WorldWideScience

Sample records for autonomous vision system

  1. The autonomous vision system on TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels

    1999-01-01

    The second qualification flight of Ariane 5 blasted off-the European Space Port in French Guiana on October 30, 1997, carrying on board a small technology demonstration satellite called TeamSat. Several experiments were proposed by various universities and research institutions in Europe and five...... of them were finally selected and integrated into TeamSat, namely FIPEX, VTS, YES, ODD and the Autonomous Vision System, AVS, a fully autonomous star tracker and vision system. This paper gives short overview of the TeamSat satellite; design, implementation and mission objectives. AVS is described in more...

  2. Intelligent vision system for autonomous vehicle operations

    Science.gov (United States)

    Scholl, Marija S.

    1991-01-01

    A complex optical system consisting of a 4f optical correlator with programmatic filters under the control of a digital on-board computer that operates at video rates for filter generation, storage, and management is described.

  3. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  4. Vision Analysis System for Autonomous Landing of Micro Drone

    Directory of Open Access Journals (Sweden)

    Skoczylas Marcin

    2014-12-01

    Full Text Available This article describes a concept of an autonomous landing system of UAV (Unmanned Aerial Vehicle. This type of device is equipped with the functionality of FPV observation (First Person View and radio broadcasting of video or image data. The problem is performance of a system of autonomous drone landing in an area with dimensions of 1m × 1m, based on CCD camera coupled with an image transmission system connected to a base station. Captured images are scanned and landing marker is detected. For this purpose, image features detectors (such as SIFT, SURF or BRISK are utilized to create a database of keypoints of the landing marker and in a new image keypoints are found using the same feature detector. In this paper results of a framework that allows detection of defined marker for the purpose of drone landing field positioning will be presented.

  5. System of technical vision for autonomous unmanned aerial vehicles

    Science.gov (United States)

    Bondarchuk, A. S.

    2018-05-01

    This paper is devoted to the implementation of image recognition algorithm using the LabVIEW software. The created virtual instrument is designed to detect the objects on the frames from the camera mounted on the UAV. The trained classifier is invariant to changes in rotation, as well as to small changes in the camera's viewing angle. Finding objects in the image using particle analysis, allows you to classify regions of different sizes. This method allows the system of technical vision to more accurately determine the location of the objects of interest and their movement relative to the camera.

  6. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  7. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  8. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  9. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Basam Musleh

    2016-09-01

    Full Text Available Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels and the vehicle environment (meters depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  10. Autonomous navigation of the vehicle with vision system. Vision system wo motsu sharyo no jiritsu soko seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Yatabe, T.; Hirose, T.; Tsugawa, S. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1991-11-10

    As part of the automatic driving system researches, a pilot driverless automobile was built and discussed, which is equipped with obstacle detection and automatic navigating functions without depending on ground facilities including guiding cables. A small car was mounted with a vision system to recognize obstacles three-dimensionally by means of two TV cameras, and a dead reckoning system to calculate the car position and direction from speeds of the rear wheels on a real time basis. The control algorithm, which recognizes obstacles and road range on the vision and drives the car automatically, uses a table-look-up method that retrieves a table stored with the necessary driving amount based on data from the vision system. The steering uses the target point following method algorithm provided that the has a map. As a result of driving tests, useful knowledges were obtained that the system meets the basic functions, but needs a few improvements because of it being an open loop. 36 refs., 22 figs., 2 tabs.

  11. Connected and autonomous vehicles 2040 vision.

    Science.gov (United States)

    2014-07-01

    The Pennsylvania Department of Transportation (PennDOT) commissioned a one-year project, Connected and Autonomous : Vehicles 2040 Vision, with researchers at Carnegie Mellon University (CMU) to assess the implications of connected and : autonomous ve...

  12. Self-localization for an autonomous mobile robot based on an omni-directional vision system

    Science.gov (United States)

    Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin

    2013-12-01

    In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the

  13. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    Science.gov (United States)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  14. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers

    Directory of Open Access Journals (Sweden)

    Miguel A. Olivares-Mendez

    2015-12-01

    Full Text Available Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing.

