WorldWideScience

Sample records for autophagic cell death

  1. Role of phosphoinositide 3-kinase in the autophagic death of serum-deprived PC12 cells.

    Science.gov (United States)

    Guillon-Munos, A; van Bemmelen, M X P; Clarke, P G H

    2005-10-01

    The death of serum-deprived undifferentiated PC12 cells shows both autophagic and apoptotic features. Since it is still controversial whether the autophagy is instrumental in the cell death or a mere epiphenomenon, we tested the effects of inhibiting the autophagy by a variety of phosphoinositide 3-kinase inhibitors, and provided evidence that the autophagy, or a related trafficking event, is indeed instrumental in the cell death. Furthermore, by comparing the effects of PI3-K inhibition and caspase-inhibition on autophagic and apoptotic cellular events, we showed that in this case the autophagic and apoptotic mechanisms mediate cell death by parallel pathways and do not act in series. PMID:16151638

  2. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  3. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  4. MnSOD upregulation induces autophagic programmed cell death in senescent keratinocytes.

    Directory of Open Access Journals (Sweden)

    Emeric Deruy

    Full Text Available Senescence is a state of growth arrest resulting mainly from telomere attrition and oxidative stress. It ultimately leads to cell death. We have previously shown that, in keratinocytes, senescence is induced by NF-kappaB activation, MnSOD upregulation and H(2O(2 overproduction. We have also shown that senescent keratinocytes do not die by apoptosis but as a result of high macroautophagic activity that targets the primary vital cell components. Here, we investigated the mechanisms that activate this autophagic cell death program. We show that corpses occurring at the senescence plateau display oxidatively-damaged mitochondria and nucleus that colocalize with autophagic vacuoles. The occurrence of such corpses was decreased by specifically reducing the H(2O(2 level with catalase, and, conversely, reproduced by overexpressing MnSOD or applying subtoxic doses of H(2O(2. This H(2O(2-induced cell death did occur through autophagy since it was accompanied by an accumulation of autophagic vesicles as evidenced by Lysotracker staining, LC3 vesiculation and transmission electron microscopy. Most importantly, it was partly abolished by 3-methyladenine, the specific inhibitor of autophagosome formation, and by anti-Atg5 siRNAs. Taken together these results suggest that autophagic cell death is activated in senescent keratinocytes because of the upregulation of MnSOD and the resulting accumulation of oxidative damages to nucleus and mitochondria.

  5. AB158. Atorvastatin induces autophagic cell death in prostate cancer cells in vitro

    Science.gov (United States)

    He, Zhenhua; Wang, Zhiping

    2016-01-01

    Objective Although it is well known that apoptosis contributes to cancer cell death, the role of autophagy in cancer cell death has remained in dispute. Atorvastatin has been suggested to exhibit anti-cancer effects. The present study aimed to examine atorvastatin-induced autophagy-associated cell death and the autophagy-associated gene expression profile in the PC3 prostate carcinoma cell line. Methods The atorvastatin-induced process of autophagy in PC3 cells was determined via evaluation of the cellular expression levels of autophagosomal marker light-chain-3 (LC3)-II, using immunoblotting and counting of green fluorescent protein (GFP)-LC3-transfected autophagiccells. Apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and an MTT assay was used to evaluate cell viability. Total RNA of PC3 cells was isolated for characterization of the gene expression profile following atorvastatin treatment. Results Atorvastatin treatment of PC3 cells for 24 h increased the expression of GFP-LC3-II by >25% and expression continued for >72 h, while apoptosis was not significantly induced within this time period. Four genes associated with the autophagy machinery were also significantly upregulated. Conclusions In the presence of atorvastatin, autophagy may be unable to abrogate cell damage and may therefore contribute to cellular dysfunction, leading to autophagic/type II programmed cell death. In response to atorvastatin treatment, the expression of genes involved in autophagic mediating pathways may have a role in tumor suppression.

  6. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    Science.gov (United States)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  7. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan; Tsitsigiannis, Dimitrios I; Petersen, Nikolaj H T; Mattsson, Ole; Jørgensen, Lise Bolt; Jones, Jonathan D G; Mundy, John; Petersen, Morten

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...

  8. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2 result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux.

  9. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    Science.gov (United States)

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  10. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    Science.gov (United States)

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-01

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases. PMID:25668154

  11. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  12. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Haixia Zhuang

    2016-04-01

    Full Text Available Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3 positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs. Cisatracurium lowered HUVEC viability to 0.16 (OD490 at 100 µM and to 0.05 (OD490 after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01. Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype MEF (mouse embryonic fibroblast (p < 0.01 but was unaffected in Atg5 KO (Knockout MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury.

  13. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    Science.gov (United States)

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M.; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  14. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    Full Text Available Yu-Jen Chen,1–4 Li-Wen Fang,5 Wen-Chi Su,6,7 Wen-Yi Hsu,1 Kai-Chien Yang,1 Huey-Lan Huang8 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Nutrition, I-Shou University, Kaohsiung, 6Research Center for Emerging Viruses, China Medical University Hospital, 7Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 8Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China Abstract: Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML, chronic myeloid leukemia (CML, and acute lymphoblastic leukemia (ALL cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of

  15. Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration

    DEFF Research Database (Denmark)

    Christensen, S T; Chemnitz, J; Straarup, E M; Kristiansen, Karsten; Wheatley, D N; Rasmussen, L

    phosphorylation of the PKC-specific substrate, myelin basic protein fragment 4-14. Our results show that cell death in the presence of staurosporine is associated with morphological and ultrastructural changes similar to both apoptosis and autophagic degeneration, but these in turn can be postponed or prevented...

  16. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    Science.gov (United States)

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  17. Betanin-Enriched Red Beetroot (Beta vulgaris L.) Extract Induces Apoptosis and Autophagic Cell Death in MCF-7 Cells.

    Science.gov (United States)

    Nowacki, Laëtitia; Vigneron, Pascale; Rotellini, Laura; Cazzola, Hélène; Merlier, Franck; Prost, Elise; Ralanairina, Robert; Gadonna, Jean-Pierre; Rossi, Claire; Vayssade, Muriel

    2015-12-01

    Recent studies have pointed out the preventive role of beetroot extracts against cancers and their cytotoxic activity on cancer cells. Among many different natural compounds, these extracts contained betanin and its stereoisomer isobetanin, which belongs to the betalain group of highly bioavailable antioxidants. However, a precise identification of the molecules responsible for this tumor-inhibitory effect was still required. We isolated a betanin/isobetanin concentrate from fresh beetroots, corresponding to the highest purified betanin extract used for studying anticancer activities of these molecules. The cytotoxicity of this betanin-enriched extract was then characterized on cancer and normal cells and we highlighted the death signalling pathways involved. Betanin/isobetanin concentrate significantly decreased cancer cell proliferation and viability. Particularly in MCF-7-treated cells, the expressions of apoptosis-related proteins (Bad, TRAILR4, FAS, p53) were strongly increased and the mitochondrial membrane potential was altered, demonstrating the involvement of both intrinsic and extrinsic apoptotic pathways. Autophagosome vesicles in MCF-7-treated cells were observed, also suggesting autophagic cell death upon betanin/isobetanin treatment. Importantly, the betanin-enriched extract had no obvious effect towards normal cell lines. Our data bring new insight to consider the betanin/isobetanin mix as therapeutic anticancer compound, alone or in combination with classical chemotherapeutic drugs, especially in functional p53 tumors. PMID:26463240

  18. Effects of hypoxia-inducible factor-1α on radiation-induced autophagic cell death in breast cancer cells

    International Nuclear Information System (INIS)

    Objective: To study the effects of hypoxia-inducible factor-1α (HIF-1α) on radiation-induced autophagic cell death in breast cancer cells. Methods: MCF-7 cells were divided into four groups:control (normoxia,21% Oxygen),irradiation (8 Gy X-rays), hypoxia (Cobalt chloride, CoCl2) and irradiation with hypoxia (CoCl2). 150 μmol/L CoCl2 was utilized to induce hypoxic conditions. Western blot was applied to detect the expression of HIF-1α and MAPLC3. MDC and Hoechst staining were used to detect autophagy and apoptosis. Radiosensitivity was detected by cloning formation. The short hairpin interfering RNA (shRNA) retroviral transduction particles targeting HIF-1α was transfected into MCF-7 cells to establish HIF-1α knockdown cells, then the radiosensibility, autophagy and apoptosis were detected. Results: Compared with control group and irradiation group,the protein level of HIF-1 increased obviously in the normoxia, irradiation, hypoxia and irradiation with hypoxia groups, and the values were 0, 0, 1.00, 1.89, respectively. The expression levels of MAPLC3 were markedly up-regulated in irradiation, hypoxia and irradiation with hypoxia groups as compared with control, and the ratios of LC3Ⅱ/LC3Ⅰ were 1.15, 1.73, 2.38 and 3.60, respectively. The radiosensitivity of MCF-7 cells decreased in the following order:normoxia with 3MA > normoxia > hypoxia with 3MA > hypoxia. HIF-1α knockdown cell (pSUPER-HIF-1α Ri) and vector control were constructed. After treatment with CoCl2, survival fraction of MCF-7-pSUPER was significantly higher than that of control (t=3.080, 6.946, 6.658, 6.380, P<0.05), and radiosensitivity was down-regulated after irradiation,but there was no significant difference between normoxia and hypoxia in survival fraction of MCF-7-pSUPER-HIF-1α Ri. After treatment of irradiation or hypoxia, the autophagic fractions in MCF-7-pSUPER-HIF-1α Ri significantly decreased, reduced by 21.1%, 25.5%, 15.5%, respectively (t=4.635, 4.738, 6.354, P<0.05) as

  19. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death.

    Science.gov (United States)

    Wang, Kai; Zhang, Chao; Bao, Jiaolin; Jia, Xuejing; Liang, Yeer; Wang, Xiaotong; Chen, Meiwan; Su, Huanxing; Li, Peng; Wan, Jian-Bo; He, Chengwei

    2016-01-01

    Curcumin (CUR) and berberine (BBR) are renowned natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. However, the anticancer capacity of either CUR or BBR is limited. This prompted us to investigate the chemopreventive potential of co-treatment of CUR and BBR against breast cancers. The results showed that CUR and BBR in combination synergistically inhibited the growth of both MCF-7 and MDA-MB-231 breast cancer cells than the compounds used alone. Further study confirmed that synergistic anti-breast cancer activities of co-treatment of these two compounds was through inducing more apoptosis and autophagic cell death (ACD). The co-treatment-induced apoptosis was caspase-dependent and through activating ERK pathways. Our data also demonstrated that co-treatment of CUR and BBR strongly up-regulated phosphorylation of JNK and Beclin1, and decreased phosphorylated Bcl-2. Inhibition of JNK by SP600125 markedly decreased LC3-II and Beclin1, restored phosphorylated Bcl-2, and reduced the cytotoxicity induced by the two compounds in combination. These results strongly suggested that JNK/Bcl-2/Beclin1 pathway played a key role in the induction of ACD in breast cancer cells by co-treatment of CUR and BBR. This study provides an insight into the potential application of curcumin and berberine in combination for the chemoprevention and treatment of breast cancers. PMID:27263652

  20. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Feng Li

    Full Text Available G9a has been reported to highly express in bladder transitional cell carcinoma (TCC and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future.

  1. Tribenuron-Methyl Induces Male Sterility through Anther-Specific Inhibition of Acetolactate Synthase Leading to Autophagic Cell Death.

    Science.gov (United States)

    Zhao, Lun; Jing, Xue; Chen, Li; Liu, Yingjun; Su, Yanan; Liu, Tingting; Gao, Changbin; Yi, Bin; Wen, Jing; Ma, Chaozhi; Tu, Jinxing; Zou, Jitao; Fu, Tingdong; Shen, Jinxiong

    2015-12-01

    Tribenuron-methyl (TM) is a powerful sulfonylurea herbicide that inhibits branched-chain amino acid (BCAA) biosynthesis by targeting the catalytic subunit (CSR1) of acetolactate synthase (ALS). Selective induction of male sterility by foliar spraying of TM at low doses has been widely used for hybrid seed production in rapeseed (Brassica napus); however, the underlying mechanism remains unknown. Here, we report greater TM accumulation and subsequent stronger ALS inhibition and BCAA starvation in anthers than in leaves and stems after TM application. Constitutive or anther-specific expression of csr1-1D (a CSR1 mutant) eliminated anther-selective ALS inhibition and reversed the TM-induced male sterile phenotype in both rapeseed and Arabidopsis. The results of TM daub-stem experiments, combined with the observations of little TM accumulation in anthers and reversion of TM-induced male sterility by targeted expression of the TM metabolism gene Bel in either the mesophyll or phloem, suggested that foliar-sprayed TM was polar-transported to anthers mainly through the mesophyll and phloem. Microscopy and immunoblotting revealed that autophagy, a bulk degradation process induced during cell death, was elevated in TM-induced male sterile anthers and by anther-specific knockdown of ALS. Moreover, TM-induced pollen abortion was significantly inhibited by the autophagy inhibitor 3-MA. These data suggested that TM was polar-transported to anthers, resulting in BCAA starvation via anther-specific ALS inhibition and, ultimately, autophagic cell death in anthers. PMID:26362932

  2. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells.

    Science.gov (United States)

    Yin, Shutao; Guo, Xiao; Li, Jinghua; Fan, Linghong; Hu, Hongbo

    2016-04-01

    Mycotoxins are secondary fungal metabolites that are capable of inducing a variety of toxic effects in animals and humans resulting from the consumption of the contaminated food. Understanding the mechanisms of the toxicities behind these mycotoxins is required to develop mechanism-based approach to counteract their toxic potential. Fumonisin B1 (FB1) is the most prevalent member of fumonisins that are a group of mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum. Kidney is one of the primary target organs for FB1 action. Using monkey kidney MARC-145 cells as an intro model, we found that FB1 induced caspase-independent programmed cell death accompanied with autophagy induction. Inhibition of autophagy by either chemical inhibitors or RNAi approach led to a significant reduction in cell death by FB1 exposure, indicating possible involvement of autophagy-mediated cell death in nephrotoxicity of FB1. Further mechanistic investigation revealed that activation of ERN1-MAPK8/9/10 axis played a critical role in autophagy induction and autophagy-mediated cell death by FB1 exposure. In addition, we demonstrated that disruption of sphingolipid metabolism was an apical event in FB1-induced ERN1-MAPK8/9/10-mediated autophagic cell death in MARC-145 cells. Lastly, we identified curcumin, a naturally occurring plant phenolic compound, as a possible anti-FB1 agent that can be used to protect kidney cells from FB1-induced cell death through inhibition of MAPK8/9/10 activation. PMID:25925693

  3. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    International Nuclear Information System (INIS)

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73

  4. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Monti, Paola; Fronza, Gilberto [Mutagenesis Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa (Italy); Pereira, Clara [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Saraiva, Lucília, E-mail: lucilia.saraiva@ff.up.pt [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal)

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  5. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells.

    Science.gov (United States)

    Aryal, Pramod; Kim, Kijoong; Park, Pil-Hoon; Ham, Seongho; Cho, Junghee; Song, Kyung

    2014-10-01

    Baicalein, a flavonoid and aglycon hydrolyzed from baicalin, has anticancer properties in several human carcinomas, but its molecular mechanisms of action remain unclear. Here, we show that baicalein leads to human cancer cell death by inducing autophagy rather than apoptosis, because cell death induced by baicalein was completely reversed by suppressing the expression levels of key molecules in autophagy such as Beclin 1, vacuolar protein sorting 34 (Vps34), autophagy-related (Atg)5 and Atg7, but not by pan-caspase inhibitor. Our data revealed that baicalein significantly increased the number of green fluorescence protein-cytosol-associated protein light chain 3 (GFP-LC3)-containing puncta and LC3B-II expression levels, which were further enhanced by chloroquine treatment. Furthermore, a luciferase-based reporter assay showed that the ratio of RLuc-LC3wt/RLuc-LC3G120A was greatly reduced. The data suggested that baicalein induced not only autophagosome formation, but also autophagic flux. Experiments using short interfering RNAs and pharmacological inhibitors revealed that Beclin 1, Vps34, Atg5, Atg7 and UNC-51 (Caenorhabditis elegans)-like kinase 1 (ULK1) play pivotal roles in mediating baicalein-induced autophagy. Moreover, baicalein activated AMP-activated protein kinase (AMPK)α, leading to ULK1 activation through phosphorylation at Ser555, whereas both protein and mRNA levels of mammalian target of rapamycin (mTOR) and Raptor, upstream inhibitors of ULK1 and autophagy, were markedly downregulated by baicalein. Our data suggest that the anticancer effects of baicalein are mainly due to autophagic cell death through activation of the AMPK/ULK1 pathway and inhibition of mTOR/Raptor complex 1 expression. These results provide new mechanistic insights into the anticancer functions of autophagy inducers, such as baicalein, which may be used as potential therapeutics for cancer treatment. PMID:25132405

  6. PAMAM Nanoparticles Promote Acute Lung Injury by Inducing Autophagic Cell Death through the Akt-TSC2-mTOR Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Chenggang Li; Haolin Liu; Yang Sun; Hongliang Wang; Feng Guo; Shuan Rao; Jiejie Deng; Yanli Zhang; Yufa Miao; Chenying Guo; Jie Meng; Xiping Chen; Limin Li; Dangsheng Li; Haiyan Xu; Heng Wang; Bo Li; Chengyu Jiang

    2009-01-01

    Nanotechnology is an important and emerging industry with a projected annual market of around one trillion US dollars by 2011–2015. Concerns about the toxicity of nanomaterials in humans, however, have recently been raised. Although studies of nanoparticle toxicity have focused on lung disease the molecular link between nanoparticle exposure and lung injury remained unclear. In this report, we show that cationic Starburst polyamidoamine dendrimer (PAMAM), a class of nanomaterials that are being widely developed for clinical applications can induce acute lung injury in vivo. PAMAM triggers autophagic cell death by deregulating the Akt-TSC2-mTOR signaling pathway. The autophagy inhibitor 3-methyladenine rescued PAMAM dendrimer-induced cell death and ameliorated acute lung injury caused by PAMAM in mice. Our data provide a molecular explanation for nanoparticle-induced lung injury, and suggest potential remedies to address the growing concerns of nanotechnology safety.

  7. A novel strategy inducing autophagic cell death in Burkitt's lymphoma cells with anti-CD19-targeted liposomal rapamycin

    International Nuclear Information System (INIS)

    Relapsed or refractory Burkitt's lymphoma often has a poor prognosis in spite of intensive chemotherapy that induces apoptotic and/or necrotic death of lymphoma cells. Rapamycin (Rap) brings about autophagy, and could be another treatment. Further, anti-CD19-targeted liposomal delivery may enable Rap to kill lymphoma cells specifically. Rap was encapsulated by anionic liposome and conjugated with anti-CD19 antibody (CD19-GL-Rap) or anti-CD2 antibody (CD2-GL-Rap) as a control. A fluorescent probe Cy5.5 was also liposomized in the same way (CD19 or CD2-GL-Cy5.5) to examine the efficacy of anti-CD19-targeted liposomal delivery into CD19-positive Burkitt's lymphoma cell line, SKW6.4. CD19-GL-Cy5.5 was more effectively uptaken into SKW6.4 cells than CD2-GL-Cy5.5 in vitro. When the cells were inoculated subcutaneously into nonobese diabetic/severe combined immunodeficiency mice, intravenously administered CD19-GL-Cy5.5 made the subcutaneous tumor fluorescent, while CD2-GL-Cy5.5 did not. Further, CD19-GL-Rap had a greater cytocidal effect on not only SKW6.4 cells but also Burkitt's lymphoma cells derived from patients than CD2-GL-Rap in vitro. The specific toxicity of CD19-GL-Rap was cancelled by neutralizing anti-CD19 antibody. The survival period of mice treated with intravenous CD19-GL-Rap was significantly longer than that of mice treated with CD2-GL-Rap after intraperitoneal inoculation of SKW6.4 cells. Anti-CD19-targeted liposomal Rap could be a promising lymphoma cell-specific treatment inducing autophagic cell death

  8. Attenuation of Aβ25–35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    International Nuclear Information System (INIS)

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ25–35-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ25–35 (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ25–35 treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ25–35 treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ25–35-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ25–35-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or gypenosides. - Highlights:

  9. Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells.

    Science.gov (United States)

    Yu, Xinfeng; Li, Ruilian; Shi, Wenna; Jiang, Tao; Wang, Yufei; Li, Cong; Qu, Xianjun

    2016-02-01

    Tamoxifen (TAM) and fulvestrant (FUL) represent the major adjuvant therapy to estrogen receptor-alpha positive (ER(+)) breast cancer patients. However, endocrine resistance to TAM and FUL is a great impediment for successful treatment. We hypothesized that miR-21 might alter the sensitivity of breast cancer cells to TAM or FUL by regulating cell autophagy. Using the ER(+) breast cancer cells, we knockdown miR-21.by transfection with miR-21 inhibitor, then the cells were exposed to TAM or FUL and the percentages of apoptosis and autophagy were determined. Knockdown of miR-21 significantly increased the TAM or FUL-induced apoptosis in ER(+) breast cancer cells. Further, silencing of miR-21 in MCF-7 cells enhanced cell autophagy at both basal and TAM or FUL-induced level. The increase of autophagy in miR-21-knockdown MCF-7 cells was also indicated by increase of beclin-1, LC3-II and increased GFP-LC3 dots. Importantly, knockdown of miR-21 contributed to autophagic cell death, which is responsible for part of TAM induced cell death in miR-21 inhibitor-transfected cells. Further analysis suggested that miR-21 inhibitor enhance autophagic cell death through inhibition of PI3K-AKT-mTOR pathway. MiR-21 coordinated the function of autophagy and apoptosis by targeting Phosphatase and tensin homolog (PTEN) through inhibition of PI3K-AKT-mTOR pathway. In conclusion, silencing of miR-21 increased the sensitivity of ER(+) breast cancer cells to TAM or FUL by increasing autophagic cell death. Targeting autophagy-related miRNAs is a potential strategy for overcoming endocrine resistance to TAM and FUL. PMID:26796263

  10. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma

    OpenAIRE

    Feng Li; Jin Zeng; Yang Gao; Zhenfeng Guan; Zhenkun Ma; Qi Shi; Chong Du; Jing Jia; Shan Xu; Xinyang Wang; Luke Chang; Dalin He; Peng Guo

    2015-01-01

    G9a has been reported to highly express in bladder transitional cell carcinoma (TCC) and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incor...

  11. Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma

    OpenAIRE

    Li, Kai-Chun; Hua, Kuo-Tai; Lin, Yi-Shen; Su, Chia-Yi; Ko, Jenq-Yuh; Hsiao, Michael; Kuo, Min-Liang; Tan, Ching-Ting

    2014-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) is a common cancer worldwide. Emerging evidence indicates that alteration of epigenetics might be a key event in HNSCC progression. Abnormal expression of histone methyltransferase G9a, which contributes to transcriptional repression of tumor suppressors, has been implicated in promoting cancerous malignancies. However, its role in HNSCC has not been previously characterized. In this study, we elucidate the function of G9a and its downs...

  12. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes induce autophagic cell death in estrogen receptor negative breast cancer

    International Nuclear Information System (INIS)

    A novel series of methylene-substituted DIMs (C-DIMs), namely 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing t-butyl (DIM-C-pPhtBu) and phenyl (DIM-C-pPhC6H5) groups inhibit proliferation of invasive estrogen receptor-negative MDA-MB-231 and MDA-MB-453 human breast cancer cell lines with IC50 values between 1-5 uM. The main purpose of this study was to investigate the pathways of C-DIM-induced cell death. The effects of the C-DIMs on apoptotic, necrotic and autophagic cell death were determined using caspase inhibitors, measurement of lactate dehydrogenase release, and several markers of autophagy including Beclin and light chain associated protein 3 expression (LC3). The C-DIM compounds did not induce apoptosis and only DIM-C-pPhCF3 exhibited necrotic effects. However, treatment of MDA-MB-231 and MDA-MB-453 cells with C-DIMs resulted in accumulation of LC3-II compared to LC3-I protein, a characteristic marker of autophagy, and transient transfection of green fluorescent protein-LC3 also revealed that treatment with C-DIMs induced a redistribution of LC3 to autophagosomes after C-DIM treatment. In addition, the autofluorescent drug monodansylcadaverine (MDC), a specific autophagolysosome marker, accumulated in vacuoles after C-DIM treatment, and western blot analysis of lysates from cells treated with C-DIMs showed that the Beclin 1/Bcl-2 protein ratio increased. The results suggest that C-DIM compounds may represent a new mechanism-based agent for treating drug-resistant ER-negative breast tumors through induction of autophagy

  13. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model.

    Science.gov (United States)

    Benedetti, Elisabetta; Antonosante, Andrea; d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-12-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma. PMID:26540346

  14. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA

    International Nuclear Information System (INIS)

    We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion

  15. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangbao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Sun, Guibo, E-mail: sunguibo@126.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Ye, Jingxue [Jilin Agricultural University, Changchun, Jilin 130021 (China); Zhou, Yanhui [Center of Cardiology, People' s Hospital of Jilin Province, Changchun, 130021, Jilin (China); Dong, Xi [Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Wang, Tingting; Lu, Shan [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Sun, Xiaobo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China)

    2014-08-15

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens

  16. Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death.

    Directory of Open Access Journals (Sweden)

    Marco Tomasetti

    Full Text Available BACKGROUND: The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS was found to synergistically cooperate with vitamin K3 (VK3 plus ascorbic acid (AA in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. CONCLUSIONS/SIGNIFICANCE: α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.

  17. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells

    OpenAIRE

    Tai, W-T; Shiau, C-W; Chen, H-L; Liu, C-Y; Lin, C-S; Cheng, A-L; Chen, P-J; Chen, K-F

    2013-01-01

    We investigated the molecular mechanisms underlying the effect of sorafenib and SC-59, a novel sorafenib derivative, on hepatocellular carcinoma (HCC). Sorafenib activated autophagy in a dose- and time-dependent manner in the HCC cell lines PLC5, Sk-Hep1, HepG2 and Hep3B. Sorafenib downregulated phospho-STAT3 (P-STAT3) and subsequently reduced the expression of myeloid cell leukemia-1 (Mcl-1). Inhibition of Mcl-1 by sorafenib resulted in disruption of the Beclin 1-Mcl-1 complex; however, sora...

  18. Mechanism for Clofarabine Inducing Autophagic Death of Acute Myelocytic Leukemia Cell U937%氯法拉滨诱导U937细胞自噬性死亡的机制

    Institute of Scientific and Technical Information of China (English)

    李程亮; 刘海波; 张梅; 贺鹏程

    2013-01-01

    本研究旨在探讨氯法拉滨诱导急性髓系白血病(AML)细胞U937自噬性死亡的机制.不同浓度氯法拉滨作用U937细胞24、48 h后,用MTT法计算细胞生长抑制率及氯法拉滨半数抑制浓度(IC50),流式细胞术检测细胞自噬率的变化;Western blot方法检测细胞自噬相关蛋白Beclin1的表达变化.结果表明,0.01和0.15 μmol/L氯法拉滨作用U937细胞48 h,增殖抑制率分别为(46.92±4.24)%和(86.10±1.16)%,IC50为0.022 μmol/L,与对照组比较差异有统计学意义(P<0.05).0.01和0.1μmol/L氯法拉滨作用U937细胞48 h,自噬率分别为(11.0033±1.4387)%和(59.4133±3.5409)%,且呈剂量依赖性增强(r=0.99);随药物浓度的增加,Beclin 1表达逐渐上调,与对照组比较差异有统计学意义(P<0.05).结论:氯法拉滨对U937细胞有明显的增殖抑制作用,且存在剂量依赖性,其作用机制可能是通过上调Beclin 1的蛋白表达诱导U937细胞自噬性死亡.%To explore the mechanism of autophagic death of acute myelocytic leukemia cell U937 induced by clofarabine, the MTT bioassay was used to analyze the growth inhibitory effect and half inhibition concentration on U937 incubated in vitro with different concentrations of clofarabine for 24 and 48 hours, and the flow cytometry was used to detect the autophagy rate of U937. The expression of Beclin 1 in U937 treated by clofarabine for 48h was meaused by Western blot. The results indicated that when U937 cells were treated with 0. 01 μmol/L and 0.15 μmol/L clofarabine for 48 hours, the proliferation inhibition rate was 46. 92% ±4. 24% and 86. 10% ± 1. 16% , and the half inhibition concentration of clofarabine was 0.022 μmol/L. With 0.01 μmol/L and 0.1μmol/L clofarabine on U937 for 48 hours, the autophagy rate was 11.0033% ±1.4387% and 59.4133% ±3.5409% ,and increased in dose-dependent manner(r = 0.99). Meanwhile the Beclin 1 was upregulated along with increase of clofarabine concentration, as

  19. Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways

    OpenAIRE

    Xiong, Xin-xin; Liu, Ju-mei; Qiu, Xin-yao; Pan, Feng; Yu, Shang-bin; Xiao-qian CHEN

    2015-01-01

    Aim: To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. Methods: Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or fl...

  20. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death.

    Science.gov (United States)

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  1. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death

    Science.gov (United States)

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  2. Autophagic response to cell culture stress in pluripotent stem cells.

