microenvironments (ie, hypoxia and acidity). Recent in vitro and in vivo studies in preclinical models suggested that modulation of autophagy can be used as a therapeutic modality to enhance the efficacy of conventional therapies, including chemo and radiation therapy. Currently, more than 30 clinical trials are investigating the effects of autophagy inhibition in combination with cytotoxic chemotherapies and targeted agents in various cancers. In this review, we will discuss the role, molecular mechanism, and regulation of autophagy, while targeting this process as a novel therapeutic modality, in various cancers

  3. p53 represses autophagy in a cell cycle-dependent fashion.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, Maria Chiara; Orhon, Idil; Kepp, Oliver; Morselli, Eugenia; Criollo, Alfredo; Kroemer, Guido

    2008-10-01

    Autophagy is one of the principal mechanisms of cellular defense against nutrient depletion and damage to cytoplasmic organelles. When p53 is inhibited by a pharmacological antagonist (cyclic pifithrin-alpha), depleted by a specific small interfering RNA (siRNA) or deleted by homologous recombination, multiple signs of autophagy are induced. Here, we show by epistatic analysis that p53 inhibition results in a maximum level of autophagy that cannot be further enhanced by a variety of different autophagy inducers including lithium, tunicamycin-induced stress of the endoplasmic reticulum (ER) or inhibition of Bcl-2 and Bcl-X(L) with the BH3 mimetic ABT737. Chemical inducers of autophagy (including rapamycin, lithium, tunicamycin and ABT737) induced rapid depletion of the p53 protein. The absence or the inhibition of p53 caused autophagy mostly in the G(1) phase, less so in the S phase and spares the G(2)/M phase of the cell cycle. The possible pathophysiological implications of these findings are discussed.

  4. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Science.gov (United States)

    Mulakkal, Nitha C.; Nagy, Peter; Takats, Szabolcs; Tusco, Radu; Juhász, Gábor; Nezis, Ioannis P.

    2014-01-01

    The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy. PMID:24949430

  5. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells.

    Science.gov (United States)

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-03-21

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.

  6. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Soto-Burgos, Junmarie; Bassham, Diane C

    2017-01-01

    Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.

  7. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    Science.gov (United States)

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  8. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders.

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-08-03

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.

  9. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  10. Impact of Antidepressants on Cytokine Production of Depressed Patients in Vitro

    Directory of Open Access Journals (Sweden)

    Alexander Munzer

    2013-11-01

    Full Text Available The interplay between immune and nervous systems plays a pivotal role in the pathophysiology of depression. In depressive episodes, patients show increased production of pro-inflammatory cytokines such as interleukin (IL-1β and tumor necrosis factor (TNF-α. There is limited information on the effect of antidepressant drugs on cytokines, most studies report on a limited sample of cytokines and none have reported effects on IL-22. We systematically investigated the effect of three antidepressant drugs, citalopram, escitalopram and mirtazapine, on secretion of cytokines IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22 and TNF-α in a whole blood assay in vitro, using murine anti-human CD3 monoclonal antibody OKT3, and 5C3 monoclonal antibody against CD40, to stimulate T and B cells respectively. Citalopram increased production of IL-1β, IL-6, TNF-α and IL-22. Mirtazapine increased IL-1β, TNF-α and IL-22. Escitalopram decreased IL-17 levels. The influence of antidepressants on IL-2 and IL-4 levels was not significant for all three drugs. Compared to escitalopram, citalopram led to higher levels of IL-1β, IL-6, IL-17 and IL-22; and mirtazapine to higher levels of IL-1β, IL-17, IL-22 and TNF-α. Mirtazapine and citalopram increased IL-22 production. The differing profile of cytokine production may relate to differences in therapeutic effects, risk of relapse and side effects.

  11. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Distinct patterns of autophagy evoked by two benzoxazine derivatives in vascular endothelial cells.

    Science.gov (United States)

    Wang, Li; Dong, ZhiWu; Huang, Bin; Zhao, BaoXiang; Wang, Hua; Zhao, Jing; Kung, HsiangFu; Zhang, ShangLi; Miao, JunYing

    2010-11-01

    Macroautophagy (referred to as autophagy) is an evolutionarily conserved, bulk-destruction process in eukaryotes. During this process, the cytoplasm containing long-lived proteins and organelles is engulfed into double-membrane autophagosomes, and ultimately undergoes enzymatic degradation within lysosomes. Autophagy serves as a prosurvival machinery, or it may contribute to cell death. Accumulating evidence indicates that autophagy is involved in the pathogenesis and intervention of various human diseases. Pharmacological autophagy modulators are arousing interest from biologists and clinical physicians in light of their potential for disease therapy and increasing our understanding of the mechanism of autophagy. In this study, we identified two autophagy enhancers, 6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (ABO) and 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO), in human umbilical vein endothelial cells (HUVEC s) by autophagy assays, and demonstrate that ABO and DBO could stimulate autophagy in an mtor-independent and mtor-dependent manner, respectively; ABO-stimulated autophagy was attributed to the elevation of the Ca2+ channel annexin A7 (ANXA7), whereas DBO's effect was due to the level of intracellular reactive oxygen species (ROS). Importantly, we found that ANXA7 was essential for autophagy induction via modulating the intracellular calcium concentration ([Ca2+]i) in HUVEC s. In summary, our work introduced two distinct autophagy enhancers and highlighted the critical role of ANXA7 in endothelial autophagy.

  13. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    Science.gov (United States)

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  14. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ahrum [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Neufeld, Thomas P. [Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Choe, Joonho, E-mail: jchoe@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  16. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Viren Kumar Govindaraju

    , autophagy-inducing drugs such as cysteamine or fisetin can ameliorate AMD pathogenesis mechanisms that warrant further investigation in pre-clinical murine models.

  17. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Directory of Open Access Journals (Sweden)

    Nitha C. Mulakkal

    2014-01-01

    Full Text Available The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy.

  18. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    Directory of Open Access Journals (Sweden)

    Sovan Sarkar

    2013-12-01

    Full Text Available Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1 disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease.

  19. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  20. Pollination induces autophagy in petunia petals via ethylene.

    Science.gov (United States)

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  1. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt.

    Science.gov (United States)

    Wei, Yunxie; Liu, Wen; Hu, Wei; Liu, Guoyin; Wu, Chunjie; Liu, Wei; Zeng, Hongqiu; He, Chaozu; Shi, Haitao

    2017-08-01

    MaATG8s play important roles in hypersensitive-like cell death and immune response, and autophagy is essential for disease resistance against Foc in banana. Autophagy is responsible for the degradation of damaged cytoplasmic constituents in the lysosomes or vacuoles. Although the effects of autophagy have been extensively revealed in model plants, the possible roles of autophagy-related gene in banana remain unknown. In this study, 32 MaATGs were identified in the draft genome, and the profiles of several MaATGs in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) were also revealled. We found that seven MaATG8s were commonly regulated by Foc. Through transient expression in Nicotiana benthamiana leaves, we highlight the novel roles of MaATG8s in conferring hypersensitive-like cell death, and MaATG8s-mediated hypersensitive response-like cell death is dependent on autophagy. Notablly, autophagy inhibitor 3-methyladenine (3-MA) treatment resulted in decreased disease resistance in response to Foc4, and the effect of 3-MA treatment could be rescued by exogenous salicylic acid, jasmonic acid and ethylene, indicating the involvement of autophagy-mediated plant hormones in banana resistance to Fusarium wilt. Taken together, this study may extend our understanding the putative role of MaATG8s in hypersensitive-like cell death and the essential role of autophagy in immune response against Foc in banana.

  2. Opposite Effects of Two Human ATG10 Isoforms on Replication of a HCV Sub-genomic Replicon Are Mediated via Regulating Autophagy Flux in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yu-Chen Li

    2018-04-01

    Full Text Available Autophagy is a host mechanism for cellular homeostatic control. Intracellular stresses are symptoms of, and responses to, dysregulation of the physiological environment of the cell. Alternative gene transcription splicing is a mechanism potentially used by a host to respond to physiological or pathological challenges. Here, we aimed to confirm opposite effects of two isoforms of the human autophagy-related protein ATG10 on an HCV subgenomic replicon in zebrafish. A liver-specific HCV subreplicon model was established and exhibited several changes in gene expression typically induced by HCV infection, including overexpression of several HCV-dependent genes (argsyn, leugpcr, rasgbd, and scaf-2, as well as overexpression of several ER stress related genes (atf4, chop, atf6, and bip. Autophagy flux was blocked in the HCV model. Our results indicated that the replication of the HCV subreplicon was suppressed via a decrease in autophagosome formation caused by the autophagy inhibitor 3MA, but enhanced via dysfunction in the lysosomal degradation caused by another autophagy inhibitor CQ. Human ATG10, a canonical isoform in autophagy, facilitated the amplification of the HCV-subgenomic replicon via promoting autophagosome formation. ATG10S, a non-canonical short isoform of the ATG10 protein, promoted autophagy flux, leading to lysosomal degradation of the HCV-subgenomic replicon. Human ATG10S may therefore inhibit HCV replication, and may be an appropriate target for future antiviral drug screening.

  3. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    Science.gov (United States)

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  4. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Magdalena Izdebska

    2015-12-01

    Full Text Available Background and objectives: For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. Material and methods: A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope.Results: The obtained data suggested that GTE, even at the highest dose employed (150 μM, was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment.Conclusion: Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  5. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hu, E-mail: austhudong@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Jing, Wu, E-mail: wujing8008@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Runpeng, Zhao; Xuewei, Xu; Min, Mu; Ru, Cai [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Yingru, Xing; Shengfa, Ni [Affiliated Cancer Hospital, Anhui University of Science and Technology (China); Rongbo, Zhang [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China)

    2016-08-19

    In recent years, increasing studies have found that pathogenic Mycobacterium tuberculosis (Mtb) inhibits autophagy, which mediates the anti-mycobacterial response, but the mechanism is not clear. We previously reported that secretory acid phosphatase (SapM) of Mtb can negatively regulate autophagy flux. Recently, another virulence factor of Mtb, early secretory antigenic target 6 (ESAT6), has been found to be involved in inhibiting autophagy, but the mechanism remains unclear. In this study, we show that ESAT6 hampers autophagy flux to boost bacillus Calmette-Guerin (BCG) proliferation and reveals a mechanism by which ESAT6 blocks autophagosome-lysosome fusion in a mammalian target of rapamycin (MTOR)-dependent manner. In both Raw264.7 cells and primary macrophages derived from the murine abdominal cavity (ACM), ESAT6 repressed autophagy flux by interfering with the autophagosome-lysosome fusion, which resulted in an increased load of BCG. Impaired degradation of LC3Ⅱ and SQSTM1 by ESAT6 was related to the upregulated activity of MTOR. Contrarily, inhibiting MTOR with Torin1 removed the ESAT6-induced autophagy block and lysosome dysfunction. Furthermore, in both Raw264.7 and ACM cells, MTOR inhibition significantly suppressed the survival of BCG. In conclusion, our study highlights how ESAT6 blocks autophagy and promotes BCG survival in a way that activates MTOR. - Highlights: • A mechanism for disruping autophagy flux induced by ESAT6. • ESAT6-inhibited autophagy is MTOR-dependent. • ESAT6-boosted BCG is MTOR-dependent.

  6. Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?

    Science.gov (United States)

    Sampaio-Marques, Belém; Felgueiras, Carolina; Silva, Alexandra; Rodrigues, Fernando; Ludovico, Paula

    2011-10-01

    Autophagy, a highly conserved proteolytic mechanism of quality control, is essential for the maintenance of metabolic and cellular homoeostasis and for an efficient cellular response to stress. Autophagy declines with aging and is believed to contribute to different aspects of the aging phenotype. The nutrient-sensing pathways PKA (protein kinase A), Sch9 and TOR (target of rapamycin), involved in the regulation of yeast lifespan, also converge on a common targeted process: autophagy. The molecular mechanisms underlying the regulation of autophagy and aging by these signalling pathways in yeast, with special attention to the TOR pathway, are discussed in the present paper. The question of whether or not autophagy could contribute to yeast cell death occurring during CLS (chronological lifespan) is discussed in the light of our findings obtained after autophagy activation promoted by proteotoxic stress. Autophagy progressively increases in cells expressing the aggregation-prone protein α-synuclein and seems to participate in the early cell death and shortening of CLS under these conditions, highlighting that autophagic activity should be maintained below physiological levels to exert its promising anti-aging effects.

  7. Autophagy is required for stem cell mobilization by G-CSF

    DEFF Research Database (Denmark)

    Leveque-El Mouttie, Lucie; Vu, Therese; Lineburg, Katie E.

    2015-01-01

    Granulocyte colony-stimulating factor (G-CSF) is widely used clinically to prevent neutropenia after cytotoxic chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Autophagy, a process of cytoplasmic component recycling, maintains cellular homeostasis and protects...... the cell during periods of metabolic stress or nutrient deprivation. We have observed that G-CSF activates autophagy in neutrophils and HSCs from both mouse and human donors. Furthermore, G-CSF-induced neutrophil and HSC mobilization is impaired in the absence of autophagy. In contrast, autophagy...... is dispensable for direct HSC mobilization in response to the CXCR4 antagonist AMD3100. Altogether, these data demonstrate an important role for G-CSF in invoking autophagy within hematopoietic and myeloid cells and suggest that this pathway is critical for ensuring cell survival in response to clinically...

  8. MicroRNA regulation of Autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lund, Anders H

    2012-01-01

    recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these small non......RNAs to regulation of the autophagy pathway. This regulation occurs both through specific core pathway components as well as through less well-defined mechanisms. Although this field is still in its infancy, we are beginning to understand the potential implications of these initial findings, both from a pathological...

  9. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  10. Myocardial Autophagy after Severe Burn in Rats

    Science.gov (United States)

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  11. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Zhou, Yan; Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing; Zhong, Hua

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  12. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China); Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing [Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zhong, Hua, E-mail: eddiedong8@hotmail.com [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2016-11-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  13. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    Directory of Open Access Journals (Sweden)

    Mengtao Li

    2016-03-01

    Full Text Available Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

  14. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages

    DEFF Research Database (Denmark)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man

    2018-01-01

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed...... with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes...... have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays...

  15. Induction of autophagy is essential for monocyte-macrophage differentiation

    OpenAIRE

    Zhang, Yan; Morgan, Michael J.; Chen, Kun; Choksi, Swati; Liu, Zheng-gang

    2012-01-01

    Monocytes are programmed to undergo apoptosis in the absence of stimulation. Stimuli that promote monocyte-macrophage differentiation not only cause cellular changes, but also prevent the default apoptosis of monocytes. In the present study, we demonstrate that autophagy is induced when monocytes are triggered to differentiate and that the induction of autophagy is pivotal for the survival and differentiation of monocytes. We also show that inhibition of autophagy results in apoptosis of cell...

  16. IKK connects autophagy to major stress pathways.

    Science.gov (United States)

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-01-01

    Cells respond to stress by activating cytoplasmic mechanisms as well as transcriptional programs that can lead to adaptation or death. Autophagy represents an important cytoprotective response that is regulated by both transcriptional and transcription-independent pathways. NFkappaB is perhaps the transcription factor most frequently activated by stress and has been ascribed with either pro- or anti-autophagic functions, depending on the cellular context. Our results demonstrate that activation of the IKK (IkappaB kinase) complex, which is critical for the stress-elicited activation of NFkappaB, is sufficient to promote autophagy independent of NFkappaB, and that IKK is required for the optimal induction of autophagy by both physiological and pharmacological autophagic triggers.

  17. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation.

    Science.gov (United States)

    Kim, Chang-Ju; Shin, Sang-Hun; Kim, Bok-Joo; Kim, Chul-Hoon; Kim, Jung-Han; Kang, Hae-Mi; Park, Bong-Soo; Kim, In-Ryoung

    2018-01-02

    Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L ., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.

  18. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  19. Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression.

    Science.gov (United States)

    Adachi, Atsuhiro; Koizumi, Michiko; Ohsumi, Yoshinori

    2017-12-01

    Autophagy is a conserved process in which cytoplasmic components are sequestered for degradation in the vacuole/lysosomes in eukaryotic cells. Autophagy is induced under a variety of starvation conditions, such as the depletion of nitrogen, carbon, phosphorus, zinc, and others. However, apart from nitrogen starvation, it remains unclear how these stimuli induce autophagy. In yeast, for example, it remains contentious whether autophagy is induced under carbon starvation conditions, with reports variously suggesting both induction and lack of induction upon depletion of carbon. We therefore undertook an analysis to account for these inconsistencies, concluding that autophagy is induced in response to abrupt carbon starvation when cells are grown with glycerol but not glucose as the carbon source. We found that autophagy under these conditions is mediated by nonselective degradation that is highly dependent on the autophagosome-associated scaffold proteins Atg11 and Atg17. We also found that the extent of carbon starvation-induced autophagy is positively correlated with cells' oxygen consumption rate, drawing a link between autophagy induction and respiratory metabolism. Further biochemical analyses indicated that maintenance of intracellular ATP levels is also required for carbon starvation-induced autophagy and that autophagy plays an important role in cell viability during prolonged carbon starvation. Our findings suggest that carbon starvation-induced autophagy is negatively regulated by carbon catabolite repression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease.

    Science.gov (United States)

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H M; Cassady, John P; Cohen, Malkiel A; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I; Jaenisch, Rudolf

    2013-12-12

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. GOLGA2 loss causes fibrosis with autophagy in the mouse lung and liver.

    Science.gov (United States)

    Park, Sungjin; Kim, Sanghwa; Kim, Min Jung; Hong, Youngeun; Lee, Ah Young; Lee, Hyunji; Tran, Quangdon; Kim, Minhee; Cho, Hyeonjeong; Park, Jisoo; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2018-01-01

    Autophagy is a biological recycling process via the self-digestion of organelles, proteins, and lipids for energy-consuming differentiation and homeostasis. The Golgi serves as a donor of the double-membraned phagophore for autophagosome assembly. In addition, recent studies have demonstrated that pulmonary and hepatic fibrosis is accompanied by autophagy. However, the relationships among Golgi function, autophagy, and fibrosis are unclear. Here, we show that the deletion of GOLGA2, encoding a cis-Golgi protein, induces autophagy with Golgi disruption. The induction of autophagy leads to fibrosis along with the reduction of subcellular lipid storage (lipid droplets and lamellar bodies) by autophagy in the lung and liver. GOLGA2 knockout mice clearly demonstrated fibrosis features such as autophagy-activated cells, densely packed hepatocytes, increase of alveolar macrophages, and decrease of alveolar surfactant lipids (dipalmitoylphosphatidylcholine). Therefore, we confirmed the associations among Golgi function, fibrosis, and autophagy. Moreover, GOLGA2 knockout mice may be a potentially valuable animal model for studying autophagy-induced fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Changes of the immune cells, cytokines and growth hormone in teenager drug addicts].

    Science.gov (United States)

    Kuang, Ying-min; Zhu, Yue-chun; Kuang, Ying; Sun, Yuan; Hua, Chen; He, Wen-yi

    2007-09-01

    To investigate the effect of heroin on the immune function, growth and development in the teenager heroin addicts by measuring their T-lymphocyte subsets, Th1/Th2 cytokines and serum growth hormone. Tlymphocyte subsets of peripheral blood from the teenager heroin addicts were measured by direct microvolume whole blood immunofluorescent staining technique by flow cytometer (FCM). Thl / Th2 cytokines were measured by BD cytometric bead array and serum growth hormone was assayed using the chemiluminescence method in the 20 teenager heroin addicts and 23 healthy teenagers. The levels of CD3(+), CD3(+) + CD4(+), CD3(+) + CD4(+)/CD3(+)+ CD8(+), Th1 cytokines(IL-2, TNF-alpha and IFN-gamma) and Th2 cytokines(IL-4 and IL-10) reduced significantly in the teenager heroin addicts compared with the healthy control group (P teenager heroin addicts was remarkably higher than that in control group (Pteenager heroin addicts. Besides, it can increase the level of serum growth hormone of the teenager heroin addicts.

  3. N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lee

    Full Text Available Chromium hypersensitivity (chromium-induced allergic contact dermatitis is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI can activate the Akt, Nuclear factor κB (NF-κB, and Mitogen-activated protein kinase (MAPK pathways and induce cell death, via the effects of reactive oxygen species (ROS. Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1 (IL-1. However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells and a guinea pig (GP model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression.

  4. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome

    DEFF Research Database (Denmark)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V

    2011-01-01

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy...... independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation...... and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate...

  5. Inhibition of autophagy enhances the cytotoxic effect of PA-MSHA in breast cancer

    International Nuclear Information System (INIS)

    Xu, Wen-Huan; Liu, Zhe-Bin; Hou, Yi-Feng; Hong, Qi; Hu, Da-Li; Shao, Zhi-Ming

    2014-01-01

    PA-MSHA, a genetically engineered Pseudomonas aeruginosa (PA) strain, is currently under investigation as a new anti-cancer drug. It can induce cell cycle arrest and apoptosis in different human cancer cells, including hormone receptor negative breast cancer cells. However, the underlying mechanism of tumor lethality mediated by PA-MSHA remains to be fully investigated. The effect of PA-MSHA on human hormone receptor negative breast cancer cells was analyzed by morphological measurement, western blot, cell proliferation assay and mouse xenograft model. PA-MSHA was found to induce endoplasmic reticulum (ER) stress in breast cancer cell lines through the IRE1 signaling pathway. Inhibiting autophagy potentiated the cytotoxic effect of PA-MSHA while treating breast cancer cell lines. In mouse xenograft model, PA-MSHA produced more pronounced tumor suppression in mice inoculated with IRE1 gene knockdown. MDA-MB-231HM cells. These findings demonstrated inhibiting autophagy together with PA-MSHA might be a promising therapeutic strategy in treating hormone receptor negative breast cancer cells

  6. Preservation of autophagy should not direct nutritional therapy

    NARCIS (Netherlands)

    McClave, S.A.; Weijs, P.J.M.

    2015-01-01

    PURPOSE OF REVIEW: Recent reports in the literature have proposed that forced mandatory feeding should be avoided in the first week of critical illness to preserve autophagy, in order to maximize responses to oxidative stress, preserve organ function, and improve outcomes. RECENT FINDINGS: Autophagy

  7. Autophagy: not good OR bad, but good AND bad.

    Science.gov (United States)

    Altman, Brian J; Rathmell, Jeffrey C

    2009-05-01

    Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful.This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings ingrowth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.

  8. Inhibition of autophagy by TAB2 and TAB3.

    Science.gov (United States)

    Criollo, Alfredo; Niso-Santano, Mireia; Malik, Shoaib Ahmad; Michaud, Mickael; Morselli, Eugenia; Mariño, Guillermo; Lachkar, Sylvie; Arkhipenko, Alexander V; Harper, Francis; Pierron, Gérard; Rain, Jean-Christophe; Ninomiya-Tsuji, Jun; Fuentes, José M; Lavandero, Sergio; Galluzzi, Lorenzo; Maiuri, Maria Chiara; Kroemer, Guido

    2011-11-11

    Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C-terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy-stimulatory 'switch' whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.

  9. Autophagy is required for the activation of NFκB.

    Science.gov (United States)

    Criollo, Alfredo; Chereau, Fanny; Malik, Shoaib Ahmad; Niso-Santano, Mireia; Mariño, Guillermo; Galluzzi, Lorenzo; Maiuri, Maria Chiara; Baud, Véronique; Kroemer, Guido

    2012-01-01

    It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mouse embryonic fibroblasts (MEFs), distinct autophagic triggers, including starvation, mTOR inhibition with rapamycin and p53 inhibition with cyclic pifithrin α lead to the activation of IKK, followed by the phosphorylation-dependent degradation of IκBα and nuclear translocation of NFκB. Remarkably, the NFκB signaling pathway was blocked in MEFs lacking either the essential autophagy genes Atg5 or Atg7. In addition, we found that tumor necrosis factor α (TNFα)-induced NFκB nuclear translocation is abolished in both Atg5- and Atg7-deficient MEFs. Similarly, the depletion of essential autophagy modulators, including ATG5, ATG7, Beclin 1 and VPS34, by RNA interference inhibited TNFα-driven NFκB activation in two human cancer cell lines. In conclusion, it appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways.

  10. Longevity-relevant regulation of autophagy at the level of the acetylproteome

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Morselli, Eugenia; Bennetzen, Martin V

    2011-01-01

    and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension......The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine...

  11. Targeting autophagy in obesity: from pathophysiology to management.

    Science.gov (United States)

    Zhang, Yingmei; Sowers, James R; Ren, Jun

    2018-04-23

    Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.