  15. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers

    Science.gov (United States)

    Olivares-Mendez, Miguel A.; Fu, Changhong; Ludivig, Philippe; Bissyandé, Tegawendé F.; Kannan, Somasundar; Zurad, Maciej; Annaiyan, Arun; Voos, Holger; Campoy, Pascual

    2015-01-01

    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. PMID:26703597

  16. 3-D Vision Techniques for Autonomous Vehicles

    Science.gov (United States)

    1988-08-01

    TITLE (Include Security Classification) W 3-D Vision Techniques for Autonomous Vehicles 12 PERSONAL AUTHOR(S) Martial Hebert, Takeo Kanade, inso Kweoni... Autonomous Vehicles Martial Hebert, Takeo Kanade, Inso Kweon CMU-RI-TR-88-12 The Robotics Institute Carnegie Mellon University Acession For Pittsburgh

  17. Synthetic vision and memory for autonomous virtual humans

    OpenAIRE

    PETERS, CHRISTOPHER; O'SULLIVAN, CAROL ANN

    2002-01-01

    PUBLISHED A memory model based on ?stage theory?, an influential concept of memory from the field of cognitive psychology, is presented for application to autonomous virtual humans. The virtual human senses external stimuli through a synthetic vision system. The vision system incorporates multiple modes of vision in order to accommodate a perceptual attention approach. The memory model is used to store perceived and attended object information at different stages in a filtering...

  18. Design and Implementation of a Fully Autonomous UAV's Navigator Based on Omni-directional Vision System

    Directory of Open Access Journals (Sweden)

    Seyed Mohammadreza Kasaei

    2011-12-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are the subject of an increasing interest in many applications . UAVs are seeing more widespread use in military, scenic, and civilian sectors in recent years. Autonomy is one of the major advantages of these vehicles. It is then necessary to develop particular sensor in order to provide efficient navigation functions. The helicopter has been stabilized with visual information through the control loop. Omni directional vision can be a useful sensor for this propose. It can be used as the only sensor or as complementary sensor. In this paper , we propose a novel method for path planning on an UAV based on electrical potential .We are using an omni directional vision system for navigating and path planning.

  19. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  20. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  1. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    Science.gov (United States)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  2. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    Science.gov (United States)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.

  3. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    James K. Archibald

    2006-12-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  4. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Fife WadeS

    2007-01-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  5. ROBERT autonomous navigation robot with artificial vision

    International Nuclear Information System (INIS)

    Cipollini, A.; Meo, G.B.; Nanni, V.; Rossi, L.; Taraglio, S.; Ferjancic, C.

    1993-01-01

    This work, a joint research between ENEA (the Italian National Agency for Energy, New Technologies and the Environment) and DIGlTAL, presents the layout of the ROBERT project, ROBot with Environmental Recognizing Tools, under development in ENEA laboratories. This project aims at the development of an autonomous mobile vehicle able to navigate in a known indoor environment through the use of artificial vision. The general architecture of the robot is shown together with the data and control flow among the various subsystems. Also the inner structure of the latter complete with the functionalities are given in detail

  6. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  7. Vision-based autonomous grasping of unknown piled objects

    International Nuclear Information System (INIS)

    Johnson, R.K.

    1994-01-01

    Computer vision techniques have been used to develop a vision-based grasping capability for autonomously picking and placing unknown piled objects. This work is currently being applied to the problem of hazardous waste sorting in support of the Department of Energy's Mixed Waste Operations Program

  8. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    Directory of Open Access Journals (Sweden)

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  9. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Science.gov (United States)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  10. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  11. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  12. Research Institute for Autonomous Precision Guided Systems

    National Research Council Canada - National Science Library

    Rogacki, John R

    2007-01-01

    ... vehicles, cooperative flight of autonomous aerial vehicles using GPS and vision information, cooperative and sharing of information in search missions involving multiple autonomous agents, multi-scale...

  13. Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles

    Science.gov (United States)

    Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick

    2012-01-01

    Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.

  14. Research Institute for Autonomous Precision Guided Systems

    National Research Council Canada - National Science Library

    Rogacki, John R

    2007-01-01

    ... actuators, development of a visualization lab for modeling vision based guidance algorithms, concept development of a rapid prototyping and aero characterization lab, vision based control of autonomous...

  15. Autonomous Systems and Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Systems and Operations (ASO) project will develop an understanding of the impacts of increasing communication time delays on mission operations,...

  16. Autonomous Vision-Based Tethered-Assisted Rover Docking

    Science.gov (United States)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  17. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  18. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.