    Science.gov (United States)

    Gregory, Siân; Swamy, Sushma; Hewitt, Zoe; Wood, Andrew; Weightman, Richard; Moore, Harry

    2016-05-01

    Autophagy is an important conserved cellular process, both constitutively as a recycling pathway for long lived proteins and as an upregulated stress response. Recent findings suggest a fundamental role for autophagic processes in the maintenance of pluripotent stem cell function. In human embryonic stem cells (hESCS), autophagy was investigated by transfection of LC3-GFP to visualize autophagosomes and with an antibody to LC3B protein. The presence of the primary cilium (PC) in hESCs as the site of recruitment of autophagy-related proteins was also assessed. HESCs (mShef11) in vitro displayed basal autophagy which was upregulated in response to deprivation of culture medium replacement. Significantly higher levels of autophagy were exhibited on spontaneous differentiation of hESCs in vitro. The PC was confirmed to be present in hESCs and therefore may serve to coordinate autophagy function. PMID:26385182

  3. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    Science.gov (United States)

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to

  4. Enhanced Autophagy and Reduced Expression of Cathepsin D Are Related to Autophagic Cell Death in Epstein-Barr Virus-Associated Nasal Natural Killer/T-Cell Lymphomas: An Immunohistochemical Analysis of Beclin-1, LC3, Mitochondria (AE-1), and Cathepsin D in Nasopharyngeal Lymphomas

    International Nuclear Information System (INIS)

    This study investigated autophagy in 37 cases of nasopharyngeal lymphomas including 23 nasal natural killer (NK)/T-cell lymphomas (NKTCL), 3 cytotoxic T-cell lymphomas (cytotoxic-TML) and 9 B-cell lymphomas (BML) by means of antigen-retrieval immunohistochemistry of beclin-1, LC3, mitochondria (AE-1) and cathepsin D. Peculiar necrosis was noted in EBV+ lymphomas comprising 21 NKTCL, 2 cytotoxic-TML and 1 BML. Lymphomas without peculiar necrosis showed high expression of beclin-1, macrogranular cytoplasmal stain of LC3 with sporadic nuclear stain, a hallmark of autophagic cell death (ACD), some aggregated mitochondria and high expression of cathepsin D, suggesting a state of growth with enhanced autophagy with sporadic ACD. EBV+ NKTCL with the peculiar necrosis, showed significantly low level of macrogranular staining of LC3, aggregated mitochondria and low expression of cathepsin D in the cellular areas when degenerative lymphoma cells showed decreased beclin-1, significantly advanced LC3-labeled autophagy, residual aggregated mitochondria and significantly reduced expression of cathepsin D, suggesting advanced autophagy with regional ACD. Consequently it was suggested that enhanced autophagy and reduced expression of lysosomal enzymes induced regional ACD under EBV infection in NKTCL

  5. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H2O2 inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H2O2-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the number of autophagosomes. However, exposure of hepatoma cells to H2O2 and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD

  6. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Pengtao [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049 (China); Huang, Zhen [Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021 (China); Wei, Taotao, E-mail: weitt@moon.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2013-04-19

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the number of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.

  7. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C60OHx), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  8. Programmed Cell Death and Postharvest Deterioration of Horticultural Produce

    NARCIS (Netherlands)

    Woltering, E.J.; Iakimova, E.T.

    2010-01-01

    Programmed cell death (PCD) is a process where cells or tissues are broken down in an orderly and predictable manner, whereby nutrients are re-used by other cells, tissues or plant parts. The process of (petal) senescence shows many similarities to autophagic PCD in animal cells including a massive

  9. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these...... pathways and their molecular components in plants are reviewed here....

  10. Cell death and autophagy: Cytokines, drugs, and nutritional factors

    International Nuclear Information System (INIS)

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, ≤1 μM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-π and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fesues, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 μM), resulting in the lysis of almost all cells within 24 h. However, a transient (1 h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 μM TAM, autophagy predominant; 7-9 μM, apoptosis predominant; 15 μM, necrosis. These phenomena might be

  11. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  12. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    International Nuclear Information System (INIS)

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3

  13. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  14. Analysis of Relevant Parameters for Autophagic Flux Using HeLa Cells Expressing EGFP-LC3.

    Science.gov (United States)

    Muñoz-Braceras, Sandra; Escalante, Ricardo

    2016-01-01

    Macroautophagy (called just autophagy hereafter) is an intracellular degradation machinery essential for cell survival under stress conditions and for the maintenance of cellular homeostasis. The hallmark of autophagy is the formation of double membrane vesicles that engulf cytoplasmic material. These vesicles, called autophagosomes, mature by fusion with endosomes and lysosomes that allows the degradation of the cargo. Autophagy is a dynamic process regulated at multiple steps. Assessment of autophagy is not trivial because the number autophagosomes might not necessarily reflect the real level of autophagic degradation, the so-called autophagic flux. Here, we describe an optimized protocol for the analysis of relevant parameters of autophagic flux using HeLa cells stably expressing EGFP-LC3. These cells are a convenient tool to determine the influence of the downregulation or overexpression of specific proteins in the autophagic flux as well as the analysis of autophagy-modulating compounds. Western blot analysis of relevant parameters, such as the levels of EGFP-LC3, free EGFP generated by autophagic degradation and endogenous LC3·I-II are analyzed in the presence and absence of the autophagic inhibitor chloroquine. PMID:27613046

  15. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells.

    Science.gov (United States)

    Xiang, Xi-Yan; Yang, Xiao-Chun; Su, Jin; Kang, Jing-Song; Wu, Yao; Xue, Ya-Nan; Dong, Yu-Tong; Sun, Lian-Kun

    2016-06-01

    As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress. PMID:27035858

  16. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  17. YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation.

    Directory of Open Access Journals (Sweden)

    Qinghe Song

    Full Text Available The Yes-associated protein (YAP, a transcriptional coactivator inactivated by the Hippo tumor suppressor pathway, functions as an oncoprotein in a variety of cancers. However, its contribution to breast cancer remains controversial. This study investigated the role of YAP in breast cancer cells under nutrient deprivation (ND. Here, we show that YAP knockdown sensitized MCF7 breast cancer cells to nutrient deprivation-induced apoptosis. Furthermore, in response to ND, YAP increased the autolysosome degradation, thereby enhancing the cellular autophagic flux in breast cancer cells. Of note, autophagy is crucial for YAP to protect MCF7 cells from apoptosis under ND conditions. In addition, the TEA domain (TEAD family of growth-promoting transcription factors was indispensable for YAP-mediated regulation of autophagy. Collectively, our data reveal a role for YAP in promoting breast cancer cell survival upon ND stress and uncover an unappreciated function of YAP/TEAD in the regulation of autophagy.

  18. Mesenchymal Stromal Cells Differentiating to Adipocytes Accumulate Autophagic Vesicles Instead of Functional Lipid Droplets.

    Science.gov (United States)

    Gruia, Alexandra T; Suciu, Maria; Barbu-Tudoran, Lucian; Azghadi, Seyed Mohammad Reza; Cristea, Mirabela I; Nica, Dragos V; Vaduva, Adrian; Muntean, Danina; Mic, Ani Aurora; Mic, Felix A

    2016-04-01

    Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332160

  19. The convergent point of the endocytic and autophagic pathways in leydig cells

    Institute of Scientific and Technical Information of China (English)

    YIJING; XUEMINGTANG

    1999-01-01

    Endocytic tracers and marker enzyme of lysosomes were used in the present study to analyze the processes of autophagocytosis and endocytosis,and the convergent point of these two pathways in Leydig cells.The endocytic and autophagic compartments can be easily identified in Leydig cells,which makes easier to difine the stages of two pathways than was possible before.The evidences indicated that late endosomes (dense MVBs) deliver their endocytosed gold tracers together with lysosomal enzymes to the early autophagosomes and they are the convergent point of the two pathways.During this convergent process,the early autophadosomes transform into late autophagosomes and the late endosomes transform into mature lysosomes.

  20. Autophagic myelin destruction by schwann cells during wallerian degeneration and segmental demyelination.

    Science.gov (United States)

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Lee, Hye Jeong; Yoo, Young Hyun; Kim, Jong Kuk; Park, Hwan Tae

    2016-05-01

    As lysosomal hydrolysis has long been suggested to be responsible for myelin clearance after peripheral nerve injury, in this study, we investigated the possible role of autophagolysosome formation in myelin phagocytosis by Schwann cells and its final contribution to nerve regeneration. We found that the canonical formation of autophagolysosomes was induced in demyelinating Schwann cells after injury, and the inhibition of autophagy via Schwann cell-specific knockout of the atg7 gene or pharmacological intervention of lysosomal function caused a significant delay in myelin clearance. However, Schwann cell dedifferentiation, as demonstrated by extracellular signal-regulated kinase activation and c-Jun induction, and redifferentiation were not significantly affected, and thus the entire repair program progressed normally in atg7 knockout mice. Finally, autophagic Schwann cells were also found during segmental demyelination in a mouse model of inflammatory peripheral neuropathy. Together, our findings suggest that autophagy is the self-myelin destruction mechanism of Schwann cells, but mechanistically, it is a process distinct from Schwann cell plasticity for nerve repair. GLIA 2016;64:730-742. PMID:26712109

  1. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ivan Mfouo-Tynga

    2015-05-01

    Full Text Available The mechanisms of cell death can be predetermined (programmed or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT uses non-toxic chemotherapeutic agents, photosensitizer (PS, to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.

  2. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Science.gov (United States)

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. PMID:26890602

  3. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    Directory of Open Access Journals (Sweden)

    Lim Chuan

    2012-07-01

    Full Text Available Abstract Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show

  4. Apoptotic Death of Prostate Cancer Cells by a Gonadotropin-Releasing Hormone-II Antagonist

    OpenAIRE

    Park, Sumi; Han, Ji Man; Cheon, Jun; Hwang, Jong-Ik; Seong, Jae Young

    2014-01-01

    Gonadotropin-releasing hormone-I (GnRH-I) has attracted strong attention as a hormonal therapeutic tool, particularly for androgen-dependent prostate cancer patients. However, the androgen-independency of the cancer in advanced stages has spurred researchers to look for new medical treatments. In previous reports, we developed the GnRH-II antagonist Trp-1 to inhibit proliferation and stimulate the autophagic death of various prostate cancer cells, including androgen-independent cells. We furt...

  5. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization

    International Nuclear Information System (INIS)

    Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent KM 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly (≥ 24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking

  6. Cell death proteomics database: consolidating proteomics data on cell death.

    Science.gov (United States)

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  7. A systems level strategy for analyzing the cell death network: implication in exploring the apoptosis/autophagy connection.

    Science.gov (United States)

    Zalckvar, E; Yosef, N; Reef, S; Ber, Y; Rubinstein, A D; Mor, I; Sharan, R; Ruppin, E; Kimchi, A

    2010-08-01

    The mammalian cell death network comprises three distinct functional modules: apoptosis, autophagy and programmed necrosis. Currently, the field lacks systems level approaches to assess the extent to which the intermodular connectivity affects cell death performance. Here, we developed a platform that is based on single and double sets of RNAi-mediated perturbations targeting combinations of apoptotic and autophagic genes. The outcome of perturbations is measured both at the level of the overall cell death responses, using an unbiased quantitative reporter, and by assessing the molecular responses within the different functional modules. Epistatic analyses determine whether seemingly unrelated pairs of proteins are genetically linked. The initial running of this platform in etoposide-treated cells, using a few single and double perturbations, identified several levels of connectivity between apoptosis and autophagy. The knock down of caspase3 turned on a switch toward autophagic cell death, which requires Atg5 or Beclin-1. In addition, a reciprocal connection between these two autophagic genes and apoptosis was identified. By applying computational tools that are based on mining the protein-protein interaction database, a novel biochemical pathway connecting between Atg5 and caspase3 is suggested. Scaling up this platform into hundreds of perturbations potentially has a wide, general scope of applicability, and will provide the basis for future modeling of the cell death network. PMID:20150916

  8. Interplay between autophagy and programmed cell death in mammalian neural stem cells

    Directory of Open Access Journals (Sweden)

    Kyung Min Chung

    2013-08-01

    Full Text Available Mammalian neural stem cells (NSCs are of particular interestbecause of their role in brain development and function. Recentfindings suggest the intimate involvement of programmed celldeath (PCD in the turnover of NSCs. However, the underlyingmechanisms of PCD are largely unknown. Although apoptosis isthe best-defined form of PCD, accumulating evidence hasrevealed a wide spectrum of PCD encompassing apoptosis,autophagic cell death (ACD and necrosis. This mini-reviewaims to illustrate a unique regulation of PCD in NSCs. Theresults of our recent studies on autophagic death of adulthippocampal neural stem (HCN cells are also discussed. HCNcell death following insulin withdrawal clearly provides areliable model that can be used to analyze the molecularmechanisms of ACD in the larger context of PCD. Moreresearch efforts are needed to increase our understanding of themolecular basis of NSC turnover under degenerating conditions,such as aging, stress and neurological diseases. Efforts aimed atprotecting and harnessing endogenous NSCs will offer novelopportunities for the development of new therapeutic strategiesfor neuropathologies. [BMB Reports 2013; 46(8: 383-390

  9. Glutathione in Cancer Cell Death

    International Nuclear Information System (INIS)

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

  10. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  11. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  12. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  13. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  14. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.

    Directory of Open Access Journals (Sweden)

    Mihajlo Bosnjak

    Full Text Available The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4 and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR, and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.

  15. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling

    Institute of Scientific and Technical Information of China (English)

    Jianhui Ma; Qian Sun; Ruifang Mi; Hongbing Zhang

    2011-01-01

    Of the few avian influenza viruses that have crossed the species barrier to infect humans,the highly pathogenic influenza A (H5N1) strain has claimed the lives of more than half of the infected patients.With largely unknown mechanism of lung injury by H5N1 infection,acute respiratory distress syndrome (ARDS) is the major cause of death among the victims.Here we present the fact that H5N1 caused autophagic cell death through suppression of mTOR signaling.Inhibition of autophagy,either by depletion of autophagy gene Beclinl or by autophagy inhibitor 3-methyladenine (3-MA),significantly reduced H5N1 mediated cell death.We suggest that autophagic cell death may contribute to the development of ARDS in H5N1 influenza patients and inhibition of autophagy could therefore become a novel strategy for the treatment of H5N1 infection.

  16. New steroidal aromatase inhibitors: Suppression of estrogen-dependent breast cancer cell proliferation and induction of cell death

    Directory of Open Access Journals (Sweden)

    Roleira Fernanda MF

    2008-07-01

    Full Text Available Abstract Background Aromatase, the cytochrome P-450 enzyme (CYP19 responsible for estrogen biosynthesis, is an important target for the treatment of estrogen-dependent breast cancer. In fact, the use of synthetic aromatase inhibitors (AI, which induce suppression of estrogen synthesis, has shown to be an effective alternative to the classical tamoxifen for the treatment of postmenopausal patients with ER-positive breast cancer. New AIs obtained, in our laboratory, by modification of the A and D-rings of the natural substrate of aromatase, compounds 3a and 4a, showed previously to efficiently suppress aromatase activity in placental microsomes. In the present study we have investigated the effects of these compounds on cell proliferation, cell cycle progression and induction of cell death using the estrogen-dependent human breast cancer cell line stably transfected with the aromatase gene, MCF-7 aro cells. Results The new steroids inhibit hormone-dependent proliferation of MCF-7aro cells in a time and dose-dependent manner, causing cell cycle arrest in G0/G1 phase and inducing cell death with features of apoptosis and autophagic cell death. Conclusion Our in vitro studies showed that the two steroidal AIs, 3a and 4a, are potent inhibitors of breast cancer cell proliferation. Moreover, it was also shown that the antiproliferative effects of these two steroids on MCF-7aro cells are mediated by disrupting cell cycle progression, through cell cycle arrest in G0/G1 phase and induction of cell death, being the dominant mechanism autophagic cell death. Our results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer.

  17. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping;

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  18. Mitochondria: pharmacological manipulation of cell death

    OpenAIRE

    Bouchier-Hayes, Lisa; Lartigue, Lydia; Newmeyer, Donald D.

    2005-01-01

    Cell death by apoptosis or necrosis is often important in the etiology and treatment of disease. Since mitochondria play important roles in cell death pathways, these organelles are potentially prime targets for therapeutic intervention. Here we discuss the mechanisms through which mitochondria participate in the cell death process and also survey some of the pharmacological approaches that target mitochondria in various ways.

  19. Cell death in the cardiovascular system

    OpenAIRE

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2006-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the norm...

  20. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice.

    Science.gov (United States)

    Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Tsuda, Kenichi; Gupta, Ravi; Park, Sook-Young; Kim, Sun Tae; Kang, Kyu Young

    2016-04-01

    The Magnaporthe oryzae snodprot1 homolog (MSP1), secreted by M. oryzae, is a cerato-platanin family protein. msp1-knockout mutants have reduced virulence on barley leaves, indicating that MSP1 is required for the pathogenicity of rice blast fungus. To investigate the functional roles of MSP1 and its downstream signaling in rice, recombinant MSP1 was produced in Escherichia coli and was assayed for its functionality. Application of MSP1 triggered cell death and elicited defense responses in rice. MSP1 also induced H2O2 production and autophagic cell death in both suspension-cultured cells and rice leaves. One or more protein kinases triggered cell death, jasmonic acid and abscisic acid enhanced cell death, while salicylic acid suppressed it. We demonstrated that the secretion of MSP1 into the apoplast is a prerequisite for triggering cell death and activating defense-related gene expression. Furthermore, pretreatment of rice with a sublethal MSP1 concentration potentiated resistance to the pathogen. Taken together, our results showed that MSP1 induces a high degree of cell death in plants, which might be essential for its virulence. Moreover, rice can recognize MSP1, resulting in the induction of pathogen-associated molecular pattern-triggered immunity. PMID:26780420

  1. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xuanbin Wang

    2014-01-01

    Full Text Available Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals were used in the study. The key words including “cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinese medicine” were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.

  2. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    OpenAIRE

    Wu, An-Guo; Kam-Wai Wong, Vincent; Zeng, Wu; Liang LIU; Yuen-Kwan Law, Betty

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-fligh...

  3. Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline.

    Science.gov (United States)

    Lin, Shao Jian; Leng, Zhi Gen; Guo, Yu Hang; Cai, Lin; Cai, Yu; Li, Ning; Shang, Han Bing; Le, Wei-Dong; Zhao, Wei Guo; Wu, Zhe Bao

    2015-11-17

    Cabergoline (CAB), the first-line drug for treatment of prolactinomas, is effective in suppressing prolactin hypersecretion, reducing tumor size, and restoring gonadal function. However, mechanisms for CAB-mediated tumor shrinkage are largely unknown. Here we report a novel cytotoxic mechanism for CAB. CAB induced formation of autophagosome in rat pituitary tumor MMQ and GH3 cells at the early stage through inhibiting mTOR pathway, resulting in higher conversion rates of LC3-I to LC3-II, GFP-LC3 aggregation, and increased autophagosome formation. Interestingly, CAB treatment augmented lysosome acidification and resulted in impaired proteolytic degradation within autolysosomes. This blocked the autophagic flux, leading to the accumulation of p62 aggregation and undigested autolysosomes. Knockdown of ATG7, ATG5, or Becn1, could significantly rescue the CAB-mediated cell death of MMQ cells (p < 0.05). CAB-induced autophagy and blockade of autophagy flux participated in antitumoral action in vivo. In conclusion, our study provides evidence that CAB concomitantly induces autophagy and inhibits the autophagic flux, leading to autophagy-dependent cell death. These findings elucidate novel mechanisms for CAB action. PMID:26513171

  4. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hackenberg, Thomas; Andersen, Trine Juul; Auzina, Aija;

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidop......Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an......-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a...

  5. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.;

    2011-01-01

    cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  6. Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Bo GAO; Yan-li JIA; Zheng-hong QIN

    2008-01-01

    Aim: To evaluate the contribution of an autophagic mechanism to the As2O3-induced death of human acute myeloid leukaemia cell line HL60 cells. Methods: The growth inhibition of HL60 cells induced by As2O3 was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazohum bromide colorimetric assay. The ac-tivation of autophagy was determined with monodansylcadaverine labeling and transmission electron microscope. The role of autophagy in the As2O3-induced death of HL60 cells was assessed using autophagic and lysosomal inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results: After treatment with As2O3, the proliferation of HL60 cells was significantly inhibited and the formation of autophagosomes increased. The blockade of autophagy maturation with the autophagy-specific inhibitor 3-methyladenine (3-MA) or the lysosome-neutraliz-ing agent NH4C11 h before As2O3 potentiated the As2O3-induced death of HL60 cells. In contrast, 3-MA attenuated As2O3-induced death when administered 30 min after As2O3. 3-MA and NH4Cl also inhibited As2O3-induced upregulation of microtubule-associated protein 1 light chain 3, the protein required for autophagy in mammalian cells. Following As2O3, lysosomes were activated as indicated by increased levels of cathepsins B and L. The apoptotic response of HL60 cells to As2O3 was suggested by the collapse of mitochondrial membrane potential, re-lease of cytochrome c from mitochondria, and the activation of caspase-3. Pre-treatment with 3-MA prior to As2O3 amplified these apoptotic signals, while post-treatment with 3-MA 30 min after As2O3 attenuated the apoptotic pathways. Conclusion: Autophagy plays complex roles in the As2O3-induced death of HL60 cells; it inhibits As2O3-induced apoptosis in the initiation stage, but amplifies the AS2O3-mediated apoptotic program if it is persistently activated.

  7. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    Science.gov (United States)

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. PMID:25694272

  8. Cell death regulates muscle fiber number.

    Science.gov (United States)

    Sarkissian, Tatevik; Arya, Richa; Gyonjyan, Seda; Taylor, Barbara; White, Kristin

    2016-07-01

    Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself. PMID:27131625

  9. Daunomycin accumulation and induction of programmed cell death in rat hair follicles

    DEFF Research Database (Denmark)

    Shin, Masashi; Larsson, Lars-Inge; Hougaard, David M.;

    2009-01-01

    -positive matrix cells are detectable up to 48 h after injection and exhibit a characteristic granular morphology, which is not observed in saline-injected controls. TUNEL-staining has revealed that DM injection induces programmed cell death (PCD) in rat hair follicles. Cells undergoing PCD are detectable as late......The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia. Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in the outer root sheath of hair follicles. DM...... and in the outer root sheath. Ultrastructural immunocytochemistry has shown the presence of DM-positive cells with two different types of morphology. About half of the immunopositive cells exhibit a morphology typical of classical apoptosis (PCD type 1), whereas the other half show signs of autophagic...

  10. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells

    Science.gov (United States)

    Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  11. Targeting Protective Autophagy Exacerbates UV-Triggered Apoptotic Cell Death

    Directory of Open Access Journals (Sweden)

    Shih-Hwa Chiou

    2012-01-01

    Full Text Available Autophagy is activated by various stresses, including DNA damage, and previous studies of DNA damage-induced autophagy have focused on the response to chemotherapeutic drugs, ionizing radiation, and reactive oxygen species. In this study, we investigated the biological significance of autophagic response to ultraviolet (UV irradiation in A549 and H1299 cells. Our results indicated that UV induces on-rate autophagic flux in these cells. Autophagy inhibition resulting from the knockdown of beclin-1 and Atg5 reduced cell viability and enhanced apoptosis. Moreover, we found that ATR phosphorylation was accompanied by microtubule-associated protein 1 light chain 3B II (LC3B-II expression during the early phases following UV irradiation, which is a well-established inducer of ATR. Knocking down ATR further attenuated the reduction in LC3B-II at early stages in response to UV treatment. Despite the potential role of ATR in autophagic response, reduced ATR expression does not affect autophagy induction during late phases (24 and 48 h after UV treatment. The result is consistent with the reduced ATR phosphorylation at the same time points and suggests that autophagic response at this stage is activated via a distinct pathway. In conclusion, this study demonstrated that autophagy acts as a cytoprotective mechanism against UV-induced apoptosis and that autophagy induction accompanied with apoptosis at late stages is independent of ATR activation.

  12. HUHS1015 PROMOTES AUTOPHAGIC XIAP DEGRADATION TO INDUCE APOPTOSIS OF GASTROINTESTINAL CANCER CELLS

    OpenAIRE

    Tomoyuki Nishizaki

    2016-01-01

    The present study aimed at understanding the mechanism underlying HUHS1015-induced apoptosis of MKN45 gastric cancer and Caco-2 colonic cell, Apoptosis, cancer cell lines.  HUHS1015 apparently reduced presence of mRNA protein of X-linked inhibitor of apoptosis protein (XIAP) in a treatment time Autophagy  (10-60 min)-dependent manner.   The reduction of XIAP protein was prevented by the autophagy inhibitors 3-methyladenine and bafilomycin A1.  XIAP knock-down signi...

  13. pH-Sensitive Polymeric Nanoparticles Modulate Autophagic Effect via Lysosome Impairment.

    Science.gov (United States)

    Lin, Yao-Xin; Wang, Yi; Qiao, Sheng-Lin; An, Hong-Wei; Zhang, Ruo-Xin; Qiao, Zeng-Ying; Rajapaksha, R P Y J; Wang, Lei; Wang, Hao

    2016-06-01

    In drug delivery systems, pH-sensitive polymers are commonly used as drug carriers, and significant efforts have been devoted to the aspects of controlled delivery and release of drugs. However, few studies address the possible autophagic effects on cells. Here, for the first time, using a fluorescent autophagy-reporting cell line, this study evaluates the autophagy-induced capabilities of four types of pH-sensitive polymeric nanoparticles (NPs) with different physical properties, including size, surface modification, and pH-sensitivity. Based on experimental results, this study concludes that pH-sensitivity is one of the most important factors in autophagy induction. In addition, this study finds that variation of concentration of NPs could cause different autophagic effect, i.e., low concentration of NPs induces autophagy in an mTOR-dependent manner, but high dose of NPs leads to autophagic cell death. Identification of this tunable autophagic effect offers a novel strategy for enhancing therapeutic effect in cancer therapy through modulation of autophagy. PMID:27120078

  14. Apoptosis: A Review of Programmed Cell Death

    OpenAIRE

    Elmore, Susan

    2007-01-01

    The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions incl...

  15. Programmed cell death during quinoa perisperm development

    OpenAIRE

    López-Fernández, María Paula; Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucle...

  16. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia;

    2006-01-01

    overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO for their...... growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication...... polyamine homeostasis may negatively affect cell proliferation and eventually lead to cell death by apoptosis if putrescine levels become too high....

  17. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of...... cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...

  18. Plant Proteases Involved in Regulated Cell Death.

    Science.gov (United States)

    Zamyatnin, A A

    2015-12-01

    Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death. PMID:26878575

  19. Artesunate induces necrotic cell death in schwannoma cells

    OpenAIRE

    Button, R W; Lin, F.; Ercolano, E; Vincent, J H; Hu, B.; Hanemann, C O; Luo, S

    2014-01-01

    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely ...

  20. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins.

    Science.gov (United States)

    Wu, An-Guo; Wong, Vincent Kam-Wai; Zeng, Wu; Liu, Liang; Law, Betty Yuen-Kwan

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future. PMID:26598009

  1. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death.

    Directory of Open Access Journals (Sweden)

    Rafael Luis Kessler

    Full Text Available The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50/72 h or killing all cells within 24 hours (EC(100/24 h. Incubation with inhibitors at the EC(50/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50/72 h. By contrast, treatment with SBIs at the EC(100/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP, culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.

  2. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyu An

    Full Text Available Anticancer properties and mechanisms of mimulone (MML, C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3 puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA, pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  3. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Science.gov (United States)

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  4. Deoxycholate, an Endogenous Cytotoxin/Genotoxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Claire M. Payne

    2009-01-01

    Full Text Available We report that deoxycholate (DOC, a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460, and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting, an increase in acidic vesicles (fluorescence spectroscopy of monodansycadaverine and lysotracker red probes, and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting. The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapamycin (activator of autophagy pre-treatment of NCM-460 cells significantly (P<.05 decreased, and 3-MA (inhibitor of autophagy significantly (P<.05 increased the cell loss caused by DOC treatment, alone. Rapamycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory, resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents.

  5. Deoxycholate, an Endogenous Cytotoxin/Geno toxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    International Nuclear Information System (INIS)

    We report that deoxycholate (DOC), a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460), and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting), an increase in acidic vesicles (fluorescence spectroscopy of monodansylcadaverine and lyso tracker red probes), and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting). The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapa mycin (activator of autophagy) pre-treatment of NCM-460 cells significantly (P<.05) decreased, and 3-MA (inhibitor of autophagy) significantly (P<.05) increased the cell loss caused by DOC treatment, alone. Rapa mycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory), resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process) increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents.

  6. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  7. Cell death in the developing vertebrate retina.