  12. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    Science.gov (United States)

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Evaluation of a topical herbal drug for its in-vivo immunological effect on cytokines production and antibacterial activity in bovine subclinical mastitis

    Directory of Open Access Journals (Sweden)

    Mukesh Kher

    2017-10-01

    Full Text Available Mastitis is an inflammatory disorder caused by microorganisms. Currently antibiotics have been mainstay of mastitis therapy.However, their use is associated with cost issue and human health concern. Some herbs exert beneficial effects on bacterial pathogens through immunomodulation by influencing cytokine production. To assess the effect of herbs on cytokine profile, total bacterial load and somatic cell count in two breeds of cattle harboring subclinical mastitis. The response to treatment was evaluated by enumerating somatic cell count, total bacterial load and studying the expression of different cytokines (IL-6, IL-8, IL-12, IFN-Ɣ and TNF-α.The expression profiles were carried out using real time PCR, by collecting milk on days 0 as well as 5 and 21 post last treatment and data were analyzed using Statistical analysis system software. Pre and post treatment SCC in mastitic quarters statistically did not differ significantly, however, total bacterial load declined significantly from day 0 onwards in both the breeds. Highly significant differences (P < 0.01 were observed in all the cytokines on day 0, 5, and 21 post last treatments in both the breeds. The comparison between crossbred and Gir cattle revealed a significant difference in expression of IIL-6 and TNF-α. However, other cytokines exhibited a similar pattern of expression in both breeds, which was non-significant. The topical herbal drug exhibited antibacterial and immunomodulatory activities and thus the work supports its use as an alternative to antibiotics against subclinical udder infection in bovines.

  14. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    Science.gov (United States)

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027

  15. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  16. The role of autophagy in microbial infection and immunity

    Directory of Open Access Journals (Sweden)

    Desai M

    2015-01-01

    Full Text Available Mayura Desai,1 Rong Fang,2 Jiaren Sun11Department of Microbiology and Immunology, 2Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USAAbstract: The autophagy pathway represents an evolutionarily conserved cell recycling process that is activated in response to nutrient deprivation and other stress signals. Over the years, it has been linked to an array of cellular functions. Equally, a wide range of cell-intrinsic, as well as extracellular, factors have been implicated in the induction of the autophagy pathway. Microbial infections represent one such factor that can not only activate autophagy through specific mechanisms but also manipulate the response to the invading microbe's advantage. Moreover, in many cases, particularly among viruses, the pathway has been shown to be intricately involved in the replication cycle of the pathogen. Conversely, autophagy also plays a role in combating the infection process, both through direct destruction of the pathogen and as one of the key mediating factors in the host defense mechanisms of innate and adaptive immunity. Further, the pathway also plays a role in controlling the pathogenesis of infectious diseases by regulating inflammation. In this review, we discuss various interactions between pathogens and the cellular autophagic response and summarize the immunological functions of the autophagy pathway.Keywords: autophagy, xenophagy, antiviral, antibacterial

  17. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Directory of Open Access Journals (Sweden)

    Peleg Rider

    2016-01-01

    Full Text Available Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.

  18. Autophagy in the light of sphingolipid metabolism

    DEFF Research Database (Denmark)

    Harvald, Eva Bang; Olsen, Anne Sofie Braun; Færgeman, Nils J.

    2015-01-01

    Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components......, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural...... moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act...

  19. Autophagy and aging--when "all you can eat" is yourself.

    Science.gov (United States)

    Cuervo, Ana Maria

    2003-09-10

    A recent paper provides evidence that macroautophagy is an essential downstream pathway for one of the mutations known to extend life span. Autophagy, or the degradation of intracellular components by the lysosomal system, was thought for a long time to be a catabolic process responsible for cellular cleanup. However, in recent years, we have learned that autophagy comes in different sizes and shapes, macroautophagy being one of them, and that this cellular maid plays many more roles than previously anticipated. Activation of autophagy is essential in physiological processes as diverse as morphogenesis, cellular differentiation, tissue remodeling, and cellular defense, among others. Furthermore, its participation in different pathological conditions, including cancer and neurodegeneration, is presently a subject of intense investigation. A role in aging has now been added to this growing list of autophagy functions. The activity of different forms of autophagy decreases with age, and this reduced function has been blamed for the accumulation of damaged proteins in old organisms. Research such as that covered in this Perspective shows that there is much more than trash to worry about when autophagy is not functioning properly.

  20. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome.

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Kroemer, Guido

    2010-02-03

    Although the essential genes for autophagy (Atg) have been identified, the molecular mechanisms through which Atg proteins control 'self eating' in mammalian cells remain elusive. Beclin 1 (Bec1), the mammalian orthologue of yeast Atg6, is part of the class III phosphatidylinositol 3-kinase (PI3K) complex that induces autophagy. The first among an increasing number of Bec1-interacting proteins that has been identified is the anti-apoptotic protein Bcl-2. The dissociation of Bec1 from Bcl-2 is essential for its autophagic activity, and Bcl-2 only inhibits autophagy when it is present in the endoplasmic reticulum (ER). A paper in this issue of the EMBO Journal has identified a novel protein, NAF-1 (nutrient-deprivation autophagy factor-1), that binds Bcl-2 at the ER. NAF-1 is a component of the inositol-1,4,5 trisphosphate (IP3) receptor complex, which contributes to the interaction of Bcl-2 with Bec1 and is required for Bcl-2 to functionally antagonize Bec1-mediated autophagy. This work provides mechanistic insights into how autophagy- and apoptosis-regulatory molecules crosstalk at the ER.

  1. Autophagy as a Therapeutic Target in Cardiovascular Disease

    Science.gov (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  2. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...... that in response to glucocorticoid administration, induced autophagy aids to maintain proliferation and prevent apoptosis of BMSCs. Thus, it is hypothesized that autophagy may be a novel target in the treatment or prevention of osteoporosis....

  3. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition.

    Directory of Open Access Journals (Sweden)

    Kevin Bray

    Full Text Available mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.

  4. Autophagy regulated by miRNAs in colorectal cancer progression and resistance

    Directory of Open Access Journals (Sweden)

    Andrew Fesler

    2017-01-01

    Full Text Available The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by noncoding miRNAs has been recognized in human cancer. In colorectal cancer, autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.

  5. AMDE-1 is a dual function chemical for autophagy activation and inhibition.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1, triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.

  6. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  7. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-01-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  9. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  10. Knockdown of autophagy enhances innate immune response in hepatitis C virus infected hepatocytes

    Science.gov (United States)

    Shrivastava, Shubham; Raychoudhuri, Amit; Steele, Robert; Ray, Ranjit; Ray, Ratna B.

    2010-01-01

    The role of autophagy in disease pathogenesis following viral infection is beginning to be elucidated. We have previously reported that hepatitis C virus (HCV) infection in hepatocytes induces autophagy. However, the biological significance of HCV induced autophagy has not been clarified. Autophagy has recently been identified as a novel component of innate immune system against viral infection. In the present study, we have shown that knockdown of autophagy related protein Beclin1 or ATG7 in immortalized human hepatocytes (IHH) inhibited HCV growth. Beclin1 or ATG7 knockdown IHH when infected with HCV exhibited an increased expression of IFN-β, OAS-1, IFN-α and IFI27 mRNAs of the interferon signaling pathways as compared to infection of control IHH. Subsequent study demonstrated that HCV infection in autophagy impaired IHH displayed caspase activation, PARP cleavage and apoptotic cell death. Conclusion The disruption of autophagy machinery in HCV infected hepatocytes activated IFN signaling pathway, and induced apoptosis. Together, these results suggest that HCV induced autophagy impairs innate immune response. PMID:21274862

  11. Increased autophagy in placentas of intrauterine growth-restricted pregnancies.

    Directory of Open Access Journals (Sweden)

    Tai-Ho Hung

    Full Text Available Unexplained intrauterine growth restriction (IUGR may be a consequence of placental insufficiency; however, its etiology is not fully understood. We surmised that defective placentation in IUGR dysregulates cellular bioenergic homeostasis, leading to increased autophagy in the villous trophoblast. The aims of this work were (1 to compare the differences in autophagy, p53 expression, and apoptosis between placentas of women with normal or IUGR pregnancies; (2 to study the effects of hypoxia and the role of p53 in regulating trophoblast autophagy; and (3 to investigate the relationship between autophagy and apoptosis in hypoxic trophoblasts.Compared with normal pregnant women, women with IUGR had higher placental levels of autophagy-related proteins LC3B-II, beclin-1, and damage-regulated autophagy modulator (DRAM, with increased p53 and caspase-cleaved cytokeratin 18 (M30. Furthermore, cytotrophoblasts cultured under hypoxia (2% oxygen in the presence or absence of nutlin-3 (a p53 activity stimulator had higher levels of LC3B-II, DRAM, and M30 proteins and increased Bax mRNA expression compared with controls cultured under standard conditions. In contrast, administration of pifithrin-α (a p53 activity inhibitor during hypoxia resulted in protein levels that were similar to those of the control groups. Moreover, cytotrophoblasts transfected with LC3B, beclin-1, or DRAM siRNA had higher levels of M30 compared with the controls under hypoxia. However, transfection with Bcl-2 or Bax siRNA did not cause any significant change in the levels of LC3B-II in hypoxic cytotrophoblasts.Together, these results suggest that there is a crosstalk between autophagy and apoptosis in IUGR and that p53 plays a pivotal and complex role in regulating trophoblast cell turnover in response to hypoxic stress.

  12. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    International Nuclear Information System (INIS)

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-01-01

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects

  13. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  14. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    Science.gov (United States)

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.

  15. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  16. Ghrelin improves vascular autophagy in rats with vascular calcification.

    Science.gov (United States)

    Xu, Mingming; Liu, Lin; Song, Chenfang; Chen, Wei; Gui, Shuyan

    2017-06-15

    This study aimed to investigate whether ghrelin ameliorated vascular calcification (VC) through improving autophagy. VC model was induced by nicotine plus vitamin D 3 in rats and β-glycerophosphate in vascular smooth muscle cell (VSMC). Calcium deposition was detected by von Kossa staining or alizarin red S staining. ALP activity was also detected. Western blot was used to assess the protein expression. Ghrelin treatment attenuated the elevation of calcium deposition and ALP activity in VC model both in vivo and in vitro. Interesting, the protein levels of autophagy markers, LC3 and beclin1 were significantly upregulated by ghrelin in VC model. An autophagy inhibitor, 3-methyladenine blocks the ameliorative effect of ghrelin on VC. Furthermore, protein expressions of phosphate-AMPK were increased by ghrelin treatment both in calcified aorta and VSMC. The effect of ghrelin on autophagy induction and VC attenuation was prevented by AMPK inhibitor, compound C. Our results suggested that ghrelin improved autophagy through AMPK activation, which was resulted in VC amelioration. These data maybe throw light on prevention and therapy of VC. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Till Death Do Us Part: The Marriage of Autophagy and Apoptosis

    Directory of Open Access Journals (Sweden)

    Katrina F. Cooper

    2018-01-01

    Full Text Available Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, it lowers cellular ROS thereby restoring cellular homeostasis. However, if cellular homeostasis cannot be reached, the cells can switch back and choose a regulated cell death response. Intriguingly, the autophagic and cell death machines both respond to the same stresses and share key regulatory proteins, suggesting that the pathways are intricately connected. Here, the intersection between autophagy and apoptosis is discussed with a particular focus on the role ROS plays.

  18. Longevity-relevant regulation of autophagy at the level of the acetylproteome.

    Science.gov (United States)

    Mariño, Guillermo; Morselli, Eugenia; Bennetzen, Martin V; Eisenberg, Tobias; Megalou, Evgenia; Schroeder, Sabrina; Cabrera, Sandra; Bénit, Paule; Rustin, Pierre; Criollo, Alfredo; Kepp, Oliver; Galluzzi, Lorenzo; Shen, Shensi; Malik, Shoaib A; Maiuri, Maria Chiara; Horio, Yoshiyuki; López-Otín, Carlos; Andersen, Jens S; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2011-06-01

    The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension by spermidine. Mass spectrometry analysis of the human acetylproteome revealed that resveratrol and/or spermidine induce changes in the acetylation of 560 peptides corresponding to 375 different proteins. Among these, 170 proteins are part of the recently elucidated human autophagy protein network. Importantly, spermidine and resveratrol frequently affect the acetylation pattern in a similar fashion. In the cytoplasm, spermidine and resveratrol induce convergent protein de-acetylation more frequently than convergent acetylation, while in the nucleus, acetylation is dominantly triggered by both agents. We surmise that subtle and concerted alterations in the acetylproteome regulate autophagy at multiple levels.

  19. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  20. Blue-Print Autophagy: Potential for Cancer Treatment

    OpenAIRE

    Nadia Ruocco; Susan Costantini; Maria Costantini

    2016-01-01

    The marine environment represents a very rich source of biologically active compounds with pharmacological applications. This is due to its chemical richness, which is claiming considerable attention from the health science communities. In this review we give a general overview on the marine natural products involved in stimulation and inhibition of autophagy (a type of programmed cell death) linked to pharmacological and pathological conditions. Autophagy represents a complex multistep cellu...

  1. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies

    Directory of Open Access Journals (Sweden)

    Mansour Haidar

    2017-05-01

    Full Text Available The inherited peripheral neuropathies (IPNs comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer’s, Parkinson’s, and Huntington’s diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.

  2. N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    Science.gov (United States)

    Wang, Bin; Zhong, Shuping; Zheng, Fuchun; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Lu, Binger; Xu, Han; Shi, Ganggang

    2015-09-22

    N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.

  3. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  4. Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway.

    Science.gov (United States)

    Hou, Lei; Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Li, Zixuan; Liu, Jue

    2017-10-03

    An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.

  5. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy.

    Science.gov (United States)

    Kume, Shinji; Koya, Daisuke

    2015-12-01

    Diabetic nephropathy is a leading cause of end stage renal disease and its occurance is increasing worldwide. The most effective treatment strategy for the condition is intensive treatment to strictly control glycemia and blood pressure using renin-angiotensin system inhibitors. However, a fraction of patients still go on to reach end stage renal disease even under such intensive care. New therapeutic targets for diabetic nephropathy are, therefore, urgently needed. Autophagy is a major catabolic pathway by which mammalian cells degrade macromolecules and organelles to maintain intracellular homeostasis. The accumulation of damaged proteins and organelles is associated with the pathogenesis of diabetic nephropathy. Autophagy in the kidney is activated under some stress conditions, such as oxidative stress and hypoxia in proximal tubular cells, and occurs even under normal conditions in podocytes. These and other accumulating findings have led to a hypothesis that autophagy is involved in the pathogenesis of diabetic nephropathy. Here, we review recent findings underpinning this hypothesis and discuss the advantages of targeting autophagy for the treatment of diabetic nephropathy.

  6. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Shinji Kume

    2015-12-01

    Full Text Available Diabetic nephropathy is a leading cause of end stage renal disease and its occurance is increasing worldwide. The most effective treatment strategy for the condition is intensive treatment to strictly control glycemia and blood pressure using renin-angiotensin system inhibitors. However, a fraction of patients still go on to reach end stage renal disease even under such intensive care. New therapeutic targets for diabetic nephropathy are, therefore, urgently needed. Autophagy is a major catabolic pathway by which mammalian cells degrade macromolecules and organelles to maintain intracellular homeostasis. The accumulation of damaged proteins and organelles is associated with the pathogenesis of diabetic nephropathy. Autophagy in the kidney is activated under some stress conditions, such as oxidative stress and hypoxia in proximal tubular cells, and occurs even under normal conditions in podocytes. These and other accumulating findings have led to a hypothesis that autophagy is involved in the pathogenesis of diabetic nephropathy. Here, we review recent findings underpinning this hypothesis and discuss the advantages of targeting autophagy for the treatment of diabetic nephropathy.

  7. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Md. Sahab Uddin

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ, and neurofibrillary tangles (NFTs, composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

  8. The cell on the edge of life and death: Crosstalk between autophagy and apoptosis.

    Science.gov (United States)

    Kasprowska-Liśkiewicz, Daniela

    2017-09-21

    Recently, the crosstalk between autophagy and apoptosis has attracted broader attention. Basal autophagy serves to maintain cell homeostasis, while the upregulation of this process is an element of stress response that enables the cell to survive under adverse conditions. Autophagy may also determine the fate of the cell through its interactions with cell death pathways. The protein networks that control the initiation and the execution phase of these two processes are highly interconnected. Several scenarios for the crosstalk between autophagy and apoptosis exist. In most cases, the activation of autophagy represents an attempt of the cell to cope with stress, and protects the cell from apoptosis or delays its initiation. Generally, the simultaneous activation of pro-survival and pro-death pathways is prevented by the mutual inhibitory crosstalk between autophagy and apoptosis. But in some circumstances, autophagy or the proteins of the core autophagic machinery may promote cellular demise through excessive self-digestion (so-called "autophagic cell death") or by stimulating the activation of other cell death pathways. It is controversial whether cells actually die via autophagy, which is why the term "autophagic cell death" has been under intense debate lately. This review summarizes the recent findings on the multilevel crosstalk between autophagy and apoptosis in aspects of common regulators, mutual inhibition of these processes, the stimulation of apoptosis by autophagy or autophagic proteins and finally the role of autophagy as a death-execution mechanism.

  9. The role of Runx2 in facilitating autophagy in metastatic breast cancer cells.

    Science.gov (United States)

    Tandon, Manish; Othman, Ahmad H; Ashok, Vivek; Stein, Gary S; Pratap, Jitesh

    2018-01-01

    Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. © 2017 Wiley Periodicals, Inc.

  10. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Tanya B. [Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3010 (Australia); Hyde, Jennifer L. [School of Chemical and Biological Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia); Mintern, Justine D. [Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3010 (Australia); Mackenzie, Jason M., E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3010 (Australia)

    2016-05-15

    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes. We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.

  11. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    International Nuclear Information System (INIS)

    O’Donnell, Tanya B.; Hyde, Jennifer L.; Mintern, Justine D.; Mackenzie, Jason M.

    2016-01-01

    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes. We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.

  12. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan; Chen, Zi; He, Bo

    2017-02-01

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found that vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.

  13. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco

    2017-06-13

    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.

  14. Regorafenib delays the proliferation of hepatocellular carcinoma by inducing autophagy.

    Science.gov (United States)

    Han, Rui; Li, Shixin

    2018-04-02

    The aim of the present study was to investigate the effects of regorafenib on hepatocellular carcinoma autophagy, thereby supressing the malignancy of HCC. First, HepG2 and Hep3B cell autophagy was investigated using GFP-LC3 transfection after the treatment of regorafenib. Then, the activation of Akt/mTOR signaling was analyzed using western blot. Our data showed that liver cancer cell autophagy was significantly induced by 20 μM regorafenib using GFP-LC3 transfection. Meanwhile, regorafenib-induced cell death could largely be abolished by 3-MA or CQ treatment, suggesting that regorafenib-induced HepG2 cell death was partially dependent on autophagy. Moreover, the activation of Akt/mTOR signaling was inhibited by regorafenib pre-incubation. MTT assay showed the combination use of regorafenib and CDDP led to a stronger growth inhibitory effect on HepG2 and Hep3B cells. In summary, regorafenib may acts an adjunctive therapy for liver cancer patients via modulating autophagy-dependent cell death even when apoptosis resistance is induced in cancer cells.

  15. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Autophagy response in the liver of pigeon exposed to avermectin.

    Science.gov (United States)

    Wang, Xian-Song; Liu, Ci; Khoso, Pervez Ahmed; Zheng, Weijia; Li, Ming; Li, Shu

    2017-05-01

    Pesticide residues are an important aspect of environmental pollution. Environmental avermectin residues have produced adverse effects in organisms. Many pesticides exert their toxic effects via the mechanism of autophagy. The purpose of this study was to examine the changes in autophagy levels and in autophagy-related genes, including LC3, Beclin 1, Dynein, ATG5, TORC1, and TORC2, resulting from exposure to subchronic levels of AVM in liver tissue in the king pigeon model. We observed abundant autophagic vacuoles with extensively degraded organelles, autophagosomal vacuoles, secondary lysosomes, and double-membrane structures in the liver. The expression levels of the autophagy-related genes LC3-I, LC3-II, Beclin 1, ATG5, and Dynein were up-regulated; however, TORC1 and TORC2 expression levels were down-regulated. These changes occurred in a concentration-dependent manner after AVM exposure for 30, 60, and 90 days in pigeons. Taken together, these results suggested that AVM increased the autophagic flux and that upregulation of autophagy might be closely related to the hepatotoxicity of AVM in birds.

  17. Cytokines as biomarkers of nanoparticle immunotoxicity.

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L

    2013-06-21

    Nanoscale objects, whether of biologic origin or synthetically created, are being developed into devices for a variety of bionanotechnology diagnostic and pharmaceutical applications. However, the potential immunotoxicity of these nanomaterials and mechanisms by which they may induce adverse reactions have not received sufficient attention. Nanomaterials, depending on their characteristics and compositions, can interact with the immune system in several ways and either enhance or suppress immune system function. Cytokines perform pleiotropic functions to mediate and regulate the immune response and are generally recognized as biomarkers of immunotoxicity. While the specificity and validity of certain cytokines as markers of adverse immune response has been established for chemicals, small and macromolecular drugs, research on their applicability for predicting and monitoring the immunotoxicity of engineered nanomaterials is still ongoing. The goal of this review is to provide guidelines as to important cytokines that can be utilized for evaluating the immunotoxicity of nanomaterials and to highlight the role of those cytokines in mediating adverse reactions, which is of particular importance for the clinical development of nanopharmaceuticals and other nanotechnology-based products. Importantly, the rational design of nanomaterials of low immunotoxicity will be discussed, focusing on synthetic nanodevices, with emphasis on both the nanoparticle-forming materials and the embedded cargoes.

  18. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    Science.gov (United States)

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  19. Methods to Monitor and Manipulate TFEB Activity During Autophagy.

    Science.gov (United States)

    Medina, D L; Settembre, C; Ballabio, A

    2017-01-01

    Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions. © 2017 Elsevier Inc. All rights reserved.

  20. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.

    Science.gov (United States)

    Wang, Jinli; Yang, Kun; Zhou, Lin; Minhaowu; Wu, Yongjian; Zhu, Min; Lai, Xiaomin; Chen, Tao; Feng, Lianqiang; Li, Meiyu; Huang, Chunyu; Zhong, Qiu; Huang, Xi

    2013-01-01

    Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7) reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3'-untranslated region of Ras homologue enriched in brain (Rheb), a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment.

  1. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.

    Directory of Open Access Journals (Sweden)

    Jinli Wang

    Full Text Available Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7 reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3'-untranslated region of Ras homologue enriched in brain (Rheb, a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment.

  2. β-Cell Autophagy in Diabetes Pathogenesis.

    Science.gov (United States)

    Marasco, Michelle R; Linnemann, Amelia K

    2018-05-01

    Nearly 100 years have passed since Frederick Banting and Charles Best first discovered and purified insulin. Their discovery and subsequent improvements revolutionized the treatment of diabetes, and the field continues to move at an ever-faster pace with respect to unique treatments for both type 1 and type 2 diabetes. Despite these advances, we still do not fully understand how apoptosis of the insulin-producing β-cells is triggered, presenting a challenge in the development of preventative measures. In recent years, the process of autophagy has generated substantial interest in this realm due to discoveries highlighting its clear role in the maintenance of cellular homeostasis. As a result, the number of studies focused on islet and β-cell autophagy has increased substantially in recent years. In this review, we will discuss what is currently known regarding the role of β-cell autophagy in type 1 and type 2 diabetes pathogenesis, with an emphasis on new and exciting developments over the past 5 years. Further, we will discuss how these discoveries might be translated into unique treatments in the coming years.

  3. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease

    Directory of Open Access Journals (Sweden)

    Fouzi El Magraoui

    2015-10-01

    Full Text Available Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.

  4. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  5. Contribution of autophagy inhibitor to radiation sensitization in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Zhou Zhirui; Zhu Xiaodong; Zhao Wei; Qu song; Pan Wenyan; Guo Ya; Su Fang; Li Xiaoyu

    2012-01-01

    Objective: To investigate the role of autophagy in radiation-induced death response of human nasopharyngeal carcinoma cells. Methods: MTT method was used to detect cell viability of CNE-2 cells in different time after irradiation. Clonogenic survival assay was used to evaluate the effect of autophagy inhibitor (chloroquine phosphate) and autophagy inductor (rapamycin) on radiosensitivity of nasopharyngeal carcinoma cells.Cell apoptosis was assessed by flow cytometry. The expressions of LC3 and P62 were measured with Western blot. Cell ultrastructural analysis was performed under an electron microscope.Results Irradiation with 10 Gy induced a massive accumulation of autophagosomes accompanied with up-regulation of LC3-Ⅱ expression in CNE-2 cells. Compared with radiation alone, chloroquine phosphate (CDP) enhanced radiosensitivity significantly by decreasing cell viability (F=25.88, P<0.05), autophagic ratio (F=105.15, P<0.05), and LC3-Ⅱ protein level (F=231.68, P<0.05), while up-regulating the expression of P62 (F=117.52, P<0.05). Inhibition of autophagy increased radiation-induced apoptosis (F=143.72, P<0.05). Rapamycin (RAPA) also significantly decreased cell viability, but increased autophagic ratio and LC3-Ⅱ protein level while down-regulated the expression of P62. Induction of autophagy increased radiation-induced apoptosis (F=167.32, P<0.05). Conclusions: Blockage of autophagy with CDP could enhance radiosensitivity in human nasopharyngeal carcinoma cells, suggesting that inhibition of autophagy could be used as an adjuvant treatment to nasopharyngeal carcinoma. (authors)

  6. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction.