    Science.gov (United States)

    Ka, Hyun W; Chung, Cheng-Shiu; Ding, Dan; James, Khara; Cooper, Rory

    2018-02-01

    We developed a 3D vision-based semi-autonomous control interface for assistive robotic manipulators. It was implemented based on one of the most popular commercially available assistive robotic manipulator combined with a low-cost depth-sensing camera mounted on the robot base. To perform a manipulation task with the 3D vision-based semi-autonomous control interface, a user starts operating with a manual control method available to him/her. When detecting objects within a set range, the control interface automatically stops the robot, and provides the user with possible manipulation options through audible text output, based on the detected object characteristics. Then, the system waits until the user states a voice command. Once the user command is given, the control interface drives the robot autonomously until the given command is completed. In the empirical evaluations conducted with human subjects from two different groups, it was shown that the semi-autonomous control can be used as an alternative control method to enable individuals with impaired motor control to more efficiently operate the robot arms by facilitating their fine motion control. The advantage of semi-autonomous control was not so obvious for the simple tasks. But, for the relatively complex real-life tasks, the 3D vision-based semi-autonomous control showed significantly faster performance. Implications for Rehabilitation A 3D vision-based semi-autonomous control interface will improve clinical practice by providing an alternative control method that is less demanding physically as well cognitively. A 3D vision-based semi-autonomous control provides the user with task specific intelligent semiautonomous manipulation assistances. A 3D vision-based semi-autonomous control gives the user the feeling that he or she is still in control at any moment. A 3D vision-based semi-autonomous control is compatible with different types of new and existing manual control methods for ARMs.

  19. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  20. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  1. Low Vision Enhancement System

    Science.gov (United States)

    1995-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with the Johns Hopkins Wilmer Eye Institute in Baltimore, Md., to incorporate NASA software originally developed by NASA to process satellite images into the Low Vision Enhancement System (LVES). The LVES, referred to as 'ELVIS' by its users, is a portable image processing system that could make it possible to improve a person's vision by enhancing and altering images to compensate for impaired eyesight. The system consists of two orientation cameras, a zoom camera, and a video projection system. The headset and hand-held control weigh about two pounds each. Pictured is Jacob Webb, the first Mississippian to use the LVES.

  2. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  3. A design approach for small vision-based autonomous vehicles

    Science.gov (United States)

    Edwards, Barrett B.; Fife, Wade S.; Archibald, James K.; Lee, Dah-Jye; Wilde, Doran K.

    2006-10-01

    This paper describes the design of a small autonomous vehicle based on the Helios computing platform, a custom FPGA-based board capable of supporting on-board vision. Target applications for the Helios computing platform are those that require lightweight equipment and low power consumption. To demonstrate the capabilities of FPGAs in real-time control of autonomous vehicles, a 16 inch long R/C monster truck was outfitted with a Helios board. The platform provided by such a small vehicle is ideal for testing and development. The proof of concept application for this autonomous vehicle was a timed race through an environment with obstacles. Given the size restrictions of the vehicle and its operating environment, the only feasible on-board sensor is a small CMOS camera. The single video feed is therefore the only source of information from the surrounding environment. The image is then segmented and processed by custom logic in the FPGA that also controls direction and speed of the vehicle based on visual input.

  4. [Quality system Vision 2000].

    Science.gov (United States)

    Pasini, Evasio; Pitocchi, Oreste; de Luca, Italo; Ferrari, Roberto

    2002-12-01

    A recent document of the Italian Ministry of Health points out that all structures which provide services to the National Health System should implement a Quality System according to the ISO 9000 standards. Vision 2000 is the new version of the ISO standard. Vision 2000 is less bureaucratic than the old version. The specific requests of the Vision 2000 are: a) to identify, to monitor and to analyze the processes of the structure, b) to measure the results of the processes so as to ensure that they are effective, d) to implement actions necessary to achieve the planned results and the continual improvement of these processes, e) to identify customer requests and to measure customer satisfaction. Specific attention should be also dedicated to the competence and training of the personnel involved in the processes. The principles of the Vision 2000 agree with the principles of total quality management. The present article illustrates the Vision 2000 standard and provides practical examples of the implementation of this standard in cardiological departments.