    Science.gov (United States)

    Vecino, Elena; Hernández, María; García, Mónica

    2004-01-01

    Programmed cell death occurs naturally, as a physiological process, during the embryonic development of multicellular organisms. In the retina, which belongs to the central nervous system, at least two phases of cell death have been reported to occur during development. An early phase takes place concomitant with the processes of neurogenesis, cell migration and cell differentiation. A later phase affecting mainly neurons occurs when connections are established and synapses are formed, resulting in selective elimination of inappropriate connections. This pattern of cell death in the developing retina is common among different vertebrates. However, the timing and magnitude of retinal cell death varies among species. In addition, a precise regulation of apoptosis during retinal development has been described. Factors such as neurotrophins, among many others, and electrical activity influence the survival of retinal cells during the course of development. In this paper, we present a summary of these different aspects of programmed cell death during retinal development, and examine how these differ among different species. PMID:15558487

  8. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ira O Racoma

    Full Text Available Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma. Naturally occurring phytochemicals have received much scientific attention because many exhibit potent tumor killing action. Thymoquinone (TQ is the bioactive compound of the Nigella sativa seed oil. TQ has anti-oxidant, anti-inflammatory and anti-neoplastic actions with selective cytotoxicity for human cancer cells compared to normal cells. Here, we show that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes. Also, glioblastoma cell proliferation could be impaired by chloroquine, an autophagy inhibitor, suggesting that glioblastoma cells may be dependent on the autophagic pathway for survival. Exposure to TQ caused an increase in the recruitment and accumulation of the microtubule-associated protein light chain 3-II (LC3-II. TQ also caused an accumulation of the LC3-associated protein p62, confirming the inhibition of autophagy. Furthermore, the levels of Beclin-1 protein expression were unchanged, indicating that TQ interferes with a later stage of autophagy. Finally, treatment with TQ induces lysosome membrane permeabilization, as determined by a specific loss of red acridine orange staining. Lysosome membrane permeabilization resulted in a leakage of cathepsin B into the cytosol, which mediates caspase-independent cell death that can be prevented by pre-treatment with a cathepsin B inhibitor. TQ induced apoptosis, as determined by an increase in PI and Annexin V positive cells. However, apoptosis appears to be caspase-independent due to failure of the caspase inhibitor z-VAD-FMK to prevent cell death and absence of the typical apoptosis related signature DNA fragmentation. Inhibition of autophagy is an exciting and emerging strategy in cancer therapy. In this vein, our results describe a

  9. Autophagy can be a killer even in apoptosis-competent cells.

    Science.gov (United States)

    Guillon-Munos, Audrey; van Bemmelen, Miguel X P; Clarke, Peter G H

    2006-01-01

    Despite abundant evidence for autophagic cell death as a morphological type, the notion that autophagy can actually contribute mechanistically to the cell's death is controversial. In cells capable of apoptosis, autophagic cell death has been dismissed by some authors as a morphologically unusual form of apoptosis. But strong recent evidence for autophagy-mediated death of cells rendered incapable of apoptosis has been criticized on the grounds that this cell death is too artificial to be relevant to normal cells. We here argue from our own and other recent evidence that autophagy can mediate the death even of apoptosis-competent cells. PMID:16874064

  10. Inflammasomes as polyvalent cell death platforms.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Lamkanfi, Mohamed

    2016-06-01

    Inflammasomes are multi-protein platforms that are organized in the cytosol to cope with pathogens and cellular stress. The pattern recognition receptors NLRP1, NLRP3, NLRC4, AIM2 and Pyrin all assemble canonical platforms for caspase-1 activation, while caspase-11-dependent inflammasomes respond to intracellular Gram-negative pathogens. Inflammasomes are chiefly known for their roles in maturation and secretion of the inflammatory cytokines interleukin-(IL)1β and IL18, but they can also induce regulated cell death. Activation of caspases 1 and 11 in myeloid cells can trigger pyroptosis, a lytic and inflammatory cell death mode. Pyroptosis has been implicated in secretion of IL1β, IL18 and intracellular alarmins. Akin to these factors, it may have beneficial roles in controlling pathogen replication, but become detrimental in the context of chronic autoinflammatory diseases. Inflammasomes are increasingly implicated in induction of additional regulated cell death modes such as pyronecrosis and apoptosis. In this review, we overview recent advances in inflammasome-associated cell death research, illustrating the polyvalent roles of these macromolecular platforms in regulated cell death signaling. PMID:27048821

  11. Discovering Protein-Protein Interactions within the Programmed Cell Death Network Using a Protein-Fragment Complementation Screen

    Directory of Open Access Journals (Sweden)

    Yuval Gilad

    2014-08-01

    Full Text Available Apoptosis and autophagy are distinct biological processes, each driven by a different set of protein-protein interactions, with significant crosstalk via direct interactions among apoptotic and autophagic proteins. To measure the global profile of these interactions, we adapted the Gaussia luciferase protein-fragment complementation assay (GLuc PCA, which monitors binding between proteins fused to complementary fragments of a luciferase reporter. A library encompassing 63 apoptotic and autophagic proteins was constructed for the analysis of ∼3,600 protein-pair combinations. This generated a detailed landscape of the apoptotic and autophagic modules and points of interface between them, identifying 46 previously unknown interactions. One of these interactions, between DAPK2, a Ser/Thr kinase that promotes autophagy, and 14-3-3τ, was further investigated. We mapped the region responsible for 14-3-3τ binding and proved that this interaction inhibits DAPK2 dimerization and activity. This proof of concept underscores the power of the GLuc PCA platform for the discovery of biochemical pathways within the cell death network.

  12. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  13. Time-Lapse Imaging of Cell Death.

    Science.gov (United States)

    Wallberg, Fredrik; Tenev, Tencho; Meier, Pascal

    2016-03-01

    The best approach to distinguish between necrosis and apoptosis is time-lapse video microscopy. This technique enables a biological process to be photographed at regular intervals over a period, which may last from a few hours to several days, and can be applied to cells in culture or in vivo. We have established two time-lapse microscopy methods based on different ways of calculating cell death: semiautomated and automated. In the semiautomated approach, cell death can be visualized by staining with combinations of Alexa Fluor 647-conjugated Annexin V and Sytox Green (SG), or Annexin V(FITC) and Propidium iodide (PI). The automated method is similar except that all cells are labeled with dyes. This allows faster quantification of data. To this end Cell Tracker Green is used to label all cells at time zero in combination with PI and Alexa Fluor 647-conjugated Annexin V. Necrotic cell death is accompanied by either simultaneous labeling with Annexin V and PI or SG (double-positive), or direct PI or SG staining. Additionally, necrotic cells display characteristic morphology, such as cytoplasmic swelling. In contrast to necrosis where membrane permeabilization is an early event, cells that die by apoptosis lose their membrane permeability relatively late. Therefore, the time between Annexin V staining and PI or SG uptake (double-positive) can be used to distinguish necrosis from apoptosis. This protocol describes the analysis of cell death by time-lapse imaging of HT1080 and L929 cells stained with these dyes, but it can be readily adapted to other cell types of interest. PMID:26933245

  14. Cell death signalling mechanisms in heart failure

    OpenAIRE

    Mughal, Wajihah; Kirshenbaum, Lorrie A.

    2011-01-01

    In 2003, cardiovascular disease was the most costly disease in Canada, and it is still on the rise. The loss of properly functioning cardiomyocytes leads to cardiac impairment, which is a consequence of heart failure. Therefore, understanding the pathways of cell death (necrosis and apoptosis) has potential implications for the development of therapeutic strategies. In addition, the role of B-cell lymphoma-2 family members is discussed and the importance of mitochondria in directing cell deat...

  15. Regulated cell death and adaptive stress responses.

    Science.gov (United States)

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  16. The energy blockers bromopyruvate and lonidamine lead GL15 glioblastoma cells to death by different p53-dependent routes.

    Science.gov (United States)

    Davidescu, Magdalena; Macchioni, Lara; Scaramozzino, Gaetano; Cristina Marchetti, Maria; Migliorati, Graziella; Vitale, Rita; Corcelli, Angela; Roberti, Rita; Castigli, Emilia; Corazzi, Lanfranco

    2015-01-01

    The energy metabolism of tumor cells relies on aerobic glycolysis rather than mitochondrial oxidation. This difference between normal and cancer cells provides a biochemical basis for new therapeutic strategies aimed to block the energy power plants of cells. The effects produced by the energy blockers bromopyruvate (3BP) and lonidamine (LND) and the underlying biochemical mechanisms were investigated in GL15 glioblastoma cells. 3BP exerts early effects compared to LND, even though both drugs lead cells to death but by different routes. A dramatic decrease of ATP levels occurred after 1 hour treatment with 3BP, followed by cytochrome c and hexokinase II degradation, and by the decrease of both LC3I/LC3II ratio and p62, markers of an autophagic flux. In addition, Akt(Ser(473)) and p53(Ser(15)/Ser(315)) dephosphorylation occurred. In LND treatment, sustained ATP cellular levels were maintained up to 40 hours. The autophagic response of cells was overcome by apoptosis that was preceded by phosphatidylinositol disappearance and pAkt decrease. This last event favored p53 translocation to mitochondria triggering a p53-dependent apoptotic route, as observed at 48 and 72 hours. Adversely, in 3BP treatment, phospho-p53 dephosphorylation targeted p53 to MDM2-dependent proteolysis, thus channeling cells to irreversible autophagy. PMID:26387611

  17. The deaths of a cell: how language and metaphor influence the science of cell death.

    Science.gov (United States)

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. PMID:25085023

  18. Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells

    Directory of Open Access Journals (Sweden)

    Al-Daghri Nasser M

    2012-10-01

    Full Text Available Abstract Background Drugs used both in classical chemotherapy and the more recent targeted therapy do not have cancer cell specificity and, hence, cause severe systemic side effects. Tumors also develop resistance to such drugs due to heterogeneity of cell types and clonal selection. Several traditional dietary ingredients from plants, on the other hand, have been shown to act on multiple targets/pathways, and may overcome drug resistance. The dietary agents are safe and readily available. However, application of plant components for cancer treatment/prevention requires better understanding of anticancer functions and elucidation of their mechanisms of action. The current study focuses on the anticancer properties of fenugreek, a herb with proven anti-diabetic, antitumor and immune-stimulating functions. Method Jurkat cells were incubated with 30 to 1500 μg/mL concentrations of 50% ethanolic extract of dry fenugreek seeds and were followed for changes in viability (trypan blue assay, morphology (microscopic examination and autophagic marker LC3 transcript level (RT-PCR. Results Incubation of Jurkat cells with fenugreek extract at concentrations ranging from 30 to 1500 μg/mL for up to 3 days resulted in cell death in a dose- and time-dependent manner. Jurkat cell death was preceded by the appearance of multiple large vacuoles, which coincided with transcriptional up-regulation of LC3. GC-MS analysis of fenugreek extract indicated the presence of several compounds with anticancer properties, including gingerol (4.82%, cedrene (2.91%, zingerone (16.5%, vanillin (1.52% and eugenol (1.25%. Conclusions Distinct morphological changes involving appearance of large vacuoles, membrane disintegration and increased expression of LC3 transcripts indicated that fenugreek extract induced autophagy and autophagy-associated death of Jurkat cells. In addition to the already known apoptotic activation, induction of autophagy may be an additional mechanism

  19. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling.

    Directory of Open Access Journals (Sweden)

    Dong-Min Shin

    Full Text Available The "enhanced intracellular survival" (eis gene of Mycobacterium tuberculosis (Mtb is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner.

  20. [Cell death in malignant tumors. Relevance of cell death regulation for metastasis].

    Science.gov (United States)

    Roth, W

    2015-11-01

    Defects in the regulation of cell death are important causes for both the development and therapy resistance of malignant tumors. Several distinct, molecularly defined types of cell death are known, such as apoptosis, anoikis, and necroptosis. Moreover, the specific triggering of cell death plays an important role in the prevention of metastasis. The results of recent studies have shown that various types of cell death are pivotal at different steps of the metastasis cascade, in order to prevent cellular detachment, migration, invasion, intravasation, extravasation and the establishment of micrometastasis and macrometastasis. At the subcellular level, numerous links exist between cell death regulation and metastasis, specifically regarding signaling pathways and individual proteins with dual or multiple functions. As an example, the decoy receptor 3 protein (DcR3) functions both as an anti-apoptotic protein and as a direct promotor of invasion and migration of tumor cells. In summary, the specific triggering of cell death plays a pivotal role for the prevention of metastasis. On the other hand, the stepwise process of metastasis represents a mechanism of selection resulting in established metastases with a multiresistant phenotype which corresponds to the clinical observation that many metastasized cancers are therapy resistant. In the future, innovative diagnostic tests to individually predict the resistance pattern and possibilities to overcome resistance are urgently needed. PMID:26400565

  1. Role of polyphenols in cell death control.

    Science.gov (United States)

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols. PMID:22584012

  2. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast.

    Science.gov (United States)

    Sheibani, Sara; Jones, Natalie K; Eid, Rawan; Gharib, Nada; Arab, Nagla T T; Titorenko, Vladimir; Vali, Hojatollah; Young, Paul A; Greenwood, Michael T

    2015-08-01

    We report the identification of human L- lactate dehydrogenase B (LDHB) as a novel Bax suppressor. Yeast heterologously expressing LDHB is also resistant to the lethal effects of copper indicating that it is a general suppressor of stress mediated cell death. To identify potential LDHB targets, LDHB was expressed in yeast mutants defective in apoptosis, necrosis and autophagy. The absence of functional PCD regulators including MCA1, YBH3, cyclophilin (CPR3) and VMA3, as well as the absence of the pro-survival autophagic pathway (ATG1,7) did not interfere with the LDHB mediated protection against copper indicating that LDHB functions independently of known PCD regulators or by simply blocking or stimulating a common PCD promoting or inhibitory pathway. Measurements of lactate levels revealed that short-term copper stress (1.6 mM, 4 h), does not increase intracellular levels of lactate, instead a three-fold increase in extracellular lactate was observed. Thus, yeast cells resemble mammalian cells where different stresses are known to lead to increased lactate production leading to lactic acidosis. In agreement with this, we found that the addition of exogenous lactic acid to growth media was sufficient to induce cell death that could be inhibited by the expression of LDHB. Taken together our results suggest that lactate dehydrogenase is a general suppressor of PCD in yeast. PMID:26032856

  3. Regulation of cell death in cancer - possible implications for immunotherapy

    OpenAIRE

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  4. Regulated cell death in diagnostic histopathology.

    Science.gov (United States)

    Skenderi, Faruk; Vranic, Semir; Damjanov, Ivan

    2015-01-01

    Regulated cell death (RCD) is a controlled cellular process, essential for normal development, tissue integrity and homeostasis, and its dysregulation has been implicated in the pathogenesis of various conditions including developmental and immunological disorders, neurodegenerative diseases, and cancer. In this review, we briefly discuss the historical perspective and conceptual development of RCD, we overview recent classifications and some of the key players in RCD; finally we focus on current applications of RCD in diagnostic histopathology. PMID:26009238

  5. Cell-autonomous death of cerebellar purkinje neurons with autophagy in niemann-pick type C disease.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs. We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death.

  6. Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease.

    Directory of Open Access Journals (Sweden)

    Dennis C Ko

    2005-07-01

    Full Text Available Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs. We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death.

  7. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Shih-Hung

    2012-07-01

    Full Text Available Abstract Background Insulin receptor substrate (IRS-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels. Methods and results In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3, aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress

  8. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms

    OpenAIRE

    Mansilla Pareja, Maria Eugenia; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will d...

  9. TNF α and reactive oxygen species in necrotic cell death

    Institute of Scientific and Technical Information of China (English)

    Michael J Morgan; You-Sun Kim; Zheng-gang Liu

    2008-01-01

    Death receptors, including the TNF receptor-1 (TNF-RI), have been shown to be able to initiate caspase-independent cell death. This form of "necrotic cell death" appears to be dependent on the generation of reactive oxygen species. Recent data have indicated that superoxide generation is dependent on the activation of NADPH oxidases, which form a complex with the adaptor molecules RIP1 and TRADD. The mechanism of superoxide generation further establishes RIP1 as the central molecule in ROS production and cell death initiated by TNFa and other death receptors. A role for the sustained JNK activation in necrotic cell death is also suggested. The sensitization of virus-infected cells to TNFa indicates that necrotic cell death may represent an alternative cell death pathway for clearance of infected cells.

  10. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.

    Science.gov (United States)

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-01-01

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased

  11. Apoptotic death of prostate cancer cells by a gonadotropin-releasing hormone-II antagonist.

    Directory of Open Access Journals (Sweden)

    Sumi Park

    Full Text Available Gonadotropin-releasing hormone-I (GnRH-I has attracted strong attention as a hormonal therapeutic tool, particularly for androgen-dependent prostate cancer patients. However, the androgen-independency of the cancer in advanced stages has spurred researchers to look for new medical treatments. In previous reports, we developed the GnRH-II antagonist Trp-1 to inhibit proliferation and stimulate the autophagic death of various prostate cancer cells, including androgen-independent cells. We further screened many GnRH-II antagonists to identify molecules with higher efficiency. Here, we investigated the effect of SN09-2 on the growth of PC3 prostate cancer cells. SN09-2 reduced the growth of prostate cancer cells but had no effect on cells derived from other tissues. Compared with Trp-1, SN09-2 conspicuously inhibited prostate cancer cell growth, even at low concentrations. SN09-2-induced PC3 cell growth inhibition was associated with decreased membrane potential in mitochondria where the antagonist was accumulated, and increased mitochondrial and cytosolic reactive oxygen species. SN09-2 induced lactate dehydrogenase release into the media and annexin V-staining on the PC3 cell surface, suggesting that the antagonist stimulated prostate cancer cell death by activating apoptotic signaling pathways. Furthermore, cytochrome c release from mitochondria to the cytosol and caspase-3 activation occurred in a concentration- and time-dependent manner. SN09-2 also inhibited the growth of PC3 cells xenotransplanted into nude mice. These results demonstrate that SN09-2 directly induces mitochondrial dysfunction and the consequent ROS generation, leading to not only growth inhibition but also apoptosis of prostate cancer cells.

  12. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  13. Programmed cell death and its role in inflammation

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Ge-Ning Jiang; Peng Zhang; Jie Fan

    2015-01-01

    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.

  14. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were foun

  15. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    Science.gov (United States)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  16. Homeostatic Mass Control in Gastric Non-Neoplastic Epithelia under Infection of Helicobacter pylori: An Immunohistochemical Analysis of Cell Growth, Stem Cells and Programmed Cell Death

    International Nuclear Information System (INIS)

    We evaluated homeostatic mass control in non-neoplastic gastric epithelia under Helicobacter pylori (HP) infection in the macroscopically normal-appearing mucosa resected from the stomach with gastric cancer, immunohistochemically analyzing the proliferation, kinetics of stem cells and programmed cell death occurring in them. Ki67 antigen-positive proliferating cells were found dominantly in the elongated neck portion, sparsely in the fundic areas and sporadically in the stroma with chronic infiltrates. CD117 could monitor the kinetics of gastric stem cells and showed its expression in two stages of gastric epithelial differentiation, namely, in transient cells from the gastric epithelial stem cells to the foveolar and glandular cells in the neck portion and in what are apparently progenitor cells from the gastric stem cells in the stroma among the infiltrates. Most of the nuclei were positive for ssDNA in the almost normal mucosa, suggesting DNA damage. Cleaved caspase-3-positive foveolar cells were noted under the surface, suggesting the suppression of apoptosis in the surface foveolar cells. Besides such apoptosis of the foveolar cells, in the severely inflamed mucosa apoptotic cells were found in the neck portion where most of the cells were Ki67 antigen-positive proliferating cells. Beclin-1 was recognized in the cytoplasm and in a few nuclei of the fundic glandular cells, suggesting their autophagic cell death and mutated beclin-1 in the nuclei. Taken together, the direct and indirect effects of HP infection on the gastric epithelial proliferation, differentiation and programmed cell death suggested the in-situ occurrence of gastric cancer under HP infection

  17. Death-associated Protein Kinase Mediated Cell Death Modulated by Interaction with DANGER

    OpenAIRE

    Kang, Bingnan N.; Ahmad, Abdullah S.; Saleem, Sofiyan; Patterson, Randen L.; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H.

    2010-01-01

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21-domain containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after ...

  18. The Autophagic Machinery in Enterovirus Infection

    Directory of Open Access Journals (Sweden)

    Jeffrey K. F. Lai

    2016-01-01

    Full Text Available The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL. The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field.

  19. Programmed Cell Death in Unicellular Phytoplankton.

    Science.gov (United States)

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  20. Tantalizing Thanatos: unexpected links in death pathways.

    Science.gov (United States)

    Cohen, Isabelle; Castedo, Maria; Kroemer, Guido

    2002-07-01

    Cell death is most frequently the result of apoptosis, an event that is often controlled by mitochondrial membrane permeabilization (MMP). Recent data reveal unexpected functional links between apoptosis and autophagic cell death, in the sense that MMP can trigger autophagy of damaged mitochondria. Conversely, one of the major signal-transducing molecules involved in the activation of autophagy during apoptosis--the so-called DAP kinase--can induce cell death through MMP. Connections are also emerging between apoptosis, autophagy, replicative senescence and cancer-specific metabolic changes. PMID:12185842

  1. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways

    Science.gov (United States)

    Oshima, Ryuji; Hasegawa, Takafumi; Tamai, Keiichi; Sugeno, Naoto; Yoshida, Shun; Kobayashi, Junpei; Kikuchi, Akio; Baba, Toru; Futatsugi, Akira; Sato, Ikuro; Satoh, Kennichi; Takeda, Atsushi; Aoki, Masashi; Tanaka, Nobuyuki

    2016-01-01

    Endosomal sorting required for transport (ESCRT) complexes orchestrate endo-lysosomal sorting of ubiquitinated proteins, multivesicular body formation and autophagic degradation. Defects in the ESCRT pathway have been implicated in many neurodegenerative diseases, but the underlying molecular mechanisms that link them to neurodegeneration remain unknown. In this study, we showed that forebrain-specific ablation of ESCRT-0/Hrs induced marked hippocampal neuronal cell loss accompanied by the accumulation of ubiquitinated proteins, including α-synuclein, TDP-43 and huntingtin as well as the autophagic substrate SQSTM1/p62. Consistent with this, silencing of Hrs in cultured cells not only led to α-synuclein and TDP-43 accumulation in addition to impaired autophagic flux but also suppressed cell viability through the induction of ER stress followed by the activation of JNK and RIPK1, a key regulator of necroptosis. Moreover, necrostatin-1, a specific inhibitor of RIPK1, and pan-caspase inhibitors partially reduced the neurotoxicity in the Hrs-silenced cells. Altogether, these findings suggest that the disruption of ESCRT-0/Hrs in the nervous system compromises autophagic/lysosomal degradation of neurodegenerative disease-related proteins, which thereby triggers ER stress-mediated apoptotic and necroptotic cell death. PMID:27112194

  2. Heat shock transcription factors regulate heat induced cell death in a rat histiocytoma

    Indian Academy of Sciences (India)

    Kolla V, P Rasad; Aftab Taiyab; D Jyothi; Usha K Srinivas; Amere S Sreedhar

    2007-04-01

    Heat shock response is associated with the synthesis of heat shock proteins (Hsps) which is strictly regulated by different members of heat shock transcription factors (HSFs). We previously reported that a rat histiocytoma, BC-8 failed to synthesize Hsps when subjected to typical heat shock conditions (42°C, 60 min). The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA binding activity. In the present study we report that BC-8 tumor cells when subjected to heat shock at higher temperature (43°C, 60 min) or incubation for longer time at 42°C, exhibited necrosis characteristics; however, under mild heat shock (42°C, 30 min) conditions cells showed activation of autophagy. Mild heat shock treatment induced proteolysis of HSF1, and under similar conditions we observed an increase in HSF2 expression followed by its enhanced DNA binding activity. Inhibiting HSF1 proteolysis by reversible proteasome inhibition failed to inhibit heat shock induced autophagy. Compromising HSF2 expression but not HSF1 resulted in the inhibition of autophagy, suggesting HSF2 dependent activation of autophagy. We are reporting for the first time that HSF2 is heat inducible and functions in heat shock induced autophagic cell death in BC-8 tumor cells.

  3. Colorectal Cancer Stem Cells and Cell Death

    International Nuclear Information System (INIS)

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool

  4. Cocaine-Mediated Autophagy in Astrocytes Involves Sigma 1 Receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II Programed Cell Death.

    Science.gov (United States)

    Cao, Lu; Walker, Mary P; Vaidya, Naveen K; Fu, Mingui; Kumar, Santosh; Kumar, Anil

    2016-09-01

    Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy, generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6-h exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7, and p-Bcl-2/Beclin-1 were also involved, and this was confirmed by using selective inhibitors and small interfering RNAs (siRNAs). In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death. PMID:26243186

  5. Caspase dependence of the death of neonatal retinal ganglion cells induced by axon damage and induction of autophagy as a survival mechanism

    Directory of Open Access Journals (Sweden)

    C. Sternberg

    2010-10-01

    Full Text Available We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively. Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.

  6. Genetic regulation of programmed cell death in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Programmed cell death plays an important role in maintaining homeostasis during animal development, and has been conserved in animals as different as nematodes and humans. Recent studies of Drosophila have provided valuable information toward our understanding of genetic regulation of death. Different signals trigger the novel death regulators rpr, hid, and grim, that utilize the evolutionarily conserved iap and ark genes to modulate caspase function. Subsequent removal of dying cells also appears to be accomplished by conserved mechanisms. The similarity between Drosophila and human in cell death signaling pathways illustrate the promise of fruit flies as a model system to elucidate the mechanisms underlying regulation of programmed cell death.

  7. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  8. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption.

    Directory of Open Access Journals (Sweden)

    Chih-Peng Chang

    Full Text Available Interferon-gamma (IFN-γ, a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1 translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ(-/- mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.

  9. Analysis of cell death inducing compounds

    DEFF Research Database (Denmark)

    Spicker, Jeppe; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn;

    2007-01-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds......), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the...... three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the...

  10. The anti-cell death FNK protein protects cells from death induced by freezing and thawing

    International Nuclear Information System (INIS)

    The FNK protein, constructed from anti-apoptotic Bcl-xL with enhanced activity, was fused with the protein transduction domain (PTD) of the HIV/Tat protein to mediate the delivery of FNK into cells. The fusion protein PTD-FNK was introduced into chondrocytes in isolated articular cartilage-bone sections, cultured neurons, and isolated bone marrow mononuclear cells to evaluate its ability to prevent cell death induced by freezing and thawing. PTD-FNK protected the cells from freeze-thaw damage in a concentration-dependent manner. Addition of PTD-FNK with conventional cryoprotectants (dimethyl sulfoxide and hydroxyethyl starch) increased surviving cell numbers around 2-fold compared with controls treated only with the cryoprotectants. Notably, PTD-FNK allowed CD34+ cells among bone marrow mononuclear cells to survive more efficiently (12-fold more than the control cells) from two successive freeze-thaw cycles. Thus, PTD-FNK prevented cell death induced by freezing and thawing, suggesting that it provides for the successful cryopreservation of biological materials

  11. Programmed cell death: a way of life for plants.

    OpenAIRE

    Greenberg, J T

    1996-01-01

    Cell death in higher plants has been widely observed in predictable patterns throughout development and in response to pathogenic infection. Genetic, biochemical, and morphological evidence suggests that these cell deaths occur as active processes and can be defined formally as examples of programmed cell death (PCD). Intriguingly, plants have at least two types of PCD, an observation that is also true of PCD in animals [Schwartz, L. M., Smith, W.W., Jones, M. E. E. & Osborne, B. A. (1993) Pr...

  12. Senescence and programmed cell death : substance or semantics?

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2004-01-01

    The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show

  13. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    OpenAIRE

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation ...

  14. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  15. α-Synuclein and neuronal cell death

    Directory of Open Access Journals (Sweden)

    Cookson Mark R

    2009-02-01

    Full Text Available Abstract α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.

  16. Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents α-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy

    Directory of Open Access Journals (Sweden)

    Katharina Pukaß

    2015-05-01

    Full Text Available α-Synuclein (α-syn positive glial cytoplasmic inclusions (GCI originating in oligodendrocytes are a characteristic hallmark in multiple system atrophy. Their occurrence may be linked to a failure of the ubiquitin proteasome system (UPS or the autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin, and deubiquitinated by deubiquitinating enzymes before proteolytic degradation is performed. The deubiquitinating enzyme UCH-L1 is a component of the UPS, it is abundantly expressed in neuronal brain cells and has been connected to Parkinson`s disease. It interacts with α-syn and tubulin. The present study was undertaken to investigate whether UCH-L1 is a constituent of oligodendrocytes, the myelin forming cells of the CNS, and is associated with GCIs in MSA. Furthermore, LDN-57444 (LDN, a specific UCH-L1 inhibitor, was used to analyze its effects on cell morphology, microtubule organization and the proteolytic degradation system. Towards this an oligodendroglial cell line (OLN cells, stably transfected with α-syn or with α-syn and GFP-LC3, to monitor the autophagic flux, was used. The data show that UCHL-1 is expressed in oligodendrocytes derived from the brains of newborn rats and colocalizes with α-syn in GCIs of MSA brain sections. LDN treatment had a direct impact on the microtubule network by affecting tubulin posttranslational modifications, i.e. acetylation and tyrosination. An increase in α-tubulin detyrosination was observed and detyrosinated microtubules were abundantly recruited to the cellular extensions. Furthermore, small α-syn aggregates, which are constitutively expressed in OLN cells overexpressing α-syn, were abolished, and LDN caused the upregulation of the autophagic pathway. Our data add to the knowledge that the UPS and the autophagy-lysosomal pathway are tightly balanced, and that UCH-L1 and its regulation may play a role in neurodegenerative diseases with oligodendroglia

  17. Sensitization of radiation-induced cell death by genistein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Kim, In Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and {gamma}-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by {gamma}-irradiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

  18. Different Degree in Proteasome Malfunction Has Various Effects on Root Growth Possibly through Preventing Cell Division and Promoting Autophagic Vacuolization

    OpenAIRE

    Xianyong Sheng; Qian Wei; Liping Jiang; Xue Li; Yuan Gao; Li Wang

    2012-01-01

    The ubiquitin/proteasome pathway plays a vital role in plant development. But the effects of proteasome malfunction on root growth, and the mechanism underlying this involvement remains unclear. In the present study, the effects of proteasome inhibitors on Arabidopsis root growth were studied through the analysis of the root length, and meristem size and cell length in maturation zone using FM4-64, and cell-division potential using GFP fusion cyclin B, and accumulation of ubiquitinated protei...

  19. Different degree in proteasome malfunction has various effects on root growth possibly through preventing cell division and promoting autophagic vacuolization.

    Directory of Open Access Journals (Sweden)

    Xianyong Sheng

    Full Text Available The ubiquitin/proteasome pathway plays a vital role in plant development. But the effects of proteasome malfunction on root growth, and the mechanism underlying this involvement remains unclear. In the present study, the effects of proteasome inhibitors on Arabidopsis root growth were studied through the analysis of the root length, and meristem size and cell length in maturation zone using FM4-64, and cell-division potential using GFP fusion cyclin B, and accumulation of ubiquitinated proteins using immunofluorescence labeling, and autophagy activity using LysoTracker and MDC. The results indicated that lower concentration of proteasome inhibitors promoted root growth, whereas higher concentration of inhibitors had the opposite effects. The accumulation of cyclin B was linked to MG132-induced decline in meristem size, indicating that proteasome malfunction prevented cell division. Besides, MG132-induced accumulation of the ubiquitinated proteins was associated with the increasing fluorescence signal of LysoTracker and MDC in the elongation zone, revealing a link between the activation of autophagy and proteasome malfunction. These results suggest that weak proteasome malfunction activates moderate autophagy and promotes cell elongation, which compensates the inhibitor-induced reduction of cell division, resulting in long roots. Whereas strong proteasome malfunction induces severe autophagy and disturbs cell elongation, resulting in short roots.

  20. Actin as deathly switch? How auxin can suppress cell-death related defence.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chang

    Full Text Available Plant innate immunity is composed of two layers--a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death.

  1. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway

    Science.gov (United States)

    Song, Eun Ju; Lee, Sei-Jung; Lim, Hyeon Su; Kim, Jun Sung; Jang, Kyung Ku; Choi, Sang Ho; Han, Ho Jae

    2016-01-01

    VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation. PMID:27250250

  2. Beclin-1-independent autophagy mediates programmed cancer cell death through interplays with endoplasmic reticulum and/or mitochondria in colbat chloride-induced hypoxia.