    Science.gov (United States)

    Zhou, Ao; Li, Shuaifeng; Khan, Faheem Ahmed; Zhang, Shujun

    2016-01-01

    Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex.

  7. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Gorman, Adrienne M; Samali, Afshin

    2013-07-01

    Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR.

  8. Cytokine expression and signaling in drug-induced cellular senescence

    Czech Academy of Sciences Publication Activity Database

    Nováková, Zora; Hubáčková, Soňa; Košař, Martin; Janderová-Rossmeislová, Lenka; Dobrovolná, Jana; Vašicová, Pavla; Vančurová, Markéta; Hořejší, Zuzana; Hozák, Pavel; Bartek, Jiří; Hodný, Zdeněk

    2010-01-01

    Roč. 29, č. 2 (2010), s. 273-284 ISSN 0950-9232 R&D Projects: GA AV ČR IAA500390501; GA ČR GA204/08/1418; GA MŠk LC545 Grant - others:EC(XE) TRIREME Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50200510 Keywords : cellular senescence * cytokines * JAK/STAT signaling pathway Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.414, year: 2010

  9. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells.

    Science.gov (United States)

    Lin, Ji-Fan; Lin, Yi-Chia; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-01-01

    Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC). Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines. Human BC cells (5637 and T24) were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3)-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL) formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1), chloroquine (CQ), and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12) were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation. Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose-and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of cisplatin toward BC cells. These results indicated that cisplatin induced protective autophagy which may contribute to the development of cisplatin resistance and resulted in treatment failure. Mechanistically, upregulation of beclin-1 (BECN1) was detected in cisplatin-treated cells, and knockdown of BECN1 using shRNA attenuated cisplatin-induced autophagy and subsequently enhanced cisplatin-induced apoptosis. Collectively, the study results

  10. Characterization of early autophagy signaling by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer Tg; Zarei, Mostafa; Sprenger, Adrian

    2014-01-01

    . To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon...... revealing regulated phosphorylation sites on proteins involved in a wide range of cellular processes and an impact of the treatments on the kinome. To approach the potential function of the identified phosphorylation sites we performed a screen for MAP1LC3-interacting proteins and identified a group...... induction of autophagy with both treatments affecting widely different cellular processes. The identification of dynamic phosphorylation already after 2 min demonstrates that the earliest events in autophagy signaling occur rapidly after induction. The data was subjected to extensive bioinformatics analysis...

  11. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin.

    Science.gov (United States)

    Li, Na; Zhang, Wei

    2017-04-28

    Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells. © 2017 The Author(s).

  12. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    Science.gov (United States)

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  13. Induction of autophagy by spermidine promotes longevity.

    Science.gov (United States)

    Eisenberg, Tobias; Knauer, Heide; Schauer, Alexandra; Büttner, Sabrina; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Ring, Julia; Schroeder, Sabrina; Magnes, Christoph; Antonacci, Lucia; Fussi, Heike; Deszcz, Luiza; Hartl, Regina; Schraml, Elisabeth; Criollo, Alfredo; Megalou, Evgenia; Weiskopf, Daniela; Laun, Peter; Heeren, Gino; Breitenbach, Michael; Grubeck-Loebenstein, Beatrix; Herker, Eva; Fahrenkrog, Birthe; Fröhlich, Kai-Uwe; Sinner, Frank; Tavernarakis, Nektarios; Minois, Nadege; Kroemer, Guido; Madeo, Frank

    2009-11-01

    Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.

  14. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis.

    Science.gov (United States)

    Wen, Fu-ping; Guo, Yue-shuai; Hu, Yang; Liu, Wei-xiao; Wang, Qian; Wang, Yuan-ting; Yu, Hai-Yan; Tang, Chao-ming; Yang, Jun; Zhou, Tao; Xie, Zhi-ping; Sha, Jia-hao; Guo, Xuejiang; Li, Wei

    2016-01-01

    Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions.

  15. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer

    Science.gov (United States)

    Liu, Guangbo; Pei, Fen; Yang, Fengqing; Li, Lingxiao; Amin, Amit Dipak; Liu, Songnian; Buchan, J. Ross; Cho, William C.

    2017-01-01

    Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics. PMID:28208579

  16. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons.

    Science.gov (United States)

    Li, Peng; Hao, Lei; Guo, Yan-Yan; Yang, Guang-Lu; Mei, Hua; Li, Xiao-Hua; Zhai, Qiong-Xiang

    2018-06-01

    Mitochondrial dysfunction (MD) and apoptosis in the neurons are associated with neonatal hypoxic-ischemic (HI) encephalopathy (HIE). The present study was to explore the influence of autophagy on the induction of MD and apoptosis in the neurons in a neonatal HIE rats and in hypoxia-treated neurons in vitro. Ten-day-old HI rat pups were sacrificed for brain pathological examination and immunohistochemical analysis. The induction of autophagy, apoptosis and MD were also determined in the neurons under hypoxia, with or without autophagy inhibitor, chloroquine (CQ) treatment. HI treatment caused atrophy and apoptosis of neurons, with a significantly increased levels of apoptosis- and autophagy-associated proteins, such as cleaved caspase 3 and the B subunit of autophagy-related microtubule-associated protein 1 light chain 3 (LC3-B). in vitro experiments demonstrated that the hypoxia induced autophagy in neurons, as was inhibited by CQ. The hypoxia-induced cytochrome c release, cleaved caspase 3 and cleaved caspase 9 were aggravated by CQ. Moreover, there were higher levels of reactive oxygen species, more mitochondrial superoxide and less mitochondrial membrane potential in the CQ-treated neurons under hypoxia than in the neurons singularly under hypoxia. Apoptosis and autophagy were induced in HI neonatal rat neurons, autophagy inhibition deteriorates the hypoxia-induced neuron MD and apoptosis. It implies a neuroprotection of autophagy in the hypoxic-ischemic encephalopathy. Administration of autophagy inducer agents might be promising in HIE treatment. Copyright © 2018. Published by Elsevier Inc.

  17. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Guo, Chang-Ying; Goto, Shinji; Urata, Yoshishige; Shao, Jiang-Hua; Li, Tao-Sheng

    2017-03-01

    Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133 + /CD44 + CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Shivaprasad H. Venkatesha

    2014-12-01

    Full Text Available Cytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ, tumor necrosis factor α (TNFα, interleukin-6 (IL-6, and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA. For example, the neutralization of TNFα, either by engineered anti-cytokine antibodies or by soluble cytokine receptors as decoys, has proven successful in the treatment of RA. The activity of pro-inflammatory cytokines can also be downregulated either by using specific siRNA to inhibit the expression of a particular cytokine or by using small molecule inhibitors of cytokine signaling. Furthermore, the use of anti-inflammatory cytokines or cytokine antagonists delivered via gene therapy has proven to be an effective approach to regulate autoimmunity. Unexpectedly, under certain conditions, TNFα, IFN-γ, and few other cytokines can display anti-inflammatory activities. Increasing awareness of this phenomenon might help develop appropriate regimens to harness or avoid this effect. Furthermore, the relatively newer cytokines such as IL-32, IL-34 and IL-35 are being investigated for their potential role in the pathogenesis and treatment of arthritis.

  19. Autophagy regulates the stemness of cervical cancer stem cells

    Directory of Open Access Journals (Sweden)

    Yang Y

    2017-06-01

    Full Text Available Yi Yang,1,2 Li Yu,1 Jin Li,1 Ya Hong Yuan,1 Xiao Li Wang,1 Shi Rong Yan,1 Dong Sheng Li,1 Yan Ding1 1Hubei Key Laboratory of Embryonic Stem Cell Research, 2Reproductive Center, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China Abstract: Cancer stem cells (CSCs are a rare population of multipotent cells with the capacity to self-renew. It has been reported that there are CSCs in cervical cancer cells. Pluripotency-associated (PA transcription factors such as Oct4, Sox2, Nanog and CD44 have been used to isolate CSCs subpopulations. In this study, we showed that autophagy plays an important role in the biological behavior of cervical cancer cells. The expression of the autophagy protein Beclin 1 and LC3B was higher in tumorspheres established from human cervical cancers cell lines (and CaSki than in the parental adherent cells. It was also observed that the basal and starvation-induced autophagy flux was higher in tumorspheres than in the bulk population. Autophagy could regulate the expression level of PA proteins in cervical CSCs. In addition, CRISPR/Cas 9-mediated Beclin 1 knockout enhanced the malignancy of HeLa cells, leading to accumulation of PA proteins and promoted tumorsphere formation. Our findings suggest that autophagy modulates homeostasis of PA proteins, and Beclin 1 is critical for CSC maintenance and tumor development in nude mice. This demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance. Keywords: cervical cancer, autophagy, cancer stem cell, LC3, Oct4

  20. Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol

    International Nuclear Information System (INIS)

    Solhaug, A.; Torgersen, M.L.; Holme, J.A.; Lagadic-Gossmann, D.; Eriksen, G.S.

    2014-01-01

    Highlights: • AOH induces autophagy, lamellar bodies and senescence in RAW264.7 macrophages. • DNA damage is suggested as a triggering signal. • The Sestrin2-AMPK-mTOR-S6K pathway is proposed to link DNA damage to autophagy. - Abstract: The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway

  1. The life span-prolonging effect of sirtuin-1 is mediated by autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Maiuri, Maria Chiara; Markaki, Maria; Megalou, Evgenia; Pasparaki, Angela; Palikaras, Konstantinos; Criollo, Alfredo; Galluzzi, Lorenzo; Malik, Shoaib Ahmad; Vitale, Ilio; Michaud, Mickael; Madeo, Frank; Tavernarakis, Nektarios; Kroemer, Guido

    2010-01-01

    The life span of various model organisms can be extended by caloric restriction as well as by autophagy-inducing pharmacological agents. Life span-prolonging effects have also been observed in yeast cells, nematodes and flies upon the overexpression of the deacetylase Sirtuin-1. Intrigued by these observations and by the established link between caloric restriction and Sirtuin-1 activation, we decided to investigate the putative implication of Sirtuin-1 in the response of human cancer cells and Caenorhabditis elegans to multiple triggers of autophagy. Our data indicate that the activation of Sirtuin-1 (by the pharmacological agent resveratrol and/or genetic means) per se ignites autophagy, and that Sirtuin-1 is required for the autophagic response to nutrient deprivation, in both human and nematode cells, but not for autophagy triggered by downstream signals such as the inhibition of mTOR or p53. Since the life spanextending effects of Sirtuin-1 activators are lost in autophagy-deficient C. elegans, our results suggest that caloric restriction and resveratrol extend longevity, at least in experimental settings, by activating autophagy.

  2. FKBP5/FKBP51 enhances autophagy to synergize with antidepressant action

    Science.gov (United States)

    Gassen, Nils C; Hartmann, Jakob; Schmidt, Mathias V; Rein, Theo

    2015-01-01

    Levels of autophagy markers rise upon treatment of cells with antidepressants. However, it was not known whether this phenomenon might be linked to other antidepressant pathways or to any physiological effect. In this punctum, we summarize and discuss our recent findings that provide evidence for a role of the cochaperone FKBP5/FKBP51 (FK506 binding protein 5) in autophagy as a prerequisite for antidepressant action in cells, mice, and humans. FKBP5 associates with BECN1, changes its phosphorylation and protein levels and enhances markers of autophagy and autophagic flux. The effects of antidepressants on autophagy as well as their physiological effects in mice and human depend on FKBP5. PMID:25714272

  3. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    Science.gov (United States)

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation.

    Science.gov (United States)

    Lavieu, Grégory; Scarlatti, Francesca; Sala, Giusy; Carpentier, Stéphane; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2006-03-31

    The sphingolipid ceramide induces macroautophagy (here called autophagy) and cell death with autophagic features in cancer cells. Here we show that overexpression of sphingosine kinase 1 (SK1), an enzyme responsible for the production of sphingosine 1-phosphate (S1P), in MCF-7 cells stimulates autophagy by increasing the formation of LC3-positive autophagosomes and the rate of proteolysis sensitive to the autophagy inhibitor 3-methyladenine. Autophagy was blocked in the presence of dimethylsphingosine, an inhibitor of SK activity, and in cells expressing a catalytically inactive form of SK1. In SK1(wt)-overexpressing cells, however, autophagy was not sensitive to fumonisin B1, an inhibitor of ceramide synthase. In contrast to ceramide-induced autophagy, SK1(S1P)-induced autophagy is characterized by (i) the inhibition of mammalian target of rapamycin signaling independently of the Akt/protein kinase B signaling arm and (ii) the lack of robust accumulation of the autophagy protein Beclin 1. In addition, nutrient starvation induced both the stimulation of autophagy and SK activity. Knocking down the expression of the autophagy protein Atg7 or that of SK1 by siRNA abolished starvation-induced autophagy and increased cell death with apoptotic hallmarks. In conclusion, these results show that SK1(S1P)-induced autophagy protects cells from death with apoptotic features during nutrient starvation.

  5. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  6. Inhibiting ROS-TFEB-Dependent Autophagy Enhances Salidroside-Induced Apoptosis in Human Chondrosarcoma Cells.

    Science.gov (United States)

    Zeng, Wei; Xiao, Tao; Cai, Anlie; Cai, Weiliang; Liu, Huanhuan; Liu, Jingling; Li, Jie; Tan, Miduo; Xie, Li; Liu, Ying; Yang, Xiangcheng; Long, Yi

    2017-01-01

    Autophagy modulation has been considered a potential therapeutic strategy for human chondrosarcoma, and a previous study indicated that salidroside exhibits significant anti-carcinogenic activity. However, the ability of salidroside to induce autophagy and its role in human chondrosarcoma cell death remains unclear. We exposed SW1353 cells to different concentrations of salidroside (0.5, 1 and 2 mM) for 24 h. RT-PCR, Western-blotting, Immunocytofluorescence, and Luciferase Reporter Assays were used to evaluate whether salidroside activated the TFEB-dependent autophagy. We show that salidroside induced significant apoptosis in the human chondrosarcoma cell line SW1353. In addition, we demonstrate that salidroside-induced an autophagic response in SW1353 cells, as evidenced by the upregulation of LC3-II and downregulation of P62. Moreover, pharmacological or genetic blocking of autophagy enhanced salidroside -induced apoptosis, indicating the cytoprotective role of autophagy in salidroside-treated SW1353 cells. Salidroside also induced TFEB (Ser142) dephosphorylation, subsequently to activated TFEB nuclear translocation and increase of TFEB reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes. Importantly, we found that salidroside triggered the generation of ROS in SW1353 cells. Furthermore, NAC, a ROS scavenger, abrogated the effects of salidroside on TFEB-dependent autophagy. These data demonstrate that salidroside increased TFEB-dependent autophagy by activating ROS signaling pathways in human chondrosarcoma cells. These data also suggest that blocking ROS-TFEB-dependent autophagy to enhance the activity of salidroside warrants further attention in treatment of human chondrosarcoma cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    NARCIS (Netherlands)

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34(+) AML cells with a large variability in basal autophagy between AMLs observed. The autophagy

  8. Interplay between cell cycle and autophagy induced by boswellic acid analog

    Science.gov (United States)

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  9. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    The lysosome was identified by Christian de Duve in the 1950s as a membrane bound organelle in thecell that contains degradative enzymes such as proteases, lipases, acid phosphatases, etc. (de Duve, 2005).The term autophagy was coined by Christian de Duve in 1963. Autophagy generally occurs at low level, butit ...

  10. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  11. Dysregulation of Autophagy Contributes to Anal Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Evie H Carchman

    Full Text Available Autophagy is an intracellular catabolic process that removes and recycles unnecessary/dysfunctional cellular components, contributing to cellular health and survival. Autophagy is a highly regulated cellular process that responds to several intracellular signals, many of which are deregulated by human papillomavirus (HPV infection through the expression of HPV-encoded oncoproteins. This adaptive inhibitory response helps prevent viral clearance. A strong correlation remains between HPV infection and the development of squamous cell carcinoma (SCC of the anus, particularly in HIV positive and other immunosuppressed patients. We hypothesize that autophagy is inhibited by HPV-encoded oncoproteins thereby promoting anal carcinogenesis (Fig 1.HPV16 transgenic mice (K14E6/E7 and non-transgenic mice (FVB/N, both of which do not spontaneously develop anal tumors, were treated topically with the chemical carcinogen, 7,12-Dimethylbenz[a]anthracene (DMBA, to induce anal cancer. The anuses at different time points of treatment (5, 10, 15 and 20 weeks were analyzed using immunofluorescence (IF for two key autophagy marker proteins (LC3β and p62 in addition to histological grading. The anuses from the K14E6/E7 mice were also analyzed for visual evidence of autophagic activity by electron microscopy (EM. To see if there was a correlation to humans, archival anal specimens were assessed histologically for grade of dysplasia and then analyzed for LC3β and p62 protein content. To more directly examine the effect of autophagic inhibition on anal carcinogenesis, nontransgenic mice that do not develop anal cancer with DMBA treatment were treated with a known pharmacologic inhibitor of autophagy, chloroquine, and examined for tumor development and analyzed by IF for autophagic proteins.Histologically, we observed the progression of normal anoderm to invasive SCC with DMBA treatment in K14E6/E7 mice but not in nontransgenic, syngeneic FVB/N background control mice

  12. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    Directory of Open Access Journals (Sweden)

    Lim Chuan

    2012-07-01

    Full Text Available Abstract Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show

  13. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    International Nuclear Information System (INIS)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna; Yang, Hanchun; Hu, Hongbo

    2012-01-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/β-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome–lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  14. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Yang, Hanchun, E-mail: yanghanchun1@cau.edu.cn [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Hu, Hongbo, E-mail: hongbo@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing (China)

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  15. Can short-term administration of dexamethasone abrogate radiation-induced acute cytokine gene response in lung and modify subsequent molecular responses?

    International Nuclear Information System (INIS)

    Hong, J.-H.; Chiang, C.-S.; Tsao, C.-Y.; Lin, P.-Y.; Wu, C.-J.; McBride, William H.

    2001-01-01

    Purpose: To investigate the effects of short-term administration of dexamethasone (DEX) on radiation-induced responses in the mouse lung, focusing on expression of pro-inflammatory cytokine and related genes. Methods and Materials: At indicated times after thoracic irradiation and/or drug treatment, mRNA expression levels of cytokines (mTNF-α, mIL-1α, mIL-1β, mIL-2, mIL-3, mIL-4, mIL-5, mIL-6, mIFN-γ) and related genes in the lungs of C3H/HeN mice were measured by RNase protection assay. Results: Radiation-induced pro-inflammatory cytokine mRNA expression levels in lung peak at 6 h after thoracic irradiation. DEX (5 mg/kg) suppresses both basal cytokine mRNA levels and this early response when given immediately after irradiation. However, by 24 h, in mice treated with DEX alone or DEX plus radiation, there was a strong rebound effect that lasted up to 3 days. Modification of the early radiation-induced response by DEX did not change the second wave of cytokine gene expression in the lung that occurs at 1 to 2 weeks, suggesting that early cytokine gene induction might not determine subsequent molecular events. A single dose of DEX attenuated, but did not completely suppress, increases in cytokine mRNA levels induced by lipopolysaccharide (2.5 mg/kg) treatment, but, unlike with radiation, no significant rebound effect was seen. Five days of dexamethasone treatment in the pneumonitic phase also inhibited pro-inflammatory cytokine gene expression and, again, there was a rebound effect after withdrawal of the drug. Conclusions: Our findings suggest that short-term use of dexamethasone can temporarily suppress radiation-induced pro-inflammatory cytokine gene expression, but there may be a rebound after drug withdrawal and the drug does little to change the essence and course of the pneumonitic process

  16. Research progress of hydroxychloroquine and autophagy inhibitors on cancer.

    Science.gov (United States)

    Shi, Ting-Ting; Yu, Xiao-Xu; Yan, Li-Jun; Xiao, Hong-Tao

    2017-02-01

    Hydroxychloroquine (HCQ), the analog of chloroquine, augments the effect of chemotherapies and radiotherapy on various tumors identified in the current clinical trials. Meanwhile, the toxicity of HCQ retinopathy raises concern worldwide. Thus, the potent autophagy inhibitors are urgently needed. A systematic review was related to 'hydroxychloroquine' or 'chloroquine' with 'clinical trials,' 'retinopathy' and 'new autophagy inhibitors.' This led to many cross-references involving HCQ, and these data have been incorporated into the following study. Many preclinical studies indicate that the combination of HCQ with chemotherapies or radiotherapies may enhance the effect of anticancer, providing base for launching cancer clinical trials involving HCQ. The new and more sensitive diagnostic techniques report a prevalence of HCQ retinopathy up to 7.5%. Lys05, SAR405, verteporfin, VATG-027, mefloquine and spautin-1 may be potent autophagy inhibitors. Additional mechanistic studies of HCQ in preclinical models are still required in order to answer these questions whether HCQ actually inhibits autophagy in non-selective tumors and whether the extent of inhibition would be sufficient to alter chemotherapy or radiotherapy sensitivity.

  17. Autophagy Therapeutic Potential of Garlic in Human Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yung-Lin Chu

    2013-07-01

    Full Text Available Cancer is one of the deadliest diseases against humans. To tackle this menace, humans have developed several high-technology therapies, such as chemotherapy, tomotherapy, targeted therapy, and antibody therapy. However, all these therapies have their own adverse side effects. Therefore, recent years have seen increased attention being given to the natural food for complementary therapy, which have less side effects. Garlic 大 蒜 Dà Suàn; Allium sativum, is one of most powerful food used in many of the civilizations for both culinary and medicinal purpose. In general, these foods induce cancer cell death by apoptosis, autophagy, or necrosis. Studies have discussed how natural food factors regulate cell survival or death by autophagy in cancer cells. From many literature reviews, garlic could not only induce apoptosis but also autophagy in cancer cells. Autophagy, which is called type-II programmed cell death, provides new strategy in cancer therapy. In conclusion, we wish that garlic could be the pioneer food of complementary therapy in clinical cancer treatment and increase the life quality of cancer patients.

  18. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    LENUS (Irish Health Repository)

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  19. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  20. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    Science.gov (United States)

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  1. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.

    Directory of Open Access Journals (Sweden)

    Michael Degtyarev

    Full Text Available Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication, takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.

  2. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder.

    Science.gov (United States)

    Alcocer-Gómez, Elísabet; Casas-Barquero, Nieves; Williams, Matthew R; Romero-Guillena, Samuel L; Cañadas-Lozano, Diego; Bullón, Pedro; Sánchez-Alcazar, José Antonio; Navarro-Pando, José M; Cordero, Mario D

    2017-07-01

    Major Depressive Disorder (MDD, ICD-10: F-33) is a prevalent illness in which the pathogenic mechanism remains elusive. Recently an important role has been attributed to neuro-inflammation, and specifically the NLRP3-inflammasome complex, in the pathogenesis of MDD. This suggests a key role for immunomodulation as a key pathway in the treatment of this disorder. This study evaluates the involvement of nine common antidepressants in the NLRP3-inflammasome complex (fluoxetine, paroxetine, mianserin, mirtazapine, venlafaxine, desvenlafaxine, amitriptyline, imipramine and agomelatine), both in in vitro THP-1 cells stimulated by ATP, and in a stress-induced depressive animal or MDD patients. Antidepressant treatment induced inflammasome inhibition was observed by decreased serum levels of IL-1β and IL-18 and decrease of NLRP3 and IL-1β (p17) protein expression. This was also observed under stress-induced depressive behaviour and inflammasome activation in C57Bl/6 mice in vivo. Deletion of key autophagy mediator Atg5 in embryonic fibroblasts (MEF cells) showed an autophagy dependent-NLRP3-inflammasome inhibition by antidepressant treatment. These results suggest the NLRP3-inflammasome could be a biomarker for antidepressant treatment response in MDD patients, and therefore the monitoring of NLRP3 expression levels and/or IL-1β/IL-18 release may have clinical value in drug selection. Existing evidence suggests an anti-inflammatory effect of some antidepressants shown by IL-1β, IL-6 and TNF-α. Our data have shown that antidepressant-mediated autophagy may have a role in restoration of certain metabolic and immunological pathways in MDD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  4. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    International Nuclear Information System (INIS)

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-01-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK

  5. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling.

    Science.gov (United States)

    Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A

    2016-04-01

    Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    Science.gov (United States)

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Shock Wave Therapy Promotes Cardiomyocyte Autophagy and Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    Ling Du

    2017-06-01

    Full Text Available Background: Autophagy plays an important role in cardiovascular disease. Controversy still exists regarding the effect of autophagy on ischemic/hypoxic myocardium. Cardiac shock wave therapy (CSWT is an effective alternative treatment for refractory ischemic heart disease. Whether CSWT can regulate cardiomyocyte autophagy under hypoxic conditions is not clear. We established a myocardial hypoxia model using the H9c2 cell line and performed shock waves (SWs treatment to evaluate the effect of SW on autophagy. Methods: The H9c2 cells were incubated under hypoxic conditions, and SW treatment was then performed at energies of 0.02, 0.05, or 0.10 mJ/mm2. The cell viability and intracellular ATP level were examined. Western blot analysis was used to assess the expression of LC3B, AMPK, mTOR, Beclin-1, Sirt1, and HIF-1α. Autophagic vacuoles were visualized by monodansylcadaverine staining. Results: After the 24-hour hypoxic period, cardiomyocyte viability and ATP levels were decreased and autophagy was significantly increased in H9c2 cells. SW treatment with an energy of 0.05 mJ/mm2 significantly increased the cellular viability, ATP level, LC3B-II/I, and number of autophagic vacuoles. In addition, phosphorylated AMPK and Sirt1 were increased and phosphorylated mTOR and HIF-1α were decreased after SW treatment. Conclusion: SW treatment can potentially promote cardiomyocyte autophagy during hypoxia and protect cardiomyocyte function by regulating the AMPK/mTOR pathway.