  5. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  6. Vision based speed breaker detection for autonomous vehicle

    Science.gov (United States)

    C. S., Arvind; Mishra, Ritesh; Vishal, Kumar; Gundimeda, Venugopal

    2018-04-01

    In this paper, we are presenting a robust and real-time, vision-based approach to detect speed breaker in urban environments for autonomous vehicle. Our method is designed to detect the speed breaker using visual inputs obtained from a camera mounted on top of a vehicle. The method performs inverse perspective mapping to generate top view of the road and segment out region of interest based on difference of Gaussian and median filter images. Furthermore, the algorithm performs RANSAC line fitting to identify the possible speed breaker candidate region. This initial guessed region via RANSAC, is validated using support vector machine. Our algorithm can detect different categories of speed breakers on cement, asphalt and interlock roads at various conditions and have achieved a recall of 0.98.

  7. Surrounding Moving Obstacle Detection for Autonomous Driving Using Stereo Vision

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2013-06-01

    Full Text Available Detection and tracking surrounding moving obstacles such as vehicles and pedestrians are crucial for the safety of mobile robotics and autonomous vehicles. This is especially the case in urban driving scenarios. This paper presents a novel framework for surrounding moving obstacles detection using binocular stereo vision. The contributions of our work are threefold. Firstly, a multiview feature matching scheme is presented for simultaneous stereo correspondence and motion correspondence searching. Secondly, the multiview geometry constraint derived from the relative camera positions in pairs of consecutive stereo views is exploited for surrounding moving obstacles detection. Thirdly, an adaptive particle filter is proposed for tracking of multiple moving obstacles in surrounding areas. Experimental results from real-world driving sequences demonstrate the effectiveness and robustness of the proposed framework.

  8. Mobile Autonomous Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Pavliuk N.A.

    2018-04-01

    Full Text Available The object of this study is a multifunctional modular robot able to assemble independently in a given configuration and responsively change it in the process of operation depending on the current task. In this work we aim at developing and examining unified modules for a modular robot, which can both perform autonomous movement and form a complex structure by connecting to other modules. The existing solutions in the field of modular robotics were reviewed and classified by power supply, the ways of interconnection, the ways of movement and the possibility of independent movement of separate modules. Basing on the analysis of the shortcomings of existing analogues, we have developed a module of mobile autonomous reconfigurable system, including a base unit, a set of magneto-mechanical connectors and two motor wheels. The basic kinematic scheme of the modular robot, the features of a single module, as well as the modular structure formed by an array of similar modules were described. Two schemes for placing sets of magneto-mechanical connectors in the basic module have been proposed. We described the principle of operation of a magneto-mechanical connector based on redirection of the magnetic flux of a permanent magnet. This solution simplifies the system for controlling a mechanism of connection with other modules, increases energy efficiency and a battery life of the module. Since the energy is required only at the moment of switching the operating modes of the connector, there is no need to power constantly the connector mechanism to maintain the coupling mode.

  9. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  10. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  11. 13th International Conference Intelligent Autonomous Systems

    CERN Document Server

    Michael, Nathan; Berns, Karsten; Yamaguchi, Hiroaki

    2016-01-01

    This book describes the latest research accomplishments, innovations, and visions in the field of robotics as presented at the 13th International Conference on Intelligent Autonomous Systems (IAS), held in Padua in July 2014, by leading researchers, engineers, and practitioners from across the world. The contents amply confirm that robots, machines, and systems are rapidly achieving intelligence and autonomy, mastering more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision making. A wide range of research results and applications are covered, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions have been selected through a rigorous peer-review process and contain many exciting and visionary ideas that will further galvanize the research community, spurring novel research directions. The series of biennial IAS conferences ...

  12. Autonomous vision in space, based on Advanced Stellar Compass platform

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian

    1996-01-01

    The Ørsted Star Imager, comprises the functionality of an Advanced Stellar Compass (ASC). I.e. it is able to, autonomously solve "the lost in space" attitude problem, as well as determine the attitude with high precision in the matter of seconds. The autonomy makes for a high capability for error......) Complex Object surface tracking (e.g. space docking, planetary terrain tracking). All the above topics, has been realized in the past. Either by open loop, or by man-in-loop systems. By implementing these methods or function in the onboard autonomy, a superior system performance could be acheived by means...