    Science.gov (United States)

    Sun, Lei; Liu, Ning; Liu, Shan-Shan; Xia, Wu-Yan; Liu, Meng-Yao; Li, Lin-Feng; Gao, Jian-Xin

    2015-01-01

    Autophagy has dual functions in cell survival and death. However, the effects of autophagy on cancer cell survival or death remain controversial. In this study, we show that Autophagy can mediate programmed cell death (PCD) of cancer cells in responding to cobalt chloride (CoCl2)-induced hypoxia in a Beclin-1-independent but autophagy protein 5 (ATG5)-dependent manner. Although ATG5 is not directly induced by CoCl2, its constitutive expression is essential for CoCl2-induced PCD. The ATG5-mediated autophagic PCD requires interplays with endoplasmic reticulum (ER) and/or mitochondria. In this process, ATG5 plays a central role in regulating ER stress protein CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and mitochondrial protein second mitochondria derived activator of caspases (Smac). Two pathways for autophagic PCD in cancer cells responding to hypoxia have been identified: ATG5/CHOP/Smac pathway and ATG5/Smac pathway, which are probably dependent on the context of cell lines. The former is more potent than the latter for the induction of PCD at the early stage of hypoxia, although the ultimate efficiency of both pathways is comparable. In addition, both pathways may require ATG5-mediated conversion of LC3-I into LC3-II. Therefore, we have defined two autophagy-mediated pathways for the PCD of cancer cells in hypoxia, which are dependent on ATG5, interplayed with ER and mitochondria and tightly regulated by hypoxic status. The findings provide a new evidence that autophagy may inhibit tumor cell proliferation through trigger of PCD, facilitating the development of novel anti-cancer drugs. PMID:26609472

  3. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL......The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery of...... positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariable correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early in the...

  4. Analysis of cell death inducing compounds.

    Science.gov (United States)

    Spicker, Jeppe S; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn; Brunak, Søren

    2007-11-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds, three toxins (ANIT, DMN and NMF) and three non-toxins (Caeruelein, Dinitrophenol and Rosiglitazone). We identified three gene transcripts with exceptional predictive performance towards liver toxicity and/or changes in histopathology. The three genes were: glucokinase regulatory protein (GCKR), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the literature and the novel finding represents a putative hepatotoxicity biomarker. PMID:17503021

  5. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  6. Activation-Induced Cell Death in T Cells and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    JianZhang; XuemeiXu; YongLiu

    2004-01-01

    Activation-induced cell death (AICD), which results from the interaction between Fas and Fas ligand, is responsible for maintaining tolerance to self-antigen. A defect in AICD may lead to development of autoimmunity. During the last several years, much progress has been made in understanding the mechanism(s) of AICD and its potential role in the pathogenesis of autoimmune diseases. In this review, we summarize the most recent progress on the regulation of the susceptibility of T cells to AICD and its possible involvement in autoimmune diseases.

  7. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  8. The control and execution of programmed cell death

    International Nuclear Information System (INIS)

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectively manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  9. Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae)

    Indian Academy of Sciences (India)

    E C M Silva-Zacarin; G A Tomaino; M R Brocheto-Braga; S R Taboga; R L M Silva De Moraes

    2007-03-01

    The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin–eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form

  10. Death for survival: what do we know about innate immunity and cell death in insects?

    Directory of Open Access Journals (Sweden)

    DM Cooper

    2011-09-01

    Full Text Available Insects are the most diverse and prolific animal group on Earth, and as such, important lessons can be taken from the elements that contribute to their evolutionary success. This review examines insect immunity and how insects combat infection with the pathogens they encounter: bacteria, viruses, fungi and parasites. Structural barriers, cellular and humoral responses and cell death all respond to specific immunological threats and contribute to the robust repertoire of immune strategies employed by insects. We discuss the strategies used by insects to combat pathogen infection and focus on what is currently known about cell death and its role in insect immunity.

  11. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase.

    Science.gov (United States)

    Jiménez, Carlos; Capasso, Juan M; Edelstein, Charles L; Rivard, Christopher J; Lucia, Scott; Breusegem, Sophia; Berl, Tomás; Segovia, María

    2009-01-01

    Programmed cell death is necessary for homeostasis in multicellular organisms and it is also widely recognized to occur in unicellular organisms. However, the mechanisms through which it occurs in unicells, and the enzymes involved within the final response is still the subject of heated debate. It is shown here that exposure of the unicellular microalga Dunaliella viridis to several environmental stresses, induced different cell death morphotypes, depending on the stimulus received. Senescent cells demonstrated classical and unambiguous apoptotic-like characteristics such as chromatin condensation, DNA fragmentation, intact organelles, and blebbing of the cell membrane. Acute heat shock caused general swelling and altered plasma membrane, but the presence of chromatin clusters and DNA strand breaks suggested a necrotic-like event. UV irradiated cells presented changes typical for necrosis, together with apoptotic characteristics resembling an intermediate cell-death phenotype termed aponecrosis-like. Cells subjected to hyperosmotic shock revealed chromatin spotting without DNA fragmentation, and extensive cytoplasmic swelling and vacuolization, comparable to a paraptotic-like cell death phenotype. Nitrogen-starved cells showed pyknosis, blebbing, and cytoplasmic consumption, indicating a similarity to autophagic/vacuolar-like cell death. The caspase-like activity DEVDase was measured by using the fluorescent substrate Ac-DEVD-AMC and antibodies against the human caspase-3 active enzyme cross-reacted with bands, the intensity of which paralleled the activity. All the environmental stresses tested produced a substantial increase in both DEVDase activity and protein levels. The irreversible caspase-3 inhibitor Z-DEVD-FMK completely inhibited the enzymatic activity whereas serine and aspartyl proteases inhibitors did not. These results show that cell death in D. viridis does not conform to a single pattern and that environmental stimuli may produce different types of

  12. Rate of death of hypoxic cells in multicell spheroids

    International Nuclear Information System (INIS)

    The rate of death of hypoxic cells was measured in multicell spheroids, which are considered to model in vitro the microenvironments surrounding such cells within solid tumors. Two types of experiments were performed: (1) All of the cells in spheroids were made hypoxic (less than 100 ppM O2) and the total number of viable cells was determined by clonogenic assay at later times up to 7 days. The rate of death of cells appeared biphasic. At least 15% of the cells died within the first 6 hr. The rate of development of histological changes in the spheroids suggested that the innermost cells were most sensitive. The more peripheral layers of cells died much more slowly so that there was still about 5% survival and a significant number of histologically normal cells at 6 days. Changes in the glucose concentration in the medium (from one-third to three times normal) during exposure to hypoxia had little effect on the survival time of these outer cells. (2) The cells in the inner half of spheroids grown in 20% O2 were made hypoxic by equilibrating the growth medium with 5% O2, and the number of resistant hypoxic cells at different times later was determined after a radiation dose of 3500 rad. The number of surviving clonogenic cells after this dose of radiation decreased with a half-time for cell death of 3 hr. These results indicate that the rate of death of hypoxic cells in the central regions of spheroids is much more rapid than has been reported for monolayer cultures, although the resistance of the outer cells is similar to or greater than monolayers. Since spheroids may model the necrosis and other microenvironments near chronically hypoxic cells in tumors, the relatively rapid rate of death of hypoxic cells demonstrated here must be considered in evaluating their contribution to the size of the radiation-resistant hypoxic fraction and possible mechanisms which might contribute to the phenomenon of reoxygenation

  13. The intersection of cell death and inflammasome activation.

    Science.gov (United States)

    Vince, James E; Silke, John

    2016-06-01

    Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes. PMID:27066895

  14. Plant programmed cell death and the point of no return

    NARCIS (Netherlands)

    Doorn, van W.G.

    2005-01-01

    The point of no return during programmed cell death (PCD) is defined as the step beyond which the cell is irreversibly committed to die. Some plant cells can be saved before this point by inducing the formation of functional chloroplasts. A visibly senescent tissue will then become green again and l

  15. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  16. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  17. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  18. Bax-induced cell death in Candida albicans.

    Science.gov (United States)

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  19. Modulation of cell death in age-related diseases.

    Science.gov (United States)

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  20. Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade.

    Science.gov (United States)

    Guha, Prasun; Harraz, Maged M; Snyder, Solomon H

    2016-02-01

    Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit. PMID:26787898

  1. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Ch(a)vez-Gal(a)n L; Arenas-Del Angel MC; Zenteno E; Ch(a)vez R; Lascurain R

    2009-01-01

    One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer (NK) cells and CD8+T cells. In base to recent experimental evidence, we reviewed NK receptors involved in recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction between lyric molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis.

  2. The Apoptosome: Heart and Soul of the Cell Death Machine

    Directory of Open Access Journals (Sweden)

    Arul M. Chinnaiyan

    1999-04-01

    Full Text Available Apoptosis is a fundamental biologic process by which metazoan cells orchestrate their own self-demise. Genetic analyses of the nematode C elegans identified three core components of the suicide apparatus which include CED-3, CED-4, and CED-9. An analogous set of core constituents exists in mammalian cells and includes caspase-9, Apaf-1, and bcl-2/xL, respectively. CED-3 and CED-4, along with their mammalian counterparts, function to kill cells, whereas CED-9 and its mammalian equivalents protect cells from death. These central components biochemically intermingle in a ternary complex recently dubbed the “apoptosome.” The C elegans protein EGL-1 and its mammalian counterparts, pro-apoptotic members of the bcl-2 family, induce cell death by disrupting apoptosome interactions. Thus, EGL-1 may represent a primordial signal integrator for the apoptosome. Various biochemical processes including oligomerization, adenosine triphosphate ATP/dATP binding, and cytochrome c interaction play a role in regulating the ternary death complex. Recent studies suggest that cell death receptors, such as CD95, may amplify their suicide signal by activating the apoptosome. These mutual associations by core components of the suicide apparatus provide a molecular framework in which diverse death signals likely interface. Understanding the apoptosome and its cellular connections will facilitate the design of novel therapeutic strategies for cancer and other disease states in which apoptosis plays a pivotal role.

  3. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  4. Mechanism of heavy ion radiation-induced cancer cell death

    International Nuclear Information System (INIS)

    We previously reported that the carbon beam triggers apoptosis in radio-resistant cancer cell lines via extracellular signal-regulated kinase (ERK)- and mitochondrial Bcl-2 family protein-dependant mechanism. Here, we further examined the further apoptosis-inducing mechanism of carbon beam in two glioma cell lines (T98G, U251). ERK1/2 knockdown experiments revealed that ERK regulates this apoptosis-inducing machinery upstream of mitochondria. Furthermore, we also found that both T98G cell and U251 cell stably expressing dominant-negative ERK2 suppress cell death induced by carbon beam irradiation. We also found proapoptotic PUMA and antiapoptotic Bcl-2 dynamically chang their expression levels corresponding to ERK activation after CB irradiation in U251 cell, and knockdown of PUMA decreased CB-induced U251 cell death. These data suggest that kinase action of ERK is essential for CB-induced glioma cell death, and proapoptotic PUMA and antiapoptotic Bcl-2 might be downstream targets of ERK in CB-induced glioma cell death mechanism. (author)

  5. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  6. Programmed cell death in plants: A chloroplastic connection

    OpenAIRE

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that ...

  7. Photothermal reshaping of gold nanorods prevents further cell death

    International Nuclear Information System (INIS)

    The combined use of phosphatidylcholine passivated gold nanorods (PC-NRs) and pulsed near-infrared (near-IR) irradiation resulted in cell death. Pulsed near-IR laser irradiation also induced reshaping of PC-NRs into spherical nanoparticles. Since reshaped particles showed no absorption in the near-IR region, successive laser irradiation did not affect cells. Photo-reshaping of PC-NRs is expected to be advantageous in preventing unwanted cell damage following destruction of target cells

  8. Diagnosis of Cell Death by Means of Infrared Spectroscopy

    OpenAIRE

    Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana

    2009-01-01

    Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis induc...

  9. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    International Nuclear Information System (INIS)

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization

  10. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  11. Mitochondrial regulation of cell death: a phylogenetically conserved control

    Directory of Open Access Journals (Sweden)

    Lorenzo Galluzzi

    2016-02-01

    Full Text Available Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all regulated variants of cellular demise. In this short review, we discuss the differential implication of mitochondria in the major forms of regulated cell death.

  12. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    Science.gov (United States)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  13. Modeling cell-death patterning during biofilm formation

    International Nuclear Information System (INIS)

    Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation. (paper)

  14. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells

    OpenAIRE

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; GRZANKA, DARIUSZ; Grzanka, Alina

    2016-01-01

    Background The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically ac...

  15. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  16. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina

    Directory of Open Access Journals (Sweden)

    Shun-Ping Huang

    2015-08-01

    Full Text Available Ethambutol (EMB, an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells. The protein kinase C (PKCδ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy.

  17. Programmed Cell Death During Female Gametophyte Development

    Energy Technology Data Exchange (ETDEWEB)

    Drews, Gary, N.

    2004-09-15

    Endosperm is a storage tissue in the angiosperm seed that is important both biologically and agriculturally. Endosperm is biologically important because it provides nutrients to the embryo during seed development and agriculturally important because it is a significant source of food, feed, and industrial raw materials. Approximately two-thirds of human calories are derived from endosperm, either directly or indirectly through animal feed. Furthermore, endosperm is used as a raw material for numerous industrial products including ethanol. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. Understanding how the syncytial-cellular transition is regulated is agriculturally important because it influences seed size, seed sink strength, and grain weight. However, the molecular processes controlling this transition are not understood. This project led to the identification of the AGL62 gene that regulates the syncytial-cellular transition during endosperm development. AGL62 is expressed during the syncytial phase and suppresses endosperm cellularization during this period. AGL62 most likely does so by suppressing the expression of genes required for cellularization. At the end of the syncytial phase, the FIS PcG complex suppresses AGL62 expression, which allows expression of the cellularization genes and triggers the initiation of the cellularized phase. Endosperm arises following fertilization of the central cell within the female gametophyte. This project also led to the identification of the AGL80 gene that is required for development of the central cell into the endosperm. Within the ovule and seed, AGL80 is expressed exclusively in the central cell and uncellularized endosperm. AGL80 is required for expression of several central cell-expressed genes, including

  18. Quantum algorithm for programmed cell death of Caenorhabditis elegans

    International Nuclear Information System (INIS)

    During the development of Caenorhabditis elegans, through cell divisions, a total of exactly 1090 cells are generated, 131 of which undergo programmed cell death (PCD) to result in an adult organism comprising 959 cells. Of those 131, exactly 113 undergo PCD during embryogenesis, subdivided across the cell lineages in the following fashion: 98 for AB lineage; 14 for MS lineage; and 1 for C lineage. Is there a law underlying these numbers, and if there is, what could it be? Here we wish to show that the count of the cells undergoing PCD complies with the cipher laws related to the algorithms of Shor and of Grover

  19. Necroptosis: an alternative cell death program defending against cancer.

    Science.gov (United States)

    Chen, Dongshi; Yu, Jian; Zhang, Lin

    2016-04-01

    One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL) protein. Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells. PMID:26968619

  20. Role of mitochondria on muscle cell death and meat tenderization.

    Science.gov (United States)

    Sierra, Verónica; Oliván, Mamen

    2013-05-01

    The possibility that mitochondria are involved in cellular dysfunction is particularly high in situations associated with increases in free radical activity, like hypoxia or ischemia; therefore its potential role in the muscle post-mortem metabolism is reviewed. In the dying muscle, different routes of cell death catabolism (apoptosis, autophagy) may occur having great influence on the process of conversion of muscle into meat. Mitochondria are the first and also one of the main organelles affected by post-mortem changes; therefore they are decisive in the subsequent cellular responses influencing the pathway to cell demise and thus, the final meat quality. Depending on the cell death programme followed by muscle cells after exsanguination, diverse proteases would be activated to a different extent, which is also reviewed in order to understand how they affect meat tenderization. This review also summarizes recent patents relating cell death processes and meat tenderness. Further research is encouraged as there is still a need of knowledge on cell death post-mortem processes to increase our understanding of the conversion of muscle into meat. PMID:23432120

  1. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    OpenAIRE

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 ...

  2. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Gopinath Rajadinakaran

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  3. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  4. Hydrogen peroxide produced by oral Streptococci induces macrophage cell death.

    Directory of Open Access Journals (Sweden)

    Nobuo Okahashi

    Full Text Available Hydrogen peroxide (H2O2 produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages.

  5. CSR1 induces cell death through inactivation of CPSF3.

    Science.gov (United States)

    Zhu, Z-H; Yu, Y P; Shi, Y-K; Nelson, J B; Luo, J-H

    2009-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRNA, binds with high affinity to the CSR1 C terminus. Further analyses determined that the binding motifs for CPSF3 are located between amino acids 440 and 543. The interaction between CSR1 and CPSF3 induced CPSF3 translocation from the nucleus to the cytoplasm, resulting in inhibition of polyadenylation both in vitro and in vivo. Downregulation of CPSF3 using small interfering RNA induced cell death in a manner similar to CSR1 expression. A CSR1 mutant unable to bind to CPSF3 did not alter CPSF3 subcellular distribution, did not inhibit its polyadenylation activity and did not induce cell death. In summary, CSR1 appears to induce cell death through a novel mechanism by hijacking a critical RNA processing enzyme. PMID:18806823

  6. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers

  7. Real-time monitoring of cisplatin-induced cell death.

    Directory of Open Access Journals (Sweden)

    Hamed Alborzinia

    Full Text Available Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  8. Melatonin Prevents Chemical-Induced Haemopoietic Cell Death

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2014-04-01

    Full Text Available Melatonin (MEL, a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.

  9. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    Science.gov (United States)

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  10. Chikungunya triggers an autophagic process which promotes viral replication

    Directory of Open Access Journals (Sweden)

    Briant Laurence

    2011-09-01

    Full Text Available Abstract Background Chikungunya Virus (ChikV surprised by a massive re-emerging outbreak in Indian Ocean in 2006, reaching Europe in 2007 and exhibited exceptional severe physiopathology in infants and elderly patients. In this context, it is important to analyze the innate immune host responses triggered against ChikV. Autophagy has been shown to be an important component of the innate immune response and is involved in host defense elimination of different pathogens. However, the autophagic process was recently observed to be hijacked by virus for their own replication. Here we provide the first evidence that hallmarks of autophagy are specifically found in HEK.293 infected cells and are involved in ChikV replication. Methods To test the capacity of ChikV to mobilize the autophagic machinery, we performed fluorescence microscopy experiments on HEK.GFP.LC3 stable cells, and followed the LC3 distribution during the time course of ChikV infection. To confirm this, we performed electron microscopy on HEK.293 infected cells. To test the effect of ChikV-induced-autophagy on viral replication, we blocked the autophagic process, either by pharmacological (3-MA or genetic inhibition (siRNA against the transcript of Beclin 1, an autophagic protein, and analyzed the percentage of infected cells and the viral RNA load released in the supernatant. Moreover, the effect of induction of autophagy by Rapamycin on viral replication was tested. Results The increasing number of GFP-LC3 positive cells with a punctate staining together with the enhanced number of GFP-LC3 dots per cell showed that ChikV triggered an autophagic process in HEK.293 infected cells. Those results were confirmed by electron microscopy analysis since numerous membrane-bound vacuoles characteristic of autophagosomes were observed in infected cells. Moreover, we found that inhibition of autophagy, either by biochemical reagent and RNA interference, dramatically decreases ChikV replication

  11. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  12. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  13. Induction of cell death by chemotherapeutic methylating agents

    International Nuclear Information System (INIS)

    The mechanism of cell death induced by O6 MeG has been investigated and inhibition of homologous recombination as a strategy for sensitization of tumor cells against methylating agents SN1. Dependence of the cell cycle was determined toxic responses triggered by O''6 MeG and evaluated by proliferation assays if apoptotic cells have originated exclusively from the second post-treatment cycle. Dependence of O''6 MeG was found at DSB formation. The activation of the control points of the cell cycle and induction of apoptosis is generated during the second cell cycle. Additionally, a portion of the cells has been determined that triggers apoptosis in subsequent generations in the second cell cycle. Inhibition of homologous recombination has been a reasonable strategy to increase SN1 alkylating agent effectiveness. Evidence has been provided in NHEJ dependent inhibition of DNA-PK that not significantly sensitizes the glioblastoma cells against temozolomide

  14. Metal-accelerated oxidation in plant cell death

    Energy Technology Data Exchange (ETDEWEB)

    Czuba, M. (National Research Council, Ottawa, Ontario (Canada))

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  15. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  16. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    OpenAIRE

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and ani...

  17. Heterogeneity reduces sensitivity of cell death for TNF-Stimuli

    Directory of Open Access Journals (Sweden)

    Schliemann Monica

    2011-12-01

    Full Text Available Abstract Background Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1, the proinflammatory cytokine Tumor Necrosis Factor (TNF activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner. Results This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-κB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability. Conclusions Cell

  18. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    Science.gov (United States)

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  19. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death

    OpenAIRE

    Lilibeth Lanceta; Mattingly, Jacob M.; Chi Li; Eaton, John W.

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably in...

  20. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  1. Cell death in the injured brain: roles of metallothioneins

    DEFF Research Database (Denmark)

    Pedersen, Mie Ø; Larsen, Agnete; Stoltenberg, Meredin; Penkowa, Milena

    2009-01-01

    In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive...... provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients....... oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential...

  2. Cell death is involved in sexual dimorphism during preimplantation development.

    Science.gov (United States)

    Oliveira, C S; Saraiva, N Z; Lima, M R de; Oliveira, L Z; Serapião, R V; Garcia, J M; Borges, C A V; Camargo, L S A

    2016-02-01

    In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process. PMID:26752320

  3. Investigating cell death mechanisms in Amyotrophic lateral sclerosis using transcriptomics

    Directory of Open Access Journals (Sweden)

    Paul Roy Heath

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis is a motor neuron disease characterised by degeneration and loss of upper and lower motor neurons from the motor cortex, brainstem and spinal cord although evidence is suggesting that there is further involvement of other cell types in the surrounding tissue. Transcriptomic analysis by gene expression profiling using microarray technology has enabled the determination of patterns of cell death in the degenerating tissues. This work has examined gene expression at the level of the tissue and individual cell types in both sporadic and familial forms of the disease. In addition, further studies have examined the differential vulnerability of neuronal cells in different regions of the central nervous system. Model systems have also provided further information to help unravel the mechanisms that lead to death of the motor neurons in disease and also provided novel insights. In this review we shall describe the methods that have been used in these investigations and describe how they have contributed to our knowledge of the cell death mechanisms in ALS.

  4. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Xiaochen; Yang, Chonglin

    2016-06-01

    Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans. PMID:27048817

  5. Selective Induction of Cancer Cell Death by Targeted Granzyme B

    Directory of Open Access Journals (Sweden)

    Robert A. Jabulowsky

    2013-02-01

    Full Text Available The potential utility of immunotoxins for cancer therapy has convincingly been demonstrated in clinical studies. Nevertheless, the high immunogenicity of their bacterial toxin domain represents a critical limitation, and has prompted the evaluation of cell-death inducing proteins of human origin as a basis for less immunogenic immunotoxin-like molecules. In this review, we focus on the current status and future prospects of targeted fusion proteins for cancer therapy that employ granzyme B (GrB from cytotoxic lymphocytes as a cytotoxic moiety. Naturally, this serine protease plays a critical role in the immune defense by inducing apoptotic target cell death upon cleavage of intracellular substrates. Advances in understanding of the structure and function of GrB enabled the generation of chimeric fusion proteins that carry a heterologous cell binding domain for recognition of tumor-associated cell surface antigens. These hybrid molecules display high selectivity for cancer cells, with cell killing activities similar to that of corresponding recombinant toxins. Recent findings have helped to understand and circumvent intrinsic cell binding of GrB and susceptibility of the enzyme to inhibition by serpins. This now allows the rational design of optimized GrB derivatives that avoid sequestration by binding to non-target tissues, limit off-target effects, and overcome resistance mechanisms in tumor cells.

  6. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts

    OpenAIRE

    Nishikiori, Ryo; Nomura, Yuji; Sawajiri, Masahiko; Masuki, Kohei; Hirata, Isao; Okazaki, Masayuki

    2008-01-01

    Objectives: The effects of chlorine dioxide (ClO2), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2) on cell death and the cell cycle of human gingival fibroblast (HGF) cells were examined. Methods: The inhibition of HGF cell growth was evaluated using a Cell Counting Kit-8. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases) using flow cytometry. The patterns of cell death (necrosis and apoptosis) were analyzed using f...

  7. Programmed cell death 1 ligand 1 expression in osteosarcoma

    OpenAIRE

    Shen, Jacson K.; Cote, Gregory M.; Choy, Edwin; Yang, Pei; Harmon, David; Schwab, Joseph; Nielsen, G. Petur; Chebib, Ivan; Ferrone, Soldano; Wang, Xinhui; Wang, Yangyang; Mankin, Henry; Francis J. Hornicek; Duan, Zhenfeng

    2014-01-01

    Programmed cell death 1 ligand 1 (PD-L1, B7H1) is a cell-surface protein that suppresses the cytotoxic CD8+ T cell-mediated immune response. PD-L1 expression and its clinical relevance in sarcomas are not well understood. Therefore, we sought to measure RNA expression levels for PD-L1 in 38 clinically annotated osteosarcoma tumor samples, and aimed to determine if PD-L1 expression correlates with clinical features and tumor-infiltrating T-lymphocytes (TILs). Quantitative real-time RT-PCR for ...

  8. Alpha-Tocopheryl Succinate Inhibits Autophagic Survival of Prostate Cancer Cells Induced by Vitamin K3 and Ascorbate to Trigger Cell Death

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Nocchi, L.; Neužil, Jiří; Goodwin, J.; Nguyen, M.; Dong, L.; Manzella, N.; Staffolani, S.; Milanese, C.; Garrone, B.; Alleva, R.; Borghi, B.; Santarelli, L.; Guerrieri, R.

    2012-01-01

    Roč. 7, č. 12 (2012), e52263. E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520701 Keywords : Vitamin E analogue * Mitochondrial targeting * Induced apoptosis Subject RIV: FD - Oncology ; Hematology Impact factor: 3.730, year: 2012

  9. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  10. In vitro apoptotic cell death during erythroid differentiation.

    Science.gov (United States)

    Zamai, L; Burattini, S; Luchetti, F; Canonico, B; Ferri, P; Melloni, E; Gonelli, A; Guidotti, L; Papa, S; Falcieri, E

    2004-03-01

    Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro. PMID:15004520

  11. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    Science.gov (United States)

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  12. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  13. Cell-nonautonomous regulation of C. elegans germ cell death by kri-1.

    Science.gov (United States)

    Ito, Shu; Greiss, Sebastian; Gartner, Anton; Derry, W Brent

    2010-02-23

    Programmed cell death (or apoptosis) is an evolutionarily conserved, genetically controlled suicide mechanism for cells that, when deregulated, can lead to developmental defects, cancers, and degenerative diseases. In C. elegans, DNA damage induces germ cell death by signaling through cep-1/p53, ultimately leading to the activation of CED-3/caspase. It has been hypothesized that the major regulatory events controlling cell death occur by cell-autonomous mechanisms, that is, within the dying cell. In support of this, genetic studies in C. elegans have shown that the core apoptosis pathway genes ced-4/APAF-1 and ced-3/caspase are required in cells fated to die. However, it is not known whether the upstream signals that activate apoptosis function in a cell-autonomous manner. Here we show that kri-1, an ortholog of KRIT1/CCM1, which is mutated in the human neurovascular disease cerebral cavernous malformation, is required to activate DNA damage-dependent cell death independently of cep-1/p53. Interestingly, we find that kri-1 regulates cell death in a cell-nonautonomous manner, revealing a novel regulatory role for nondying cells in eliciting cell death in response to DNA damage. PMID:20137949

  14. Triggering cell death by nanographene oxide mediated hyperthermia

    International Nuclear Information System (INIS)

    Graphene oxide (GO) has been proposed as an hyperthermia agent for anticancer therapies due to its near-infrared (NIR) optical absorption ability which, with its small two-dimensional size, could have a unique performance when compared to that of any other nanoparticle. Nevertheless, attention should be given to the hyperthermia route and the kind of GO–cell interactions induced in the process. The hyperthermia laser irradiation parameters, such as exposure time and laser power, were investigated to control the temperature rise and consequent damage in the GOs containing cell culture medium. The type of cell damage produced was evaluated as a function of these parameters. The results showed that cell culture temperature (after irradiating cells with internalized GO) increases preferentially with laser power rather than with exposure time. Moreover, when laser power is increased, necrosis is the preferential cell death leading to an increase of cytokine release to the medium. (paper)

  15. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  16. Regulating the reapers: activating metacaspases for programmed cell death.

    Science.gov (United States)

    Lam, Eric; Zhang, Yi

    2012-08-01

    Research during the past two decades has revealed that specialized cysteine proteases act as conserved initiators or executioners for programmed cell death (PCD) in eukaryotes. Caspases were first identified as common regulators of PCD in metazoans, whereas the role of metacaspases (MCs) as regulators of cellular suicide in plants has only been shown genetically in the past several years. Together with recent biochemical and molecular characterizations of some of the representative MCs from different model systems, multiple mechanisms that can mediate the post-translational regulation of these proteases are beginning to emerge. Further elucidation of these regulatory pathways and definition of the downstream degradomes targeted by MCs should lead to a better understanding of cell death control in plants, protozoans, and fungi. PMID:22658651

  17. Molecular mechanisms of cell death in intervertebral disc degeneration (Review).

    Science.gov (United States)

    Zhang, Fan; Zhao, Xueling; Shen, Hongxing; Zhang, Caiguo

    2016-06-01

    Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration. PMID:27121482

  18. A Novel Cell Death Gene Acts to Repair Patterning Defects in Drosophila melanogaster

    OpenAIRE

    Tanaka, Kentaro M.; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-01-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development.

  19. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  20. Pneumolysin causes neuronal cell death through mitochondrial damage

    OpenAIRE

    Braun, Johann S.; Hoffmann, Olaf; Schickhaus, Miriam; Freyer, Dorette; Dagand, Emilie; Bermpohl, Daniela; Mitchell, Tim J.; Bechmann, Ingo; Weber, Joerg R.

    2007-01-01

    Bacterial toxins such as pneumolysin are key mediators of cytotoxicity in infections. Pneumolysin is a pore-forming toxin released by Streptococcus pneumoniae, the major cause of bacterial meningitis. We found that pneumolysin is the pneumococcal factor that accounts for the cell death pathways induced by live bacteria in primary neurons. The pore-forming activity of pneumolysin is essential for the induction of mitochondrial damage and apoptosis. Pneumolysin colocalized with mitochondrial me...