  8. Tuning flux: autophagy as a target of heart disease therapy

    Science.gov (United States)

    Xie, Min; Morales, Cyndi R.; Lavandero, Sergio; Hill, Joseph A.

    2013-01-01

    Purpose of review Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. Recent findings In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of ‘optimal’ autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that ‘sweet spot’ range for therapeutic benefit. Summary Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure. PMID:21415729

  9. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.

    Science.gov (United States)

    Aris, John P; Alvers, Ashley L; Ferraiuolo, Roy A; Fishwick, Laura K; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T; Losin, Kyle J; Marraffini, Michelle; Seo, Arnold Y; Swanberg, Veronica; Westcott, Jennifer L; Wood, Michael S; Leeuwenburgh, Christiaan; Dunn, William A

    2013-10-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway.

    Science.gov (United States)

    Guo, Haiqing; Lin, Wei; Zhang, Xiangying; Zhang, Xiaohui; Hu, Zhongjie; Li, Liying; Duan, Zhongping; Zhang, Jing; Ren, Feng

    2017-10-10

    Kaempferol is a flavonoid compound that has gained widespread attention due to its antitumor functions. However, the underlying mechanisms are still not clear. The present study investigated the effect of kaempferol on hepatocellular carcinoma and its underlying mechanisms. Kaempferol induced autophagy in a concentration- and time-dependent manner in HepG2 or Huh7 cells, which was evidenced by the significant increase of autophagy-related genes. Inhibition of autophagy pathway, through 3-methyladenine or Atg7 siRNA, strongly diminished kaempferol-induced apoptosis. We further hypothesized that kaempferol can induce autophagy via endoplasmic reticulum (ER) stress pathway. Indeed, blocking ER stress by 4-phenyl butyric acid (4-PBA) or knockdown of CCAAT/enhancer-binding protein homologous protein (CHOP) with siRNA alleviated kaempferol-induced HepG2 or Huh7 cells autophagy; while transfection with plasmid overexpressing CHOP reversed the effect of 4-PBA on kaempferol-induced autophagy. Our results demonstrated that kaempferol induced hepatocarcinoma cell death via ER stress and CHOP-autophagy signaling pathway; kaempferol may be used as a potential chemopreventive agent for patients with hepatocellular carcinoma.

  11. Effect of limb demand ischemia on autophagy and morphology in mice.

    Science.gov (United States)

    Albadawi, Hassan; Oklu, Rahmi; Milner, John D; Uong, Thuy P; Yoo, Hyung-Jin; Austen, William G; Watkins, Michael T

    2015-10-01

    Obesity is a major risk factor for diabetes and peripheral arterial disease, which frequently leads to lower limb demand ischemia. Skeletal muscle autophagy and mitochondrial biogenesis are important processes for proper oxidative capacity and energy metabolism, which are compromised in diabetes. This study compares autophagy, mitochondrial biogenesis, energy metabolism, and morphology in the hind limbs of obese diabetic mice subjected to demand or sedentary ischemia. Unilateral hind limb demand ischemia was created in a group of diet-induced obese mice after femoral artery ligation and 4 wk of daily exercise. A parallel group of mice underwent femoral artery ligation but remained sedentary for 4 wk. Hind limb muscles were analyzed for markers of autophagy, mitochondrial biogenesis, adenosine triphosphate, and muscle tissue morphology. At the end of the 4-wk exercise period, demand ischemia increased the autophagy mediator Beclin-1, but it did not alter the autophagy indicator, LC3B-II/I ratio, or markers of mitochondrial biogenesis, optic atrophy/dynamin-related protein. In contrast, exercise significantly increased the level of mitochondrial protein-succinate dehydrogenase subunit-A and reduced adipocyte accumulation and the percentage of centrally nucleated myofibers in the demand ischemia limb. In addition, demand ischemia resulted in decreased uncoupling protein-3 levels without altering muscle adenosine triphosphate or pS473-Akt levels. Limb demand ischemia markedly decreased adipocyte accumulation and enhanced muscle regeneration in obese mice, but it did not appear to enhance autophagy, mitochondrial biogenesis, energy metabolism, or insulin sensitivity. Future studies aimed at evaluating novel therapies that enhance autophagy and mitochondrial biogenesis in diabetes with peripheral arterial disease are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Autophagy and its effects: making sense of double-edged swords.

    Science.gov (United States)

    Thorburn, Andrew

    2014-10-01

    Autophagy is the mechanism by which cellular material is delivered to lysosomes and degraded. This process has become a major focus of biological and biomedical research with thousands of papers published each year and rapidly growing appreciation that autophagy affects many normal and pathological processes. However, as we learn more about this evolutionarily ancient process, we are discovering that autophagy's effects may work for both the good and the bad of an organism. Here, I discuss some of these context-dependent findings and how, as we make sense of them, we can try to apply our knowledge for practical purposes.

  13. Autophagy and its effects: making sense of double-edged swords.

    Directory of Open Access Journals (Sweden)

    Andrew Thorburn

    2014-10-01

    Full Text Available Autophagy is the mechanism by which cellular material is delivered to lysosomes and degraded. This process has become a major focus of biological and biomedical research with thousands of papers published each year and rapidly growing appreciation that autophagy affects many normal and pathological processes. However, as we learn more about this evolutionarily ancient process, we are discovering that autophagy's effects may work for both the good and the bad of an organism. Here, I discuss some of these context-dependent findings and how, as we make sense of them, we can try to apply our knowledge for practical purposes.

  14. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  15. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of cytokine-suppressive anti-inflammatory drugs on inflammatory activation in ex vivo human and ovine fetal membranes.

    Science.gov (United States)

    Stinson, Lisa F; Ireland, Demelza J; Kemp, Matthew W; Payne, Matthew S; Stock, Sarah J; Newnham, John P; Keelan, Jeffrey A

    2014-03-01

    Intrauterine infection and inflammation are responsible for the majority of early (PTBs). Anti-inflammatory agents, delivered intra-amniotically together with antibiotics, may be an effective strategy for preventing PTB. In this study, the effects of four cytokine-suppressive anti-inflammatory drugs (CSAIDs: N-acetyl cysteine (NAC), SB239063, TPCA-1 and NEMO binding domain inhibitor (NBDI)) were assessed on human and ovine gestational membrane inflammation. Full-thickness membranes were collected from healthy, term, human placentas delivered by Caesarean section (n=5). Using a Transwell model, they were stimulated ex vivo with γ-irradiation-killed Escherichia coli applied to the amniotic face. Membranes from near-term, ovine placentas were stimulated in utero with lipopolysaccharide, Ureaplasma parvum or saline control and subjected to explant culture. The effects of treatment with CSAIDs or vehicle (1% DMSO) on accumulation of PGE2 and cytokines (human interleukin 6 (IL6), IL10 and TNFα; ovine IL8 (oIL8)) were assessed in conditioned media at various time points (3-20  h). In human membranes, the IKKβ inhibitor TPCA-1 (7  μM) and p38 MAPK inhibitor SB239063 (20  μM) administered to the amniotic compartment were the most effective in inhibiting accumulation of cytokines and PGE2 in the fetal compartment. NAC (10  mM) inhibited accumulation of PGE2 and IL10 only; NBDI (10  μM) had no significant effect. In addition to the fetal compartment, SB239063 also exerted consistent and significant inhibitory effects in the maternal compartment. TPCA-1 and SB239063 suppressed oIL8 production, while all CSAIDs tested suppressed ovine PGE2 production. These results support the further investigation of intra-amniotically delivered CSAIDs for the prevention of inflammation-mediated PTB.

  17. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Berlinda Verdoodt

    Full Text Available BACKGROUND: Salinomycin is a polyether ionophore antibiotic that has recently been shown to induce cell death in human cancer cells displaying multiple mechanisms of drug resistance. The underlying mechanisms leading to cell death after salinomycin treatment have not been well characterized. We therefore investigated the role of salinomycin in caspase dependent and independent cell death in colon cancer (SW480, SW620, RKO and breast cancer cell lines (MCF-7, T47D, MDA-MB-453. METHODOLOGY/PRINCIPAL FINDINGS: We detected features of apoptosis in all cell lines tested, but the executor caspases 3 and 7 were only strongly activated in RKO and MDA-MB-453 cells. MCF-7 and SW620 cells instead presented features of autophagy such as cytoplasmic vacuolization and LC3 processing. Caspase proficient cell lines activated autophagy at lower salinomycin concentrations and before the onset of caspase activation. Salinomycin also led to the formation of reactive oxygen species (ROS eliciting JNK activation and induction of the transcription factor JUN. Salinomycin mediated cell death could be partially inhibited by the free radical scavenger N-acetyl-cysteine, implicating ROS formation in the mechanism of salinomycin toxicity. CONCLUSIONS: Our data indicate that, in addition to its previously reported induction of caspase dependent apoptosis, the initiation of autophagy is an important and early effect of salinomycin in tumor cells.

  18. Chrysin Attenuates Cell Viability of Human Colorectal Cancer Cells through Autophagy Induction Unlike 5-Fluorouracil/Oxaliplatin.

    Science.gov (United States)

    Lin, Yueh-Ming; Chen, Chih-I; Hsiang, Yi-Ping; Hsu, Yung-Chia; Cheng, Kung-Chuan; Chien, Pei-Hsuan; Pan, Hsiao-Lin; Lu, Chien-Chang; Chen, Yun-Ju

    2018-06-14

    Chemotherapeutic 5-fluorouracil (5-FU) combined with oxaliplatin is often used as the standard treatment for colorectal cancer (CRC). The disturbing side effects and drug resistance commonly observed in chemotherapy motivate us to develop alternative optimal therapeutic options for CRC treatment. Chrysin, a natural and biologically active flavonoid abundant in propolis, is reported to have antitumor effects on a few CRCs. However, whether and how chrysin achieves similar effectiveness to the 5-FU combination is not clear. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), western blotting, fluorescence microscopy, and reactive oxygen species (ROS) production were assayed. We found that chrysin exhibited similar inhibition of cell viability as the 5-FU combination in a panel of human CRC cells. Furthermore, the results showed that chrysin significantly increased the levels of LC3-II, an autophagy-related marker, in CRC cells, which was not observed with the 5-FU combination. More importantly, blockage of autophagy induction restored chrysin-attenuated CRC cell viability. Further mechanistic analysis revealed that chrysin, not the 5-FU combination, induced ROS generation, and in turn, inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR). Collectively, these results imply that chrysin may be a potential replacement for the 5-FU and oxaliplatin combination to achieve antitumor activity through autophagy for CRC treatment in the future.

  19. Autophagy: one more Nobel Prize for yeast

    Directory of Open Access Journals (Sweden)

    Andreas Zimmermann

    2016-12-01

    Full Text Available The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  20. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    Science.gov (United States)

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  1. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.

    Science.gov (United States)

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-08-28

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.

  2. Quiltophagy--autophagy as folk art.

    Science.gov (United States)

    Crumrine, Barbara M; Klionsky, Daniel J

    2015-01-01

    Over the years macroautophagy (hereafter autophagy) has been depicted artistically through painting, music, dance, videos, and poetry. A unifying idea behind these different aesthetic approaches is that people learn in different ways. Thus, some learners may be engaged by a detailed, but static, painting, whereas others may find insight through the dynamic visualization provided by a dance. While each of these formats has advantages, they also have a common weakness--whether delivered through watercolor on a canvas, words on a paper, or movement captured in a video, they are all 2-dimensional. Yet, some people are tactile learners. In this paper, a quilter describes a project she created with the goal of demonstrating autophagy using a 3-dimensional approach, in which different fiber textures could be used to elaborate certain parts of the process.

  3. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Lin JF

    2017-05-01

    Full Text Available Ji-Fan Lin,1 Yi-Chia Lin,2 Te-Fu Tsai,2,3 Hung-En Chen,2 Kuang-Yu Chou,2,3 Thomas I-Sheng Hwang2–4 1Central Laboratory, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 2Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, 3Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, 4Department of Urology, Taipei Medical University, Taipei, Taiwan Purpose: Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC. Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines.Materials and methods: Human BC cells (5637 and T24 were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1, chloroquine (CQ, and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12 were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation.Results: Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose- and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of

  4. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  5. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.

    Science.gov (United States)

    Shin, Daiha; Kim, Eun Hye; Lee, Jaewang; Roh, Jong-Lyel

    2017-10-01

    Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53-MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual

  6. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  7. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance

    OpenAIRE

    Kaushik, Susmita; Rodriguez-Navarro, Jose Antonio; Arias, Esperanza; Kiffin, Roberta; Sahu, Srabani; Schwartz, Gary J.; Cuervo, Ana Maria; Singh, Rajat

    2011-01-01

    Macroautophagy is a lysosomal degradative pathway that maintains cellular homeostasis by turning over cellular components. Here, we demonstrate a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in the regulation of food intake and energy balance. We show that starvation-induced hypothalamic autophagy mobilizes neuron-intrinsic lipids to generate endogenous free fatty acids, which in turn regulate AgRP levels. The functional consequences of inhibiting autophagy are the...

  8. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  9. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad

    2018-03-01

    Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.

  10. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  11. Mitofusin 2 Exerts a Protective Role in Ischemia Reperfusion Injury Through Increasing Autophagy

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2018-05-01

    Full Text Available Background/Aims: Autophagy is essential for maintaining cellular homeostasis and the survival of terminally differentiated cells as neurons. In this study, we aim to investigate whether mitofusin 2, a mitochondrial fusion protein, mediates autophagy in cerebral ischemia/reperfusion (I/R injury. Methods: Primary cultured neurons were treated with oxygen-glucose deprivation/reperfusion to mimic cerebral I/R injury in vitro. Autophagosomes were visualized upon TEM. Autophagy-markers were then detected to monitor autophagy by western-blot and real-time PCR, and the autophagic flux was tracked with a mRFP-GFP-LC3 construct by fluorescence as well as autophagy inhibitors and agonists. The up- and downregulation of Mfn2 were through transfecting a lentivirusexpression vector respectively. And neuronal injury was detected by cell counting kit and TUNEL assay. Results: Results showed I/R increased autophagosome formation and inhibited autolysosome degradation. Furthermore, use of autophagy related agents demonstrated that I/R injury was caused by insufficient autophagy and aggravated by impaired autophagic degradation. The results also indicated that mitofusin 2 could ameliorate I/R injury through increasing autophagosome formation and promoting the fusion of autophagosomes and lysosomes. In contrast, downregulation of mitofusin 2 aggravated the I/R injury by inhibiting autophagosome formation and the fusion of autophagosomes and lysosomes. Additionly, mitofusin 2 overexpression did not lead to autolysosome accumulation induced by I/R. Conclusions: In summary, this study explicitly demonstrated that mitofusin 2 could ameliorate I/R injury mainly through promoting autophagy, which represented a potential novel strategy for neuroprotection against cerebral I/R damage.

  12. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2008-02-01

    Full Text Available In many organisms, dietary restriction appears to extend lifespan, at least in part, by down-regulating the nutrient-sensor TOR (Target Of Rapamycin. TOR inhibition elicits autophagy, the large-scale recycling of cytoplasmic macromolecules and organelles. In this study, we asked whether autophagy might contribute to the lifespan extension induced by dietary restriction in C. elegans. We find that dietary restriction and TOR inhibition produce an autophagic phenotype and that inhibiting genes required for autophagy prevents dietary restriction and TOR inhibition from extending lifespan. The longevity response to dietary restriction in C. elegans requires the PHA-4 transcription factor. We find that the autophagic response to dietary restriction also requires PHA-4 activity, indicating that autophagy is a transcriptionally regulated response to food limitation. In spite of the rejuvenating effect that autophagy is predicted to have on cells, our findings suggest that autophagy is not sufficient to extend lifespan. Long-lived daf-2 insulin/IGF-1 receptor mutants require both autophagy and the transcription factor DAF-16/FOXO for their longevity, but we find that autophagy takes place in the absence of DAF-16. Perhaps autophagy is not sufficient for lifespan extension because although it provides raw material for new macromolecular synthesis, DAF-16/FOXO must program the cells to recycle this raw material into cell-protective longevity proteins.

  13. Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease.

    Science.gov (United States)

    Ehrnhoefer, Dagmar E; Martin, Dale D O; Schmidt, Mandi E; Qiu, Xiaofan; Ladha, Safia; Caron, Nicholas S; Skotte, Niels H; Nguyen, Yen T N; Vaid, Kuljeet; Southwell, Amber L; Engemann, Sabine; Franciosi, Sonia; Hayden, Michael R

    2018-03-06

    Huntington disease (HD) is caused by the expression of mutant huntingtin (mHTT) bearing a polyglutamine expansion. In HD, mHTT accumulation is accompanied by a dysfunction in basal autophagy, which manifests as specific defects in cargo loading during selective autophagy. Here we show that the expression of mHTT resistant to proteolysis at the caspase cleavage site D586 (C6R mHTT) increases autophagy, which may be due to its increased binding to the autophagy adapter p62. This is accompanied by faster degradation of C6R mHTT in vitro and a lack of mHTT accumulation the C6R mouse model with age. These findings may explain the previously observed neuroprotective properties of C6R mHTT. As the C6R mutation cannot be easily translated into a therapeutic approach, we show that a scheduled feeding paradigm is sufficient to lower mHTT levels in YAC128 mice expressing cleavable mHTT. This is consistent with a previous model, where the presence of cleavable mHTT impairs basal autophagy, while fasting-induced autophagy remains functional. In HD, mHTT clearance and autophagy may become increasingly impaired as a function of age and disease stage, because of gradually increased activity of mHTT-processing enzymes. Our findings imply that mHTT clearance could be enhanced by a regulated dietary schedule that promotes autophagy.

  14. Crosstalk between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Abdelouahid El-Khattouti

    2013-01-01

    Full Text Available Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches.

  15. Autophagy mediates cytotoxicity of human colorectal cancer cells treated with garcinielliptone FC.

    Science.gov (United States)

    Won, Shen-Jeu; Yen, Cheng-Hsin; Lin, Ting-Yu; Jiang-Shieh, Ya-Fen; Lin, Chun-Nan; Chen, Jyun-Ti; Su, Chun-Li

    2018-01-01

    The tautomeric pair of garcinielliptone FC (GFC) is a novel tautomeric pair of polyprenyl benzophenonoid isolated from the pericarps of Garcinia subelliptica Merr. (G. subelliptica, Clusiaceae), a tree with abundant sources of polyphenols. Our previous report demonstrated that GFC induced apoptosis on various types of human cancer cell lines including chemoresistant human colorectal cancer HT-29 cells. In the present study, we observed that many autophagy-related genes in GFC-treated HT-29 cells were up- and down-regulated using a cDNA microarray containing oncogenes and kinase genes. GFC-induced autophagy of HT-29 cells was confirmed by observing the formation of acidic vesicular organelles, LC3 puncta, and double-membrane autophagic vesicles using flow cytometry, confocal microscopy, and transmission electron microscopy, respectively. Inhibition of AKT/mTOR/P70S6K signaling as well as formation of Atg5-Atg12 and PI3K/Beclin-1 complexes were observed using Western blot. Administration of autophagy inhibitor (3-methyladenine and shRNA Atg5) and apoptosis inhibitor Z-VAD showed that the GFC-induced autophagy was cytotoxic form and GFC-induced apoptosis enhanced GFC-induced autophagy. Our data suggest the involvement of autophagy and apoptosis in GFC-induced anticancer mechanisms of human colorectal cancer. © 2017 Wiley Periodicals, Inc.

  16. Modulation of Cytokine Production by Drugs with Antiepileptic or Mood Stabilizer Properties in Anti-CD3- and Anti-CD40-Stimulated Blood In Vitro

    Directory of Open Access Journals (Sweden)

    Hubertus Himmerich

    2014-01-01

    Full Text Available Increased cytokine production possibly due to oxidative stress has repeatedly been shown to play a pivotal role in the pathophysiology of epilepsy and bipolar disorder. Recent in vitro and animal studies of valproic acid (VPA report antioxidative and anti-inflammatory properties, and suppression of interleukin (IL-6 and tumor necrosis factor (TNF-α. We tested the effect of drugs with antiepileptic or mood stabilizer properties, namely, primidone (PRM, carbamazepine (CBZ, levetiracetam (LEV, lamotrigine (LTG, VPA, oxcarbazepine (OXC, topiramate (TPM, phenobarbital (PB, and lithium on the production of the following cytokines in vitro: interleukin (IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22, and TNF-α. We performed a whole blood assay with stimulated blood of 14 healthy female subjects. Anti-human CD3 monoclonal antibody OKT3, combined with 5C3 antibody against CD40, was used as stimulant. We found a significant reduction of IL-1 and IL-2 levels with all tested drugs other than lithium in the CD3/5C3-stimulated blood; VPA led to a decrease in IL-1β, IL-2, IL-4, IL-6, IL-17, and TNF-α production, which substantiates and adds knowledge to current hypotheses on VPA’s anti-inflammatory properties.