  13. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  14. vSLAM: vision-based SLAM for autonomous vehicle navigation

    Science.gov (United States)

    Goncalves, Luis; Karlsson, Niklas; Ostrowski, Jim; Di Bernardo, Enrico; Pirjanian, Paolo

    2004-09-01

    Among the numerous challenges of building autonomous/unmanned vehicles is that of reliable and autonomous localization in an unknown environment. In this paper we present a system that can efficiently and autonomously solve the robotics 'SLAM' problem, where a robot placed in an unknown environment, simultaneously must localize itself and make a map of the environment. The system is vision-based, and makes use of Evolution Robotic's powerful object recognition technology. As the robot explores the environment, it is continuously performing four tasks, using information from acquired images and the drive system odometry. The robot: (1) recognizes previously created 3-D visual landmarks; (2) builds new 3-D visual landmarks; (3) updates the current estimate of its location, using the map; (4) updates the landmark map. In indoor environments, the system can build a map of a 5m by 5m area in approximately 20 minutes, and can localize itself with an accuracy of approximately 15 cm in position and 3 degrees in orientation relative to the global reference frame of the landmark map. The same system can be adapted for outdoor, vehicular use.

  15. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  16. TU-FG-201-04: Computer Vision in Autonomous Quality Assurance of Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Jenkins, C; Yu, S; Yang, Y; Xing, L [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: Routine quality assurance (QA) of linear accelerators represents a critical and costly element of a radiation oncology center. Recently, a system was developed to autonomously perform routine quality assurance on linear accelerators. The purpose of this work is to extend this system and contribute computer vision techniques for obtaining quantitative measurements for a monthly multi-leaf collimator (MLC) QA test specified by TG-142, namely leaf position accuracy, and demonstrate extensibility for additional routines. Methods: Grayscale images of a picket fence delivery on a radioluminescent phosphor coated phantom are captured using a CMOS camera. Collected images are processed to correct for camera distortions, rotation and alignment, reduce noise, and enhance contrast. The location of each MLC leaf is determined through logistic fitting and a priori modeling based on knowledge of the delivered beams. Using the data collected and the criteria from TG-142, a decision is made on whether or not the leaf position accuracy of the MLC passes or fails. Results: The locations of all MLC leaf edges are found for three different picket fence images in a picket fence routine to 0.1mm/1pixel precision. The program to correct for image alignment and determination of leaf positions requires a runtime of 21– 25 seconds for a single picket, and 44 – 46 seconds for a group of three pickets on a standard workstation CPU, 2.2 GHz Intel Core i7. Conclusion: MLC leaf edges were successfully found using techniques in computer vision. With the addition of computer vision techniques to the previously described autonomous QA system, the system is able to quickly perform complete QA routines with minimal human contribution.

  17. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    Science.gov (United States)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  18. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2007-03-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The above-the-ground height sensing is based on a 3D vision system. We have designed a simple plane-fitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a two-stage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  19. Neuromorphic vision sensors and preprocessors in system applications

    Science.gov (United States)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  20. Development of autonomous operation system

    International Nuclear Information System (INIS)

    Endou, Akira; Watanabe, Kenshiu; Miki, Tetsushi

    1992-01-01

    To enhance operation reliability of nuclear plants by removing human factors, study on an autonomous operation system has been carried out to substitute artificial intelligence (AI) for plant operators and, in addition, traditional controllers used in existing plants. For construction of the AI system, structurization of knowledge on the basis of the principles such as physical laws, function and structure of relevant objects and generalization of problem solving process are intended. A hierarchical distributed cooperative system configuration in employed because it is superior from the viewpoint of dynamical reorganization of system functions. This configuration is realized by an object-oriented multi-agent system. Construction of a prototype system was planned and the conceptual design was made for FBR plant in order to evaluate applicability of AI to the autonomous operation and to have a prospect for the realization of the system. The prototype system executes diagnosis, state evaluation, operation and control for the main plant subsystems. (author)

  1. Autonomous photovoltaic lighting system

    OpenAIRE

    Hafez, Ahmed A. A.; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  2. A robotic vision system to measure tree traits

    Science.gov (United States)

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  3. Mobile intelligent autonomous systems

    National Research Council Canada - National Science Library

    Raol, J. R; Gopal, Ajith K

    2013-01-01

    "Written for systems, mechanical, aero, electrical, civil, industrial, and robotics engineers, this book covers robotics from a theoretical and systems point of view, with an emphasis on the sensor...