  1. Cell Death Characterization In Tumor Constructs Using Irreversible Electroporation

    OpenAIRE

    Prokop, Katherine Jane

    2013-01-01

    Cell Death Characterization in Tumor Constructs Using Irreversible Electroporation Katherine Jane Prokop ABSTRACT Pancreatic and prostate cancer are both prevalent cancers in the United States with pancreatic being one of the most aggressive of all cancers and prostate cancer being one of the most common, ranking as the number one cancer in men. Treatment of both cancers can be quite challenging as the anatomy of the pancreas and prostate, as well as the development and diagnos...

  2. Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils.

    Science.gov (United States)

    Herman, Sonja; Kny, Angelika; Schorn, Christine; Pfatschbacher, Jürgen; Niederreiter, Birgit; Herrmann, Martin; Holmdahl, Rikard; Steiner, Günter; Hoffmann, Markus H

    2012-12-01

    Hydrocarbon oils such as pristane or hexadecane induce arthritis and lupus in rodents sharing clinical and pathological features with the human diseases rheumatoid arthritis and systemic lupus erythematosus, respectively. In pristane-induced lupus in the mouse induction of apoptosis and augmentation of type-I Interferon signalling by pristane have been suggested to contribute to pathology, whereas in pristane-induced arthritis (PIA) in the rat the pathological mechanisms are still elusive. Here we show that pristane induces cell death in rat and human cells. Increased numbers of apoptotic cells were found in draining lymph nodes of pristane-injected rats and increased percentages of apoptotic and necrotic cells were observed in peripheral blood. In addition, neutrophil extracellular trap formation was triggered by pristane and hexadecane in neutrophils. Because levels of interleukin (IL)-1β were elevated in sera of pristane-injected rats, with levels mirroring the course of PIA, we examined the effect of pristane at single cell level in vitro, using rat splenocytes and the human monocytic cell line THP-1. Pristane and other hydrocarbon oils induced IL-1β secretion in THP-1 cells as well as in rat splenocytes. The potassium channel inhibitor glibenclamide partly inhibited IL-1β induction, suggesting involvement of the inflammasome. Elevated levels of IL-1α were also found in supernatants of cells treated with pristane and hexadecane. In conclusion, autoimmunogenic hydrocarbon oils induce various forms of cell death in rat and human cells. The higher serum IL-1β levels in pristane-injected animals might be caused by both inflammasome-dependent and -independent mechanisms, such as passive release from dying-cells and probably extracellular maturation of pro-IL-1β. PMID:22917079

  3. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.

    2014-02-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  4. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ. PMID:24296078

  5. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  6. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  7. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto; Svensson, Birte; Emnéus, Jenny; Dufva, Martin; Finnie, Christine

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments to...... approach in vivo conditions. Microfluidics also allow implementation of a wide range of electrochemical or optical assays for online, real-time, parallel analysis of important parameters such as redox activity, O2 and H2O2 concentration, extracellular pH, cell viability and enzyme activity1,2. Currently...

  8. CSR1 induces cell death through inactivation of CPSF3

    OpenAIRE

    Zhu, Z-H; Yu, YP; Shi, Y-K; Nelson, JB; Luo, J-H

    2008-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRN...

  9. Sudden death of a patient with pulmonary Langerhans cell histiocytosis.

    Science.gov (United States)

    Nakhla, Hassan; Jumbelic, Mary I

    2005-06-01

    We report a case of sudden death due to bilateral pneumothorax in a previously healthy 16-year-old adolescent white girl. She presented with sudden onset of shortness of breath followed by loss of consciousness. Postmortem chest radiograph showed bilateral pneumothoraces. Autopsy confirmed the bilateral pneumothorax and additionally showed emphysematous changes and bullae throughout the lung tissue. Microscopic sections of the lungs showed Langerhans cell histiocytosis. To the best of our knowledge, this is the first reported case of fatal presentation of pulmonary Langerhans cell histiocytosis. PMID:15913433

  10. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Richa Arya; Moushami Mallik; Subhash C Lakhotia

    2007-04-01

    Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with components of the apoptotic pathways. Hsp90, which acts as a chaperone for unstable signal transducers to keep them poised for activation, interacts with RIP and Akt and promotes NF-B mediated inhibition of apoptosis; in addition it also blocks some steps in the apoptotic pathways. Hsp70 is mostly anti-apoptotic and acts at several levels like inhibition of translocation of Bax into mitochondria, release of cytochrome c from mitochondria, formation of apoptosome and inhibition of activation of initiator caspases. Hsp70 also modulates JNK, NF-B and Akt signaling pathways in the apoptotic cascade. In contrast, Hsp60 has both anti- and pro-apoptotic roles. Cytosolic Hsp60 prevents translocation of the pro-apoptotic protein Bax into mitochondria and thus promotes cell survival but it also promotes maturation of procaspase-3, essential for caspase mediated cell death. Our recent in vivo studies show that RNAi for the Hsp60D in Drosophila melanogaster prevents induced apoptosis. Hsp27 exerts its anti-apoptotic influence by inhibiting cytochrome c and TNF-mediated cell death. crystallin suppresses caspase-8 and cytochrome c mediated activation of caspase-3. Studies in our laboratory also reveal that absence or reduced levels of the developmentally active as well as stress induced non-coding hsr transcripts, which are known to sequester diverse hnRNPs and related nuclear RNA-binding proteins, block induced apoptosis in Drosophila. Modulation of the apoptotic pathways by Hsps reflects their roles as ``weak links” between various ``hubs” in cellular networks. On the other hand, non-coding RNAs, by virtue of their potential to bind with multiple proteins, can act as ``hubs” in

  11. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    Science.gov (United States)

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  12. Role of mitochondrial function in cell death and body metabolism.

    Science.gov (United States)

    Lee, Myung-Shik

    2016-01-01

    Mitochondria are the key players in apoptosis and necrosis. Mitochondrial DNA (mtDNA)-depleted r0 cells were resistant to diverse apoptosis inducers such as TNF-alpha, TNFSF10, staurosporine and p53. Apoptosis resistance was accompanied by the absence of mitochondrial potential loss or cytochrome c translocation. r0 cells were also resistant to necrosis induced by reactive oxygen species (ROS) donors due to upregulation of antioxidant enzymes such as manganese superoxide dismutase. Mitochondria also has a close relationship with autophagy that plays a critical role in the turnover of senescent organelles or dysfunctional proteins and may be included in 'cell death' category. It was demonstrated that autophagy deficiency in insulin target tissues such as skeletal muscle induces mitochondrial stress response, which leads to the induction of FGF21 as a 'mitokine' and affects the whole body metabolism. These results show that mitochondria are not simply the power plants of cells generating ATP, but are closely related to several types of cell death and autophagy. Mitochondria affect various pathophysiological events related to diverse disorders such as cancer, metabolic disorders and aging. PMID:27100503

  13. 大鼠坐骨神经再生过程中许旺氏细胞的自噬作用%The autophagic role of Schwann cell on regeneration of rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    王万山; 朴仲贤; 王启伟; Han Ming-Hu; 朴英杰

    2004-01-01

    背景 :Wallerian变性时髓鞘溃变碎片的清除对于神经的再生至关重要 ,但溃变碎片的清除机制一直没有彻底阐明 ,关于参与清除的细胞成分类型仍有很大争议. 目的 :探讨大鼠坐骨神经再生过程中许旺氏细胞的自噬作用. 设计 :完全随机自身对照研究. 地点和对象 :本实验由第一军医大学解剖教研室、汕头大学医学院中心实验室和西南大学达拉斯医学中心精神病学部共同完成 ,研究对象为成年 Wistar大鼠 30只 ,雌雄各半 ,体质量 180- 250 g. 干预 :横切大鼠坐骨神经制作 Wallerian变性模型 ,分别于造模后 0,0.5,1,1.5,2,3,4,5,7,10,15 d取远断端组织行电镜观察. 主要观察指标 :电镜观察轴突和髓鞘的超微结构 ,Gomori染色后检查酸性磷酸酶活性. 结果 :轴突在第 0.5天时从髓鞘脱离,溃变呈空泡状.第 2天开始髓鞘皱褶、断裂形成碎片,许旺氏细胞内见大的膜结合髓鞘碎片和许多散在小碎片,并与溶酶体融合形成自噬泡,呈酸性磷酸酶 (AcPase)阳性.第 4天时内膜区偶见幼稚细胞 ,1周后见大量幼稚细胞.第 7天后许旺氏细胞内自噬泡数量开始减少.实验全程偶见巨噬细胞 ,内有吞噬泡. 结论 :大鼠坐骨神经再生过程中溃变髓鞘主要经许旺氏细胞自噬清除,许旺氏细胞脱分化为许旺氏细胞祖细胞后大量增殖分化参与神经再生过程.%BACKGROUND:The removal of degenerated debris of myelin sheath during wallerian degeneration is very important for nerve regeneration,but the mechanism by which the debris is removed has not been completely clarified and there is still considerable controversies on the types of cells involved in the clearance process.OBJECTIVE:To investigate the autophagic role of Schwann cell on regeneration of rat sciatic nerves.DESIGN: Completely randomized animal experiment conducted in March 2003. SETTING AND PARTICIPANTS:Rats were bought from the Laboratory Animal

  14. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    OpenAIRE

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol ...

  15. Lysosomal and autophagic reactions as predictive indicators of environmental impact in aquatic animals.

    Science.gov (United States)

    Moore, Michael N; Allen, J Icarus; McVeigh, Allan; Shaw, Jenny

    2006-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, lysosomal membrane integrity or stability appears to be an effective generic indicator of cellular well-being in eukaryotes: in bivalve molluscs and fish, stability is correlated with many toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants has been explored in relation to predicting cellular dysfunction and health in marine mussels, which are extensively used as sensitive bioindicators in monitoring ecosystem health. Derivation of explanatory frameworks for prediction of pollutant impact on health is a major goal; and we have developed a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. This model has also complemented the creation of a cell-based computational model for molluscan hepatopancreatic cells that simulates lysosomal, autophagic and other cellular reactions to pollutants. Experimental and simulated results have also indicated that nutritional deprivation-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and modelling is proposed as a practical toolbox for predicting toxic environmental risk. PMID:16874099

  16. Immunogenic cell death by oncolytic herpes simplex virus type 1 in squamous cell carcinoma cells.

    Science.gov (United States)

    Takasu, A; Masui, A; Hamada, M; Imai, T; Iwai, S; Yura, Y

    2016-04-01

    Molecules essential for the induction of immunogenic cell death (ICD) are called damage-associated molecular patterns (DAMPs). The effects of oncolytic herpes simplex virus type 1 (HSV-1) on the production of DAMPs were examined in squamous cell carcinoma (SCC) cells. The cytopathic effects of HSV-1 RH2 were observed in mouse SCCVII cells infected at a high multiplicity of infection (MOI), and the amounts of viable cells were decreased. After being infected with RH2, ATP and high mobility group box 1 (HMGB1) were released extracellulary, while calreticulin (CRT) translocated to the cell membrane. A flow-cytometric analysis revealed an increase in the number of annexin-V and propidium iodide (PI)-stained cells; and the amount of cleaved poly (ADP-ribose) polymerase (PARP) was increased. The killing effect of RH2 was reduced by pan-caspase inhibitor z-VAD-fmk and the caspase-1 inhibitor z-YVAD-fmk, suggesting the involvement of apoptosis and pyroptosis. In C3H mice bearing synergic SCCVII tumors, the growth of tumors injected with the supernatant of RH2-infected cells was less than that of tumors injected with phosphate-buffered saline (PBS). These results indicate that oncolytic HSV-1 RH2 produces DAMPs from SCC cells to induce cell death. This may contribute to the enhancement of tumor immunity by oncolytic HSV-1. PMID:26987291

  17. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Toshihiko, E-mail: aki.legm@tmd.ac.jp [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2010-06-04

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  18. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    International Nuclear Information System (INIS)

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  19. Cell culture: Progenitor cells from human brain after death

    Science.gov (United States)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  20. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  1. Gossypol Induced Cell Death in DU 145 Prostate Cancer Cells

    OpenAIRE

    Kennelly, Susan

    2010-01-01

    Cancer Biology Tumourigenesis is a multistep process which includes the transformation of healthy cells into extremely malignant cells, caused by the disruption of normal tissue homeostasis. Hanahan and Weinberg propose that there are a common set of 'acquired capabilities' that most if not all cancers posses's in order to survive and proliferate despite changes in their normal cell physiology during cancer development (Hanahan and Weinberg, 2000). These "Hallmarks of Cancer", according to...

  2. Anhydrobiosis and programmed cell death in plants: Commonalities and Differences

    Directory of Open Access Journals (Sweden)

    Samer Singh

    2015-05-01

    Full Text Available Anhydrobiosis is an adaptive strategy of certain organisms or specialised propagules to survive in the absence of water while programmed cell death (PCD is a finely tuned cellular process of the selective elimination of targeted cell during developmental programme and perturbed biotic and abiotic conditions. Particularly during water stress both the strategies serve single purpose i.e., survival indicating PCD may also function as an adaptive process under certain conditions. During stress conditions PCD cause targeted cells death in order to keep the homeostatic balance required for the organism survival, whereas anhydrobiosis suspends cellular metabolic functions mimicking a state similar to death until reestablishment of the favourable conditions. Anhydrobiosis is commonly observed among organisms that have ability to revive their metabolism on rehydration after removal of all or almost all cellular water without damage. This feature is widely represented in terrestrial cyanobacteria and bryophytes where it is very common in both vegetative and reproductive stages of life-cycle. In the course of evolution, with the development of advanced vascular system in higher plants, anhydrobiosis was gradually lost from the vegetative phase of life-cycle. Though it is retained in resurrection plants that primarily belong to thallophytes and a small group of vascular angiosperm, it can be mostly found restricted in orthodox seeds of higher plants. On the contrary, PCD is a common process in all eukaryotes from unicellular to multicellular organisms including higher plants and mammals. In this review we discuss physiological and biochemical commonalities and differences between anhydrobiosis and PCD.

  3. Mitochondrial dynamics and cell death in heart failure.

    Science.gov (United States)

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  4. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  5. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    2016-06-01

    Full Text Available The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals.

  6. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    Science.gov (United States)

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  7. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    Science.gov (United States)

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  8. Calcium and cell death signaling in neurodegeneration and aging

    Directory of Open Access Journals (Sweden)

    Soraya Smaili

    2009-09-01

    Full Text Available Transient increase in cytosolic (Cac2+ and mitochondrial Ca2+ (Ca m2+ are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes maylead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.Aumentos transientes no cálcio citosólico (Ca c2+ e mitocondrial (Ca m2+ são elementos essenciais no controle de muitos processos fisiológicos. No entanto, aumentos sustentados do Ca c2+ e do Ca m2+ podem contribuir para o estresse oxidativo ea morte celular. Muitos eventos estão relacionados ao aumentono Ca c2+, incluindo a regulação e ativação de várias enzimas dependentes de Ca2+ como as fosfolipases, proteases e nucleases. A mitocôndria e o retículo endoplasmático têm um papel central na manutenção da homeostase intracellular de Ca c2+ e na regulação da morte celular. Várias evidências mostraram que, na presença de certos estímulos apoptóticos, a ativação dos processos mitocondriais pode promover a liberação de citocromo c, seguida da ativação de caspases, fragmentação nuclear e morte celular por apoptose. O objetivo desta revisão é mostrar como aumentos na sinalização de

  9. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux.

    Science.gov (United States)

    Yang, Yi; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-05-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0-100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the alternation of other intracellular organelles, although F-actin structure was slightly disturbed. Apparent ultrastructure alternation with increased autophagosome and autolysosome accumulation was observed in aurantiamide acetate-treated cells. The expression of LC3-II was greatly up-regulated in cells exposed to aurantiamide acetate (P < 0.05 compared with control). The cytoplasmic accumulation of autophagosomes and autolysosomes induced by aurantiamide acetate treatment was confirmed by fluorescent reporter protein labelling. Administration of chloroquine (CQ), which inhibits the fusion step of autophagosomes, further increased the accumulation of autophagosomes in the cytoplasm of U87 cells. Autophagy inhibition by 3-methyladenine, Bafilomycin A1 or CQ had no influence on aurantiamide acetate-induced cytotoxicity, whereas autophagy stimulator rapamycin significantly suppressed aurantiamide acetate-induced cell death. The anti-tumour effects of aurantiamide acetate were further evaluated in tumour-bearing nude mice. Intratumoural injection of aurantiamide acetate obviously suppressed tumour growth, and increased number of autophagic vacuoles was observed in tumour tissues of animals receiving aurantiamide acetate. Our findings suggest that aurantiamide acetate may suppress the growth of malignant gliomas by blocking autophagic flux. PMID:25704599

  10. DIETARY PHYTOCHEMICALS INDUCE p53- AND CASPASE-INDEPENDENT CELL DEATH IN HUMAN NEUROBLASTOMA CELLS

    OpenAIRE

    Sukumari-Ramesh, Sangeetha; Bentley, J Nicole; Laird, Melissa D.; Singh, Nagendra; Vender, John R.; Dhandapani, Krishnan M.

    2011-01-01

    Neuroblastoma (NB) is the most prevalent pediatric solid tumor and a leading cause of cancer-related death in children. In the present study, a novel cytotoxic role for the dietary compounds, curcumin, andrographolide, wedelolactone, dibenzoylmethane, and tanshinone IIA was identified in human S-type NB cells, SK-N-AS and SK-N-BE(2). Mechanistically, cell death appeared apoptotic by flow cytometry; however, these effects proceeded independently from both caspase-3 and p53 activation, as asses...

  11. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  12. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    Science.gov (United States)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  13. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  14. The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors.

    Science.gov (United States)

    Bagniewska-Zadworna, A; Arasimowicz-Jelonek, M

    2016-03-01

    Programmed cell death (PCD) is an essential part of the ontogeny of roots and their tolerance/resistance mechanisms, allowing adaptation and growth under adverse conditions. It occurs not only at the cellular and subcellular level, but also at the levels of tissues, organs and even whole plants. This process involves a wide spectrum of mechanisms, from signalling and the expression of specific genes to the degradation of cellular structures. The major goals of this review were to broaden current knowledge about PCD processes in roots, and to identify mechanisms associated with both developmental and stress-associated cell death in roots. Vacuolar cell death, when cell contents are removed by a combination of an autophagy-associated process and the release of hydrolases from a collapsed vacuole, is responsible for programming self-destruction. Regardless of the conditions and factors inducing PCD, its subcellular events usually include the accumulation of autophagosome-like structures, and the formation of massive lytic compartments. In some cases these are followed by the nuclear changes of chromatin condensation and DNA fragmentation. Tonoplast disruption and vacuole implosion occur very rapidly, are irreversible and constitute a definitive step toward cell death in roots. Active cell elimination plays an important role in various biological processes in the life history of plants, leading to controlled cellular death during adaptation to changing environmental conditions, and organ remodelling throughout development and senescence. PMID:26332667

  15. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  16. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H2O2-induced PC12 cell death. H2O2-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H2O2-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-XL and caspase-3. The accumulation of intracellular ROS in H2O2-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H2O2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H2O2-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  17. Cell-to-cell variability in cell death: can systems biology help us make sense of it all?

    OpenAIRE

    Xia, X; Owen, M. S.; Lee, R E C; Gaudet, S

    2014-01-01

    One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated...

  18. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus.

    Science.gov (United States)

    Xia, Mao; Meng, Gang; Jiang, Aiqin; Chen, Aiping; Dahlhaus, Meike; Gonzalez, Patrick; Beltinger, Christian; Wei, Jiwu

    2014-06-15

    Although apoptotic phenomena have been observed in malignant cells infected by measles virus vaccine strain Edmonston B (MV-Edm), the precise oncolytic mechanisms are poorly defined. In this study we found that MV-Edm induced autophagy and sequestosome 1-mediated mitophagy leading to decreased cytochrome c release, which blocked the pro-apoptotic cascade in non-small cell lung cancer cells (NSCLCs). The decrease of apoptosis by mitophagy favored viral replication. Persistent viral replication sustained by autophagy ultimately resulted in necrotic cell death due to ATP depletion. Importantly, when autophagy was impaired in NSCLCs MV-Edm-induced cell death was significantly abrogated despite of increased apoptosis. Taken together, our results define a novel oncolytic mechanism by which mitophagy switches cell death from apoptosis to more efficient necrosis in NSCLCs following MV-Edm infection. This provides a foundation for future improvement of oncolytic virotherapy or antiviral therapy. PMID:25004098

  19. Primary observations of the existence of Fas-like cytoplasmic death factor in plant cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main activity of Fas is to trigger cytoplasm death program in animal cells. In G2 pea, vacuole plays a pivotal role in inducing cell death in the cytoplasm of longday (LD) grown apical meristem cells. Expression patterns of the Fas in G2 pea cells revealed that the Fas is mainly localized in the vacuole of cells undergoing programmed cell death (PCD). The Fas expression is corresponding to the initiation of menadione-induced PCD in tobacco protoplasts.The results suggest the existence of the Fas-like mediated cytoplasmic death pathway in plant cells.``

  20. Regulation of cell survival and death during Flavivirus infections

    Institute of Scientific and Technical Information of China (English)

    Sounak; Ghosh; Roy; Beata; Sadigh; Emmanuel; Datan; Richard; A; Lockshin; Zahra; Zakeri

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic(Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause.

  1. Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

    OpenAIRE

    Lee, Yun-Jung; Won, Tae Joon; Hyung, Kyeong Eun; Lee, Mi Ji; Moon, Young-hye; Lee, Ik Hee; Go, Byung Sung; Hwang, Kwang Woo

    2014-01-01

    Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-...

  2. Programmed cell death of Ulmus pumila L. seeds during aging

    Institute of Scientific and Technical Information of China (English)

    Yulan ZHANG; Ming ZHANG; Fang LI; Xiaofeng WANG

    2008-01-01

    The programmed cell death (PCD) character-istics of Ulmus pumila L. seeds were investigated. The seeds were treated at a high temperature of 37℃ and 100% relative humidity for six days. DAPI (4'6-diami-dino-2-phenylindole) staining revealed that the aging treatment induced condensation and margination of chro-matin, as well as the formation of apoptotic bodies. DNA electrophoresis results of U. pumila seeds on an agarose gel showed a characteristic "ladder" pattern. Levels of electrolyte leakage of seed cells showed that membranes retained their integral form during almost the entire aging time. There was an immediate increase in the production rate of superoxide anion (O2-) and in the amount of hydrogen peroxide (H2O2), which remained at a μmol level. All of these common characteristics indicate that seed aging can be classified as PCD.

  3. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    Science.gov (United States)

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis. PMID:26621912

  4. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    Science.gov (United States)

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases. PMID:25068824

  5. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    International Nuclear Information System (INIS)

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis

  6. Cell Death Atlas of the Postnatal Mouse Ventral Forebrain and Hypothalamus: Effects of Age and Sex

    Science.gov (United States)

    Ahern, Todd H.; Krug, Stefanie; Carr, Audrey V.; Murray, Elaine K.; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J.; Forger, Nancy G.

    2016-01-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain. PMID:23296992

  7. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  8. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  9. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  10. Naringin Attenuates Autophagic Stress and Neuroinflammation in Kainic Acid-Treated Hippocampus In Vivo

    OpenAIRE

    Kyoung Hoon Jeong; Un Ju Jung; Sang Ryong Kim

    2015-01-01

    Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in anima...

  11. Statins, Bcl-2 and Apoptosis: Cell Death or Cell Protection?

    OpenAIRE

    Wood, W. Gibson; Igbavboa, Urule; Muller, Walter E.; Gunter P. Eckert

    2013-01-01

    Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax) whereas, studies mainly using non-cancerous cells r...

  12. Sphingosine-1-phosphate in cell growth and cell death.

    Science.gov (United States)

    Spiegel, S; Cuvillier, O; Edsall, L C; Kohama, T; Menzeleev, R; Olah, Z; Olivera, A; Pirianov, G; Thomas, D M; Tu, Z; Van Brocklyn, J R; Wang, F

    1998-06-19

    Recent evidence suggests that branching pathways of sphingolipid metabolism may mediate either apoptotic or mitogenic responses depending on the cell type and the nature of the stimulus. While ceramide has been shown to be an important regulatory component of apoptosis induced by tumor necrosis factor alpha and Fas ligand, sphingosine-1-phosphate (SPP), a further metabolite of ceramide, has been implicated as a second messenger in cellular proliferation and survival induced by platelet-derived growth factor, nerve growth factor, and serum. SPP protects cells from apoptosis resulting from elevations of ceramide. Inflammatory cytokines stimulate sphingomyelinase, but not ceramidase, leading to accumulation of ceramide, whereas growth signals also leading to accumulation of ceramide, whereas growth signals also stimulate ceramidase and sphingosine kinase leading to increased SPP levels. We propose that the dynamic balance between levels of sphingolipid metabolites, ceramide, and SPP, and consequent regulation of different family members of mitogen-activated protein kinases (JNK versus ERK), is an important factor that determines whether a cell survives or dies. PMID:9668339

  13. A novel cell death gene acts to repair patterning defects in Drosophila melanogaster.

    Science.gov (United States)

    Tanaka, Kentaro M; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-06-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development. PMID:24671768

  14. Cell death, clearance and immunity in the skeletal muscle.

    Science.gov (United States)

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    accumulation and promoting autoimmunity itself. There is strong promise for novel treatments based on new knowledge of cell death, clearance and immunity in the muscle. PMID:26868912

  15. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  16. Baicalein induces programmed cell death in Candida albicans.

    Science.gov (United States)

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( palbicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  17. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen; Zuhayra, Maaz; Schütze, Stefan; Steckelings, Ulrike Muscha; Recarti, Chiara; Namsolleck, Pawel; Unger, Thomas; Culman, Juraj

    2015-01-01

    -peptide AT2 receptor agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial...... apoptotic pathway, i. e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our...

  18. Markov mean properties for cell death-related protein classification.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; González-Díaz, Humberto; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R

    2014-05-21

    The cell death (CD) is a dynamic biological function involved in physiological and pathological processes. Due to the complexity of CD, there is a demand for fast theoretical methods that can help to find new CD molecular targets. The current work presents the first classification model to predict CD-related proteins based on Markov Mean Properties. These protein descriptors have been calculated with the MInD-Prot tool using the topological information of the amino acid contact networks of the 2423 protein chains, five atom physicochemical properties and the protein 3D regions. The Machine Learning algorithms from Weka were used to find the best classification model for CD-related protein chains using all 20 attributes. The most accurate algorithm to solve this problem was K*. After several feature subset methods, the best model found is based on only 11 variables and is characterized by the Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.992 and the true positive rate (TP Rate) of 88.2% (validation set). 7409 protein chains labeled with "unknown function" in the PDB Databank were analyzed with the best model in order to predict the CD-related biological activity. Thus, several proteins have been predicted to have CD-related function in Homo sapiens: 3DRX-involved in virus-host interaction biological process, protein homooligomerization; 4DWF-involved in cell differentiation, chromatin modification, DNA damage response, protein stabilization; 1IUR-involved in ATP binding, chaperone binding; 1J7D-involved in DNA double-strand break processing, histone ubiquitination, nucleotide-binding oligomerization; 1UTU-linked with DNA repair, regulation of transcription; 3EEC-participating to the cellular membrane organization, egress of virus within host cell, class mediator resulting in cell cycle arrest, negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle and apoptotic process. Other proteins from bacteria predicted as

  19. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiqing; Chen, Xu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Liu, Cheng [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Gu, Peng; Li, Zhuohang; Wu, Shaoxu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Xu, Kewei [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Lin, Tianxin, E-mail: tianxinl@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Huang, Jian, E-mail: urolhj@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China)

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  20. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    International Nuclear Information System (INIS)

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway

  1. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  2. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    International Nuclear Information System (INIS)

    Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies

  3. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  4. Melatonina: modulador de morte celular Melatonin: cell death modulator

    Directory of Open Access Journals (Sweden)

    Cecília da Silva Ferreira

    2010-01-01

    Full Text Available A apoptose ou morte programada é um fenômeno biológico essencial para o desenvolvimento e manutenção de uma população celular. Neste processo, as células senescentes ou indesejáveis são eliminadas após ativação de um programa de morte celular, que envolve a participação de moléculas pró-apoptóticas (Fas, FasL, Bax, Caspases 2, 3, 6, 7, 8 e 9. A ativação destas moléculas provoca típicas alterações morfológicas como a retração celular, perda de aderência à matriz extracelular e às células vizinhas, condensação da cromatina, fragmentação do DNA e formação de corpos apoptóticos. Moléculas antiapoptóticas (Bcl2, FLIP bloqueiam o surgimento e a evolução destas alterações celulares e evitam a morte celular. É o equilíbrio entre moléculas pró e antiapoptóticas que assegura a homeostase tecidual. O descontrole da apoptose pode contribuir para o aparecimento de diversas doenças neoplásicas, autoimunes e neurodegenerativas. Diversos agentes indutores e inibidores de apoptose são reconhecidos como armas potenciais no combate a doenças relacionadas a distúrbios de proliferação e morte celular, dentre eles, destacam-se os hormônios. A melatonina tem sido relatada com importante ação antiápoptótica em diversos tecidos, modulando a expressão de agentes, reduzindo a entrada de cálcio na célula, bem como atenuando a produção de espécies reativas de oxigênio e de proteínas pró-apoptóticas, tal como, diminuição da Bax. O conhecimento de novos agentes capazes de atuar nas vias da apoptose é de grande valia para o desenvolvimento de futuras terapias no tratamento de diversas doenças. Assim, o objetivo dessa revisão é elucidar os principais aspectos da morte celular pela apoptose e o papel da melatonina neste processo.Apoptosis or programmed death is a biological phenomenon, which is essential for the development and maintenance of a cell population. In this process, senescent or damaged

  5. Fine-mapping of an Arabidopsis cell death mutation locus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An Arabidopsis cell death mutation locus was mapped to chromosome 2 between IGS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.