  17. Guidelines for the use and interpretation of assays for monitoring autophagy.

    Science.gov (United States)

    Klionsky, Daniel J; Abdalla, Fabio C; Abeliovich, Hagai; Abraham, Robert T; Acevedo-Arozena, Abraham; Adeli, Khosrow; Agholme, Lotta; Agnello, Maria; Agostinis, Patrizia; Aguirre-Ghiso, Julio A; Ahn, Hyung Jun; Ait-Mohamed, Ouardia; Ait-Si-Ali, Slimane; Akematsu, Takahiko; Akira, Shizuo; Al-Younes, Hesham M; Al-Zeer, Munir A; Albert, Matthew L; Albin, Roger L; Alegre-Abarrategui, Javier; Aleo, Maria Francesca; Alirezaei, Mehrdad; Almasan, Alexandru; Almonte-Becerril, Maylin; Amano, Atsuo; Amaravadi, Ravi; Amarnath, Shoba; Amer, Amal O; Andrieu-Abadie, Nathalie; Anantharam, Vellareddy; Ann, David K; Anoopkumar-Dukie, Shailendra; Aoki, Hiroshi; Apostolova, Nadezda; Arancia, Giuseppe; Aris, John P; Asanuma, Katsuhiko; Asare, Nana Y O; Ashida, Hisashi; Askanas, Valerie; Askew, David S; Auberger, Patrick; Baba, Misuzu; Backues, Steven K; Baehrecke, Eric H; Bahr, Ben A; Bai, Xue-Yuan; Bailly, Yannick; Baiocchi, Robert; Baldini, Giulia; Balduini, Walter; Ballabio, Andrea; Bamber, Bruce A; Bampton, Edward T W; Bánhegyi, Gábor; Bartholomew, Clinton R; Bassham, Diane C; Bast, Robert C; Batoko, Henri; Bay, Boon-Huat; Beau, Isabelle; Béchet, Daniel M; Begley, Thomas J; Behl, Christian; Behrends, Christian; Bekri, Soumeya; Bellaire, Bryan; Bendall, Linda J; Benetti, Luca; Berliocchi, Laura; Bernardi, Henri; Bernassola, Francesca; Besteiro, Sébastien; Bhatia-Kissova, Ingrid; Bi, Xiaoning; Biard-Piechaczyk, Martine; Blum, Janice S; Boise, Lawrence H; Bonaldo, Paolo; Boone, David L; Bornhauser, Beat C; Bortoluci, Karina R; Bossis, Ioannis; Bost, Frédéric; Bourquin, Jean-Pierre; Boya, Patricia; Boyer-Guittaut, Michaël; Bozhkov, Peter V; Brady, Nathan R; Brancolini, Claudio; Brech, Andreas; Brenman, Jay E; Brennand, Ana; Bresnick, Emery H; Brest, Patrick; Bridges, Dave; Bristol, Molly L; Brookes, Paul S; Brown, Eric J; Brumell, John H; Brunetti-Pierri, Nicola; Brunk, Ulf T; Bulman, Dennis E; Bultman, Scott J; Bultynck, Geert; Burbulla, Lena F; Bursch, Wilfried; Butchar, Jonathan P; Buzgariu, Wanda; Bydlowski, Sergio P; Cadwell, Ken; Cahová, Monika; Cai, Dongsheng; Cai, Jiyang; Cai, Qian; Calabretta, Bruno; Calvo-Garrido, Javier; Camougrand, Nadine; Campanella, Michelangelo; Campos-Salinas, Jenny; Candi, Eleonora; Cao, Lizhi; Caplan, Allan B; Carding, Simon R; Cardoso, Sandra M; Carew, Jennifer S; Carlin, Cathleen R; Carmignac, Virginie; Carneiro, Leticia A M; Carra, Serena; Caruso, Rosario A; Casari, Giorgio; Casas, Caty; Castino, Roberta; Cebollero, Eduardo; Cecconi, Francesco; Celli, Jean; Chaachouay, Hassan; Chae, Han-Jung; Chai, Chee-Yin; Chan, David C; Chan, Edmond Y; Chang, Raymond Chuen-Chung; Che, Chi-Ming; Chen, Ching-Chow; Chen, Guang-Chao; Chen, Guo-Qiang; Chen, Min; Chen, Quan; Chen, Steve S-L; Chen, WenLi; Chen, Xi; Chen, Xiangmei; Chen, Xiequn; Chen, Ye-Guang; Chen, Yingyu; Chen, Yongqiang; Chen, Yu-Jen; Chen, Zhixiang; Cheng, Alan; Cheng, Christopher H K; Cheng, Yan; Cheong, Heesun; Cheong, Jae-Ho; Cherry, Sara; Chess-Williams, Russ; Cheung, Zelda H; Chevet, Eric; Chiang, Hui-Ling; Chiarelli, Roberto; Chiba, Tomoki; Chin, Lih-Shen; Chiou, Shih-Hwa; Chisari, Francis V; Cho, Chi Hin; Cho, Dong-Hyung; Choi, Augustine M K; Choi, DooSeok; Choi, Kyeong Sook; Choi, Mary E; Chouaib, Salem; Choubey, Divaker; Choubey, Vinay; Chu, Charleen T; Chuang, Tsung-Hsien; Chueh, Sheau-Huei; Chun, Taehoon; Chwae, Yong-Joon; Chye, Mee-Len; Ciarcia, Roberto; Ciriolo, Maria R; Clague, Michael J; Clark, Robert S B; Clarke, Peter G H; Clarke, Robert; Codogno, Patrice; Coller, Hilary A; Colombo, María I; Comincini, Sergio; Condello, Maria; Condorelli, Fabrizio; Cookson, Mark R; Coombs, Graham H; Coppens, Isabelle; Corbalan, Ramon; Cossart, Pascale; Costelli, Paola; Costes, Safia; Coto-Montes, Ana; Couve, Eduardo; Coxon, Fraser P; Cregg, James M; Crespo, José L; Cronjé, Marianne J; Cuervo, Ana Maria; Cullen, Joseph J; Czaja, Mark J; D'Amelio, Marcello; Darfeuille-Michaud, Arlette; Davids, Lester M; Davies, Faith E; De Felici, Massimo; de Groot, John F; de Haan, Cornelis A M; De Martino, Luisa; De Milito, Angelo; De Tata, Vincenzo; Debnath, Jayanta; Degterev, Alexei; Dehay, Benjamin; Delbridge, Lea M D; Demarchi, Francesca; Deng, Yi Zhen; Dengjel, Jörn; Dent, Paul; Denton, Donna; Deretic, Vojo; Desai, Shyamal D; Devenish, Rodney J; Di Gioacchino, Mario; Di Paolo, Gilbert; Di Pietro, Chiara; Díaz-Araya, Guillermo; Díaz-Laviada, Inés; Diaz-Meco, Maria T; Diaz-Nido, Javier; Dikic, Ivan; Dinesh-Kumar, Savithramma P; Ding, Wen-Xing; Distelhorst, Clark W; Diwan, Abhinav; Djavaheri-Mergny, Mojgan; Dokudovskaya, Svetlana; Dong, Zheng; Dorsey, Frank C; Dosenko, Victor; Dowling, James J; Doxsey, Stephen; Dreux, Marlène; Drew, Mark E; Duan, Qiuhong; Duchosal, Michel A; Duff, Karen; Dugail, Isabelle; Durbeej, Madeleine; Duszenko, Michael; Edelstein, Charles L; Edinger, Aimee L; Egea, Gustavo; Eichinger, Ludwig; Eissa, N Tony; Ekmekcioglu, Suhendan; El-Deiry, Wafik S; Elazar, Zvulun; Elgendy, Mohamed; Ellerby, Lisa M; Eng, Kai Er; Engelbrecht, Anna-Mart; Engelender, Simone; Erenpreisa, Jekaterina; Escalante, Ricardo; Esclatine, Audrey; Eskelinen, Eeva-Liisa; Espert, Lucile; Espina, Virginia; Fan, Huizhou; Fan, Jia; Fan, Qi-Wen; Fan, Zhen; Fang, Shengyun; Fang, Yongqi; Fanto, Manolis; Fanzani, Alessandro; Farkas, Thomas; Farré, Jean-Claude; Faure, Mathias; Fechheimer, Marcus; Feng, Carl G; Feng, Jian; Feng, Qili; Feng, Youji; Fésüs, László; Feuer, Ralph; Figueiredo-Pereira, Maria E; Fimia, Gian Maria; Fingar, Diane C; Finkbeiner, Steven; Finkel, Toren; Finley, Kim D; Fiorito, Filomena; Fisher, Edward A; Fisher, Paul B; Flajolet, Marc; Florez-McClure, Maria L; Florio, Salvatore; Fon, Edward A; Fornai, Francesco; Fortunato, Franco; Fotedar, Rati; Fowler, Daniel H; Fox, Howard S; Franco, Rodrigo; Frankel, Lisa B; Fransen, Marc; Fuentes, José M; Fueyo, Juan; Fujii, Jun; Fujisaki, Kozo; Fujita, Eriko; Fukuda, Mitsunori; Furukawa, Ruth H; Gaestel, Matthias; Gailly, Philippe; Gajewska, Malgorzata; Galliot, Brigitte; Galy, Vincent; Ganesh, Subramaniam; Ganetzky, Barry; Ganley, Ian G; Gao, Fen-Biao; Gao, George F; Gao, Jinming; Garcia, Lorena; Garcia-Manero, Guillermo; Garcia-Marcos, Mikel; Garmyn, Marjan; Gartel, Andrei L; Gatti, Evelina; Gautel, Mathias; Gawriluk, Thomas R; Gegg, Matthew E; Geng, Jiefei; Germain, Marc; Gestwicki, Jason E; Gewirtz, David A; Ghavami, Saeid; Ghosh, Pradipta; Giammarioli, Anna M; Giatromanolaki, Alexandra N; Gibson, Spencer B; Gilkerson, Robert W; Ginger, Michael L; Ginsberg, Henry N; Golab, Jakub; Goligorsky, Michael S; Golstein, Pierre; Gomez-Manzano, Candelaria; Goncu, Ebru; Gongora, Céline; Gonzalez, Claudio D; Gonzalez, Ramon; González-Estévez, Cristina; González-Polo, Rosa Ana; Gonzalez-Rey, Elena; Gorbunov, Nikolai V; Gorski, Sharon; Goruppi, Sandro; Gottlieb, Roberta A; Gozuacik, Devrim; Granato, Giovanna Elvira; Grant, Gary D; Green, Kim N; Gregorc, Aleš; Gros, Frédéric; Grose, Charles; Grunt, Thomas W; Gual, Philippe; Guan, Jun-Lin; Guan, Kun-Liang; Guichard, Sylvie M; Gukovskaya, Anna S; Gukovsky, Ilya; Gunst, Jan; Gustafsson, Asa B; Halayko, Andrew J; Hale, Amber N; Halonen, Sandra K; Hamasaki, Maho; Han, Feng; Han, Ting; Hancock, Michael K; Hansen, Malene; Harada, Hisashi; Harada, Masaru; Hardt, Stefan E; Harper, J Wade; Harris, Adrian L; Harris, James; Harris, Steven D; Hashimoto, Makoto; Haspel, Jeffrey A; Hayashi, Shin-ichiro; Hazelhurst, Lori A; He, Congcong; He, You-Wen; Hébert, Marie-Joseé; Heidenreich, Kim A; Helfrich, Miep H; Helgason, Gudmundur V; Henske, Elizabeth P; Herman, Brian; Herman, Paul K; Hetz, Claudio; Hilfiker, Sabine; Hill, Joseph A; Hocking, Lynne J; Hofman, Paul; Hofmann, Thomas G; Höhfeld, Jörg; Holyoake, Tessa L; Hong, Ming-Huang; Hood, David A; Hotamisligil, Gökhan S; Houwerzijl, Ewout J; Høyer-Hansen, Maria; Hu, Bingren; Hu, Chien-An A; Hu, Hong-Ming; Hua, Ya; Huang, Canhua; Huang, Ju; Huang, Shengbing; Huang, Wei-Pang; Huber, Tobias B; Huh, Won-Ki; Hung, Tai-Ho; Hupp, Ted R; Hur, Gang Min; Hurley, James B; Hussain, Sabah N A; Hussey, Patrick J; Hwang, Jung Jin; Hwang, Seungmin; Ichihara, Atsuhiro; Ilkhanizadeh, Shirin; Inoki, Ken; Into, Takeshi; Iovane, Valentina; Iovanna, Juan L; Ip, Nancy Y; Isaka, Yoshitaka; Ishida, Hiroyuki; Isidoro, Ciro; Isobe, Ken-ichi; Iwasaki, Akiko; Izquierdo, Marta; Izumi, Yotaro; Jaakkola, Panu M; Jäättelä, Marja; Jackson, George R; Jackson, William T; Janji, Bassam; Jendrach, Marina; Jeon, Ju-Hong; Jeung, Eui-Bae; Jiang, Hong; Jiang, Hongchi; Jiang, Jean X; Jiang, Ming; Jiang, Qing; Jiang, Xuejun; Jiang, Xuejun; Jiménez, Alberto; Jin, Meiyan; Jin, Shengkan; Joe, Cheol O; Johansen, Terje; Johnson, Daniel E; Johnson, Gail V W; Jones, Nicola L; Joseph, Bertrand; Joseph, Suresh K; Joubert, Annie M; Juhász, Gábor; Juillerat-Jeanneret, Lucienne; Jung, Chang Hwa; Jung, Yong-Keun; Kaarniranta, Kai; Kaasik, Allen; Kabuta, Tomohiro; Kadowaki, Motoni; Kagedal, Katarina; Kamada, Yoshiaki; Kaminskyy, Vitaliy O; Kampinga, Harm H; Kanamori, Hiromitsu; Kang, Chanhee; Kang, Khong Bee; Kang, Kwang Il; Kang, Rui; Kang, Yoon-A; Kanki, Tomotake; Kanneganti, Thirumala-Devi; Kanno, Haruo; Kanthasamy, Anumantha G; Kanthasamy, Arthi; Karantza, Vassiliki; Kaushal, Gur P; Kaushik, Susmita; Kawazoe, Yoshinori; Ke, Po-Yuan; Kehrl, John H; Kelekar, Ameeta; Kerkhoff, Claus; Kessel, David H; Khalil, Hany; Kiel, Jan A K W; Kiger, Amy A; Kihara, Akio; Kim, Deok Ryong; Kim, Do-Hyung; Kim, Dong-Hou; Kim, Eun-Kyoung; Kim, Hyung-Ryong; Kim, Jae-Sung; Kim, Jeong Hun; Kim, Jin Cheon; Kim, John K; Kim, Peter K; Kim, Seong Who; Kim, Yong-Sun; Kim, Yonghyun; Kimchi, Adi; Kimmelman, Alec C; King, Jason S; Kinsella, Timothy J; Kirkin, Vladimir; Kirshenbaum, Lorrie A; Kitamoto, Katsuhiko; Kitazato, Kaio; Klein, Ludger; Klimecki, Walter T; Klucken, Jochen; Knecht, Erwin; Ko, Ben C B; Koch, Jan C; Koga, Hiroshi; Koh, Jae-Young; Koh, Young Ho; Koike, Masato; Komatsu, Masaaki; Kominami, Eiki; Kong, Hee Jeong; Kong, Wei-Jia; Korolchuk, Viktor I; Kotake, Yaichiro; Koukourakis, Michael I; Kouri Flores, Juan B; Kovács, Attila L; Kraft, Claudine; Krainc, Dimitri; Krämer, Helmut; Kretz-Remy, Carole; Krichevsky, Anna M; Kroemer, Guido; Krüger, Rejko; Krut, Oleg; Ktistakis, Nicholas T; Kuan, Chia-Yi; Kucharczyk, Roza; Kumar, Ashok; Kumar, Raj; Kumar, Sharad; Kundu, Mondira; Kung, Hsing-Jien; Kurz, Tino; Kwon, Ho Jeong; La Spada, Albert R; Lafont, Frank; Lamark, Trond; Landry, Jacques; Lane, Jon D; Lapaquette, Pierre; Laporte, Jocelyn F; László, Lajos; Lavandero, Sergio; Lavoie, Josée N; Layfield, Robert; Lazo, Pedro A; Le, Weidong; Le Cam, Laurent; Ledbetter, Daniel J; Lee, Alvin J X; Lee, Byung-Wan; Lee, Gyun Min; Lee, Jongdae; Lee, Ju-Hyun; Lee, Michael; Lee, Myung-Shik; Lee, Sug Hyung; Leeuwenburgh, Christiaan; Legembre, Patrick; Legouis, Renaud; Lehmann, Michael; Lei, Huan-Yao; Lei, Qun-Ying; Leib, David A; Leiro, José; Lemasters, John J; Lemoine, Antoinette; Lesniak, Maciej S; Lev, Dina; Levenson, Victor V; Levine, Beth; Levy, Efrat; Li, Faqiang; Li, Jun-Lin; Li, Lian; Li, Sheng; Li, Weijie; Li, Xue-Jun; Li, Yan-bo; Li, Yi-Ping; Liang, Chengyu; Liang, Qiangrong; Liao, Yung-Feng; Liberski, Pawel P; Lieberman, Andrew; Lim, Hyunjung J; Lim, Kah-Leong; Lim, Kyu; Lin, Chiou-Feng; Lin, Fu-Cheng; Lin, Jian; Lin, Jiandie D; Lin, Kui; Lin, Wan-Wan; Lin, Weei-Chin; Lin, Yi-Ling; Linden, Rafael; Lingor, Paul; Lippincott-Schwartz, Jennifer; Lisanti, Michael P; Liton, Paloma B; Liu, Bo; Liu, Chun-Feng; Liu, Kaiyu; Liu, Leyuan; Liu, Qiong A; Liu, Wei; Liu, Young-Chau; Liu, Yule; Lockshin, Richard A; Lok, Chun-Nam; Lonial, Sagar; Loos, Benjamin; Lopez-Berestein, Gabriel; López-Otín, Carlos; Lossi, Laura; Lotze, Michael T; Lőw, Peter; Lu, Binfeng; Lu, Bingwei; Lu, Bo; Lu, Zhen; Luciano, Frédéric; Lukacs, Nicholas W; Lund, Anders H; Lynch-Day, Melinda A; Ma, Yong; Macian, Fernando; MacKeigan, Jeff P; Macleod, Kay F; Madeo, Frank; Maiuri, Luigi; Maiuri, Maria Chiara; Malagoli, Davide; Malicdan, May Christine V; Malorni, Walter; Man, Na; Mandelkow, Eva-Maria; Manon, Stéphen; Manov, Irena; Mao, Kai; Mao, Xiang; Mao, Zixu; Marambaud, Philippe; Marazziti, Daniela; Marcel, Yves L; Marchbank, Katie; Marchetti, Piero; Marciniak, Stefan J; Marcondes, Mateus; Mardi, Mohsen; Marfe, Gabriella; Mariño, Guillermo; Markaki, Maria; Marten, Mark R; Martin, Seamus J; Martinand-Mari, Camille; Martinet, Wim; Martinez-Vicente, Marta; Masini, Matilde; Matarrese, Paola; Matsuo, Saburo; Matteoni, Raffaele; Mayer, Andreas; Mazure, Nathalie M; McConkey, David J; McConnell, Melanie J; McDermott, Catherine; McDonald, Christine; McInerney, Gerald M; McKenna, Sharon L; McLaughlin, BethAnn; McLean, Pamela J; McMaster, Christopher R; McQuibban, G Angus; Meijer, Alfred J; Meisler, Miriam H; Meléndez, Alicia; Melia, Thomas J; Melino, Gerry; Mena, Maria A; Menendez, Javier A; Menna-Barreto, Rubem F S; Menon, Manoj B; Menzies, Fiona M; Mercer, Carol A; Merighi, Adalberto; Merry, Diane E; Meschini, Stefania; Meyer, Christian G; Meyer, Thomas F; Miao, Chao-Yu; Miao, Jun-Ying; Michels, Paul A M; Michiels, Carine; Mijaljica, Dalibor; Milojkovic, Ana; Minucci, Saverio; Miracco, Clelia; Miranti, Cindy K; Mitroulis, Ioannis; Miyazawa, Keisuke; Mizushima, Noboru; Mograbi, Baharia; Mohseni, Simin; Molero, Xavier; Mollereau, Bertrand; Mollinedo, Faustino; Momoi, Takashi; Monastyrska, Iryna; Monick, Martha M; Monteiro, Mervyn J; Moore, Michael N; Mora, Rodrigo; Moreau, Kevin; Moreira, Paula I; Moriyasu, Yuji; Moscat, Jorge; Mostowy, Serge; Mottram, Jeremy C; Motyl, Tomasz; Moussa, Charbel E-H; Müller, Sylke; Muller, Sylviane; Münger, Karl; Münz, Christian; Murphy, Leon O; Murphy, Maureen E; Musarò, Antonio; Mysorekar, Indira; Nagata, Eiichiro; Nagata, Kazuhiro; Nahimana, Aimable; Nair, Usha; Nakagawa, Toshiyuki; Nakahira, Kiichi; Nakano, Hiroyasu; Nakatogawa, Hitoshi; Nanjundan, Meera; Naqvi, Naweed I; Narendra, Derek P; Narita, Masashi; Navarro, Miguel; Nawrocki, Steffan T; Nazarko, Taras Y; Nemchenko, Andriy; Netea, Mihai G; Neufeld, Thomas P; Ney, Paul A; Nezis, Ioannis P; Nguyen, Huu Phuc; Nie, Daotai; Nishino, Ichizo; Nislow, Corey; Nixon, Ralph A; Noda, Takeshi; Noegel, Angelika A; Nogalska, Anna; Noguchi, Satoru; Notterpek, Lucia; Novak, Ivana; Nozaki, Tomoyoshi; Nukina, Nobuyuki; Nürnberger, Thorsten; Nyfeler, Beat; Obara, Keisuke; Oberley, Terry D; Oddo, Salvatore; Ogawa, Michinaga; Ohashi, Toya; Okamoto, Koji; Oleinick, Nancy L; Oliver, F Javier; Olsen, Laura J; Olsson, Stefan; Opota, Onya; Osborne, Timothy F; Ostrander, Gary K; Otsu, Kinya; Ou, Jing-hsiung James; Ouimet, Mireille; Overholtzer, Michael; Ozpolat, Bulent; Paganetti, Paolo; Pagnini, Ugo; Pallet, Nicolas; Palmer, Glen E; Palumbo, Camilla; Pan, Tianhong; Panaretakis, Theocharis; Pandey, Udai Bhan; Papackova, Zuzana; Papassideri, Issidora; Paris, Irmgard; Park, Junsoo; Park, Ohkmae K; Parys, Jan B; Parzych, Katherine R; Patschan, Susann; Patterson, Cam; Pattingre, Sophie; Pawelek, John M; Peng, Jianxin; Perlmutter, David H; Perrotta, Ida; Perry, George; Pervaiz, Shazib; Peter, Matthias; Peters, Godefridus J; Petersen, Morten; Petrovski, Goran; Phang, James M; Piacentini, Mauro; Pierre, Philippe; Pierrefite-Carle, Valérie; Pierron, Gérard; Pinkas-Kramarski, Ronit; Piras, Antonio; Piri, Natik; Platanias, Leonidas C; Pöggeler, Stefanie; Poirot, Marc; Poletti, Angelo; Poüs, Christian; Pozuelo-Rubio, Mercedes; Prætorius-Ibba, Mette; Prasad, Anil; Prescott, Mark; Priault, Muriel; Produit-Zengaffinen, Nathalie; Progulske-Fox, Ann; Proikas-Cezanne, Tassula; Przedborski, Serge; Przyklenk, Karin; Puertollano, Rosa; Puyal, Julien; Qian, Shu-Bing; Qin, Liang; Qin, Zheng-Hong; Quaggin, Susan E; Raben, Nina; Rabinowich, Hannah; Rabkin, Simon W; Rahman, Irfan; Rami, Abdelhaq; Ramm, Georg; Randall, Glenn; Randow, Felix; Rao, V Ashutosh; Rathmell, Jeffrey C; Ravikumar, Brinda; Ray, Swapan K; Reed, Bruce H; Reed, John C; Reggiori, Fulvio; Régnier-Vigouroux, Anne; Reichert, Andreas S; Reiners, John J; Reiter, Russel J; Ren, Jun; Revuelta, José L; Rhodes, Christopher J; Ritis, Konstantinos; Rizzo, Elizete; Robbins, Jeffrey; Roberge, Michel; Roca, Hernan; Roccheri, Maria C; Rocchi, Stephane; Rodemann, H Peter; Rodríguez de Córdoba, Santiago; Rohrer, Bärbel; Roninson, Igor B; Rosen, Kirill; Rost-Roszkowska, Magdalena M; Rouis, Mustapha; Rouschop, Kasper M A; Rovetta, Francesca; Rubin, Brian P; Rubinsztein, David C; Ruckdeschel, Klaus; Rucker, Edmund B; Rudich, Assaf; Rudolf, Emil; Ruiz-Opazo, Nelson; Russo, Rossella; Rusten, Tor Erik; Ryan, Kevin M; Ryter, Stefan W; Sabatini, David M; Sadoshima, Junichi; Saha, Tapas; Saitoh, Tatsuya; Sakagami, Hiroshi; Sakai, Yasuyoshi; Salekdeh, Ghasem Hoseini; Salomoni, Paolo; Salvaterra, Paul M; Salvesen, Guy; Salvioli, Rosa; Sanchez, Anthony M J; Sánchez-Alcázar, José A; Sánchez-Prieto, Ricardo; Sandri, Marco; Sankar, Uma; Sansanwal, Poonam; Santambrogio, Laura; Saran, Shweta; Sarkar, Sovan; Sarwal, Minnie; Sasakawa, Chihiro; Sasnauskiene, Ausra; Sass, Miklós; Sato, Ken; Sato, Miyuki; Schapira, Anthony H V; Scharl, Michael; Schätzl, Hermann M; Scheper, Wiep; Schiaffino, Stefano; Schneider, Claudio; Schneider, Marion E; Schneider-Stock, Regine; Schoenlein, Patricia V; Schorderet, Daniel F; Schüller, Christoph; Schwartz, Gary K; Scorrano, Luca; Sealy, Linda; Seglen, Per O; Segura-Aguilar, Juan; Seiliez, Iban; Seleverstov, Oleksandr; Sell, Christian; Seo, Jong Bok; Separovic, Duska; Setaluri, Vijayasaradhi; Setoguchi, Takao; Settembre, Carmine; Shacka, John J; Shanmugam, Mala; Shapiro, Irving M; Shaulian, Eitan; Shaw, Reuben J; Shelhamer, James H; Shen, Han-Ming; Shen, Wei-Chiang; Sheng, Zu-Hang; Shi, Yang; Shibuya, Kenichi; Shidoji, Yoshihiro; Shieh, Jeng-Jer; Shih, Chwen-Ming; Shimada, Yohta; Shimizu, Shigeomi; Shintani, Takahiro; Shirihai, Orian S; Shore, Gordon C; Sibirny, Andriy A; Sidhu, Stan B; Sikorska, Beata; Silva-Zacarin, Elaine C M; Simmons, Alison; Simon, Anna Katharina; Simon, Hans-Uwe; Simone, Cristiano; Simonsen, Anne; Sinclair, David A; Singh, Rajat; Sinha, Debasish; Sinicrope, Frank A; Sirko, Agnieszka; Siu, Parco M; Sivridis, Efthimios; Skop, Vojtech; Skulachev, Vladimir P; Slack, Ruth S; Smaili, Soraya S; Smith, Duncan R; Soengas, Maria S; Soldati, Thierry; Song, Xueqin; Sood, Anil K; Soong, Tuck Wah; Sotgia, Federica; Spector, Stephen A; Spies, Claudia D; Springer, Wolfdieter; Srinivasula, Srinivasa M; Stefanis, Leonidas; Steffan, Joan S; Stendel, Ruediger; Stenmark, Harald; Stephanou, Anastasis; Stern, Stephan T; Sternberg, Cinthya; Stork, Björn; Strålfors, Peter; Subauste, Carlos S; Sui, Xinbing; Sulzer, David; Sun, Jiaren; Sun, Shi-Yong; Sun, Zhi-Jun; Sung, Joseph J Y; Suzuki, Kuninori; Suzuki, Toshihiko; Swanson, Michele S; Swanton, Charles; Sweeney, Sean T; Sy, Lai-King; Szabadkai, Gyorgy; Tabas, Ira; Taegtmeyer, Heinrich; Tafani, Marco; Takács-Vellai, Krisztina; Takano, Yoshitaka; Takegawa, Kaoru; Takemura, Genzou; Takeshita, Fumihiko; Talbot, Nicholas J; Tan, Kevin S W; Tanaka, Keiji; Tanaka, Kozo; Tang, Daolin; Tang, Dingzhong; Tanida, Isei; Tannous, Bakhos A; Tavernarakis, Nektarios; Taylor, Graham S; Taylor, Gregory A; Taylor, J Paul; Terada, Lance S; Terman, Alexei; Tettamanti, Gianluca; Thevissen, Karin; Thompson, Craig B; Thorburn, Andrew; Thumm, Michael; Tian, FengFeng; Tian, Yuan; Tocchini-Valentini, Glauco; Tolkovsky, Aviva M; Tomino, Yasuhiko; Tönges, Lars; Tooze, Sharon A; Tournier, Cathy; Tower, John; Towns, Roberto; Trajkovic, Vladimir; Travassos, Leonardo H; Tsai, Ting-Fen; Tschan, Mario P; Tsubata, Takeshi; Tsung, Allan; Turk, Boris; Turner, Lorianne S; Tyagi, Suresh C; Uchiyama, Yasuo; Ueno, Takashi; Umekawa, Midori; Umemiya-Shirafuji, Rika; Unni, Vivek K; Vaccaro, Maria I; Valente, Enza Maria; Van den Berghe, Greet; van der Klei, Ida J; van Doorn, Wouter; van Dyk, Linda F; van Egmond, Marjolein; van Grunsven, Leo A; Vandenabeele, Peter; Vandenberghe, Wim P; Vanhorebeek, Ilse; Vaquero, Eva C; Velasco, Guillermo; Vellai, Tibor; Vicencio, Jose Miguel; Vierstra, Richard D; Vila, Miquel; Vindis, Cécile; Viola, Giampietro; Viscomi, Maria Teresa; Voitsekhovskaja, Olga V; von Haefen, Clarissa; Votruba, Marcela; Wada, Keiji; Wade-Martins, Richard; Walker, Cheryl L; Walsh, Craig M; Walter, Jochen; Wan, Xiang-Bo; Wang, Aimin; Wang, Chenguang; Wang, Dawei; Wang, Fan; Wang, Fen; Wang, Guanghui; Wang, Haichao; Wang, Hong-Gang; Wang, Horng-Dar; Wang, Jin; Wang, Ke; Wang, Mei; Wang, Richard C; Wang, Xinglong; Wang, Xuejun; Wang, Ying-Jan; Wang, Yipeng; Wang, Zhen; Wang, Zhigang Charles; Wang, Zhinong; Wansink, Derick G; Ward, Diane M; Watada, Hirotaka; Waters, Sarah L; Webster, Paul; Wei, Lixin; Weihl, Conrad C; Weiss, William A; Welford, Scott M; Wen, Long-Ping; Whitehouse, Caroline A; Whitton, J Lindsay; Whitworth, Alexander J; Wileman, Tom; Wiley, John W; Wilkinson, Simon; Willbold, Dieter; Williams, Roger L; Williamson, Peter R; Wouters, Bradly G; Wu, Chenghan; Wu, Dao-Cheng; Wu, William K K; Wyttenbach, Andreas; Xavier, Ramnik J; Xi, Zhijun; Xia, Pu; Xiao, Gengfu; Xie, Zhiping; Xie, Zhonglin; Xu, Da-zhi; Xu, Jianzhen; Xu, Liang; Xu, Xiaolei; Yamamoto, Ai; Yamamoto, Akitsugu; Yamashina, Shunhei; Yamashita, Michiaki; Yan, Xianghua; Yanagida, Mitsuhiro; Yang, Dun-Sheng; Yang, Elizabeth; Yang, Jin-Ming; Yang, Shi Yu; Yang, Wannian; Yang, Wei Yuan; Yang, Zhifen; Yao, Meng-Chao; Yao, Tso-Pang; Yeganeh, Behzad; Yen, Wei-Lien; Yin, Jia-jing; Yin, Xiao-Ming; Yoo, Ook-Joon; Yoon, Gyesoon; Yoon, Seung-Yong; Yorimitsu, Tomohiro; Yoshikawa, Yuko; Yoshimori, Tamotsu; Yoshimoto, Kohki; You, Ho Jin; Youle, Richard J; Younes, Anas; Yu, Li; Yu, Long; Yu, Seong-Woon; Yu, Wai Haung; Yuan, Zhi-Min; Yue, Zhenyu; Yun, Cheol-Heui; Yuzaki, Michisuke; Zabirnyk, Olga; Silva-Zacarin, Elaine; Zacks, David; Zacksenhaus, Eldad; Zaffaroni, Nadia; Zakeri, Zahra; Zeh, Herbert J; Zeitlin, Scott O; Zhang, Hong; Zhang, Hui-Ling; Zhang, Jianhua; Zhang, Jing-Pu; Zhang, Lin; Zhang, Long; Zhang, Ming-Yong; Zhang, Xu Dong; Zhao, Mantong; Zhao, Yi-Fang; Zhao, Ying; Zhao, Zhizhuang J; Zheng, Xiaoxiang; Zhivotovsky, Boris; Zhong, Qing; Zhou, Cong-Zhao; Zhu, Changlian; Zhu, Wei-Guo; Zhu, Xiao-Feng; Zhu, Xiongwei; Zhu, Yuangang; Zoladek, Teresa; Zong, Wei-Xing; Zorzano, Antonio; Zschocke, Jürgen; Zuckerbraun, Brian