  4. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  5. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  6. Autonomous spacecraft landing through human pre-attentive vision

    International Nuclear Information System (INIS)

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; De Croon, Guido C H E

    2012-01-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting. (paper)

  7. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  8. Stereo Vision Guiding for the Autonomous Landing of Fixed-Wing UAVs: A Saliency-Inspired Approach

    Directory of Open Access Journals (Sweden)

    Zhaowei Ma

    2016-03-01

    Full Text Available It is an important criterion for unmanned aerial vehicles (UAVs to land on the runway safely. This paper concentrates on stereo vision localization of a fixed-wing UAV's autonomous landing within global navigation satellite system (GNSS denied environments. A ground stereo vision guidance system imitating the human visual system (HVS is presented for the autonomous landing of fixed-wing UAVs. A saliency-inspired algorithm is presented and developed to detect flying UAV targets in captured sequential images. Furthermore, an extended Kalman filter (EKF based state estimation is employed to reduce localization errors caused by measurement errors of object detection and pan-tilt unit (PTU attitudes. Finally, stereo-vision-dataset-based experiments are conducted to verify the effectiveness of the proposed visual detection method and error correction algorithm. The compared results between the visual guidance approach and differential GPS-based approach indicate that the stereo vision system and detection method can achieve the better guiding effect.

  9. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  10. A vision based row detection system for sugar beet

    NARCIS (Netherlands)

    Bakker, T.; Wouters, H.; Asselt, van C.J.; Bontsema, J.; Tang, L.; Müller, J.; Straten, van G.

    2008-01-01

    One way of guiding autonomous vehicles through the field is using a vision based row detection system. A new approach for row recognition is presented which is based on grey-scale Hough transform on intelligently merged images resulting in a considerable improvement of the speed of image processing.

  11. Developing operation algorithms for vision subsystems in autonomous mobile robots

    Science.gov (United States)

    Shikhman, M. V.; Shidlovskiy, S. V.

    2018-05-01

    The paper analyzes algorithms for selecting keypoints on the image for the subsequent automatic detection of people and obstacles. The algorithm is based on the histogram of oriented gradients and the support vector method. The combination of these methods allows successful selection of dynamic and static objects. The algorithm can be applied in various autonomous mobile robots.

  12. A new technique for robot vision in autonomous underwater vehicles using the color shift in underwater imaging

    Science.gov (United States)

    2017-06-01

    FOR ROBOT VISION IN AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING by Jake A. Jones June 2017 Thesis Advisor...techniques to determine the distances from each pixel to the camera. 14. SUBJECT TERMS unmanned undersea vehicles (UUVs), autonomous ... AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING Jake A. Jones Lieutenant Commander, United States Navy B.S

  13. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    This paper describes a navigation method based on road detection using both a laser scanner and a vision sensor. The method is to classify the surface in front of the robot into traversable segments (road) and obstacles using the laser scanner, this classifies the area just in front of the robot ...

  14. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  15. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  16. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    Palmer, “Development of a navigation system for semi-autonomous operation of wheelchairs,” in Proc. of the 8th IEEE/ASME Int. Conf. on Mechatronic ...and Embedded Systems and Applications, Suzhou, China, 2012, pp. 257-262. [30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM...OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples

  17. A Vision-Based Method for Autonomous Landing of a Rotor-Craft Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Z. Yuan

    2006-01-01

    Full Text Available This article introduces a real-time vision-based method for guided autonomous landing of a rotor-craft unmanned aerial vehicle. In the process of designing the pattern of landing target, we have fully considered how to make this easier for simplified identification and calibration. A linear algorithm was also applied using a three-dimensional structure estimation in real time. In addition, multiple-view vision technology is utilized to calibrate intrinsic parameters of camera online, so calibration prior to flight is unnecessary and the focus of camera can be changed freely in flight, thus upgrading the flexibility and practicality of the method.