  6. Programmed cell death in developing human fetal CNS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The spatial and temporal distributions of programmed cell death (PCD) in developing central nervous system (CNS) of human fetuses ranging from 12 to 39 weeks of gestation were investigated using techniques of flow cytometry and terminal transferase-mediated nick end labeling (TUNEL). The results showed that PCD did occur in every representative brain region of all fetuses examined in different stages. It was found that there were two peaks of PCD appearing at the 12th and 39th weeks respectively, which suggested that the first peak of apoptosis may be involved in the selective elimination of neurons overproduced during the early development and the second may play an important role in establishing the correct neuronal circuitry.

  7. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    Science.gov (United States)

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress. PMID:27443785

  8. Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance.

    Science.gov (United States)

    Leyk, Janina; Goldbaum, Olaf; Noack, Monika; Richter-Landsberg, Christiane

    2015-04-01

    of apoptotic cell death. Furthermore, the heat shock response is altered, and TST suppresses the MG-132-stimulated induction of HSP70. To test whether the alteration of protein aggregate formation is related to the influence of HDAC6 on the autophagic degradation system, an oligodendroglial cell line, i.e., OLN-93 cells stably expressing green fluorescent protein (GFP)-microtubule associated protein light chain 3 (LC3) and tau, was used. During autophagosome formation, endogenous LC3 is processed to LC3-I, which is then converted to LC3-II. An increase of LC3-II is used as a reliable marker for autophagosome formation and abundance. It is demonstrated that inhibition of HDAC6 leads to the accumulation of LC3-positive autophagosomal vacuoles and an increase in LC3-II immunoreactivity, but the autophagic flux is rather impaired. Hence, the inhibition or dysregulation of HDAC6 contributes to stress responses and pathological processes in oligodendrocytes. PMID:25434725

  9. Temporal rhythm of petal programmed cell death in Ipomoea purpurea.

    Science.gov (United States)

    Gui, M-Y; Ni, X-L; Wang, H-B; Liu, W-Z

    2016-09-01

    Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study. In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used. The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla. We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization. PMID:27259176

  10. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  11. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  12. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    International Nuclear Information System (INIS)

    Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with

  13. Cell death induced by tamoxifen in human blood lymphocytes cultivated in vitro = Morte celular induzida pelo tamoxifeno em linfócitos humanos cultivados in vitro

    Directory of Open Access Journals (Sweden)

    Selma Candelária Genari

    2010-10-01

    Full Text Available Many chemotherapeutic agents with a potential against solid tumors or leukemia can cause lymphopenia. Tamoxifen (TAM is a synthetic non-steroidal anti-estrogen drug employed in female breast cancer treatment. The present study investigated the capacity of TAM to induce cell death in human lymphocytes cultivated in vitro. Lymphocytes were obtained from young (25-30 years; n = 3 and elderly women (58-77 years; n = 3 and cultivated for 24 or 48h, with or without TAM (20 ƒÊM. After the culture, cell viability, immunocytochemical response and ultrastructure were evaluated. TAM affected lymphocytes in a time- dependent manner, and cells obtained from elderly women were the most sensitive to TAM. Immunocytochemicalanalysis evidenced higher frequency of apoptosis in treated cells, and the ultrastructural study revealed autophagic vacuoles, differing from the controls. In summary, the treated lymphocytes were affected by TAM, leading to cell death by apoptosis and autophagy.Muitos agentes quimioterapicos com potencial contra tumores solidos ou leucemias podem causar linfopenia. O Tamoxifeno (TAM e um agente antiestrogeno nao-esteroidal empregado no tratamento de cancer de mama feminino. O presente trabalho investigou a capacidade do TAM em induzir morte celular em linfocitos humanos cultivados in vitro. Oslinfocitos foram obtidos de mulheres jovens (25-30 anos; n = 3 e idosas (58-77 anos; n = 3 e cultivados por 24 ou 48h, com ou sem TAM (20 ƒÊM. Apos a cultura, foram analisadas a viabilidade celular, a resposta imunocitoquimica e a ultraestrutura. Os resultados indicam que o Tamoxifeno induziu morte celular em linfocitos de ambos os grupos, entretanto, as celulas das mulheres idosas apresentaram-se mais sensiveis ao tratamento. A analise imunocitoquimica mostrou maior frequencia de apoptose nas celulas tratadas e o estudo ultraestrutural revelou vacuolos autofagicos nos linfocitos expostos ao Tamoxifeno. Em conclusao, nosso estudo revelou que o TAM

  14. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.

    Science.gov (United States)

    Shimada, Kenichi; Skouta, Rachid; Kaplan, Anna; Yang, Wan Seok; Hayano, Miki; Dixon, Scott J; Brown, Lewis M; Valenzuela, Carlos A; Wolpaw, Adam J; Stockwell, Brent R

    2016-07-01

    Apoptosis is one type of programmed cell death. Increasingly, non-apoptotic cell death is recognized as being genetically controlled, or 'regulated'. However, the full extent and diversity of alternative cell death mechanisms remain uncharted. Here we surveyed the landscape of pharmacologically accessible cell death mechanisms. In an examination of 56 caspase-independent lethal compounds, modulatory profiling showed that 10 compounds induced three different types of regulated non-apoptotic cell death. Optimization of one of those ten resulted in the discovery of FIN56, a specific inducer of ferroptosis. Ferroptosis has been found to occur when the lipid-repair enzyme GPX4 is inhibited. FIN56 promoted degradation of GPX4. FIN56 also bound to and activated squalene synthase, an enzyme involved in isoprenoid biosynthesis, independent of GPX4 degradation. These discoveries show that dysregulation of lipid metabolism is associated with ferroptosis. This systematic approach is a means to discover and characterize novel cell death phenotypes. PMID:27159577

  15. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  16. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    Science.gov (United States)

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (PGH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (PGH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. PMID:27129619

  17. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  18. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  19. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  20. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    Science.gov (United States)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  1. Cell death triggered by alpha-emitting {sup 213}Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Christof; Schroeck, Hedwig; Seidenschwang, Sabine; Beck, Roswitha; Schwaiger, Markus; Senekowitsch-Schmidtke, Reingard [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Schmid, Ernst [National Research Center for Environment and Health, Institute of Radiation Biology, GSF, Neuherberg (Germany); Abend, Michael [German Armed Forces, Institute of Radiobiology, Munich (Germany); Becker, Karl-Friedrich [Technische Universitaet Muenchen, Institute of Pathology, Munich (Germany); National Research Center for Environment and Health, Institute of Pathology, GSF, Neuherberg (Germany); National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany); Apostolidis, Christos; Nikula, Tuomo K. [European Commission, Institute for Transuranium Elements, Karlsruhe (Germany); Kremmer, Elisabeth [National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany)

    2005-03-01

    Radioimmunotherapy with {alpha}-particle-emitting nuclides, such as{sup 213}Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by {sup 213}Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of {sup 213}Bi-d9MAb targeting d9-E-cadherin and {sup 213}Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as {sup 213}Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and {sup 213}Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with {sup 213}Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of {alpha}-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific {sup 213}Bi-d9MAb compared with unspecific {sup 213}Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound {sup 213}Bi-immunoconjugates per cell exceeded 2 x 10{sup 4}, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by {sup 213}Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. {sup 213}Bi-immunoconjugates seem

  2. Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    International Nuclear Information System (INIS)

    Radioimmunotherapy with α-particle-emitting nuclides, such as213Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by 213Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of 213Bi-d9MAb targeting d9-E-cadherin and 213Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as 213Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and 213Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with 213Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of α-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific 213Bi-d9MAb compared with unspecific 213Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound 213Bi-immunoconjugates per cell exceeded 2 x 104, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by 213Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. 213Bi-immunoconjugates seem to induce a mode of cell death different from apoptosis in HSC45-M2 cells. (orig.)

  3. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    Science.gov (United States)

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  4. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  5. Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

    OpenAIRE

    Beatriz Sangiuliano; Nancy Marcela Pérez; Moreira, Dayson F; Belizário, José E.

    2014-01-01

    Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP), damage-associated molecular-pattern (DAMP) molecules,...

  6. Genetic Variation in Cell Death Genes and Risk of Non-Hodgkin Lymphoma

    OpenAIRE

    Johanna M. Schuetz; Denise Daley; Jinko Graham; Berry, Brian R.; Gallagher, Richard P.; Connors, Joseph M; Gascoyne, Randy D.; Spinelli, John J.; Angela R Brooks-Wilson

    2012-01-01

    BACKGROUND: Non-Hodgkin lymphomas are a heterogeneous group of solid tumours that constitute the 5(th) highest cause of cancer mortality in the United States and Canada. Poor control of cell death in lymphocytes can lead to autoimmune disease or cancer, making genes involved in programmed cell death of lymphocytes logical candidate genes for lymphoma susceptibility. MATERIALS AND METHODS: We tested for genetic association with NHL and NHL subtypes, of SNPs in lymphocyte cell death genes using...

  7. Differential effect of baicalein on ionizing radiation induced cell death in normal lymphocytes and lymphoma cells

    International Nuclear Information System (INIS)

    Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone, present in Indian and Chinese medicinal plants has been reported to possess potent antioxidant activity. Previous reports from our laboratory have elucidated the radical scavenging and radioprotective potential of this compound in cell free system. To investigate potential of baicalein as a radioprotector, we have studied its effect on normal lymphocytes and lymphoma cells (EL-4 cells) in presence of radiation. Baicalein protected murine splenic lymphocytes against radiation (4Gy) induced apoptosis as assessed by propidium iodide staining. It inhibited background cell death in lymphocytes whereas, baicalein induced concentration dependent cell death in EL-4 cells and did not protect against radiation induced apoptosis. Interestingly, baicalein scavenged radiation derived ROS (reactive oxygen species) in both the cell types suggesting that, it is not exhibiting differential antioxidant action. Despite scavenging radiation derived ROS, which are principal mediators of radiation induced cell death, baicalein induced cell death in EL-4 cells. To investigate the reason for this differential behavior, we investigated the effect of baicalein on pro-survival molecules viz. ERK and NF-kB. Baicalein induced phosphorylation of ERK in normal lymphocytes in a time dependent manner, but, it did not alter pERK levels in EL-4 cells. Baicalein treatment per se induced degradation of IkBα and increased nuclear accumulation of NF-kB in normal lymphocytes. Whereas, baicalein pre-treatment reduced basal NF-kB levels in EL-4 cells and it also suppressed TNF-α induced nuclear accumulation of NF-kB. This study suggests that, differential regulation of pro-survival transcription factor NF-kB may be playing a role in differential effect of baicalein in normal lymphocytes and lymphoma cells. (author)

  8. Inhibition of apoptic cell death induced by Pseudomonas syringae pv. Tabaci and mycotoxin fumonisin B1

    NARCIS (Netherlands)

    Iakimova, E.T.; Batchvorova, R.; Kapchina, V.; Popov, T.; Atanassov, A.; Woltering, E.J.

    2004-01-01

    The impact of programmed cell death (PCD) inhibitors on lesion formation and biochemical events in transgenic (ttr line) and non-transgenic (Nevrokop 1164) tobacco infected with Pseudomonas syringae pv. tabaci was tested. Programmed cell death in tomato cell culture was induced by Fumonisin B1 (FUM)

  9. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    International Nuclear Information System (INIS)

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited the association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells

  10. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells : discord in the death receptor family

    NARCIS (Netherlands)

    Azijli, K.; Weyhenmeyer, B.; Peters, G. J.; de Jong, S.; Kruyt, F. A. E.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand

  11. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    Science.gov (United States)

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  12. Ultraviolet-induced cell death is independent of DNA replication in rat kangeroo cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, E.N.; Menck, C.F.M. [Sao Paulo Univ., SP (Brazil). Inst. de Biociencias

    1995-05-01

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication. (author).

  13. Ultraviolet-induced cell death is independent of DNA replication in rat kangeroo cells

    International Nuclear Information System (INIS)

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication. (author)

  14. Cyclic dinucleotides modulate human T-cell response through monocyte cell death.

    Science.gov (United States)

    Tosolini, Marie; Pont, Frédéric; Verhoeyen, Els; Fournié, Jean-Jacques

    2015-12-01

    Cyclic dinucleotides, a class of microbial messengers, have been recently identified in bacteria, but their activity in humans remains largely unknown. Here, we have studied the function of cyclic dinucleotides in humans. We found that c-di-AMP and cGAMP, two adenosine-based cyclic dinucleotides, activated T lymphocytes in an unusual manner through monocyte cell death. c-di-AMP and cGAMP induced the selective apoptosis of human monocytes, and T lymphocytes were activated by the direct contact with these dying monocytes. The ensuing T-cell response comprised cell-cycle exit, phenotypic maturation into effector memory cells and proliferation arrest, but not cell death. This quiescence was transient since T cells remained fully responsive to further restimulation. Together, our results depict a novel activation pattern for human T lymphocytes: a transient quiescence induced by c-di-AMP- or cGAMP-primed apoptotic monocytes. PMID:26460927

  15. Activation-induced and damage-induced cell death in aging human T cells.

    Science.gov (United States)

    Sikora, Ewa

    2015-11-01

    In multicellular organisms the proper system functionality is ensured by the balance between cell division, differentiation, senescence and death. This balance is changed during aging. Immunosenescence plays a crucial role in aging and leads to the shrinkage of T cell repertoire and the propensity to apoptosis. The elimination of expanded T cells at the end of immune response is crucial to maintain homeostasis and avoid any uncontrolled inflammation. Resting mature T lymphocytes, when activated via their antigen-specific receptor (TCR) and CD28 co-receptor, start to proliferate and then undergo the so called activation induced cell death (AICD), which mechanistically is triggered by the death receptor and leads to apoptosis. T lymphocytes, like other cells, are also exposed to damage, which can trigger the so called damage-induced cell death (DICD). It was hypothesized that oxidative stress and chronic antigenic load increasing with age reduced lymphocyte susceptibility to DICD and enhanced a proinflamatory status leading to increased AICD. However, data collected so far are inconsistent and does not support this assumption. Systematic and comprehensive studies are still needed for conclusive elucidation of the role of AICD and DICD in human immunosenescence, including the role of autophagy and necroptosis in the processes. PMID:25843236

  16. Pathways to ischemic neuronal cell death: are sex differences relevant?

    Directory of Open Access Journals (Sweden)

    McCullough Louise D

    2008-06-01

    Full Text Available Abstract We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2 is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients.

  17. Activation of Cyclin-Dependent Kinase 5 Is a Consequence of Cell Death

    Directory of Open Access Journals (Sweden)

    Yixia Ye

    2009-01-01

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is similar to other Cdks but is activated during cell differentiation and cell death rather than cell division. Since activation of Cdk5 has been reported in many situations leading to cell death, we attempted to determine if it was required for any form of cell death. We found that Cdk5 is activated during apoptotic deaths and that the activation can be detected even when the cells continue to secondary necrosis. This activation can occur in the absence of Bim, calpain, or neutral cathepsins. The kinase is typically activated by p25, derived from p35 by calpain-mediated cleavage, but inhibition of calpain does not affect cell death or the activation of Cdk5. Likewise, RNAi-forced suppression of the synthesis of Cdk5 does not affect the incidence or kinetics of cell death. We conclude that Cdk5 is activated as a consequence of metabolic changes that are common to many forms of cell death. Thus its activation suggests processes during cell death that will be interesting or important to understand, but activation of Cdk5 is not necessary for cells to die.

  18. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    Energy Technology Data Exchange (ETDEWEB)

    Zois, Christos E. [Department of Radiotherapy - Oncology, Democritus University of Thrace, Alexandroupolis 68100 (Greece); Giatromanolaki, Alexandra [Department of Pathology, Democritus University of Thrace, Alexandroupolis (Greece); Kainulainen, Heikki [Department of Biology of Physical Activity, University of Jyvaeskylae (Finland); Botaitis, Sotirios [Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis (Greece); Torvinen, Sira [Department of Biology of Physical Activity, University of Jyvaeskylae (Finland); Simopoulos, Constantinos [Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis (Greece); Kortsaris, Alexandros [Department of Biochemistry, Democritus University of Thrace, Alexandroupolis (Greece); Sivridis, Efthimios [Department of Pathology, Democritus University of Thrace, Alexandroupolis (Greece); Koukourakis, Michael I., E-mail: targ@her.forthnet.gr [Department of Radiotherapy - Oncology, Democritus University of Thrace, Alexandroupolis 68100 (Greece)

    2011-01-07

    Research highlights: {yields} We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. {yields} Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. {yields} The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. {yields} Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body {gamma}-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function

  19. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    International Nuclear Information System (INIS)

    Research highlights: → We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. → Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. → The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. → Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body γ-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function. The LC3A and Beclin1 m

  20. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. PMID:25691005

  1. Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway.

    Science.gov (United States)

    Ma, Kun; Zhang, Chuan; Huang, Man-Yu; Li, Wu-Yin; Hu, Guo-Qiang

    2016-07-01

    phosphorylation of the JNK and p38 signaling pathway. Our research proved that cinobufagin triggered apoptosis and autophagic cell death via activation of the ROS/JNK/p-38 axis. PMID:27176794

  2. Effect of advanced glycation end-products on cell proliferation and cell death.

    Science.gov (United States)

    Peterszegi, G; Molinari, J; Ravelojaona, V; Robert, L

    2006-09-01

    The effect of advanced glycation end products (AGE-s) was studied on the proliferation and cell death of human skin fibroblasts in culture. Several AGE-products were prepared from proteins, a peptide and amino acids, using Glucose or Fructose, with or without Fe2+. The AGE preparations increased cell death at the 7th day, after only 72 hours of incubation. Some of these glycation products modified also proliferation. This effect of AGE-s was even maintained without these products in fresh medium for a second period of incubation up to 10 days from the start of the experiment. In order to explore the role of AGE-receptors, especially of AGE-receptor and of growth factor receptors (fibroblast and epidermal growth factors receptors), antibodies to these receptors were added to cell cultures and their effect on both cell death and proliferation were determined as for the AGE-s. These anti-receptor antibodies imitated to some extent the results obtained with AGE-s, producing increase of cell death and proliferation, followed above a certain concentration of antibodies by a decrease and a new increase or plateau. This might correspond to the internalization of the receptors followed by a re-expression on the cell membrane. The role of receptor-mediated Reactive Oxygen Species-production was also explored using scavengers: N-acetyl-cysteine (NAC), L-Carnosine, superoxide dismutase (SOD) and Catalase. Several of these scavengers decreased cell death, suggesting that Reactive Oxygen Species-production is partially involved in the observed phenomena. PMID:16919894

  3. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  4. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure.

    Science.gov (United States)

    Legrand, M; Elie, C; Stefani, J; N Florès; Culeux, C; Delissen, O; Ibanez, C; Lestaevel, P; Eriksson, P; Dinocourt, C

    2016-01-01

    The developing brain is more susceptible to neurotoxic compounds than adult brain. It is also well known that disturbances during brain development cause neurological disorders in adulthood. The brain is known to be a target organ of uranium (U) exposure and previous studies have noted that internal U contamination of adult rats induces behavioral disorders as well as affects neurochemistry and neurophysiological properties. In this study, we investigated whether depleted uranium (DU) exposure affects neurogenesis during prenatal and postnatal brain development. We examined the structural morphology of the brain, cell death and finally cell proliferation in animals exposed to DU during gestation and lactation compared to control animals. Our results showed that DU decreases cell death in the cortical neuroepithelium of gestational day (GD) 13 embryos exposed at 40mg/L and 120mg/L and of GD18 fetuses exposed at 120mg/L without modification of the number of apoptotic cells. Cell proliferation analysis showed an increase of BrdU labeling in the dentate neuroepithelium of fetuses from GD18 at 120mg/L. Postnatally, cell death is increased in the dentate gyrus of postnatal day (PND) 0 and PND5 exposed pups at 120mg/L and is associated with an increase of apoptotic cell number only at PND5. Finally, a decrease in dividing cells is observed in the dentate gyrus of PND21 rats developmentally exposed to 120mg/L DU, but not at PND0 and PND5. These results show that DU exposure during brain development causes opposite effects on cell proliferation and cell death processes between prenatal and postnatal development mainly at the highest dose. Although these modifications do not have a major impact in brain morphology, they could affect the next steps of neurogenesis and thus might disrupt the fine organization of the neuronal network. PMID:26506049

  5. Novel self-micellizing anticancer lipid nanoparticles induce cell death of colorectal cancer cells.

    Science.gov (United States)

    Sundaramoorthy, Pasupathi; Baskaran, Rengarajan; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Oh, Seung Hyun; Kyu Yoo, Bong; Kim, Hwan Mook

    2015-11-01

    In the present study, we developed a novel drug-like self-micellizing anticancer lipid (SMAL), and investigated its anticancer activity and effects on cell death pathways in human colorectal cancer (CRC) cell lines. Three self-assembled nanoparticles were prepared, namely, SMAL102 (lauramide derivative), SMAL104 (palmitamide derivative), and SMAL108 (stearamide derivative) by a thin-film hydration technique, and were characterized for physicochemical and biological parameters. SMAL102 were nanosized (160.23 ± 8.11 nm) with uniform spherical shape, while SMAL104 and SMAL108 did not form spherical shape but formed large size nanoparticles and irregular in shape. Importantly, SMAL102 showed a cytotoxic effect towards CRC cell lines (HCT116 and HT-29), and less toxicity to a normal colon fibroblast cell line (CCD-18Co). Conversely, SMAL104 and SMAL108 did not have an anti-proliferative effect on CRC cell lines. SMAL102 nanoparticles were actively taken up by CRC cell lines, localized in the cell membrane, and exhibited remarkable cytotoxicity in a concentration-dependent manner. The normal colon cell line showed significantly less cellular uptake and non-cytotoxicity as compared with the CRC cell lines. SMAL102 nanoparticles induced caspase-3, caspase-9, and PARP cleavage in HT-29 cells, indicating the induction of apoptosis; whereas LC3B was activated in HCT116 cells, indicating autophagy-induced cell death. Collectively, these results demonstrate that SMAL102 induced cell death via activation of apoptosis and autophagy in CRC cell lines. The present study could be a pioneer for further preclinical and clinical development of such compounds. PMID:26342325

  6. Macrophage Activation Redirects Yersinia-Infected Host Cell Death from Apoptosis to Caspase-1-Dependent Pyroptosis

    OpenAIRE

    Bergsbaken, Tessa; Cookson, Brad T.

    2007-01-01

    Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ− Yersinia pseudotuberculosis (Yptb). YopJ− Yptb-induced macrophage death was dependent on caspase-1 activat...

  7. Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control

    OpenAIRE

    Kubli, Dieter A.; Gustafsson, Åsa B.

    2012-01-01

    Mitochondria are primarily responsible for providing the contracting cardiac myocyte with a continuous supply of ATP. However, mitochondria can rapidly change into death-promoting organelles. In response to changes in the intracellular environment, mitochondria become producers of excessive reactive oxygen species and release pro-death proteins, resulting in disrupted ATP synthesis and activation of cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant ...

  8. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA

  9. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line;

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome...

  10. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Yuan-Soon [School of Medical Technology, Taipei Medical University, Taipei (Taiwan); Liou, Hung-Bin; Lin, Yu-Ping; Guo, How-Ran; Ho, Sheng-Yow; Lee, Ching-Chang; Wang, Ying-Jan [Department of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan (Taiwan); Lin, Jen-Kun; Pan, Min-Hsiung [Institute of Biochemistry, National Taiwan University, Medical College, Taipei (Taiwan); Jeng, Jiiang-Huei [School of Dentistry, National Taiwan University and Hospital, Medical College, Taipei (Taiwan)

    2002-08-01

    Nitric oxide (NO) is an environmental pollutant found in smog and cigarette smoke. Recently, NO has been discovered to act as a molecular messenger, mediating various physiological functions. However, when an excess of NO is present, cytotoxic and mutagenic effects can also be induced. The reaction of NO with superoxide results in the formation of peroxynitrite (ONOO{sup -}), which decomposes into the hydroxyl radical and nitrogen dioxide. Both of them are potent oxidant species that may initiate and propagate lipid peroxidation. In the present study, we examined the effects of NO and ONOO{sup -} on the induction of lipid peroxidation and cell death mechanisms in rats and in A549 pulmonary epithelial cells. The results showed that ONOO{sup -} is able to induce lipid peroxidation in pulmonary epithelial cells in a dose-dependent manner. 8-Epi-prostaglandin F{sub 2{alpha}} can serve as a good biomarker of lipid peroxidation both in vitro and in vivo. Postmitotic apoptosis was found in A549 cells exposed to NO, whereas ONOO{sup -} induced cell death more characteristic of necrosis than apoptosis. Apoptosis that occurred in cells may be related to the dysfunction of mitochondria, the release of cytochrome c into cytosol, and the activation of caspase-9. The relationship between caspase activation and the cleavage of other death substrates during postmitotic apoptosis in A549 cells needs further investigation. (orig.)

  11. Modulation of Programmed Cell Death in a Model System of Xylogenic Zinnia (Zinnia Elegans) Cell Culture

    NARCIS (Netherlands)

    Yakimova, E.T.; Woltering, E.J.

    2009-01-01

    Programmed cell death is an integral part of the latest stage of differentiation of the tracheary elements of plant xylem vascular system. In this study, by applying a pharmacological approach with specific peptide inhibitors, we have elucidated the involvement of plant caspase-like proteases in cel

  12. Alternative pathways of programmed cell death are activated in cells with defective caspase-dependent apoptosis

    Czech Academy of Sciences Publication Activity Database

    Ondroušková, E.; Souček, Karel; Horváth, Viktor; Šmarda, J.

    2008-01-01

    Roč. 32, č. 4 (2008), s. 599-609. ISSN 0145-2126 R&D Projects: GA ČR(CZ) GA204/07/0834 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * autophagy * programmed cell death Subject RIV: BO - Biophysics Impact factor: 2.390, year: 2008

  13. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  14. Cell Death Pathways in Photodynamic Therapy of Cancer

    International Nuclear Information System (INIS)

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT

  15. Cell Death Pathways in Photodynamic Therapy of Cancer

    Directory of Open Access Journals (Sweden)

    Michael R. Hamblin

    2011-06-01

    Full Text Available Photodynamic therapy (PDT is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2 are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  16. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  17. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    International Nuclear Information System (INIS)

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an

  18. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mu-Yun [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Lu, Chien-Hsing [Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yang, Shu-Yi [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Ho, Tsing-Fen [Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  19. Radiation induced cell death in cervical squamous cell carcinoma. An immunohistochemical and ultrastructural study

    International Nuclear Information System (INIS)

    To study the process of cell death in cervical squamous cell carcinoma (SCC) after radiation, an ultrastructural and immunohistochemical study was performed. Paraffin-embedded tissue blocks of biopsy samples pre- and post-radiation stage III SCC (n=15) were collected. Irradiation caused varying ultrastructural changes including nuclear and cytoplasmic disorganization suggesting cell necrosis. Immunohistochemically, the pre-radiation specimens showed no positive reaction for tumor necrosis factor-alpha (TNF-α), tumor necrosis factor-receptor (TNF-γ) or Fas. C-fos, p53 and bcl-2 showed positive reactions in only a few non-irradiated specimens. All of the irradiated specimens showed a positive reaction for TNF-α, and variable positive reactions were observed for TNF-γ, Fas, p53, c-fos and bcl-2. These results suggest that TNF-α, TNF-γ, and c-fos are responsible for radiation induced cell death in cervical SCC. (author)

  20. Cloning and analysis of a defender against apoptotic cell death (DAD1) homologue from tomato

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Woltering, E.J.

    2001-01-01

    A cDNA clone homologous to the human defender against apoptotic cell death (DAD1) gene, which is believed to be a conserved inhibitor of programmed cell death, was isolated from tomato (Lycopersicon esculentum cv. Prisca). The 351 basepairs open reading frame predicted a 116 amino acid protein seque

  1. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  2. Programmed cell death features in apple suspension cells under low oxygen culture

    Institute of Scientific and Technical Information of China (English)

    XU Chang-jie(徐昌杰); CHEN Kun-song(陈昆松); FERGUSON Ian B.

    2004-01-01

    Suspension-cultured apple fruit cells (Malus pumila Mill. cv. Braeburn) were exposed to a low oxygen atmosphere to test whether programmed cell death (PCD) has a role in cell dysfunction and death under hypoxic conditions. Protoplasts were prepared at various times after low oxygen conditions were established, and viability tested by triple staining with fluorescein diacetate (FDA), propidium iodide (PI) and Hoechst33342 (HO342). DNA breakdown and phosphatidylserine exposure on the plasma membrane were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and annexin V binding. About 30% of protoplasts from cells after 48 h under low oxygen showed an increased accumulation of HO342, indicating increased membrane permeability. Positive TUNEL and annexin V results were also only obtained with protoplasts from cells under low oxygen. The results suggest that apple cell death under low oxygen is at least partially PCD mediated, and may explain tissue breakdown under controlled atmosphere (low oxygen) conditions in apple fruit.

  3. Crotamine and crotoxin interact with tumor cells and trigger cell death

    International Nuclear Information System (INIS)

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using 125I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both 125I-Crtx and 125I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  4. Sesamol protects human embryonic kidney cells from radiation induced cell death: a potential radioprotective agent

    International Nuclear Information System (INIS)

    Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. In our earlier studies, we have demonstrated that sesamol protected DNA (plasmid and calf thymus) and V79 cells from radiation induced cell death and the effect was higher (DMF=2) in comparison to melatonin (DMF=1.3). This prompted us to study, sesamol mediated radioprotection in detail to understand the mechanism of action. We have chosen human embryonic kidney (HEK) cells to understand the mechanism of radioprotection. The HEK cells were treated with sesamol before exposure of g rays (60Co teletherapy, Bhabhatron II) in the radiation dose range 0-7 Gy for clonogenic survival. Toxicity, antioxidant enzyme activity other biochemical assays were performed. Flow cytometric analysis (FACS Calibre, BD, USA) was used to determine the apoptotic population and mitochondrial membrane potential (Rh 123, JC-1). ROS was determined using DCFHDA. Cell cycle analysis, caspase 3 activity and cytochrome C were also measured. Results suggested that sesamol protected HEK cells from cell death. The dose modifying factor for sesamol was 1.3, whereas the alpha protection factor was 2. Sesamol inhibited radiation induced cell cycle arrest in G2/M phase; ROS generation and depolarization of mitochondrial membrane potential and caspase-3 activity. Sesamol inhibited damage of critical cellular components (protein, lipids, membrane and amino acid) and maintained the redox status of cells. The results will be helpful in understanding the mechanistic aspects and development of sesamol based radioprotector. (author)

  5. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death.