    2012-04-01

    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused

  18. Guidelines for the use and interpretation of assays for monitoring autophagy

    Science.gov (United States)

    Klionsky, Daniel J.; Abdalla, Fabio C.; Abeliovich, Hagai; Abraham, Robert T.; Acevedo-Arozena, Abraham; Adeli, Khosrow; Agholme, Lotta; Agnello, Maria; Agostinis, Patrizia; Aguirre-Ghiso, Julio A.; Ahn, Hyung Jun; Ait-Mohamed, Ouardia; Ait-Si-Ali, Slimane; Akematsu, Takahiko; Akira, Shizuo; Al-Younes, Hesham M.; Al-Zeer, Munir A.; Albert, Matthew L.; Albin, Roger L.; Alegre-Abarrategui, Javier; Aleo, Maria Francesca; Alirezaei, Mehrdad; Almasan, Alexandru; Almonte-Becerril, Maylin; Amano, Atsuo; Amaravadi, Ravi K.; Amarnath, Shoba; Amer, Amal O.; Andrieu-Abadie, Nathalie; Anantharam, Vellareddy; Ann, David K.; Anoopkumar-Dukie, Shailendra; Aoki, Hiroshi; Apostolova, Nadezda; Arancia, Giuseppe; Aris, John P.; Asanuma, Katsuhiko; Asare, Nana Y.O.; Ashida, Hisashi; Askanas, Valerie; Askew, David S.; Auberger, Patrick; Baba, Misuzu; Backues, Steven K.; Baehrecke, Eric H.; Bahr, Ben A.; Bai, Xue-Yuan; Bailly, Yannick; Baiocchi, Robert; Baldini, Giulia; Balduini, Walter; Ballabio, Andrea; Bamber, Bruce A.; Bampton, Edward T.W.; Juhász, Gábor; Bartholomew, Clinton R.; Bassham, Diane C.; Bast, Robert C.; Batoko, Henri; Bay, Boon-Huat; Beau, Isabelle; Béchet, Daniel M.; Begley, Thomas J.; Behl, Christian; Behrends, Christian; Bekri, Soumeya; Bellaire, Bryan; Bendall, Linda J.; Benetti, Luca; Berliocchi, Laura; Bernardi, Henri; Bernassola, Francesca; Besteiro, Sébastien; Bhatia-Kissova, Ingrid; Bi, Xiaoning; Biard-Piechaczyk, Martine; Blum, Janice S.; Boise, Lawrence H.; Bonaldo, Paolo; Boone, David L.; Bornhauser, Beat C.; Bortoluci, Karina R.; Bossis, Ioannis; Bost, Frédéric; Bourquin, Jean-Pierre; Boya, Patricia; Boyer-Guittaut, Michaël; Bozhkov, Peter V.; Brady, Nathan R; Brancolini, Claudio; Brech, Andreas; Brenman, Jay E.; Brennand, Ana; Bresnick, Emery H.; Brest, Patrick; Bridges, Dave; Bristol, Molly L.; Brookes, Paul S.; Brown, Eric J.; Brumell, John H.; Brunetti-Pierri, Nicola; Brunk, Ulf T.; Bulman, Dennis E.; Bultman, Scott J.; Bultynck, Geert; Burbulla, Lena F.; Bursch, Wilfried; Butchar, Jonathan P.; Buzgariu, Wanda; Bydlowski, Sergio P.; Cadwell, Ken; Cahová, Monika; Cai, Dongsheng; Cai, Jiyang; Cai, Qian; Calabretta, Bruno; Calvo-Garrido, Javier; Camougrand, Nadine; Campanella, Michelangelo; Campos-Salinas, Jenny; Candi, Eleonora; Cao, Lizhi; Caplan, Allan B.; Carding, Simon R.; Cardoso, Sandra M.; Carew, Jennifer S.; Carlin, Cathleen R.; Carmignac, Virginie; Carneiro, Leticia A.M.; Carra, Serena; Caruso, Rosario A.; Casari, Giorgio; Casas, Caty; Castino, Roberta; Cebollero, Eduardo; Cecconi, Francesco; Celli, Jean; Chaachouay, Hassan; Chae, Han-Jung; Chai, Chee-Yin; Chan, David C.; Chan, Edmond Y.; Chang, Raymond Chuen-Chung; Che, Chi-Ming; Chen, Ching-Chow; Chen, Guang-Chao; Chen, Guo-Qiang; Chen, Min; Chen, Quan; Chen, Steve S.-L.; Chen, WenLi; Chen, Xi; Chen, Xiangmei; Chen, Xiequn; Chen, Ye-Guang; Chen, Yingyu; Chen, Yongqiang; Chen, Yu-Jen; Chen, Zhixiang; Cheng, Alan; Cheng, Christopher H.K.; Cheng, Yan; Cheong, Heesun; Cheong, Jae-Ho; Cherry, Sara; Chess-Williams, Russ; Cheung, Zelda H.; Chevet, Eric; Chiang, Hui-Ling; Chiarelli, Roberto; Chiba, Tomoki; Chin, Lih-Shen; Chiou, Shih-Hwa; Chisari, Francis V.; Cho, Chi Hin; Cho, Dong-Hyung; Choi, Augustine M.K.; Choi, DooSeok; Choi, Kyeong Sook; Choi, Mary E.; Chouaib, Salem; Choubey, Divaker; Choubey, Vinay; Chu, Charleen T.; Chuang, Tsung-Hsien; Chueh, Sheau-Huei; Chun, Taehoon; Chwae, Yong-Joon; Chye, Mee-Len; Ciarcia, Roberto; Ciriolo, Maria R.; Clague, Michael J.; Clark, Robert S.B.; Clarke, Peter G.H.; Clarke, Robert; Codogno, Patrice; Coller, Hilary A.; Colombo, María I.; Comincini, Sergio; Condello, Maria; Condorelli, Fabrizio; Cookson, Mark R.; Coombs, Graham H.; Coppens, Isabelle; Corbalan, Ramon; Cossart, Pascale; Costelli, Paola; Costes, Safia; Coto-Montes, Ana; Couve, Eduardo; Coxon, Fraser P.; Cregg, James M.; Crespo, José L.; Cronjé, Marianne J.; Cuervo, Ana Maria; Cullen, Joseph J.; Czaja, Mark J.; D'Amelio, Marcello; Darfeuille-Michaud, Arlette; Davids, Lester M.; Davies, Faith E.; De Felici, Massimo; de Groot, John F.; de Haan, Cornelis A.M.; De Martino, Luisa; De Milito, Angelo; De Tata, Vincenzo; Debnath, Jayanta; Degterev, Alexei; Dehay, Benjamin; Delbridge, Lea M.D.; Demarchi, Francesca; Deng, Yi Zhen; Dengjel, Jörn; Dent, Paul; Denton, Donna; Deretic, Vojo; Desai, Shyamal D.; Devenish, Rodney J.; Di Gioacchino, Mario; Di Paolo, Gilbert; Di Pietro, Chiara; Díaz-Araya, Guillermo; Díaz-Laviada, Inés; Diaz-Meco, Maria T.; Diaz-Nido, Javier; Dikic, Ivan; Dinesh-Kumar, Savithramma P.; Ding, Wen-Xing; Distelhorst, Clark W.; Diwan, Abhinav; Djavaheri-Mergny, Mojgan; Dokudovskaya, Svetlana; Dong, Zheng; Dorsey, Frank C.; Dosenko, Victor; Dowling, James J.; Doxsey, Stephen; Dreux, Marlène; Drew, Mark E.; Duan, Qiuhong; Duchosal, Michel A.; Duff, Karen E.; Dugail, Isabelle; Durbeej, Madeleine; Duszenko, Michael; Edelstein, Charles L.; Edinger, Aimee L.; Egea, Gustavo; Eichinger, Ludwig; Eissa, N. Tony; Ekmekcioglu, Suhendan; El-Deiry, Wafik S.; Elazar, Zvulun; Elgendy, Mohamed; Ellerby, Lisa M.; Eng, Kai Er; Engelbrecht, Anna-Mart; Engelender, Simone; Erenpreisa, Jekaterina; Escalante, Ricardo; Esclatine, Audrey; Eskelinen, Eeva-Liisa; Espert, Lucile; Espina, Virginia; Fan, Huizhou; Fan, Jia; Fan, Qi-Wen; Fan, Zhen; Fang, Shengyun; Fang, Yongqi; Fanto, Manolis; Fanzani, Alessandro; Farkas, Thomas; Farre, Jean-Claude; Faure, Mathias; Fechheimer, Marcus; Feng, Carl G.; Feng, Jian; Feng, Qili; Feng, Youji; Fésüs, László; Feuer, Ralph; Figueiredo-Pereira, Maria E.; Fimia, Gian Maria; Fingar, Diane C.; Finkbeiner, Steven; Finkel, Toren; Finley, Kim D.; Fiorito, Filomena; Fisher, Edward A.; Fisher, Paul B.; Flajolet, Marc; Florez-McClure, Maria L.; Florio, Salvatore; Fon, Edward A.; Fornai, Francesco; Fortunato, Franco; Fotedar, Rati; Fowler, Daniel H.; Fox, Howard S.; Franco, Rodrigo; Frankel, Lisa B.; Fransen, Marc; Fuentes, José M.; Fueyo, Juan; Fujii, Jun; Fujisaki, Kozo; Fujita, Eriko; Fukuda, Mitsunori; Furukawa, Ruth H.; Gaestel, Matthias; Gailly, Philippe; Gajewska, Malgorzata; Galliot, Brigitte; Galy, Vincent; Ganesh, Subramaniam; Ganetzky, Barry; Ganley, Ian G.; Gao, Fen-Biao; Gao, George F.; Gao, Jinming; Garcia, Lorena; Garcia-Manero, Guillermo; Garcia-Marcos, Mikel; Garmyn, Marjan; Gartel, Andrei L.; Gatti, Evelina; Gautel, Mathias; Gawriluk, Thomas R.; Gegg, Matthew E.; Geng, Jiefei; Germain, Marc; Gestwicki, Jason E.; Gewirtz, David A.; Ghavami, Saeid; Ghosh, Pradipta; Giammarioli, Anna M.; Giatromanolaki, Alexandra N.; Gibson, Spencer B.; Gilkerson, Robert W.; Ginger, Michael L.; Ginsberg, Henry N.; Golab, Jakub; Goligorsky, Michael S.; Golstein, Pierre; Gomez-Manzano, Candelaria; Goncu, Ebru; Gongora, Céline; Gonzalez, Claudio D.; Gonzalez, Ramon; González-Estévez, Cristina; González-Polo, Rosa Ana; Gonzalez-Rey, Elena; Gorbunov, Nikolai V.; Gorski, Sharon; Goruppi, Sandro; Gottlieb, Roberta A.; Gozuacik, Devrim; Granato, Giovanna Elvira; Grant, Gary D.; Green, Kim N.; Gregorc, Ales; Gros, Frédéric; Grose, Charles; Grunt, Thomas W.; Gual, Philippe; Guan, Jun-Lin; Guan, Kun-Liang; Guichard, Sylvie M.; Gukovskaya, Anna S.; Gukovsky, Ilya; Gunst, Jan; Gustafsson, Åsa B.; Halayko, Andrew J.; Hale, Amber N.; Halonen, Sandra K.; Hamasaki, Maho; Han, Feng; Han, Ting; Hancock, Michael K.; Hansen, Malene; Harada, Hisashi; Harada, Masaru; Hardt, Stefan E.; Harper, J. Wade; Harris, Adrian L.; Harris, James; Harris, Steven D.; Hashimoto, Makoto; Haspel, Jeffrey A.; Hayashi, Shin-ichiro; Hazelhurst, Lori A.; He, Congcong; He, You-Wen; Hébert, Marie-Josée; Heidenreich, Kim A.; Helfrich, Miep H.; Helgason, Gudmundur V.; Henske, Elizabeth P.; Herman, Brian; Herman, Paul K.; Hetz, Claudio; Hilfiker, Sabine; Hill, Joseph A.; Hocking, Lynne J.; Hofman, Paul; Hofmann, Thomas G.; Höhfeld, Jörg; Holyoake, Tessa L.; Hong, Ming-Huang; Hood, David A.; Hotamisligil, Gökhan S.; Houwerzijl, Ewout J.; Høyer-Hansen, Maria; Hu, Bingren; Hu, Chien-an A.; Hu, Hong-Ming; Hua, Ya; Huang, Canhua; Huang, Ju; Huang, Shengbing; Huang, Wei-Pang; Huber, Tobias B.; Huh, Won-Ki; Hung, Tai-Ho; Hupp, Ted R.; Hur, Gang Min; Hurley, James B.; Hussain, Sabah N.A.; Hussey, Patrick J.; Hwang, Jung Jin; Hwang, Seungmin; Ichihara, Atsuhiro; Ilkhanizadeh, Shirin; Inoki, Ken; Into, Takeshi; Iovane, Valentina; Iovanna, Juan L.; Ip, Nancy Y.; Isaka, Yoshitaka; Ishida, Hiroyuki; Isidoro, Ciro; Isobe, Ken-ichi; Iwasaki, Akiko; Izquierdo, Marta; Izumi, Yotaro; Jaakkola, Panu M.; Jäättelä, Marja; Jackson, George R.; Jackson, William T.; Janji, Bassam; Jendrach, Marina; Jeon, Ju-Hong; Jeung, Eui-Bae; Jiang, Hong; Jiang, Hongchi; Jiang, Jean X.; Jiang, Ming; Jiang, Qing; Jiang, Xuejun; Jiang, Xuejun; Jiménez, Alberto; Jin, Meiyan; Jin, Shengkan V.; Joe, Cheol O.; Johansen, Terje; Johnson, Daniel E.; Johnson, Gail V.W.; Jones, Nicola L.; Joseph, Bertrand; Joseph, Suresh K.; Joubert, Annie M.; Juhász, Gábor; Juillerat-Jeanneret, Lucienne; Jung, Chang Hwa; Jung, Yong-Keun; Kaarniranta, Kai; Kaasik, Allen; Kabuta, Tomohiro; Kadowaki, Motoni; Kågedal, Katarina; Kamada, Yoshiaki; Kaminskyy, Vitaliy O.; Kampinga, Harm H.; Kanamori, Hiromitsu; Kang, Chanhee; Kang, Khong Bee; Kang, Kwang Il; Kang, Rui; Kang, Yoon-A; Kanki, Tomotake; Kanneganti, Thirumala-Devi; Kanno, Haruo; Kanthasamy, Anumantha G.; Kanthasamy, Arthi; Karantza, Vassiliki; Kaushal, Gur P.; Kaushik, Susmita; Kawazoe, Yoshinori; Ke, Po-Yuan; Kehrl, John H.; Kelekar, Ameeta; Kerkhoff, Claus; Kessel, David H.; Khalil, Hany; Kiel, Jan A.K.W.; Kiger, Amy A.; Kihara, Akio; Kim, Deok Ryong; Kim, Do-Hyung; Kim, Dong-Hou; Kim, Eun-Kyoung; Kim, Hyung-Ryong; Kim, Jae-Sung; Kim, Jeong Hun; Kim, Jin Cheon; Kim, John K.; Kim, Peter K.; Kim, Seong Who; Kim, Yong-Sun; Kim, Yonghyun; Kimchi, Adi; Kimmelman, Alec C.; King, Jason S.; Kinsella, Timothy J.; Kirkin, Vladimir; Kirshenbaum, Lorrie A.; Kitamoto, Katsuhiko; Kitazato, Kaio; Klein, Ludger; Klimecki, Walter T.; Klucken, Jochen; Knecht, Erwin; Ko, Ben C.B.; Koch, Jan C.; Koga, Hiroshi; Koh, Jae-Young; Koh, Young Ho; Koike, Masato; Komatsu, Masaaki; Kominami, Eiki; Kong, Hee Jeong; Kong, Wei-Jia; Korolchuk, Viktor I.; Kotake, Yaichiro; Koukourakis, Michael I.; Flores, Juan B. Kouri; Kovács, Attila L.; Kraft, Claudine; Krainc, Dimitri; Krämer, Helmut; Kretz-Remy, Carole; Krichevsky, Anna M.; Kroemer, Guido; Krüger, Rejko; Krut, Oleg; Ktistakis, Nicholas T.; Kuan, Chia-Yi; Kucharczyk, Roza; Kumar, Ashok; Kumar, Raj; Kumar, Sharad; Kundu, Mondira; Kung, Hsing-Jien; Kurz, Tino; Kwon, Ho Jeong; La Spada, Albert R.; Lafont, Frank; Lamark, Trond; Landry, Jacques; Lane, Jon D.; Lapaquette, Pierre; Laporte, Jocelyn F.; László, Lajos; Lavandero, Sergio; Lavoie, Josée N.; Layfield, Robert; Lazo, Pedro A.; Le, Weidong; Le Cam, Laurent; Ledbetter, Daniel J.; Lee, Alvin J.X.; Lee, Byung-Wan; Lee, Gyun Min; Lee, Jongdae; lee, Ju-hyun; Lee, Michael; Lee, Myung-Shik; Lee, Sug Hyung; Leeuwenburgh, Christiaan; Legembre, Patrick; Legouis, Renaud; Lehmann, Michael; Lei, Huan-Yao; Lei, Qun-Ying; Leib, David A.; Leiro, José; Lemasters, John J.; Lemoine, Antoinette; Lesniak, Maciej S.; Lev, Dina; Levenson, Victor V.; Levine, Beth; Levy, Efrat; Li, Faqiang; Li, Jun-Lin; Li, Lian; Li, Sheng; Li, Weijie; Li, Xue-Jun; Li, Yan-Bo; Li, Yi-Ping; Liang, Chengyu; Liang, Qiangrong; Liao, Yung-Feng; Liberski, Pawel P.; Lieberman, Andrew; Lim, Hyunjung J.; Lim, Kah-Leong; Lim, Kyu; Lin, Chiou-Feng; Lin, Fu-Cheng; Lin, Jian; Lin, Jiandie D.; Lin, Kui; Lin, Wan-Wan; Lin, Weei-Chin; Lin, Yi-Ling; Linden, Rafael; Lingor, Paul; Lippincott-Schwartz, Jennifer; Lisanti, Michael P.; Liton, Paloma B.; Liu, Bo; Liu, Chun-Feng; Liu, Kaiyu; Liu, Leyuan; Liu, Qiong A.; Liu, Wei; Liu, Young-Chau; Liu, Yule; Lockshin, Richard A.; Lok, Chun-Nam; Lonial, Sagar; Loos, Benjamin; Lopez-Berestein, Gabriel; López-Otín, Carlos; Lossi, Laura; Lotze, Michael T.; Low, Peter; Lu, Binfeng; Lu, Bingwei; Lu, Bo; Lu, Zhen; Luciano, Fréderic; Lukacs, Nicholas W.; Lund, Anders H.; Lynch-Day, Melinda A.; Ma, Yong; Macian, Fernando; MacKeigan, Jeff P.; Macleod, Kay F.; Madeo, Frank; Maiuri, Luigi; Maiuri, Maria Chiara; Malagoli, Davide; Malicdan, May Christine V.; Malorni, Walter; Man, Na; Mandelkow, Eva-Maria; Manon, Stephen; Manov, Irena; Mao, Kai; Mao, Xiang; Mao, Zixu; Marambaud, Philippe; Marazziti, Daniela; Marcel, Yves L.; Marchbank, Katie; Marchetti, Piero; Marciniak, Stefan J.; Marcondes, Mateus; Mardi, Mohsen; Marfe, Gabriella; Mariño, Guillermo; Markaki, Maria; Marten, Mark R.; Martin, Seamus J.; Martinand-Mari, Camille; Martinet, Wim; Martinez-Vicente, Marta; Masini, Matilde; Matarrese, Paola; Matsuo, Saburo; Matteoni, Raffaele; Mayer, Andreas; Mazure, Nathalie M.; McConkey, David J.; McConnell, Melanie J.; McDermott, Catherine; McDonald, Christine; McInerney, Gerald M.; McKenna, Sharon L.; McLaughlin, BethAnn; McLean, Pamela J.; McMaster, Christopher R.; McQuibban, G. Angus; Meijer, Alfred J.; Meisler, Miriam H.; Meléndez, Alicia; Melia, Thomas J.; Melino, Gerry; Mena, Maria A.; Menendez, Javier A.; Menna-Barreto, Rubem F. S.; Menon, Manoj B.; Menzies, Fiona M.; Mercer, Carol A.; Merighi, Adalberto; Merry, Diane E.; Meschini, Stefania; Meyer, Christian G.; Meyer, Thomas F.; Miao, Chao-Yu; Miao, Jun-Ying; Michels, Paul A.M.; Michiels, Carine; Mijaljica, Dalibor; Milojkovic, Ana; Minucci, Saverio; Miracco, Clelia; Miranti, Cindy K.; Mitroulis, Ioannis; Miyazawa, Keisuke; Mizushima, Noboru; Mograbi, Baharia; Mohseni, Simin; Molero, Xavier; Mollereau, Bertrand; Mollinedo, Faustino; Momoi, Takashi; Monastyrska, Iryna; Monick, Martha M.; Monteiro, Mervyn J.; Moore, Michael N.; Mora, Rodrigo; Moreau, Kevin; Moreira, Paula I.; Moriyasu, Yuji; Moscat, Jorge; Mostowy, Serge; Mottram, Jeremy C.; Motyl, Tomasz; Moussa, Charbel E.-H.; Müller, Sylke; Muller, Sylviane; Münger, Karl; Münz, Christian; Murphy, Leon O.; Murphy, Maureen E.; Musarò, Antonio; Mysorekar, Indira; Nagata, Eiichiro; Nagata, Kazuhiro; Nahimana, Aimable; Nair, Usha; Nakagawa, Toshiyuki; Nakahira, Kiichi; Nakano, Hiroyasu; Nakatogawa, Hitoshi; Nanjundan, Meera; Naqvi, Naweed I.; Narendra, Derek P.; Narita, Masashi; Navarro, Miguel; Nawrocki, Steffan T.; Nazarko, Taras Y.; Nemchenko, Andriy; Netea, Mihai G.; Neufeld, Thomas P.; Ney, Paul A.; Nezis, Ioannis P.; Nguyen, Huu Phuc; Nie, Daotai; Nishino, Ichizo; Nislow, Corey; Nixon, Ralph A.; Noda, Takeshi; Noegel, Angelika A.; Nogalska, Anna; Noguchi, Satoru; Notterpek, Lucia; Novak, Ivana; Nozaki, Tomoyoshi; Nukina, Nobuyuki; Nürnberger, Thorsten; Nyfeler, Beat; Obara, Keisuke; Oberley, Terry D.; Oddo, Salvatore; Ogawa, Michinaga; Ohashi, Toya; Okamoto, Koji; Oleinick, Nancy L.; Oliver, F. Javier; Olsen, Laura J.; Olsson, Stefan; Opota, Onya; Osborne, Timothy F.; Ostrander, Gary K.; Otsu, Kinya; Ou, Jing-hsiung James; Ouimet, Mireille; Overholtzer, Michael; Ozpolat, Bulent; Paganetti, Paolo; Pagnini, Ugo; Pallet, Nicolas; Palmer, Glen E.; Palumbo, Camilla; Pan, Tianhong; Panaretakis, Theocharis; Pandey, Udai Bhan; Papackova, Zuzana; Papassideri, Issidora; Paris, Irmgard; Park, Junsoo; Park, Ohkmae K.; Parys, Jan B.; Parzych, Katherine R.; Patschan, Susann; Patterson, Cam; Pattingre, Sophie; Pawelek, John M.; Peng, Jianxin; Perlmutter, David H.; Perrotta, Ida; Perry, George; Pervaiz, Shazib; Peter, Matthias; Peters, Godefridus J.; Petersen, Morten; Petrovski, Goran; Phang, James M.; Piacentini, Mauro; Pierre, Philippe; Pierrefite-Carle, Valérie; Pierron, Gérard; Pinkas-Kramarski, Ronit; Piras, Antonio; Piri, Natik; Platanias, Leonidas C.; Pöggeler, Stefanie; Poirot, Marc; Poletti, Angelo; Poüs, Christian; Pozuelo-Rubio, Mercedes; Prætorius-Ibba, Mette; Prasad, Anil; Prescott, Mark; Priault, Muriel; Produit-Zengaffinen, Nathalie; Progulske-Fox, Ann; Proikas-Cezanne, Tassula; Przedborski, Serge; Przyklenk, Karin; Puertollano, Rosa; Puyal, Julien; Qian, Shu-Bing; Qin, Liang; Qin, Zheng-Hong; Quaggin, Susan E.; Raben, Nina; Rabinowich, Hannah; Rabkin, Simon W.; Rahman, Irfan; Rami, Abdelhaq; Ramm, Georg; Randall, Glenn; Randow, Felix; Rao, V. Ashutosh; Rathmell, Jeffrey C.; Ravikumar, Brinda; Ray, Swapan K.; Reed, Bruce H.; Reed, John C.; Reggiori, Fulvio; Régnier-Vigouroux, Anne; Reichert, Andreas S.; Reiners, John J.; Reiter, Russel J.; Ren, Jun; Revuelta, José L.; Rhodes, Christopher J.; Ritis, Konstantinos; Rizzo, Elizete; Robbins, Jeffrey; Roberge, Michel; Roca, Hernan; Roccheri, Maria C.; Rocchi, Stephane; Rodemann, H. Peter; Rodríguez de Córdoba, Santiago; Rohrer, Bärbel; Roninson, Igor B.; Rosen, Kirill; Rost-Roszkowska, Magdalena M.; Rouis, Mustapha; Rouschop, Kasper M.A.; Rovetta, Francesca; Rubin, Brian P.; Rubinsztein, David C.; Ruckdeschel, Klaus; Rucker, Edmund B.; Rudich, Assaf; Rudolf, Emil; Ruiz-Opazo, Nelson; Russo, Rossella; Rusten, Tor Erik; Ryan, Kevin M.; Ryter, Stefan W.; Sabatini, David M.; Sadoshima, Junichi; Saha, Tapas; Saitoh, Tatsuya; Sakagami, Hiroshi; Sakai, Yasuyoshi; Salekdeh, Ghasem Hoseini; Salomoni, Paolo; Salvaterra, Paul M.; Salvesen, Guy; Salvioli, Rosa; Sanchez, Anthony M.J.; Sánchez-Alcázar, José A.; Sánchez-Prieto, Ricardo; Sandri, Marco; Sankar, Uma; Sansanwal, Poonam; Santambrogio, Laura; Saran, Shweta; Sarkar, Sovan; Sarwal, Minnie; Sasakawa, Chihiro; Sasnauskiene, Ausra; Sass, Miklós; Sato, Ken; Sato, Miyuki; Schapira, Anthony H.V.; Scharl, Michael; Schätzl, Hermann M.; Scheper, Wiep; Schiaffino, Stefano; Schneider, Claudio; Schneider, Marion E.; Schneider-Stock, Regine; Schoenlein, Patricia V.; Schorderet, Daniel F.; Schüller, Christoph; Schwartz, Gary K.; Scorrano, Luca; Sealy, Linda; Seglen, Per O.; Segura-Aguilar, Juan; Seiliez, Iban; Seleverstov, Oleksandr; Sell, Christian; Seo, Jong Bok; Separovic, Duska; Setaluri, Vijayasaradhi; Setoguchi, Takao; Settembre, Carmine; Shacka, John J.; Shanmugam, Mala; Shapiro, Irving M.; Shaulian, Eitan; Shaw, Reuben J.; Shelhamer, James H.; Shen, Han-Ming; Shen, Wei-Chiang; Sheng, Zu-Hang; Shi, Yang; Shibuya, Kenichi; Shidoji, Yoshihiro; Shieh, Jeng-Jer; Shih, Chwen-Ming; Shimada, Yohta; Shimizu, Shigeomi; Shintani, Takahiro; Shirihai, Orian S.; Shore, Gordon C.; Sibirny, Andriy A.; Sidhu, Stan B.; Sikorska, Beata; Silva-Zacarin, Elaine C.M.; Simmons, Alison; Simon, Anna Katharina; Simon, Hans-Uwe; Simone, Cristiano; Simonsen, Anne; Sinclair, David A.; Singh, Rajat; Sinha, Debasish; Sinicrope, Frank A.; Sirko, Agnieszka; Siu, Parco M.; Sivridis, Efthimios; Skop, Vojtech; Skulachev, Vladimir P.; Slack, Ruth S.; Smaili, Soraya S.; Smith, Duncan R.; Soengas, Maria S.; Soldati, Thierry; Song, Xueqin; Sood, Anil K.; Soong, Tuck Wah; Sotgia, Federica; Spector, Stephen A.; Spies, Claudia D.; Springer, Wolfdieter; Srinivasula, Srinivasa M.; Stefanis, Leonidas; Steffan, Joan S.; Stendel, Ruediger; Stenmark, Harald; Stephanou, Anastasis; Stern, Stephan T.; Sternberg, Cinthya; Stork, Björn; Strålfors, Peter; Subauste, Carlos S.; Sui, Xinbing; Sulzer, David; Sun, Jiaren; Sun, Shi-Yong; Sun, Zhi-Jun; Sung, Joseph J.Y.; Suzuki, Kuninori; Suzuki, Toshihiko; Swanson, Michele S.; Swanton, Charles; Sweeney, Sean T.; Sy, Lai-King; Szabadkai, György; Tabas, Ira; Taegtmeyer, Heinrich; Tafani, Marco; Takács-Vellai, Krisztina; Takano, Yoshitaka; Takegawa, Kaoru; Takemura, Genzou; Takeshita, Fumihiko; Talbot, Nicholas J.; Tan, Kevin S.W.; Tanaka, Keiji; Tanaka, Kozo; Tang, Daolin; Tang, Dingzhong; Tanida, Isei; Tannous, Bakhos A.; Tavernarakis, Nektarios; Taylor, Graham S.; Taylor, Gregory A.; Taylor, J. Paul; Terada, Lance S.; Terman, Alexei; Tettamanti, Gianluca; Thevissen, Karin; Thompson, Craig B.; Thorburn, Andrew; Thumm, Michael; Tian, FengFeng; Tian, Yuan; Tocchini-Valentini, Glauco; Tolkovsky, Aviva M.; Tomino, Yasuhiko; Tönges, Lars; Tooze, Sharon A.; Tournier, Cathy; Tower, John; Towns, Roberto; Trajkovic, Vladimir; Travassos, Leonardo H.; Tsai, Ting-Fen; Tschan, Mario P.; Tsubata, Takeshi; Tsung, Allan; Turk, Boris; Turner, Lorianne S.; Tyagi, Suresh C.; Uchiyama, Yasuo; Ueno, Takashi; Umekawa, Midori; Umemiya-Shirafuji, Rika; Unni, Vivek K.; Vaccaro, Maria I.; Valente, Enza Maria; Van den Berghe, Greet; van der Klei, Ida J.; van Doorn, Wouter G.; van Dyk, Linda F.; van Egmond, Marjolein; van Grunsven, Leo A.; Vandenabeele, Peter; Vandenberghe, Wim P.; Vanhorebeek, Ilse; Vaquero, Eva C.; Velasco, Guillermo; Vellai, Tibor; Vicencio, José Miguel; Vierstra, Richard D.; Vila, Miquel; Vindis, Cécile; Viola, Giampietro; Viscomi, Maria Teresa; Voitsekhovskaja, Olga V.; von Haefen, Clarissa; Votruba, Marcela; Wada, Keiji; Wade-Martins, Richard; Walker, Cheryl L.; Walsh, Craig M.; Walter, Jochen; Wan, Xiang-Bo; Wang, Aimin; Wang, Chenguang; Wang, Dawei; Wang, Fan; Wang, Fen; Wang, Guanghui; Wang, Haichao; Wang, Hong-Gang; Wang, Horng-Dar; Wang, Jin; Wang, Ke; Wang, Mei; Wang, Richard C.; Wang, Xinglong; Wang, Xiujie J.; Wang, Ying-Jan; Wang, Yipeng; Wang, Zhen-Bo; Wang, Zhigang Charles; Wang, Zhinong; Wansink, Derick G.; Ward, Diane M.; Watada, Hirotaka; Waters, Sarah L.; Webster, Paul; Wei, Lixin; Weihl, Conrad C.; Weiss, William A.; Welford, Scott M.; Wen, Long-Ping; Whitehouse, Caroline A.; Whitton, J. Lindsay; Whitworth, Alexander J.; Wileman, Tom; Wiley, John W.; Wilkinson, Simon; Willbold, Dieter; Williams, Roger L.; Williamson, Peter R.; Wouters, Bradly G.; Wu, Chenghan; Wu, Dao-Cheng; Wu, William K.K.; Wyttenbach, Andreas; Xavier, Ramnik J.; Xi, Zhijun; Xia, Pu; Xiao, Gengfu; Xie, Zhiping; Xie, Zhonglin; Xu, Da-zhi; Xu, Jianzhen; Xu, Liang; Xu, Xiaolei; Yamamoto, Ai; Yamamoto, Akitsugu; Yamashina, Shunhei; Yamashita, Michiaki; Yan, Xianghua; Yanagida, Mitsuhiro; Yang, Dun-Sheng; Yang, Elizabeth; Yang, Jin-Ming; Yang, Shi Yu; Yang, Wannian; Yang, Wei Yuan; Yang, Zhifen; Yao, Meng-Chao; Yao, Tso-Pang; Yeganeh, Behzad; Yen, Wei-Lien; Yin, Jia-Jing; Yin, Xiao-Ming; Yoo, Ook-Joon; Yoon, Gyesoon; Yoon, Seung-Yong; Yorimitsu, Tomohiro; Yoshikawa, Yuko; Yoshimori, Tamotsu; Yoshimoto, Kohki; You, Ho Jin; Youle, Richard J.; Younes, Anas; Yu, Li; Yu, Long; Yu, Seong-Woon; Yu, Wai Haung; Yuan, Zhi-Min; Yue, Zhenyu; Yun, Cheol-Heui; Yuzaki, Michisuke; Zabirnyk, Olga; Silva-Zacarin, Elaine; Zacks, David; Zacksenhaus, Eldad; Zaffaroni, Nadia; Zakeri, Zahra; Zeh, III, Herbert J.; Zeitlin, Scott O.; Zhang, Hong; Zhang, Hui-Ling; Zhang, Jianhua; Zhang, Jing-Pu; Zhang, Lin; Zhang, Long; Zhang, Ming-Yong; Zhang, Xu Dong; Zhao, Mantong; Zhao, Yi-Fang; Zhao, Ying; Zhao, Zhizhuang J.; Zheng, Xiaoxiang; Zhivotovsky, Boris; Zhong, Qing; Zhou, Cong-Zhao; Zhu, Changlian; Zhu, Wei-Guo; Zhu, Xiao-Feng; Zhu, Xiongwei; Zhu, Yuangang; Zoladek, Teresa; Zong, Wei-Xing; Zorzano, Antonio; Zschocke, Jürgen; Zuckerbraun, Brian