  18. Grasping Unknown Objects in an Early Cognitive Vision System

    DEFF Research Database (Denmark)

    Popovic, Mila

    2011-01-01

    Grasping of unknown objects presents an important and challenging part of robot manipulation. The growing area of service robotics depends upon the ability of robots to autonomously grasp and manipulate a wide range of objects in everyday environments. Simple, non task-specific grasps of unknown ...... and comparing vision-based grasping methods, and the creation of algorithms for bootstrapping a process of acquiring world understanding for artificial cognitive agents....... presents a system for robotic grasping of unknown objects us- ing stereo vision. Grasps are defined based on contour and surface information provided by the Early Cognitive Vision System, that organizes visual informa- tion into a biologically motivated hierarchical representation. The contributions...... of the thesis are: the extension of the Early Cognitive Vision representation with a new type of feature hierarchy in the texture domain, the definition and evaluation of contour based grasping methods, the definition and evaluation of surface based grasping methods, the definition of a benchmark for testing...

  19. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  20. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  1. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  2. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  3. Dynamical Systems and Motion Vision.

    Science.gov (United States)

    1988-04-01

    TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is

  4. Imposing limits on autonomous systems.

    Science.gov (United States)

    Hancock, P A

    2017-02-01

    Our present era is witnessing the genesis of a sea-change in the way that advanced technologies operate. Amongst this burgeoning wave of untrammelled automation there is now beginning to arise a cadre of ever-more independent, autonomous systems. The degree of interaction between these latter systems with any form of human controller is becoming progressively more diminished and remote; and this perhaps necessarily so. Here, I advocate for human-centred and human favouring constraints to be designed, programmed, promulgated and imposed upon these nascent forms of independent entity. I am not sanguine about the collective response of modern society to this call. Nevertheless, the warning must be voiced and the issue debated, especially among those who most look to mediate between people and technology. Practitioner Summary: Practitioners are witnessing the penetration of progressively more independent technical orthotics into virtually all systems' operations. This work enjoins them to advocate for sentient, rational and mindful human-centred approaches towards such innovations. Practitioners need to place user-centred concerns above either the technical or the financial imperatives which motivate this line of progress.

  5. Autonomous Operations System: Development and Application

    Science.gov (United States)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  6. Dominant object detection for autonomous vision-based surveillance

    NARCIS (Netherlands)

    Celik, H.

    2010-01-01

    The deployment of visual surveillance and monitoring systems has reached massive proportions. Consequently, a need to automate the processes involved in retrieving useful information from surveillance videos, such as detecting and counting objects, and interpreting their individual and joint

  7. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    system on the helicopter that measures the position of the slung load. The controller is a combined feedforward and feedback scheme for simultaneous avoidance of swing excitation and active swing damping. Simulations and laboratory flight tests show the effectiveness of the combined control system......This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision......, yielding significant load swing reduction compared to the baseline controller....

  8. Autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  9. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  10. Advisory and autonomous cooperative driving systems

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Ploeg, J.; Netten, B.D.

    2011-01-01

    In this paper, the traffic efficiency of an advisory cooperative driving system, Advisory Acceleration Control is examined and compared to the efficiency of an autonomous cooperative driving system, Cooperative Adaptive Cruise Control. The algorithms and implementation thereof are explained. The

  11. The Cardiovascular Autonomic Nervous System and Anaesthesia

    African Journals Online (AJOL)

    QuickSilver

    system that continues to sustain and control our vital organ systems. .... vagal tone and increased sympathetic outflow to the sinus node due to the fall in blood pressure) ... intraoperative autonomic balance of a particular patient population.

  12. Computer vision in control systems

    CERN Document Server

    Jain, Lakhmi

    2015-01-01

    Volume 1 : This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: ·         Morphological Image Analysis for Computer Vision Applications. ·         Methods for Detecting of Structural Changes in Computer Vision Systems. ·         Hierarchical Adaptive KL-based Transform: Algorithms and Applications. ·         Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. ·         A Way of Energy Analysis for Image and Video Sequence Processing. ·         Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. ·         Scene Analysis Using Morphological Mathematics and Fuzzy Logic. ·         Digital Video Stabilization in Static and Dynamic Scenes. ·         Implementation of Hadamard Matrices for Image Processing. ·         A Generalized Criterion ...

  13. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  14. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  15. 14th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Hosoda, Koh; Menegatti, Emanuele; Shimizu, Masahiro; Wang, Hesheng

    2017-01-01

    This book describes the latest research advances, innovations, and visions in the field of robotics as presented by leading researchers, engineers, and practitioners from around the world at the 14th International Conference on Intelligent Autonomous Systems (IAS-14), held in Shanghai, China in July 2016. The contributions amply demonstrate that robots, machines and systems are rapidly achieving intelligence and autonomy, attaining more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision-making. They cover a wide range of research results and applications, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions were selected by means of a rigorous peer-review process and highlight many exciting and visionary ideas that will further galvanize the research community and spur novel research directions. The series of biennial IAS ...