    Science.gov (United States)

    Sellier, Chantal; Campanari, Maria-Letizia; Julie Corbier, Camille; Gaucherot, Angeline; Kolb-Cheynel, Isabelle; Oulad-Abdelghani, Mustapha; Ruffenach, Frank; Page, Adeline; Ciura, Sorana; Kabashi, Edor; Charlet-Berguerand, Nicolas

    2016-06-15

    An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD. PMID:27103069

  6. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E; Issinger, Olaf-Georg; Stenvang, Jan

    2007-01-01

    future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells are...... parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance for...

  7. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-Bromopyruvate

    OpenAIRE

    Chen, Zhao; Zhang, Hui; Lu, Weiqin; Huang, Peng

    2009-01-01

    It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study...

  8. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine

    OpenAIRE

    Randhawa, H; Kibble, K; Zeng, H.; Moyer, MP; Reindl, KM

    2013-01-01

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concen...

  9. Spontaneous and radiation induced cell death in HeLa S3 human carcinoma

    International Nuclear Information System (INIS)

    Radiation biologists have classified radiation-induced cell death based on cell proliferative capacity to either mitotic or interphase death. Cytologists have revealed two morphologically and biochemically diverse forms of cell death, apoptosis and necrosis. While the knowledge of the former is already well exploited by radiologists, cell susceptibility to apoptosis and necrosis is still under investigation. We studied characteristics of spontaneous cell death, and dose dependence and time course of radiation-induced cell death of human uterine cervix epitheloid carcinoma HeLaS3 in culture. Cells were irradiated with 2-40 Gy of γ-rays. The effect on growth, viability, morphology and genomic DNA structure were followed 24-72 h after irradiation. Cell viability was evaluated by trypan-blue exclusion assay and cell morphology by in situ DNA staining with propidium iodide. Cell genomic DNA fragmentation pattern was determined by electrophoresis on 2% agarose gels. At all cell densities 25-35% cells were PI positive and their DNA was fragmented to a high molecular size (≥20 kbp), but the internucleosomal ladder was not observed. A significant decrease in viability to 33% was observed 72 h post 40 Gy irradiation. It corresponded to 55% of PI positive cells. A smear of smaller DNA fragments (0.1-1 kbp), 24 h after 10-20 Gy irradiation was considered as proof that the dominant form of radiation-induced cell death was necrosis. It was concluded that the dominant form of radiation-induced cell death in HeLaS3 population was necrosis and the radiation dose which caused 50% of cell death after 72 h (termed ND50) was between 30-40 Gy. (author)

  10. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries.

    Science.gov (United States)

    Abdel-Aziz, Amal Kamal; Mantawy, Eman M; Said, Riham Soliman; Helwa, Reham

    2016-09-01

    Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain. PMID:27288242

  11. The mechanism of radiation-induced interphase death of lymphoid cells: A new hypothesis

    International Nuclear Information System (INIS)

    The interphase death of irradiated rat thymocytes depends on their concentration during postirradiation incubation. The kinetics of pycnosis and cell death determined with the trypan blue exclusion test in the samples with the highest cell concentration (1-2 x 10(7) cells/ml) is consistent with the data available in the literature, whereas the samples with the lowest concentration (2 x 10(5) cells/ml) undergo almost no pycnosis and death after irradiation with doses up to 50 Gy. On the basis of these results, we suggest a new mechanism of interphase death involving an interaction between irradiated thymocytes and the fraction of thymus cells possessing cytocidal activity. The observed correlation between the cytocidal activity and interphase death of thymocytes from animals of different ages favors our mechanism. It was found that the inhibitors which prevent the conjugation of killer cells and their targets do not influence interphase death, while the substances which block the secretion of cytotoxic factors or their action on the target membrane do protect from interphase death. Thus we suggest that the irradiation activates the killer cells to secrete some cytotoxic factors which induce pycnosis and interphase death of thymocytes

  12. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    International Nuclear Information System (INIS)

    Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of

  13. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana.

    Science.gov (United States)

    Kuroyanagi, Miwa; Yamada, Kenji; Hatsugai, Noriyuki; Kondo, Maki; Nishimura, Mikio; Hara-Nishimura, Ikuko

    2005-09-23

    Some compatible pathogens secrete toxins to induce host cell death and promote their growth. The toxin-induced cell death is a pathogen strategy for infection. To clarify the executioner of the toxin-induced cell death, we examined a fungal toxin (fumonisin B1 (FB1))-induced cell death of Arabidopsis plants. FB1-induced cell death was accompanied with disruption of vacuolar membrane followed by lesion formation. The features of FB1-induced cell death were completely abolished in the Arabidopsis vacuolar processing enzyme (VPE)-null mutant, which lacks all four VPE genes of the genome. Interestingly, an inhibitor of caspase-1 abolished FB1-induced lesion formation, as did a VPE inhibitor. The VPE-null mutant had no detectable activities of caspase-1 or VPE in the FB1-treated leaves, although wild-type leaves had the caspase-1 and VPE activities, both of which were inhibited by a caspase-1 inhibitor. gammaVPE is the most essential among the four VPE homologues for FB1-induced cell death in Arabidopsis leaves. Recombinant gammaVPE recognized a VPE substrate with Km = 30.3 microm and a caspase-1 substrate with Km = 44.2 microm, which is comparable with the values for mammalian caspase-1. The gammaVPE precursor was self-catalytically converted into the mature form exhibiting caspase-1 activity. These in vivo and in vitro analyses demonstrate that gammaVPE is the proteinase that exhibits a caspase-1 activity. We show that VPE exhibiting a caspase-1 activity is a key molecule in toxin-induced cell death. Our findings suggest that a susceptible response of toxin-induced cell death is caused by the VPE-mediated vacuolar mechanism similar to a resistance response of hypersensitive cell death (Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004) Science 305, 855-858). PMID:16043487

  14. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Science.gov (United States)

    Marcos-Campos, I.; Asín, L.; Torres, T. E.; Marquina, C.; Tres, A.; Ibarra, M. R.; Goya, G. F.

    2011-05-01

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2 + ) or negative (COOH - ) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  15. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    International Nuclear Information System (INIS)

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2+) or negative (COOH-) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  16. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: goya@unizar.es [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  17. The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chang

    Full Text Available Resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance. The resistance of North American grapevine Vitis rupestris is correlated with a hypersensitive reaction (HR, while susceptible European Vitis vinifera cv. 'Pinot Noir' does not exhibit HR, but expresses basal defence. We have shown previously that in cell lines derived from the two Vitis species, the bacterial effector Harpin induced a rapid and sensitive accumulation of stilbene synthase (StSy transcripts, followed by massive cell death in V. rupestris. In the present work, we analysed the function of the phytoalexin resveratrol, the product of StSy. We found that cv. 'Pinot Noir' accumulated low resveratrol and its glycoside trans-piceid, whereas V. rupestris produced massive trans-resveratrol and the toxic oxidative δ-viniferin, indicating that the preferred metabolitism of resveratrol plays role in Vitis resistance. Cellular responses to resveratrol included rapid alkalinisation, accumulation of pathogenesis-related protein 5 (PR5 transcripts, oxidative burst, actin bundling, and cell death. Microtubule disruption and induction of StSy were triggered by Harpin, but not by resveratrol. Whereas most responses proceeded with different amplitude for the two cell lines, the accumulation of resveratrol, and the competence for resveratrol-induced oxidative burst differed in quality. The data lead to a model, where resveratrol, in addition to its classical role as antimicrobial phytoalexin, represents an important regulator for initiation of HR-related cell death.

  18. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  19. Programmed cell death features in apple suspension cells under low oxygen culture

    Institute of Scientific and Technical Information of China (English)

    徐昌杰; 陈昆松; FERGUSONIanB

    2004-01-01

    Suspension-cultured apple fruit cells (Malus pumila Mill. cv. Braeburn) were exposed to a low oxygen atmosphere to test whether programmed cell death (PCD) has a role in cell dysfunction and death under hypoxic conditions. Protoplasts were prepared at various times after low oxygen conditions were established, and viability tested by triple staining with fluorescein diacetate (FDA), propidium iodide (PI) and Hoechst33342 (HO342). DNA breakdown and phosphatidylserine exposure on the plasma membrane were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and annexin V binding. About 30% of protoplasts from cells after 48 h under low oxygen showed an increased accumulation of HO342, indicating increased membrane permeability. Positive TUNEL and annexin V results were also only obtained with protoplasts from cells under low oxygen. The results suggest that apple celi death under low oxygen is at least partially PCD mediated, and may explain tissue breakdown under controlled atmosphere (low oxygen) conditions in apple fruit.

  20. Determination of Cell Death Induced by Lovastatin on Human Colon Cell Line HT29 Using the Comet Assay

    OpenAIRE

    Jafari, Marzieh; Rezaei, Mohsen; Kalantari, Heibatullah; Hashemitabar, Mahmoud

    2013-01-01

    Background Apoptosis or programmed cell death is an essential process for elimination of damaged cells. Also, induction of apoptosis is fundamental for treating cancer. Screening for agents that induce apoptosis in tumor cells help in the development of novel agents for cancer treatment. Numerous studies suggest that the exposure of tumor cells to statins can lead to cell death via two separate processes: apoptosis or necrosis. Severe fragmentation of DNA during apoptosis can be readily measu...

  1. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  2. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine.

    Science.gov (United States)

    Randhawa, H; Kibble, K; Zeng, H; Moyer, M P; Reindl, K M

    2013-09-01

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concentration-dependent manners, but was not toxic toward normal colon mucosal cells at concentrations below 10 μM. Acute (0-60 min) and prolonged (24h) exposure of HT-29 cells to PPLGM resulted in phosphorylation of ERK. To investigate whether ERK signaling was involved in PPLGM-mediated cell death, we treated HT-29 cells with the MEK inhibitor U0126, prior to treating with PPLGM. We found that U0126 attenuated PPLGM-induced activation of ERK and partially protected against PPLGM-induced cell death. These results suggest that PPLGM works, at least in part, through the MEK/ERK pathway to result in colon cancer cell death. A more thorough understanding of the molecular mechanisms by which PPLGM induces colon cancer cell death will be useful in developing therapeutic strategies to treat colon cancer. PMID:23603476

  3. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  4. Developmental cell death programs license cytotoxic cells to eliminate histocompatible partners.

    Science.gov (United States)

    Corey, Daniel M; Rosental, Benyamin; Kowarsky, Mark; Sinha, Rahul; Ishizuka, Katherine J; Palmeri, Karla J; Quake, Stephen R; Voskoboynik, Ayelet; Weissman, Irving L

    2016-06-01

    In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells. PMID:27217570

  5. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models.

    Directory of Open Access Journals (Sweden)

    Kwang Woon Kim

    Full Text Available BACKGROUND: Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro. METHODS AND FINDINGS: M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007 compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO mouse embryonic fibroblasts (MEF cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment. CONCLUSIONS: M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation

  6. Inhibition of thymus cell proliferation: possibilities of elociting natural cell death with the organ and its contribution to the induced interphase death

    International Nuclear Information System (INIS)

    Parallelism was noted between the suppression of proliferation and the amount of cells dying in mouse thymus after the effects inducing cell destruction. However, inhibition of DNA synthesis under the effect of nontoxic doses of arabinoside cytosine increased insignificantly the number of dying cells as compared to normal. This indicated the absence of the masking effect of reutilization of degradation products of dying cells, minor amounts of cells normally dying in the thymus and their insignificant contribution to the induced cell death after the effects leading to inhibition of cell proliferation

  7. Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway.

    Science.gov (United States)

    Horie, Yukiko; Nemoto, Hideyuki; Itoh, Mari; Kosaka, Hiroaki; Morita, Kyoji

    2016-04-01

    Mixture of brown rice and rice bran fermented with Aspergillus oryzae, designated as FBRA, has been reported to reveal anti-carcinogenic and anti-inflammatory effects in rodents. Then, to test its potential anti-cancer activity, the aqueous extract was prepared from FBRA powder, and the effect of this extract on human acute lymphoblastic leukemia Jurkat cells was directly examined. The exposure to FBRA extract reduced the cell viability in a concentration- and time-dependent manner. The reduction of the cell viability was accompanied by the DNA fragmentation, and partially restored by treatment with pan-caspase inhibitor. Further studies showed that FBRA extract induced the cleavage of caspase-8, -9, and -3, and decreased Bcl-2 protein expression. Moreover, the expression of tBid, DR5, and Fas proteins was enhanced by FBRA extract, and the pretreatment with caspase-8 inhibitor, but not caspase-9 inhibitor, restored the reduction of the cell viability induced by FBRA extract. These findings suggested that FBRA extract could induce the apoptotic death of human acute lymphoblastic leukemia cells probably through mainly the death receptor-mediated pathway and supplementarily through the tBid-mediated mitochondrial pathway, proposing the possibility that FBRA was a potential functional food beneficial to patients with hematological cancer. PMID:26769704

  8. Signal transduction pathway of nitric oxide inducing PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study signal transduction pathway of nitric oxideinducing death of PC12 cells.Methods: Cell survival rate was measured with MTT assay, and caspase-3 activity with caspase-3 assay kits after PC12 cells were incubated with sodium nitroprusside (SNP), caspase-3 inhibitor Ⅱ plus SNP or p38 inhibitor-SB203580 plus SNP.Results: SNP induced death of PC12 cells in dose- and time-dependent manner and enhanced caspase-3 activity gradually. Both caspase-3 inhibitor Ⅱ and SB203580 reduced cell death, but SB203580 reduced caspase-3 activity significantly.Conclusions: NO may induce death of PC12 cells through activation of p38 and caspase-3.

  9. Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death

    OpenAIRE

    André, Franck M; Rassokhin, Mikhail A.; Bowman, Angela M.; Pakhomov, Andrei G.

    2009-01-01

    It has been widely accepted that nanosecond electric pulses (nsEP) are distinguished from micro-and millisecond duration pulses by their ability to cause intracellular effects and cell death with reduced effects on the cell plasma membrane. However, we found that nsEP-induced cell death is most likely mediated by the plasma membrane disruption. We showed that nsEP can cause long-lasting (minutes) increase in plasma membrane electrical conductance and disrupt electrolyte balance, followed by w...

  10. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  11. Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death.

    Directory of Open Access Journals (Sweden)

    Sari Schokoroy

    Full Text Available BACKGROUND: The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor reduces cell motility, which is not affected by the nucleolin inhibitor. CONCLUSIONS/SIGNIFICANCE: These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes.

  12. Hop/STI1 modulates retinal proliferation and cell death independent of PrPC

    International Nuclear Information System (INIS)

    Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrPC). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrPC dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (α-STI1) blocked both ganglion cell and NBL cell death independent of PrPC. cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while α-STI1 increased proliferation in the developing retina, both independent of PrPC. We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrPC

  13. Iron Prochelator BSIH Protects Retinal Pigment Epithelial Cells against Cell Death Induced by Hydrogen Peroxide

    OpenAIRE

    Charkoudian, Louise K.; Dentchev, Tzvete; Lukinova, Nina; Wolkow, Natalie; Dunaief, Joshua L.; Franz, Katherine J.

    2008-01-01

    Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson’s, Alzheimer’s, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl...

  14. Live imaging the phagocytic activity of inner ear supporting cells in response to hair cell death.

    Science.gov (United States)

    Monzack, E L; May, L A; Roy, S; Gale, J E; Cunningham, L L

    2015-12-01

    Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear. PMID:25929858

  15. Host cell death due to enteropathogenic Escherichia coli has features of apoptosis.

    Science.gov (United States)

    Crane, J K; Majumdar, S; Pickhardt, D F

    1999-05-01

    Enteropathogenic Escherichia coli (EPEC) is a cause of prolonged watery diarrhea in children in developing countries. The ability of EPEC to kill host cells was investigated in vitro in assays using two human cultured cell lines, HeLa (cervical) and T84 (colonic). EPEC killed epithelial cells as assessed by permeability to the vital dyes trypan blue and propidium iodide. In addition, EPEC triggered changes in the host cell, suggesting apoptosis as the mode of death; such changes included early expression of phosphatidylserine on the host cell surface and internucleosomal cleavage of host cell DNA. Genistein, an inhibitor of tyrosine kinases, and wortmannin, an inhibitor of host phosphatidylinositol 3-kinase, markedly increased EPEC-induced cell death and enhanced the features of apoptosis. EPEC-induced cell death was contact dependent and required adherence of live bacteria to the host cell. A quantitative assay for EPEC-induced cell death was developed by using the propidium iodide uptake method adapted to a fluorescence plate reader. With EPEC, the rate and extent of host cell death were less that what has been reported for Salmonella, Shigella, and Yersinia, three other genera of enteric bacteria known to cause apoptosis. However, rapid apoptosis of the host cell may not favor the pathogenic strategy of EPEC, a mucosa-adhering, noninvasive pathogen. PMID:10225923

  16. Melatonin attenuates 1-methyl-4-phenylpyridinium-induced PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    Jin-feng BAO; Ren-gang WU; Xiao-ping ZHANG; Yan SONG; Chang-ling LI

    2005-01-01

    Aim: To explore the effect of melatonin on PC12 cell death induced by 1-methyl-4-phenylpyridinium (MPP+). Methods: MTT assay, lactate dehydrogenase (LDH)efflux assay, and immunohistochemistry methods were used to measure neurotoxicity of PC 12 cells treated acutely with MPP+ in low glucose and high glucose conditions, and to assess the neuroprotective effect of melatonin on PC 12 cell death induced by MPP+. Results: In a low glucose condition, MPP+ significantly induced PC 12 cell death, which showed time and concentration dependence. In a serum-free low glucose condition, the percentages of viability of cells treated with MPP+ for 12, 24, 48, 72, and 96 h were 85.1%, 75.4%, 64.9%, 28.15%, and 9%, respectively. The level of LDH in the culture medium increased and tyrosine hydroxylase positive (TH+) cell count decreased. However, in a serum-free high glucose condition, MPP+ did not significantly induce PC12 cell death compared with control at various concentrations and time regimens. When the cells were preincubated with melatonin 250 μmol/L for 48, 72, and 96 h in a serum-free low glucose condition, cell survival rate significantly increased to 78.1%, 58.8%, and 31.6%, respectively. Melatonin abolished the LDH leakage of cells treated with MPP+ and increased TH+ cells count. Conclusion: MPP+ caused concentrationdependent PC12 cell death. The level of glucose was an important factor to MPP+induced dopaminergic PC12 cell death. Low glucose level could potentiate MPP+toxicity, while high glucose level could reduce the toxicity. In addition, melatonin attenuated PC12 cell death induced by MPP+.

  17. HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Sylvain Huard; Mingzhong Chen; Kristen E Burdette; Csaba Fenyvuesvolgyi; Min Yu; Robert T Elder; Richard Y Zhao

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell death in mammalian and fission yeast cells,suggesting that Vpr may affect a conserved cellular process. It is unclear,however,whether Vpr-induced yeast cell death mimics Vpr-mediated apoptosis in mammalian cells. We have recently identified a number of Vpr suppressors that not only suppress Vpr-induced cell death in fission yeast,but also block Vpr-induced apoptosis in mammalian cells. These findings suggest that Vpr-induced cell death in yeast may resemble some of the apoptotic processes of mammalian cells.The goal of this study was to develop and validate a fission yeast model system for future studies of apoptosis. Similar to Vpr-induced apoptosis in mammalian cells,we show here that Vpr in fission yeast promotes phosphatidylserine externalization and induces hyperpolarization of mitochondria,leading to changes of mitochondrial membrane potential. Moreover,Vpr triggers production of reactive oxygen species (ROS),indicating that the apoptotic-like cell death might be mediated by ROS. Interestingly,Vpr induces unique morphologic changes in mitochondria that may provide a simple marker for measuring the apoptotic-like process in fission yeast. To verify this possibility,we tested two Vpr suppressors (EF2 and Hspl6) that suppress Vpr-induced apoptosis in mammalian cells in addition to a newly identified Vpr suppressor (Skp1). All three proteins abolished cell death mediated by Vpr and restored normal mitochondrialmorphology in the yeast cells. In conclusion,Vpr-induced cell death in fission yeast resembles the mammalian apoptotic process. Fission yeast may thus potentially be used as a simple model organism for the future study of the apoptotic-like process induced by Vpr and other proapoptotic agents.

  18. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga; Svensson, Birte; Emnéus, Jenny; Dufva, Martin; Finnie, Christine

    Programmed cell death (PCD) is a highly regulated process in which cells are dismantled. Reactive oxygen species (ROS) are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD are only poorly understood in plant cells compared to in animal cells (Gechev, Tsanko...

  19. Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

    OpenAIRE

    Oh, Su-Jin; Ryu, Chung-Kyu; Baek, So-Young; Lee, Hyunah

    2011-01-01

    Background EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of ...

  20. TP508 accelerates fracture repair by promoting cell growth over cell death

    International Nuclear Information System (INIS)

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD ClontechTM Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-κB, PDGF, PI3K/AKT, PTEN, and ERK/MAPK

  1. Melatonin Protects Human Adipose-Derived Stem Cells from Oxidative Stress and Cell Death

    Science.gov (United States)

    Han, Xiaolian; Sivakumaran, Priyadharshini; Lim, Shiang Y.; Morrison, Wayne A.

    2016-01-01

    Background Adipose-derived stem cells (ASCs) have applications in regenerative medicine based on their therapeutic potential to repair and regenerate diseased and damaged tissue. They are commonly subject to oxidative stress during harvest and transplantation, which has detrimental effects on their subsequent viability. By functioning as an antioxidant against free radicals, melatonin may exert cytoprotective effects on ASCs. Methods We cultured human ASCs in the presence of varying dosages of hydrogen peroxide and/or melatonin for a period of 3 hours. Cell viability and apoptosis were determined with propidium iodide and Hoechst 33342 staining under fluorescence microscopy. Results Hydrogen peroxide (1–2.5 mM) treatment resulted in an incremental increase in cell death. 2 mM hydrogen peroxide was thereafter selected as the dose for co-treatment with melatonin. Melatonin alone had no adverse effects on ASCs. Co-treatment of ASCs with melatonin in the presence of hydrogen peroxide protected ASCs from cell death in a dose-dependent manner, and afforded maximal protection at 100 µM (n=4, one-way analysis of variance P<0.001). Melatonin co-treated ASCs displayed significantly fewer apoptotic cells, as demonstrated by condensed and fragmented nuclei under fluorescence microscopy. Conclusions Melatonin possesses cytoprotective properties against oxidative stress in human ASCs and might be a useful adjunct in fat grafting and cell-assisted lipotransfer. PMID:27218020

  2. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism

    OpenAIRE

    Davidson, J.; Rotondo, D.; Rizzo, MT; Leaver, HA

    2012-01-01

    Disruptions of cell death signalling occur in pathological processes, such as cancer and degenerative disease. Increased knowledge of cell death signalling has opened new areas of therapeutic research, and identifying key mediators of cell death has become increasingly important. Early triggering events in cell death may provide potential therapeutic targets, whereas agents affecting later signals may be more palliative in nature. A group of primary mediators are derivatives of the highly uns...

  3. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  4. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  5. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn;

    2010-01-01

    , whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10......The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10 is...... associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood of...

  6. 纤维蛋白凝胶承载内皮祖细胞在移植梗死心肌后的细胞自噬变化%Autophagic changes of the endothelial progenitor cells carried with fibrin glue after transplantation into the infracted myocardium

    Institute of Scientific and Technical Information of China (English)

    张丹; 王海杰; 谭玉珍; 王强利; 伍金红; 李志华; 权哲

    2013-01-01

    Objective To investigate autophagic changes endothelial progenitor cells (EPCs) carried with fibrin glue after transplantation into the infarcted myocardial and to explore effects of autophagy on maintaining the implanted cells to survive and fibrin on protecting the cells. Methods The model of myocardial infarction was established with ligating the anterior descending branch of the left coronary artery of rats. The EPCs sorted from human umbilical cord blood were injected into the myocardium at the normal region, periphery of the infarcted region and infarcted region. After transplantation for two hours, the tissues at injection sites were removed, the semithin sections were prepared. Distribution of the EPCs carried with fibrin glue were examined. After positioning the implanted cells, the ultrathin sections were prepared. The changes of the autophagic structures in EPCs and compatibility of fibrin with EPCs and myocardium were evaluated. Results Compared with the normal region, the autophagic EPCs in the periphery of the infarcted region increased, and the autophagic structures in the cells increased. In the infarcted region, EPC autophagy enhanced significantly, and necrosis or apoptosis occurred in some cells. Compatibility of fibrin with EPCs and myocardium was good. The implanted cells in fibrin glue extended well, some EPCs adhered to cardiaomyocytes. Conclusion When EPCs are transplanted into the periphery of the infarcted region, mild ischemia induces autophagy of the cells, which is beneficial for maintaining survival of the transplanted cells. Carrying EPCs with fibrin glue may avoid of cell lose and promote cell survival.%目的 观察心肌梗死后移植内皮祖细胞(EPCs)时的细胞自噬变化,探讨自噬维持移植细胞存活和纤维蛋白凝胶保护细胞的作用.方法 通过结扎左冠状动脉的前降支建立大鼠心肌梗死模型后,在正常区、梗死边缘区和梗死区分别注射从人脐带血中分选的EPCs.2h后取

  7. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Yordanova, Z.P.; Iakimova, E.T.; Cristescu, S.M.; Harren, F.J.M.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2010-01-01

    This work demonstrates a contribution of ethylene and NO in mastoparan (MP)-induced cell death in the green algae C. reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of programmed cell death (PCD). A pharmacological approach involving c

  8. Autophagy Inhibitor Chloroquine Enhanced the Cell Death Inducing Effect of the Flavonoid Luteolin in Metastatic Squamous Cell Carcinoma Cells

    OpenAIRE

    Verschooten, Lien; Barrette, Kathleen; Van Kelst, Sofie; Rubio Romero, Noemí; Proby, Charlotte; de Vos, Rita; Agostinis, Patrizia; Garmyn, Marjan

    2012-01-01

    Background Flavonoids are widely proposed as very interesting compounds with possible chemopreventive and therapeutic capacities. Methods & Results In this study, we showed that in vitro treatment with the flavonoid Luteolin induced caspase-dependent cell death in a model of human cutaneous squamous cell carcinoma (SCC) derived cells, representing a matched pair of primary tumor and its metastasis. Notably, no cytotoxic effects were observed in normal human keratinocytes when treated with sim...

  9. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    Science.gov (United States)

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented

  10. The mechanism of pneumolysin-induced cochlear hair cell death in the rat.

    Science.gov (United States)

    Beurg, Maryline; Hafidi, Aziz; Skinner, Liam; Cowan, Graeme; Hondarrague, Yannick; Mitchell, Tim J; Dulon, Didier

    2005-10-01

    Streptoccocus pneumoniae infection can result in local and systemic diseases such as otitis media, pneumonia and meningitis. Sensorineural hearing loss associated with this infection is mediated by the release of an exotoxin, pneumolysin. The goal of the present study was to characterize the mechanisms of pneumolysin toxicity in cochlear hair cells in vitro. Pneumolysin induced severe damage in cochlear hair cells, ranging from stereocilia disorganization to total cell loss. Surprisingly, pneumolysin-induced cell death preferentially targeted inner hair cells. Pneumolysin triggered in vitro cell death by an influx of calcium. Extracellular calcium appeared to enter the cell through a pore formed by the toxin. Buffering intracellular calcium with BAPTA improved hair cell survival. The mitochondrial apoptotic pathway involved in pneumolysin-induced cell death was demonstrated by the use of bongkrekic acid. Binding of pneumolysin to the hair cell plasma membrane was required to induce cell death. Increasing external calcium reduced cell toxicity by preventing the binding of pneumolysin to hair cell membranes. These results showed the significant role of calcium both in triggering pneumolysin-induced hair cell apoptosis and in preventing the toxin from binding to its cellular target. PMID:16051626

  11. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.

    Science.gov (United States)

    Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-08-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores. PMID:26054380

  12. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S. [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Mok, Tony S.K. [Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Warner, Timothy D. [The William Harvey Research Institute, Queen Mary University of London, London (United Kingdom); Underwood, Malcolm J. [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Chen, George G., E-mail: gchen@cuhk.edu.hk [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  13. (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization

    Science.gov (United States)

    LeGendre, Onica; Breslin, Paul AS; Foster, David A

    2015-01-01

    (-)-Oleocanthal (OC), a phenolic compound present in extra-virgin olive oil (EVOO), has been implicated in the health benefits associated with diets rich in EVOO. We investigated the effect of OC on human cancer cell lines in culture and found that OC induced cell death in all cancer cells examined as rapidly as 30 minutes after treatment in the absence of serum. OC treatment of non-transformed cells suppressed their proliferation but did not cause cell death. OC induced both primary necrotic and apoptotic cell death via induction of lysosomal membrane permeabilization (LMP). We provide evidence that OC promotes LMP by inhibiting acid sphingomyelinase (ASM) activity, which destabilizes the interaction between proteins required for lysosomal membrane stability. The data presented here indicate that cancer cells, which tend to have fragile lysosomal membranes compared to non-cancerous cells, are susceptible to cell death induced by lysosomotropic agents. Therefore, targeting lysosomal membrane stability represents a novel approach for the induction of cancer-specific cell death. PMID:26380379

  14. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.

    Science.gov (United States)

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  15. Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells.

    Science.gov (United States)

    Poon, H Fai; Abdullah, Laila; Mullan, Myles A; Mullan, Michael J; Crawford, Fiona C

    2007-01-01

    By 2003, an estimated 34 million Americans had used cocaine according to the National Survey on Drug Use & Health. About 5.9 million of those had used in the past 12 months. Chronic cocaine users often develop addiction, dependency and tolerance to the drug. The psychological and physical effects of cocaine are due to the disruption of the limbic system in the central nervous system (CNS). Increased oxidative stress reported in the frontal cortex and the striatum of rats exposed to cocaine suggests that oxidative damage plays a significant role in cocaine-induced disruption of the CNS. Although it is evident that cocaine induces oxidative stress in the CNS, little has been learned about whether such increased oxidative stress is also relevant to apoptosis in cocaine-exposed models. To gain insight into the role of cocaine-induced oxidative stress in apoptosis, we hypothesized that oxidative stress precedes cell death when cocaine is administrated. To test this hypothesis, we have monitored the oxidative stress and apoptotic effects of acute cocaine exposure in human neuronal progenitor cells (HNPC). We found that oxidative stress was significantly increased at 48h after a 30min cocaine exposure compared to control cells, and that this was followed by cell death at 72h. Using the same experimental paradigm we have previously shown that pro-inflammatory genes are up-regulated in cocaine-exposed HNPC at 24h. Therefore, we suggest that the increased oxidative stress (possibly mediated by inflammatory responses) precedes cell death in cocaine-exposed HNPC. This may have implications for the consequences of cocaine abuse in situations where antioxidant capacity is compromised, as in the aging brain. PMID:16956698

  16. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    Science.gov (United States)

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-01

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  17. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    Science.gov (United States)

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  18. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome.