    2012-01-01

    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused

  19. p53 and ARF: Unexpected players in autophagy

    OpenAIRE

    Balaburski, Gregor M.; Hontz, Robert D.; Murphy, Maureen E.

    2010-01-01

    p53 and ARF are well-established tumor suppressor proteins that function together in the negative regulation of cancer. Recently, both of these proteins were found to play surprising roles in autophagy. Autophagy (“self-eating”) is a critical response of eukaryotic cells to metabolic and other stress. During this process, portions of the cytosol are sequestered into characteristic double membrane vesicles that are delivered to the lysosome for degradation, leading to the release of free amino...

  20. Autophagy: a new player in skeletal maintenance?

    Science.gov (United States)

    Hocking, Lynne J; Whitehouse, Caroline; Helfrich, Miep H

    2012-07-01

    Imbalances between bone resorption and formation lie at the root of disorders such as osteoporosis, Paget's disease of bone (PDB), and osteopetrosis. Recently, genetic and functional studies have implicated proteins involved in autophagic protein degradation as important mediators of bone cell function in normal physiology and in pathology. Autophagy is the conserved process whereby aggregated proteins, intracellular pathogens, and damaged organelles are degraded and recycled. This process is important both for normal cellular quality control and in response to environmental or internal stressors, particularly in terminally-differentiated cells. Autophagic structures can also act as hubs for the spatial organization of recycling and synthetic process in secretory cells. Alterations to autophagy (reduction, hyperactivation, or impairment) are associated with a number of disorders, including neurodegenerative diseases and cancers, and are now being implicated in maintenance of skeletal homoeostasis. Here, we introduce the topic of autophagy, describe the new findings that are starting to emerge from the bone field, and consider the therapeutic potential of modifying this pathway for the treatment of age-related bone disorders. Copyright © 2012 American Society for Bone and Mineral Research.

  1. PRKCI negatively regulates autophagy via PIK3CA/AKT–MTOR signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Liujing; Li, Ge; Xia, Dan; Hongdu, Beiqi; Xu, Chentong; Lin, Xin [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China); Chen, Yingyu, E-mail: yingyu_chen@bjmu.edu.cn [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China)

    2016-02-05

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studies indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.

  2. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles

    Directory of Open Access Journals (Sweden)

    María Milagros López de Armentia

    2016-03-01

    Full Text Available Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila. The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.

  3. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2017-06-01

    Full Text Available Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.

  4. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells).

    Science.gov (United States)

    Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha

    2017-05-01

    Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of Autophagy in Neurons and Brain Tissue

    Science.gov (United States)

    Benito-Cuesta, Irene; Diez, Héctor; Ordoñez, Lara; Wandosell, Francisco

    2017-01-01

    Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer’s, Prion or Parkinson’s disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer’s disease, considering this pathology as one of the most prevalent proteinopathies. PMID:28832529

  6. Autophagy in HCV Infection: Keeping Fat and Inflammation at Bay

    Directory of Open Access Journals (Sweden)

    Tiziana Vescovo

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infection is one of the main causes of chronic liver disease. Viral persistence and pathogenesis rely mainly on the ability of HCV to deregulate specific host processes, including lipid metabolism and innate immunity. Recently, autophagy has emerged as a cellular pathway, playing a role in several aspects of HCV infection. This review summarizes current knowledge on the molecular mechanisms that link the HCV life cycle with autophagy machinery. In particular, we discuss the role of HCV/autophagy interaction in dysregulating inflammation and lipid homeostasis and its potential for translational applications in the treatment of HCV-infected patients.

  7. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Scott Mackenzie Brockman

    Full Text Available Cystic Fibrosis (CF is a genetic disorder caused by mutation(s in the CF-transmembrane conductance regulator (Cftr gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa, a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN-based cysteamine analogue.We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties.We demonstrate here the efficacy of dendrimer-based autophagy

  8. Staying young at heart: autophagy and adaptation to cardiac aging.

    Science.gov (United States)

    Leon, Leonardo J; Gustafsson, Åsa B

    2016-06-01

    Aging is a predominant risk factor for developing cardiovascular disease. Therefore, the cellular processes that contribute to aging are attractive targets for therapeutic interventions that can delay or prevent the development of age-related diseases. Our understanding of the underlying mechanisms that contribute to the decline in cell and tissue functions with age has greatly advanced over the past decade. Classical hallmarks of aging cells include increased levels of reactive oxygen species, DNA damage, accumulation of dysfunctional organelles, oxidized proteins and lipids. These all contribute to a progressive decline in the normal physiological function of the cell and to the onset of age-related conditions. A major cause of the aging process is progressive loss of cellular quality control. Autophagy is an important quality control pathway and is necessary to maintain cardiac homeostasis and to adapt to stress. A reduction in autophagy has been observed in a number of aging models and there is compelling evidence that enhanced autophagy delays aging and extends life span. Enhancing autophagy counteracts age-associated accumulation of protein aggregates and damaged organelles in cells. In this review, we discuss the functional role of autophagy in maintaining homeostasis in the heart, and how a decline is associated with accelerated cardiac aging. We also evaluate therapeutic approaches being researched in an effort to maintain a healthy young heart. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhanced Autophagy in Polycystic Kidneys of AQP11 Null Mice

    Directory of Open Access Journals (Sweden)

    Yasuko Tanaka

    2016-11-01

    Full Text Available Aquaporin-11 (AQP11 is an intracellular water channel expressed at the endoplasmic reticulum (ER of the proximal tubule. Its gene disruption in mice leads to intracellular vacuole formation at one week and the subsequent development of polycystic kidneys by three weeks. As the damaged proximal tubular cells with intracellular vacuoles form cysts later, we postulated that autophagy may play a role in the cyst formation and examined autophagy activity before and after cyst development in AQP11(−/− kidneys. PCR analysis showed the increased expression of the transcript encoding LC3 (Map1lc3b as well as other autophagy-related genes in AQP11(−/− mice. Using green fluorescent protein (GFP-LC3 transgenic mice and AQP11(−/− mice, we found that the number of GFP-LC3–positive puncta was increased in the proximal tubule of AQP11(−/− mice before the cyst formation. Interestingly, they were also observed in the cyst-lining epithelial cell. Further PCR analyses revealed the enhanced expression of apoptosis-related and ER stress–related caspase genes before and after the cyst formation, which may cause the enhanced autophagy. These results suggest the involvement of autophagy in the development and maintenance of kidney cysts in AQP11(−/− mice.

  10. Key role of phosphodiesterase 4A (PDE4A) in autophagy triggered by yessotoxin

    International Nuclear Information System (INIS)

    Fernández-Araujo, A.; Alfonso, A.; Vieytes, M.R.; Botana, L.M.

    2015-01-01

    Highlights: • YTX activates autophagic cell death after 48 h of treatment. • After 24 h of YTX incubation, the autophagic LC3B expression is increased. • High LC3B levels after 24 h can be related with extrinsic apoptosis activated by YTX. • PDEA4 plays a key role in the autophagy activation. - Abstract: Understanding the mechanism of action of the yessotoxin (YTX) is crucial since this drug has potential pharmacological effects in allergic processes, tumor proliferation and neurodegenerative diseases. It has been described that YTX activates apoptosis after 24 h of treatment, while after 48 h of incubation with the toxin a decrease in cell viability corresponding to cellular differentiation or non-apoptotic cell death was observed. In this paper, these processes were extensively studied by using the erythroleukemia K-562 cell line. On one hand, events of K-562 cell differentiation into erythrocytes after YTX treatment were studied using hemin as positive control of cell differentiation. Cell differentiation was studied through the cyclic nucleotide response element binding (phospho-CREB) and the transferrin receptor (TfR) expression. On the other hand, using rapamycin as positive control, autophagic hallmarks, as non-apoptotic cell death, were studied after toxin exposure. In this case, the mechanistic target of rapamycin (mTOR) and light chain 3B (LC3B) levels were measured to check autophagy activation. The results showed that cell differentiation was not occurring after 48 h of toxin incubation while at this time the autophagy was triggered. Furthermore after 24 h of toxin treatment none of these processes were activated. In addition, the role of the type 4A phosphodiesterase (PDE4A), the intracellular target of YTX, was checked. PDE4A-silencing experiments showed different regulation steps of PDE4A in the autophagic processes triggered either by traditional compounds or YTX. In summary, after 48 h YTX treatment PDE4A-dependent autophagy, as non

  11. Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases.

    Science.gov (United States)

    Zahoor, Muhammad; Farhan, Hesso

    2018-01-01

    The secretory and autophagic pathways are two fundamental, evolutionary highly conserved endomembrane processes. Typically, secretion is associated with biosynthesis and delivery of proteins. In contrast, autophagy is usually considered as a degradative pathway. Thus, an analogy to metabolic pathways is evident. Anabolic (biosynthetic) and catabolic (degradative) pathways are usually intimately linked and intertwined, and likewise, the secretory and autophagy pathways are intertwined. Investigation of this link is an emerging area of research, and we will provide an overview of some of the major advances that have been made to contribute to understanding of how secretion regulates autophagy and vice versa. Finally, we will highlight evidence that supports a potential involvement of the autophagy-secretion crosstalk in human diseases. © 2018 Elsevier Inc. All rights reserved.

  12. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function.

    Directory of Open Access Journals (Sweden)

    Sun Woo Sophie Kang

    Full Text Available Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK. When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.