    Science.gov (United States)

    Basset, Refat Abdel; Matsumoto, Hideaki

    2008-05-01

    The main objective of this work is to find out whether aluminum (Al) toxicity and Ca depletion cause cell death of tobacco cells via similar sequence of events. Tobacco cell suspension culture exhibited maximum fresh weight in the presence of a wide range of Ca concentrations between 0.1-1.0 mM whereas higher concentrations (>1.0-5.0 mM) gradually lowered cell fresh weight. However, this decrease in fresh weight does not imply a negative impact on cell viability since cell growth recommenced in fresh MS medium with rates mostly higher than those of low Ca. In addition, high Ca seems to be crucial for survival of Al-treated cells. On the other side, tobacco cells exhibited extreme sensitivity to complete deprivation of Ca. Without Ca, cells could not survive for 18 h and substantially lost their growth capability. Evans blue uptake proved membrane damage of Ca-depleted same as Al-treated cells; relative to maintained membrane intactness of calcium-supplemented (control) ones. Percentage of membrane damage and the growth capability (survival) of tobacco cells exhibited a clear negative correlation.Alterations in growth (fresh weight per aliquot) could not be ascribed neither to cell number nor to decreased dry matter allocation (dry weight/fresh weight percentage) but was mainly due to decreased cellular water content. In this context, Ca-depleted cells lost about half their original water content while 100 microM Al-treated ones retained most of it (ca 87%). This represented the single difference between the two treatments (discussed in the text). Nevertheless, such high water content of the Al-treated cells seems physiologically useless since it did not result in improved viability. Similarities, however, included negligible levels of growth capability, maximum levels of membrane damage, and comparable amounts of NO(3) (-) efflux. As well, both types of treatments led to a sharp decline in osmotic potential that is, in turn, needed for water influx. The above

  19. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  20. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    OpenAIRE

    Xuanbin Wang; Yibin Feng; Ning Wang; Fan Cheung; Hor Yue Tan; Sen Zhong; Charlie Li; Seiichi Kobayashi

    2014-01-01

    Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and...

  1. Bcl-2-regulated cell death signalling in the prevention of autoimmunity

    OpenAIRE

    Tischner, D; Woess, C; Ottina, E; Villunger, A

    2010-01-01

    Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic...

  2. Autophagy Induction Protects Against 7-Oxysterol-induced Cell Death via Lysosomal Pathway and Oxidative Stress

    OpenAIRE

    Xi-Ming Yuan; Nargis Sultana; Nabeel Siraj; Ward, Liam J.; Bijar Ghafouri; Wei Li

    2016-01-01

    7-Oxysterols are major toxic components in oxidized low-density lipoprotein and human atheroma lesions, which cause lysosomal membrane permeabilization (LMP) and cell death. Autophagy may function as a survival mechanism in this process. Here, we investigated whether 7-oxysterols mixed in an atheroma-relevant proportion induce autophagy, whether autophagy induction influences 7-oxysterol-mediated cell death, and the underlying mechanisms, by focusing on cellular lipid levels, oxidative stress...

  3. Apoptotic-like programed cell death in fungi: the benefits in filamentous species

    OpenAIRE

    Shlezinger, Neta; Goldfinger, Nir; Sharon, Amir

    2012-01-01

    Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fund...

  4. A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants

    OpenAIRE

    Jürgen Brojatsch; Heriberto Lima; Alak K Kar; Jacobson, Lee S.; Stefan M Muehlbauer; Kartik Chandran; Felipe Diaz-Griffero

    2014-01-01

    Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the p...

  5. WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion

    OpenAIRE

    King, Jason S.; Gueho, Aurélie; Hagedorn, Monica; Gopaldass, Navin Andréw; Leuba, Florence; Soldati, Thierry; Insall, Robert H.

    2013-01-01

    Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starva...

  6. Proliferation and cell death in the midgut of the stingless bee Melipona quadrifasciata anthidioides (Apidae, Meliponini) during metamorphosis

    OpenAIRE

    Cruz, Lilian; Araújo, Vinícius; Queiroz Fialho, Maria; Serrão, José; Neves, Clóvis

    2013-01-01

    This study quantitatively compared proliferation and cell death in the remodeling of the midgut epithelium in Melipona quadrifasciata anthidioides during metamorphosis to elucidate the renewal mechanism of the midgut in bees during postembryonic development. An anti-phosphohistone H3 antibody was used to mark mitotic cells. An apoptotic cell marking kit was used (Apo-TRACE®) to identify cells undergoing the process of cell death. The ultrastructural aspects of cell death were also analyzed. T...

  7. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    Science.gov (United States)

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC. PMID:10217615

  8. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense

    DEFF Research Database (Denmark)

    Brodersen, Peter; Petersen, Morten; Pike, Helen M;

    2002-01-01

    by avirulent pathogens. Global transcriptional changes during programmed cell death (PCD) and defense activation in acd11 were monitored by cDNA microarray hybridization. The PCD and defense pathways activated in acd11 are salicylic acid (SA) dependent, but do not require intact jasmonic acid or ethylene...

  9. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    International Nuclear Information System (INIS)

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response

  10. Interaction of CSR1 with XIAP reverses inhibition of caspases and accelerates cell death.

    Science.gov (United States)

    Zheng, Zhong-Liang; Tan, Lang-Zhu; Yu, Yan P; Michalopoulos, George; Luo, Jian-Hua

    2012-08-01

    Cellular Stress Response 1 (CSR1) is a tumor suppressor gene that is located at 8p21, a region that is frequently deleted in prostate cancer as well as a variety of human malignancies. Previous studies have indicated that the expression of CSR1 induces cell death. In this study, we found that CSR1 interacts with X-linked Inhibitor of Apoptosis Protein (XIAP), using yeast two-hybrid screening analyses. XIAP overexpression has been found in many human cancers, and forced expression of XIAP blocks apoptosis. Both in vitro and in vivo analyses indicated that the C-terminus of CSR1 binds XIAP with high affinity. Through a series of in vitro recombinant protein-binding analyses, the XIAP-binding motif in CSR1 was determined to include amino acids 513 to 572. Targeted knock-down of XIAP enhanced CSR1-induced cell death, while overexpression of XIAP antagonized CSR1 activity. The binding of CSR1 with XIAP enhanced caspase-9 and caspase-3 protease activities, and CSR1-induced cell death was dramatically reduced on expression of a mutant CSR1 that does not bind XIAP. However, a XIAP mutant that does not interact with caspase-9 had no impact on CSR1-induced cell death. These results suggest that cell death is induced when CSR1 binds XIAP, preventing the interaction of XIAP with caspases. Thus, this study may have elucidated a novel mechanism by which tumor suppressors induce cell death. PMID:22683311

  11. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    International Nuclear Information System (INIS)

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution

  12. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  13. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    Science.gov (United States)

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  14. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death.

    Science.gov (United States)

    Liu, Yong-Hua; Offler, Christina E; Ruan, Yong-Ling

    2016-09-01

    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. PMID:27462084

  15. Acanthamoeba castellanii Induces Host Cell Death via a Phosphatidylinositol 3-Kinase-Dependent Mechanism

    Science.gov (United States)

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase. PMID:15845472

  16. Proliferative activity, DNA synthesis and reproductive death of near and distant descendants of irradiated cells

    International Nuclear Information System (INIS)

    In experiments on HeLa cells a study was made of a change in the rate of DNA synthesis, proliferative activity and reproductive death of exposed cells and their descendants throughout a number of generations. The rate of DNA synthesis decreased in 4 postirradiation generations, and a maximum inhibition (by 50%) was registered 48 h following irradiation. The proliferative activity of the irradiated cell descendants markedly decreased throughout 18-20 generations resulting in an increased death rate and a loss of cells from a generation. It is suggested that even the distant desendants (18-20 generations) of expose cells exhibited some lesions which may, in time, become fatal events leading to cell death

  17. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    Science.gov (United States)

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  18. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Jongkyun Kang

    Full Text Available The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  19. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout.

    NARCIS (Netherlands)

    Candal, E.; Anadon, R.; Grip, W.J. de; Rodriguez-Moldes, I.

    2005-01-01

    We have analyzed the patterns of cell proliferation and cell death in the retina and optic tectum of the brown trout (Salmo trutta fario) throughout embryonic and postembryonic stages. Cell proliferation was detected by immunohistochemistry with an antibody against the proliferating cell nuclear ant

  20. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisae

    Directory of Open Access Journals (Sweden)

    Birsen Çakır

    2015-02-01

    Full Text Available Apoptosis is an active form of programmed cell death (PCD that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP, a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1, a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition.

  1. p53 dependent apoptotic cell death induces embryonic malformation in Carassius auratus under chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Paramita Banerjee Sawant

    Full Text Available Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD, leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD, ultimately resulting in significant (p<0.05 embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.

  2. Investigation of epothilone B-induced cell death mechanisms in human epithelial cancer cells -in consideration of combined treatment with ionizing radiation.

    Science.gov (United States)

    Baumgart, Tonja; Kriesen, Stephan; Neels, Oliver; Hildebrandt, Guido; Manda, Katrin

    2015-07-01

    Epothilone B was shown to have promising chemo- and radiosensitizing effects on cells, but the mechanisms underlying cell death remain ambiguous. The aim of the study was to examine selected cell death pathways on the basis of FaDu and A549 cells. Western blot analyses were used for investigation of specific apoptotic markers. Immunofluorescence imaging and flow cytometry were utilized for examination of cell death mechanisms. DNA-staining was used for studying influence of epothilone B on micronucleus rate. We showed that epothilone B can initiate cell death via apoptosis and mitotic catastrophe, but induction of cell death was cell type specific. PMID:25919223

  3. Cell Death Inducing Microbial Protein Phosphatase Inhibitors—Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Rune Kleppe

    2015-10-01

    Full Text Available Okadaic acid (OA and microcystin (MC as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS and activation of Ca2+/calmodulin kinase II (CaM-KII. New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity.

  4. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  5. Alginate gelation-induced cell death during laser-assisted cell printing

    International Nuclear Information System (INIS)

    Modified laser-induced forward transfer has emerged as a promising bioprinting technique. Depending on the operating conditions and cell properties, laser cell printing may cause cell injury and even death, which should be carefully elucidated for it to be a viable technology. This study has investigated the effects of alginate gelation, gelation time, alginate concentration, and laser fluence on the post-transfer cell viability of NIH 3T3 fibroblasts. Sodium alginate and calcium chloride are used as the gel precursor and gel reactant solution to form cell-laden alginate microspheres. It is found that the effects of gelation depend on the duration of gelation. Two-minute gelation is observed to increase the cell viability after 24 h incubation, mainly due to the protective cushion effect of the forming gel membrane during droplet landing. Despite the cushion effect from 10 min gelation, it is observed that the cell viability decreases after 24 h incubation because of the forming thick gel membrane that reduces nutrient and oxygen diffusion from the culture medium. In addition, the cell viability after 24 h incubation decreases as the laser fluence or alginate concentration increases. (paper)

  6. Induction of neuronal cell death by paraneoplastic Ma1 antigen.

    Science.gov (United States)

    Chen, Huai-Lu; D'Mello, Santosh R

    2010-12-01

    Paraneoplastic Ma1 (PNMA1) is a member of a family of proteins involved in an autoimmune disorder called paraneoplastic neurological syndrome. Although it is widely expressed in brain, nothing is known about the function of PNMA1 in neurons. We find that PNMA1 expression is highest in the perinatal brain, a period during which developmentally regulated neuronal death occurs. PNMA1 expression increases in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) and in cortical neurons following homocysteic acid (HCA) treament. Elevated PNMA1 expression is also observed in the degenerating striatum in two separate mouse models of Huntington's disease, the R6/2 transgenic model and the 3-nitropropionic acid-induced chemical model. Suppression of endogenous PNMA1 expression inhibits LK-induced neuronal apoptosis. Ectopic expression of PNMA1 promotes apoptosis even in medium containing high potassium, a condition that normally ensures survival of CGNs. Deletion of the N-terminal half of the PNMA1 protein abrogates its apoptotic activity, whereas deletion of the C-terminal half renders the protein more toxic. Within the N-terminal half, the ability to induce neuronal death depends on the presence of a BH3-like domain. In addition to being necessary for apoptosis, the BH3-like domain is necessary for self-association of PNMA1. Apoptosis by PNMA1 expression is inhibited by overexpression of Bcl2, suggesting that PNMA1-induced neuronal death may depend on the binding of a proapoptotic member of the Bcl2 family to the BH3 domain. Taken together, our results suggest that PNMA1 is a proapoptotic protein in neurons, elevated expression of which may contribute to neurodegenerative disorders. PMID:20936693

  7. Kinetic modeling reveals a common death niche for newly formed and mature B cells.

    Directory of Open Access Journals (Sweden)

    Gitit Shahaf

    Full Text Available BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3 subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.

  8. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Highlights: → We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. → The ER stress facilitated the expression of inward rectifier K+ channel (Kir2.1) and induced sustained membrane hyperpolarization. → The membrane hyperpolarization induced sustained Ca2+ entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. → The Kir2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K+ channel (Kir2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of Kir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca2+ concentration due to Ca2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of Kir2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  9. Role of autophagy in disease resistance and hypersensitive response-associated cell death

    DEFF Research Database (Denmark)

    Hofius, Daniel; Munch, David; Bressendorff, Simon;

    2011-01-01

    documented, but how autophagy contributes to plant innate immunity and cell death is not that clear. A few research reports have appeared recently to shed light on the roles of autophagy in plant-pathogen interactions and in disease-associated host cell death. We present a first attempt to reconcile the......Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum...

  10. Assessment of cell death studies by monitoring hydrogen peroxide in cell culture.

    Science.gov (United States)

    Hirsch, Irina; Prell, Erik; Weiwad, Matthias

    2014-07-01

    Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. PMID:24747006

  11. Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP(8)).

    Science.gov (United States)

    Zhu, Yonghong; Lee, Cleo C L; Lam, W P; Wai, Maria S M; Rudd, John A; Yew, David T

    2007-10-01

    The cerebella of SAMP(8) (accelerated aging mouse) and SAMR(1) controls were analyzed by Western Blotting of tyrosine hydroxylase and choline acetyltransferase, as well as by TUNEL and histological silver staining. Both tyrosine hydroxylase and choline acetyltransferase levels were higher in SAMR(1) than in SAMP(8). There was also an age-related decrease in enzyme levels in SAMP(8), with the reduction of tyrosine hydroxylase being more apparent. Concomitantly, there was an age-related increase of apoptosis in the medial neocerebellum and the vermis as revealed by TUNEL, with changes being significant in the SAMP(8) strain. Histologically, some Purkinje cells appeared to disappear during aging. Taken together, the data suggests that the aging SAMP(8) strain displays differential Purkinje cell death in the medial cerebellum and that some of the dying cells are likely to be catecholaminergic. PMID:17415677

  12. Evaluation of Cytotoxicity and Cell Death Induced In Vitro by Saxitoxin in Mammalian Cells.

    Science.gov (United States)

    Melegari, Silvia P; de Carvalho Pinto, Cátia R S; Moukha, Serge; Creppy, Edmond E; Matias, William G

    2015-01-01

    Since the cyanotoxin saxitoxin (STX) is a neurotoxin and induces ecological changes in aquatic environments, a potential risk to public and environmental health exists. However, data on STX-mediated cytotoxic and genotoxic effects are still scare. In order to gain a better understanding of the effects of this toxin, the cytotoxic and genotoxic potential of STX was examined in two mammalian cell lines. Neuro 2A (N2A), a neuroblastoma mouse cell line, and Vero cell line, derived from Vero green monkey kidney cells, were exposed to several concentrations of STX ranging from 0.5 to 64 nM to determine cell viability, induction of apoptosis (DNA fragmentation assay), and formation of micronuclei (MN) (cytokinesis-block micronucleus assay; CBMN) following 24 h of incubation. The half maximal effective concentration (EC50) values for STX calculated in cell viability tests were 1.01 nM for N2A and 0.82 nM for Vero cells. With increasing STX concentration there was evidence of DNA fragmentation indicating apoptosis induction in Vero cells with a 50% increase in DNA fragmentation compared to control at the highest STX concentration tested (3 nM). The results demonstrated no significant changes in the frequency of micronucleated binucleated cells in N2A and Vero cells exposed to STX, indicating the absence of genotoxicity under these test conditions. There was no apparent cellular necrosis as evidenced by a lack of formation of multinucleated cells. In conclusion, data reported herein demonstrate that STX produced death of both cell types tested through an apoptotic process. PMID:26436995

  13. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

    Science.gov (United States)

    Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-10-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis. PMID:26474173

  14. Studies on the Programmed Cell Death in Rice During Starchy Endosperm Development

    Institute of Scientific and Technical Information of China (English)

    LI Rui; LAN Sheng-yin; XU Zhen-xiu

    2004-01-01

    Morphological variations of the nucleus in starchy endosperm cell were observed by the electron-transmisson microscope during endosperm development in rice. Along with the development of the starchy endosperm,the nuclei of the cells showed chromatin condensation,the typical feature of programmed cell death(PCD). The nuclei also showed nucleus deformation,disruption of nuclear envelope,nucleoplasm leaking into the cytoplasm and nucleus disintegration resulting in nuclear residue formation. From the nucleus deformation to the nucleus disintegration,the morphological changes of the nucleus were orderly progressive. This indicated that the cell death of starchy endosperm in rice was programmed cell death. Evans Blue staining observation showed that the cell death was initially detected in the central part of starchy endosperm in rice,then expanded outward. The activities of superoxide dismutase(SOD)and catalase(CAT)in rice starchy endosperm both descended continuously as development progressed. The analysis of DNA of rice starchy endosperm did not show the presence of DNA laddering. The above results showed that the cell death of starchy endosperm in rice was a special form of PCD.

  15. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects

    Science.gov (United States)

    Schaffner, Adam; Fedick, Anastasia; Kaye, Lauren E.; Liao, Jun; Yachelevich, Naomi; Chu, Mary-Lynn; Boles, Richard G.; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A.; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-01-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  16. Morphological Analysis of Cell Death by Cytospinning Followed by Rapid Staining.

    Science.gov (United States)

    Crowley, Lisa C; Marfell, Brooke J; Waterhouse, Nigel J

    2016-01-01

    Identifying and characterizing different forms of cell death can be facilitated by staining internal cellular structures with dyes such as hematoxylin and eosin (H&E). These dyes stain the nucleus and cytoplasm, respectively, and optimized reagents (e.g., Rapi-Diff, Rapid Stain, or Quick Dip) are commonly used in pathology laboratories. Fixing and staining adherent cells with these optimized reagents is a straightforward procedure, but apoptotic cells may detach from the culture plate and be washed away during the fixing and staining procedure. To prevent the loss of apoptotic cells, cells can be gently centrifuged onto glass slides by cytospinning before fixing and staining. In addition to apoptotic cells, this procedure can be used on cells in suspension, or adherent cells that have been trypsinized and removed from the culture dish. This protocol describes cytospinning followed by Rapi-Diff staining for morphological analysis of cell death. PMID:27587773

  17. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  18. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    Science.gov (United States)

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. PMID:27497983

  19. Neuroprotective effects of pramipexole against tunicamycin-induced cell death in PC12 cells.

    Science.gov (United States)

    Nakayama, Hitoshi; Zhao, Jing; Ei-Fakhrany, Amany; Isosaki, Minoru; Satoh, Hiroyasu; Kyotani, Yoji; Yoshizumi, Masanori

    2009-12-01

    1. Pramipexole (PPX), a dopamine D2 and D3 receptor agonist, exerts neuroprotective effects via both dopamine receptor-mediated and non-dopaminergic mechanisms. In the present study, we demonstrate that PPX reduces the toxicity of tunicamycin, a typical endoplasmic reticulum (ER) stressor, in PC12h cells, a subline of PC12 cells. 2. The PC12h cells were treated with 300 micromol / L PPX in the presence of 0.5 micromol / L tunicamycin for 24 h. The neuroprotective effects of PPX against tunicamycin-induced cell death were evaluated using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, Hoechst 33258 staining and western blot analysis. 3. Tunicamycin (0.2, 0.3 and 0.5 microg / mL) dose-dependently decreased MTT activity and increased LDH release from PC12h cells. Treatment with 300 micromol / L PPX rescued the tunicamycin-induced decrease in cell viability. 4. Spiperone (10 micromol / L), a dopamine D2 and D4 receptor antagonist, had no effect on PPX neuroprotection against tunicamycin in these cells. Marker proteins of ER stress and apoptosis are known to be upregulated by tunicamycin, but we detected no significant effects of PPX on these factors. 5. In conclusion, we speculate that a combination of several mechanisms may be involved in PPX-induced neuroprotection. PMID:19515063

  20. Vibrio cholerae GbpA elicits necrotic cell death in intestinal cells.

    Science.gov (United States)

    Mandal, Sudipto; Chatterjee, Nabendu Sekhar

    2016-08-01

    Vibrio choleraeN-acetylglucosamine-binding protein GbpA is a secretory protein that facilitates the initial adherence of bacteria in the human intestine. Until now, considerable progress in the characterization of GbpA has been done, yet little is known about its role in host response. Our present studies demonstrated that GbpA at the amount secreted in the intestine resulted in decreased cell viability, altered cell morphology, disruption of cell membrane integrity and damage of cellular DNA indicating necrotic cell death. We observed that GbpA exposure leads to mitochondrial dysfunction, characterized by accumulation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential and depletion of ATP pool in host cells. Additionally, the intra-cellular ROS, accumulated in response to GbpA, were found to induce the migration of NF-κB from cytoplasm into nucleus in host cells. Taken together, these results prompted us to conclude that GbpA orchestrates a necrotic response in host cells which may have implications in immune response. PMID:27324251

  1. Effect of platinum nanoparticles on cell death induced by ultrasound in human lymphoma U937 cells.

    Science.gov (United States)

    Jawaid, Paras; Rehman, Mati Ur; Hassan, Mariame Ali; Zhao, Qing Li; Li, Peng; Miyamoto, Yusei; Misawa, Masaki; Ogawa, Ryohei; Shimizu, Tadamichi; Kondo, Takashi

    2016-07-01

    In this study, we report on the potential use of platinum nanoparticles (Pt-NPs), a superoxide dismutase (SOD)/catalase mimetic antioxidant, in combination with 1MHz ultrasound (US) at an intensity of 0.4W/cm(2), 10% duty factor, 100Hz PRF, for 2min. Apoptosis induction was assessed by DNA fragmentation assay, cell cycle analysis and Annexin V-FITC/PI staining. Cell killing was confirmed by cell counting and microscopic examination. The mitochondrial and Ca(2+)-dependent pathways were investigated. Caspase-8 expression and autophagy-related proteins were detected by spectrophotometry and western blot analysis, respectively. Intracellular reactive oxygen species (ROS) elevation was detected by flow cytometry, while extracellular free radical formation was assessed by electron paramagnetic resonance spin trapping spectrometry. The results showed that Pt-NPs exerted differential effects depending on their internalization. Pt-NPs functioned as potent free radical scavengers when added immediately before sonication while pre-treatment with Pt-NPs suppressed the induction of apoptosis as well as autophagy (AP), and resulted in enhanced cell killing. Dead cells displayed the features of pyknosis. The exact mode of cell death is still unclear. In conclusion, the results indicate that US-induced AP may contribute to cell survival post sonication. To our knowledge this is the first study to discuss autophagy as a pro-survival pathway in the context of US. The combination of Pt-NPs and US might be effective in cancer eradication. PMID:26964942

  2. Apoptosis Cell Death Effect of Scrophularia Variegata on Breast Cancer Cells via Mitochondrial Intrinsic Pathway

    Science.gov (United States)

    Azadmehr, Abbas; Hajiaghaee, Reza; Baradaran, Behzad; Haghdoost-Yazdi, Hashem

    2015-01-01

    Purpose: Scrophularia variegata M. Beib. (Scrophulariaceae) is an Iranian medicinal plant which is used for various inflammatory disorders in traditional medicine. In this study we evaluated the anti-cancer and cytotoxic effects of the Scrophularia variegata (S. variegata) ethanolic extract on the human breast cancer cell line. Methods: The cytotoxicity effect of the extract on MCF-7 cells was evaluated by MTT assay. In addition, Caspase activity, DNA ladder and Cell death were evaluated by ELISA, gel electrophoresis and Annexin V-FITC/PI staining, respectively. Results: The S. variegata extract showed significant effect cytotoxicity on MCF-7 human breast cancer cell line. Treatment with the extract induced apoptosis on the breast cancer cells by cell cycle arrest in G2/M phase. The results indicated that cytotoxicity activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation as well as an increase of the amount of caspase 3 and caspase 9. In addition, the phytochemical assay showed that the extract had antioxidant capacity and also flavonoids, phenolic compounds and phenyl propanoids were presented in the extract. Conclusion: Our findings indicated that S. variegata extract induced apoptosis via mitochondrial intrinsic pathway on breast cancer by cell cycle arrest in G2/M phase and an increase of caspase 3 and caspase 9. However future studies are needed. PMID:26504768

  3. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction.

    Science.gov (United States)

    Tennant, B R; Vanderkruk, B; Dhillon, J; Dai, D; Verchere, C B; Hoffman, B G

    2016-01-01

    Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways. PMID:27195679

  4. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  5. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    International Nuclear Information System (INIS)

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death

  6. Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain.

    Science.gov (United States)

    Chen, Fang; Ding, Xicheng; Ding, Ying; Xiang, Zuoshuang; Li, Xinna; Ghosh, Debashis; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Boyle, Stephen M; He, Yongqun

    2011-06-01

    Brucella spp. are intracellular bacteria that cause an infectious disease called brucellosis in humans and many domestic and wildlife animals. B. suis primarily infects pigs and is pathogenic to humans. The macrophage-Brucella interaction is critical for the establishment of a chronic Brucella infection. Our studies showed that smooth virulent B. suis strain 1330 (S1330) prevented programmed cell death of infected macrophages and rough attenuated B. suis strain VTRS1 (a vaccine candidate) induced strong macrophage cell death. To further investigate the mechanism of VTRS1-induced macrophage cell death, microarrays were used to analyze temporal transcriptional responses of murine macrophage-like J774.A1 cells infected with S1330 or VTRS1. In total 17,685 probe sets were significantly regulated based on the effects of strain, time and their interactions. A miniTUBA dynamic Bayesian network analysis predicted that VTRS1-induced macrophage cell death was mediated by a proinflammatory gene (the tumor necrosis factor alpha [TNF-α] gene), an NF-κB pathway gene (the IκB-α gene), the caspase-2 gene, and several other genes. VTRS1 induced significantly higher levels of transcription of 40 proinflammatory genes than S1330. A Mann-Whitney U test confirmed the proinflammatory response in VTRS1-infected macrophages. Increased production of TNF-α and interleukin 1β (IL-1β) were also detected in the supernatants in VTRS1-infected macrophage cell culture. Hyperphosphorylation of IκB-α was observed in macrophages infected with VTRS1 but not S1330. The important roles of TNF-α and IκB-α in VTRS1-induced macrophage cell death were further confirmed by individual inhibition studies. VTRS1-induced macrophage cell death was significantly inhibited by a caspase-2 inhibitor but not a caspase-1 inhibitor. The role of caspase-2 in regulating the programmed cell death of VTRS1-infected macrophages was confirmed in another study using caspase-2-knockout mice. In summary, VTRS1

  7. A statistical model for multidimensional irreversible electroporation cell death in tissue

    Directory of Open Access Journals (Sweden)

    Rubinsky Boris

    2010-02-01

    Full Text Available Abstract Background Irreversible electroporation (IRE is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a deterministic single value for the amplitude of the electric field required for causing cell death. However, tissue, particularly cancerous tissue, is comprised of a population of different cells of different sizes and orientations, which in conventional IRE are exposed to complex electric fields; therefore, using a deterministic single value is overly simplistic. Methods We introduce and describe a new methodology for evaluating IRE induced cell death in tissue. Our approach employs a statistical Peleg-Fermi model to correlate probability of cell death in heterogeneous tissue to the parameters of electroporation pulses such as the number of pulses, electric field amplitude and pulse length. For treatment planning, the Peleg-Fermi model is combined with a numerical solution of the multidimensional electric field equation cast in a dimensionless form. This is the first time in which this concept is used for evaluating IRE cell death in multidimensional situations. Results We illustrate the methodology using data reported in literature for prostate cancer cell death by IRE. We show how to fit this data to a Fermi function in order to calculate the critical statistic parameters. To illustrate the use of the methodology, we simulated 2-D irreversible electroporation protocols and produced 2-D maps of the statistical distribution of cell death in the treated region. These plots were compared to plots produced using a deterministic model of cell death by IRE and

  8. Model of mammalian cell reproductive death. Pt. 2

    International Nuclear Information System (INIS)

    A general equation for mammalian cell survival has been derived in the previous paper. This paper presents the results of comparison of theoretical evaluations with survival data available from the literature, including different cell lines, variations. In linear energy transfer, dose rate and dose fractionation and the effects of ultrasoft X-rays and superheavy ions. Merits and demerits of the model are considered in comparison with other models of radiation-induced killing of mammalian cells published in the literature. (orig.)

  9. Effect of ionizing radiation on cell death in frog spleen

    International Nuclear Information System (INIS)

    It was studied the number of dead cells in frog spleen by means of coloration with trypan blue which allowed to estimate last stage of apoptosis dead of cells.The investigated frogs (Rana arvalis) were caught in september 1997 at radionuclide contamination territory (the Gomel Region, the Khojniki District). Control animals were caught in village Ratamka of the Minsk District. The percent of dead cells was less in control group in 1,5 times. Under additional irradiation (2 Gy) the number of dead cells in spleen also differs significantly in the investigated and control groups