  13. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function

    Science.gov (United States)

    Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong

    2016-01-01

    Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760

  14. Autophagy plays a critical role in ChLym-1-induced cytotoxicity of non-hodgkin's lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Jiajun Fan

    Full Text Available Autophagy is a critical mechanism in both cancer therapy resistance and tumor suppression. Monoclonal antibodies have been documented to kill tumor cells via apoptosis, antibody-dependent cellular cytotoxicity (ADCC and complement-dependent cytotoxicity (CDC. In this study, we report for the first time that chLym-1, a chimeric anti-human HLA-DR monoclonal antibody, induces autophagy in Raji Non-Hodgkin's Lymphoma (NHL cells. Interestingly, inhibition of autophagy by pharmacological inhibitors (3-methyladenine and NH4Cl or genetic approaches (siRNA targeting Atg5 suppresses chLym-1-induced growth inhibition, apoptosis, ADCC and CDC in Raji cells, while induction of autophagy could accelerate cytotoxic effects of chLym-1 on Raji cells. Furthermore, chLym-1-induced autophagy can mediate apoptosis through Caspase 9 activation, demonstrating the tumor-suppressing role of autophagy in antilymphoma effects of chLym-1. Moreover, chLym-1 can activate several upstream signaling pathways of autophagy including Akt/mTOR and extracellular signal-regulated kinase 1/2 (Erk1/2. These results elucidate the critical role of autophagy in cytotoxicity of chLym-1 antibody and suggest a potential therapeutic strategy of NHL therapy by monoclonal antibody chLym-1 in combination with autophagy inducer.

  15. Roles of autophagy in male reproductive development in plants

    Directory of Open Access Journals (Sweden)

    Shigeru eHanamata

    2014-09-01

    Full Text Available Autophagy, a major catabolic pathway in eukaryotic cells, is essential in development, maintenance of cellular homeostasis, immunity and programmed cell death (PCD in multicellular organisms. In plant cells, autophagy plays roles in recycling of proteins and metabolites including lipids, and is involved in many physiological processes such as abiotic and biotic stress responses. However, its roles during reproductive development had remained poorly understood. Quantitative live cell imaging techniques for the autophagic flux and genetic studies in several plant species have recently revealed significant roles of autophagy in developmental processes, regulation of PCD and lipid metabolism. We here review the novel roles of autophagic fluxes in plant cells, and discuss their possible significance in PCD and metabolic regulation, with particular focus on male reproductive development during the pollen maturation.

  16. Calcium Contributes to the Cytotoxic Interaction Between Diclofenac and Cytokines.

    Science.gov (United States)

    Maiuri, Ashley R; Breier, Anna B; Turkus, Jonathan D; Ganey, Patricia E; Roth, Robert A

    2016-02-01

    Diclofenac (DCLF) is a widely used non-steroidal anti-inflammatory drug that is associated with idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanisms of DCLF-induced liver injury are unknown; however, patients with certain inflammatory diseases have an increased risk of developing IDILI, which raises the possibility that immune mediators play a role in the pathogenesis. DCLF synergizes with the cytokines tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN) to cause hepatocellular apoptosis in vitro by a mechanism that involves activation of the endoplasmic reticulum (ER) stress response pathway and of the mitogen-activated protein kinases, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). DCLF also causes an increase in intracellular calcium (Ca(++)) in hepatocytes, but the role of this in the cytotoxic synergy between DCLF and cytokines is unknown. We tested the hypothesis that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy. Treatment of HepG2 cells with DCLF led to an increase in intracellular Ca(++) at 6 and 12 h, and this response was augmented in the presence of TNF and IFN at 12 h. The intracellular Ca(++) chelator BAPTA/AM reduced cytotoxicity and caspase-3 activation caused by DCLF/cytokine cotreatment. BAPTA/AM also significantly reduced DCLF-induced activation of the ER stress sensor, protein kinase RNA-like ER kinase (PERK), as well as activation of JNK and ERK. Treatment of cells with an inositol trisphosphate receptor antagonist almost completely eliminated DCLF/cytokine-induced cytotoxicity and decreased DCLF-induced activation of PERK, JNK, and ERK. These findings indicate that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy by promoting activation of the ER stress-response pathway and JNK and ERK. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRα Is Neuroprotective

    Directory of Open Access Journals (Sweden)

    S. N. Suresh

    2018-04-01

    Full Text Available Mechanistic insights into aggrephagy, a selective basal autophagy process to clear misfolded protein aggregates, are lacking. Here, we report and describe the role of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA, new molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting autophagosome formation. A screen for small molecule modulators for aggrephagy identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in an autophagy dependent, but mammalian target of rapamycin (MTOR independent manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner as validated by siRNA mediated knockdown and over expression approaches. We show that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy induction by XCT 790, this localization is lost and is accompanied with an increase in autophagosome biogenesis. In a preclinical mouse model of Parkinson’s disease (PD, XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.

  18. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kim, Tae Sung; Shin, Yern-Hyerk; Lee, Hye-Mi; Kim, Jin Kyung; Choe, Jin Ho; Jang, Ji-Chan; Um, Soohyun; Jin, Hyo Sun; Komatsu, Masaaki; Cha, Guang-Ho; Chae, Han-Jung; Oh, Dong-Chan; Jo, Eun-Kyeong

    2017-06-13

    The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster-Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.

  19. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    Science.gov (United States)

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The role of cytokine deficiencies and cytokine autoantibodies in clinical dermatology

    DEFF Research Database (Denmark)

    Liszewski, Walter; Gniadecki, Robert

    2016-01-01

    due to a downregulation or absence of cytokines. Here, we review the diagnosis and clinical management of cytokine deficiency syndromes in dermatology. We will review the biology of cytokines, and the current approved indications for recombinant cytokines and anticytokine antibodies. We will also...

  1. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chandan Kanta Das

    2018-03-01

    Full Text Available Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC, and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6 of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20 and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000 cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.

  2. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells.

    Science.gov (United States)

    Das, Chandan Kanta; Linder, Benedikt; Bonn, Florian; Rothweiler, Florian; Dikic, Ivan; Michaelis, Martin; Cinatl, Jindrich; Mandal, Mahitosh; Kögel, Donat

    2018-03-01

    Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549 r DOX 20 ) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468 r 5-FU 2000 ) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549 r DOX 20 and MDA-MB-468 r 5-FU 2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  4. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  5. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

    Science.gov (United States)

    Chen, Qicheng; Ye, Li; Fan, Jiajun; Zhang, Xuyao; Wang, Huan; Liao, Siyang; Song, Ping; Wang, Ziyu; Wang, Shaofei; Li, Yubin; Luan, Jingyun; Wang, Yichen; Chen, Wei; Zai, Wenjing; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2017-01-01

    Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment. PMID:29207624

  6. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    Science.gov (United States)

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Chemo-tolerance and sensitization by short-term fasting: The autophagy connection

    Directory of Open Access Journals (Sweden)

    Gustav Van Niekerk

    2016-11-01

    Full Text Available Preclinical studies suggest that fasting prior to chemotherapy may be an effective strategy to protect patients against the adverse effects of chemo-toxicity. Fasting may also sensitize cancer cells to chemotherapy. It is further suggested that fasting may similarly augment the efficacy of oncolytic viral therapy. The primary mechanism mediating these beneficial effects is thought to relate to the fact that fasting results in a decrease of circulating growth factors. In turn, such fasting cues would prompt normal cells to redirect energy towards cell maintenance and repair processes, rather than growth and proliferation. However, fasting is also known to up-regulate autophagy, an evolutionarily conserved catabolic process that is up-regulated in response to various cell stressors. Here we review a number of mechanisms by which fasting-induced autophagy may have an impact on both chemo-tolerance and chemo-sensitization. Firstly, fasting may exert a protective effect by mobilizing autophagic components prior to chemo-induction. In turn, the autophagic apparatus can be repurposed for removing cellular components damaged by chemotherapy. Autophagy also plays a key role in epitope expression as well as in modulating inflammation. Chemo-sensitization resulting from fasting may in fact be an effect of enhanced immune surveillance as a result of better autophagy-dependent epitope processing. Finally, autophagy is involved in host defense against viruses, and aspects of the autophagic process are also often targets for viral subversion. Consequently, altering autophagic flux by fasting may alter viral infectivity. These observations suggest that fasting-induced autophagy may have an impact on therapeutic efficacy in various oncological contexts.

  8. CD5L Promotes M2 Macrophage Polarization through Autophagy-Mediated Upregulation of ID3

    Directory of Open Access Journals (Sweden)

    Lucía Sanjurjo

    2018-03-01

    Full Text Available CD5L (CD5 molecule-like is a secreted glycoprotein that controls key mechanisms in inflammatory responses, with involvement in processes such as infection, atherosclerosis, and cancer. In macrophages, CD5L promotes an anti-inflammatory cytokine profile in response to TLR activation. In the present study, we questioned whether CD5L is able to influence human macrophage plasticity, and drive its polarization toward any specific phenotype. We compared CD5L-induced phenotypic and functional changes to those caused by IFN/LPS, IL4, and IL10 in human monocytes. Phenotypic markers were quantified by RT-qPCR and flow cytometry, and a mathematical algorithm was built for their analysis. Moreover, we compared ROS production, phagocytic capacity, and inflammatory responses to LPS. CD5L drove cells toward a polarization similar to that induced by IL10. Furthermore, IL10- and CD5L-treated macrophages showed increased LC3-II content and colocalization with acidic compartments, thereby pointing to the enhancement of autophagy-dependent processes. Accordingly, siRNA targeting ATG7 in THP1 cells blocked CD5L-induced CD163 and Mer tyrosine kinase mRNA and efferocytosis. In these cells, gene expression profiling and validation indicated the upregulation of the transcription factor ID3 by CD5L through ATG7. In agreement, ID3 silencing reversed polarization by CD5L. Our data point to a significant contribution of CD5L-mediated autophagy to the induction of ID3 and provide the first evidence that CD5L drives macrophage polarization.

  9. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition

    Science.gov (United States)

    Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho

    2016-01-01

    Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888

  10. Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS

    Directory of Open Access Journals (Sweden)

    Francesca Navone

    2015-08-01

    Full Text Available Autophagy plays a major role in the elimination of cellular waste components, the renewal of intracellular proteins and the prevention of the build-up of redundant or defective material. It is fundamental for the maintenance of homeostasis and especially important in post-mitotic neuronal cells, which, without competent autophagy, accumulate protein aggregates and degenerate. Many neurodegenerative diseases are associated with defective autophagy; however, whether altered protein turnover or accumulation of misfolded, aggregate-prone proteins is the primary insult in neurodegeneration has long been a matter of debate. Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by selective degeneration of motor neurons. Most of the ALS cases occur in sporadic forms (SALS, while 10%–15% of the cases have a positive familial history (FALS. The accumulation in the cell of misfolded/abnormal proteins is a hallmark of both SALS and FALS, and altered protein degradation due to autophagy dysregulation has been proposed to contribute to ALS pathogenesis. In this review, we focus on the main molecular features of autophagy to provide a framework for discussion of our recent findings about the role in disease pathogenesis of the ALS-linked form of the VAPB gene product, a mutant protein that drives the generation of unusual cytoplasmic inclusions.

  11. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8.

    Science.gov (United States)

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.

  12. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H+-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8

    Science.gov (United States)

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation. PMID:26368310

  13. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  14. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    Science.gov (United States)

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-02-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    OpenAIRE

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H.M.; Cassady, John P.; Cohen, Malkiel A.; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I.; Jaenisch, Rudolf

    2013-01-01

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal prot...

  16. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Long Linmei; Zhang Qingqing; Yang Neng; Ji Wenjun; Song Yunzhen; Zhao Jianghu; Liang Zhongqin

    2012-01-01

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  17. Exocyst and autophagy-related membrane trafficking in plants.

    Science.gov (United States)

    Pecenková, Tamara; Markovic, Vedrana; Sabol, Peter; Kulich, Ivan; Žárský, Viktor

    2017-12-18

    Endomembrane traffic in eukaryotic cells functions partially as a means of communication; delivery of membrane in one direction has to be balanced with a reduction at the other end. This effect is typically the case during the defence against pathogens. To combat pathogens, cellular growth and differentiation are suppressed, while endomembrane traffic is poised towards limiting the pathogen attack. The octameric exocyst vesicle-tethering complex was originally discovered as a factor facilitating vesicle-targeting and vesicle-plasma membrane (PM) fusion during exocytosis prior to and possibly during SNARE complex formation. Interestingly, it was recently implicated both in animals and plants in autophagy membrane traffic. In animal cells, the exocyst is integrated into the mTOR-regulated energy metabolism stress/starvation pathway, participating in the formation and especially initiation of an autophagosome. In plants, the first functional link was to autophagy-related anthocyanin import to the vacuole and to starvation. In this concise review, we summarize the current knowledge of exocyst functions in autophagy and defence in plants that might involve unconventional secretion and compare it with animal conditions. Formation of different exocyst complexes during undisturbed cell growth, as opposed to periods of cellular stress reactions involving autophagy, might contribute to the coordination of endomembrane trafficking pathways. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Horning cell self-digestion: Autophagy wins the 2016 Nobel Prize in Physiology or Medicine

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    2017-02-01

    Full Text Available Autophagy is an evolutionarily conserved process by which eukaryotic cells eliminate intracellular components via the lysosomal degradation process. This cell self-digestion process was first discovered and morphologically characterized in the late 1950s and early 1960s. The genetic screen studies in baker's yeast in the 1990s further identified the essential genes functioning in the autophagic process. In the past two decades, the detailed molecular process involved in the completion of autophagy was delineated. Additionally, autophagy has been implied to function in many aspects of biological processes, including maintenance of organelle integrity, protein quality control, regulation of the stress response, and immunity. In addition to maintain cell homeostasis, autophagy has recently been shown to be modulated and to participate in the pathogenesis of human diseases, such as pathogen infections, neurodegenerative diseases, and tumor development. Overall, the breakthrough in autophagy research relies on the discovery of autophagy-related genes (ATGs using a genetic screening approach in Saccharomyces cerevisiae, which was established by Yoshinori Ohsumi. This year the Nobel Committee has awarded Yoshinori Ohsumi the Nobel Prize in Physiology or Medicine for his remarkable contribution to autophagy research.

  19. High mobility group A1 protein modulates autophagy in cancer cells.

    Science.gov (United States)

    Conte, Andrea; Paladino, Simona; Bianco, Gaia; Fasano, Dominga; Gerlini, Raffaele; Tornincasa, Mara; Renna, Maurizio; Fusco, Alfredo; Tramontano, Donatella; Pierantoni, Giovanna Maria

    2017-11-01

    High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells

  20. Renal endoplasmic reticulum stress is coupled to impaired autophagy in a mouse model of GSD Ia.

    Science.gov (United States)

    Farah, Benjamin L; Landau, Dustin J; Wu, Yajun; Sinha, Rohit A; Loh, Alwin; Bay, Boon-Huat; Koeberl, Dwight D; Yen, Paul M

    2017-11-01

    GSD Ia (von Gierke Disease, Glycogen Storage Disease Type Ia) is a devastating genetic disorder with long-term sequelae, such as non-alcoholic fatty liver disease and renal failure. Down-regulated autophagy is involved in the development of hepatic metabolic dysfunction in GSD Ia; however, the role of autophagy in the renal pathology is unknown. Here we show that autophagy is impaired and endoplasmic reticulum (ER) stress is increased in the kidneys of a mouse model of GSD Ia. Induction of autophagy by rapamycin also reduces this ER stress. Taken together, these results show an additional role for autophagy down-regulation in the pathogenesis of GSD Ia, and provide further justification for the use of autophagy modulators in GSD Ia. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease

    OpenAIRE

    El Magraoui, Fouzi; Reidick, Christina; Meyer, Hemut E.; Platta, Harald W.

    2015-01-01

    Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-recep...

  2. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    Science.gov (United States)

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  3. Autophagy in Neurodegeneration: Can't Digest It, Spit It Out!

    Science.gov (United States)

    Barthet, Valentin J A; Ryan, Kevin M

    2018-03-01

    The autophagy-lysosome pathway maintains cellular homeostasis and protects against neurodegenerative disorders. Recent findings show that autophagy can be impaired in these diseases, and that the cell activates an alternative Golgi-mediated degradation pathway, leading to expulsion of toxic protein aggregates. Ultimately this process leads to nuclear breakdown and neuronal cell death. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Autophagy-associated proteins BAG3 and p62 in testicular cancer.

    Science.gov (United States)

    Bartsch, Georg; Jennewein, Lukas; Harter, Patrick N; Antonietti, Patrick; Blaheta, Roman A; Kvasnicka, Hans-Michael; Kögel, Donat; Haferkamp, Axel; Mittelbronn, Michel; Mani, Jens

    2016-03-01

    Testicular germ cell tumors (TGCT) represent the most common malignant tumor group in the age group of 20 to 40-years old men. The potentially curable effect of cytotoxic therapy in TGCT is mediated mainly by the induction of apoptosis. Autophagy has been discussed as an alternative mechanism of cell death but also of treatment resistance in various types of tumors. However, in TGCT the expression and role of core autophagy-associated factors is hitherto unknown. We designed the study in order to evaluate the potential role of autophagy-associated factors in the development and progression of testicular cancers. Eighty-four patients were assessed for autophagy (BAG3, p62) and apoptosis (cleaved caspase 3) markers using immunohistochemistry (IHC) on tissue micro- arrays. In addition, western blot analyses of frozen tissue of seminoma and non-seminoma were performed. Our findings show that BAG3 was significantly upregulated in seminoma as compared to non-seminoma but not to normal testicular tissue. No significant difference of p62 expression was detected between neoplastic and normal tissue or between seminoma and non-seminoma. BAG3 and p62 showed distinct loco‑regional expression patterns in normal and neoplastic human testicular tissues. In contrast to the autophagic markers, apoptosis rate was significantly higher in testicular tumors as compared to normal testicular tissue, but not between different TGCT subtypes. The present study, for the first time, examined the expression of central autophagy proteins BAG3 and p62 in testicular cancer. Our findings imply that in general apoptosis but not autophagy induction differs between normal and neoplastic testis tissue.

  5. GAMDB: a web resource to connect microRNAs with autophagy in gerontology.

    Science.gov (United States)

    Zhang, Lan; Xie, Tao; Tian, Mao; Li, Jingjing; Song, Sicheng; Ouyang, Liang; Liu, Bo; Cai, Haoyang

    2016-04-01

    MicroRNAs (miRNAs) are endogenous ~23 nucleotides (nt) RNAs, regulating gene expression by pairing to the mRNAs of protein-coding genes to direct their post-transcriptional repression. Both in normal and aberrant activities, miRNAs contribute to a recurring paradigm of cellular behaviors in pathological settings, especially in gerontology. Autophagy, a multi-step lysosomal degradation process with function to degrade long-lived proteins and damaged organelles, has significant impact on gerontology. Thus, elucidating how miRNAs participate in autophagy may enlarge the scope of miRNA in autophagy and facilitate researches in gerontology. Herein, based upon the published studies, predicted targets and gerontology-related diseases, we constructed a web resource named Gerontology-Autophagic-MicroRNA Database (GAMDB) (http://gamdb.liu-lab.com/index.php), which contained 836 autophagy-related miRNAs, 197 targeted genes/proteins and 56 aging-related diseases such as Parkinson' disease, Alzheimer's disease and Huntington's disease. We made use of large amounts of data to elucidate the intricate relationships between microRNA-regulated autophagic mechanisms and gerontology. This database will facilitate better understanding of autophagy regulation network in gerontology and thus promoting gerontology-related therapy in the future. © 2016 John Wiley & Sons Ltd.

  6. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Science.gov (United States)

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  7. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.

  8. Use of LysoTracker dyes: a flow cytometric study of autophagy.

    Science.gov (United States)

    Chikte, Shaheen; Panchal, Neelam; Warnes, Gary

    2014-02-01

    The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (used to analyze patient cells as well as easier to use and significantly less costly. Copyright © 2013 International Society for Advancement of Cytometry.

  9. Role of autophagy in disease resistance and hypersensitive response-associated cell death

    DEFF Research Database (Denmark)

    Hofius, Daniel; Munch, David; Bressendorff, Simon

    2011-01-01

    Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum...

  10. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells.

    LENUS (Irish Health Repository)

    Sotthibundhu, Areechun

    2016-01-01

    Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined.

  11. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats.

    Science.gov (United States)

    Li, Chao; Jiang, Feng; Li, Yun-Lun; Jiang, Yue-Hua; Yang, Wen-Qing; Sheng, Jie; Xu, Wen-Juan; Zhu, Qing-Jun

    2018-03-01

    Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg -1 ·d -1 , ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.

  12. A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body

    International Nuclear Information System (INIS)

    Lindmo, Karine; Simonsen, Anne; Brech, Andreas; Finley, Kim; Rusten, Tor Erik; Stenmark, Harald

    2006-01-01

    Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing has also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion

  13. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response.

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Mehrpour, Maryam; Shojaei, Shahla; Harlos, Craig; Pitz, Marshall; Hamai, Ahmed; Siemianowicz, Krzysztof; Likus, Wirginia; Wiechec, Emilia; Toyota, Brian D; Hoshyar, Reyhane; Seyfoori, Amir; Sepehri, Zahra; Ande, Sudharsana R; Khadem, Forough; Akbari, Mohsen; Gorman, Adrienne M; Samali, Afshin; Klonisch, Thomas; Ghavami, Saeid

    2018-04-01

    Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  15. SIRT5 regulation of ammonia-induced autophagy and mitophagy

    Science.gov (United States)

    Polletta, Lucia; Vernucci, Enza; Carnevale, Ilaria; Arcangeli, Tania; Rotili, Dante; Palmerio, Silvia; Steegborn, Clemens; Nowak, Theresa; Schutkowski, Mike; Pellegrini, Laura; Sansone, Luigi; Villanova, Lidia; Runci, Alessandra; Pucci, Bruna; Morgante, Emanuela; Fini, Massimo; Mai, Antonello; Russo, Matteo A; Tafani, Marco

    2015-01-01

    In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism. PMID:25700560

  16. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress

    International Nuclear Information System (INIS)

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-01-01

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 CreERT and Atg5 flox/flox mice to generate Atg5 flox/flox /K19 CreERT mice. Atg5 flox/flox /K19 CreERT mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 flox/flox /K19 CreERT mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 flox/flox /K19 CreERT mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 flox/flox /K19 CreERT mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells. Blocking autophagy

  17. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement.

    Science.gov (United States)

    Guo, Jinhui; Chang, Li; Zhang, Xin; Pei, Sujuan; Yu, Meishuang; Gao, Jianlian

    2014-10-01

    The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.

  18. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors

    Science.gov (United States)

    Doulatov, Sergei; Vo, Linda T.; Macari, Elizabeth R.; Wahlster, Lara; Kinney, Melissa A.; Taylor, Alison M.; Barragan, Jessica; Gupta, Manav; McGrath, Katherine; Lee, Hsiang-Ying; Humphries, Jessica M.; DeVine, Alex; Narla, Anupama; Alter, Blanche P.; Beggs, Alan H.; Agarwal, Suneet; Ebert, Benjamin L.; Gazda, Hanna T.; Lodish, Harvey F.; Sieff, Colin A.; Schlaeger, Thorsten M.; Zon, Leonard I.; Daley, George Q.

    2017-01-01

    Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA. PMID:28179501

  19. The C/EBPbeta isoform, liver-inhibitory protein (LIP), induces autophagy in breast cancer cell lines

    International Nuclear Information System (INIS)

    Abreu, Maria M.; Sealy, Linda

    2010-01-01

    Autophagy is a process involving the bulk degradation of cellular components in the cytoplasm via the lysosomal degradation pathway. Autophagy manifests a protective role in stressful conditions such as nutrient or growth factor depletion; however, extensive degradation of regulatory molecules or organelles essential for survival can lead to the demise of the cell, or autophagy-mediated cell death. The role of autophagy in cancer is complex with roles in both tumor suppression and tumor promotion proposed. Here we report that an isoform of the C/EBPbeta transcription factor, liver-enriched inhibitory protein (LIP), induces cell death in human breast cancer cells and stimulates autophagy. Overexpression of LIP is incompatible with cell growth and when cell cycle analysis was performed, a DNA profile of cells undergoing apoptosis was not observed. Instead, LIP expressing cells appeared to have large autophagic vesicles when examined via electron microscopy. Autophagy was further assessed in LIP expressing cells by monitoring the development of acidic vesicular organelles and conversion of LC3 from the cytoplasmic form to the membrane-bound form. Our work shows that C/EBPbeta isoform, LIP, is another member of the group of transcription factors, including E2F1 and p53, which are capable of playing a role in autophagy.

  20. Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Kohei Yasunaga

    2018-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm that originates from acinar cells. Acinar cells get reprogrammed to become duct cells, resulting in pancreatic cancer. Pancreatitis is an acinar cell inflammation, leading to “impaired autophagy flux”. Pancreatitis promotes acinar-to-ductal transdifferentiation. Expression of amylase gets eliminated during the progression of pancreatic cancer. Amylase is considered as an acinar cell marker; however, its function in cells is not known. Thus, we investigated whether amylase affects the acinar cell autophagy and whether it plays any role in development of pancreatitis. Here, we knocked out ATG12 in a pancreatic cancer cells and acinar cells using CRISPR/Cas9. Autophagy inhibition led to an increase in the expression of duct cell markers and a simultaneous decrease in that of acinar cell markers. It also caused an increase in cell viability and changes in mitochondrial morphology. Next, we knocked out amylase in acinar cells. Amylase deficiency decreased autophagy induced by pancreatitis. Our results suggest that amylase controls pancreatitis-induced autophagy. We found that eliminating amylase expression contributes to pancreatic cancer etiology by decreasing autophagy. Furthermore, our results indicate that amylase plays a role in selective pancreatitis-induced autophagy of pancreatic enzyme vesicles.