  16. Development of an autonomous power system testbed

    International Nuclear Information System (INIS)

    Barton, J.R.; Adams, T.; Liffring, M.E.

    1985-01-01

    A power system testbed has been assembled to advance the development of large autonomous electrical power systems required for the space station, spacecraft, and aircraft. The power system for this effort was designed to simulate single- or dual-bus autonomous power systems, or autonomous systems that reconfigure from a single bus to a dual bus following a severe fault. The approach taken was to provide a flexible power system design with two computer systems for control and management. One computer operates as the control system and performs basic control functions, data and command processing, charge control, and provides status to the second computer. The second computer contains expert system software for mission planning, load management, fault identification and recovery, and sends load and configuration commands to the control system

  17. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    Directory of Open Access Journals (Sweden)

    Zirui Xu

    Full Text Available This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  18. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    Science.gov (United States)

    Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  19. Stereo-vision-based terrain mapping for off-road autonomous navigation

    Science.gov (United States)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-05-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  20. Position estimation and driving of an autonomous vehicle by monocular vision

    Science.gov (United States)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  1. Shared Perception for Autonomous Systems

    Science.gov (United States)

    2015-08-24

    minivan or sport utility vehicle (SUV) may be around 1.8 meters tall. Next, a height distribution of ~ 1.5, 0.3 was used to project the car detections...Vision, vol. 60, no. 2, 2004, pp. 91–110. 4. N. Snavely, S.M. Seitz, and R. Szeliski, “Photo Tourism : Exploring Photo Collections in 3D,” Proceedings of

  2. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  3. Requirement analysis for autonomous systems and intelligent ...

    African Journals Online (AJOL)

    First we review innovative control architectures in electric power systems such as Microgrids, Virtual power plants and Cell based systems. We evaluate application of autonomous systems and intelligent agents in each of these control architectures particularly in the context of Denmark's strategic energy plans. The second ...

  4. Vision based systems for UAV applications

    CERN Document Server

    Kuś, Zygmunt

    2013-01-01

    This monograph is motivated by a significant number of vision based algorithms for Unmanned Aerial Vehicles (UAV) that were developed during research and development projects. Vision information is utilized in various applications like visual surveillance, aim systems, recognition systems, collision-avoidance systems and navigation. This book presents practical applications, examples and recent challenges in these mentioned application fields. The aim of the book is to create a valuable source of information for researchers and constructors of solutions utilizing vision from UAV. Scientists, researchers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and IC can find many valuable, useful and practical suggestions and solutions. The latest challenges for vision based systems are also presented.

  5. Autonomous Renewable Energy Systems | Van Voorden | Nigerian ...

    African Journals Online (AJOL)

    The problems of having many renewable sources such as wind and solar generating units in a power system are uncontrollable fluctuations in power generation and the difficulty in forecasting the power generation capability of these sources due to their stochastic nature. Therefore, autonomous electricity systems with a ...

  6. Autonomous System Design for Moessbauer Spectra Acquisition

    International Nuclear Information System (INIS)

    Morales, A. L.; Zuluaga, J.; Cely, A.; Tobon, J.

    2001-01-01

    An autonomous system for Moessbauer spectroscopy based in a microcontroller has been designed. A timer of the microcontroller was used to generate the control signal for the Moessbauer linear motor, and a counter for the spectra acquisition. Additionally, the system has its own memory for data storage and a serial port to transmit the data to a computer for its later processing and display

  7. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  8. Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor

    Science.gov (United States)

    Kang, Hee-Jun; Jeong, Jeong-Woo; Shin, Sung-Weon; Suh, Young-Soo; Ro, Young-Schick

    This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The data collected by changing robot configuration and measuring the intersection points are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  9. Shared vision and autonomous motivation vs. financial incentives driving success in corporate acquisitions

    Science.gov (United States)

    Clayton, Byron C.

    2015-01-01

    Successful corporate acquisitions require its managers to achieve substantial performance improvements in order to sufficiently cover acquisition premiums, the expected return of debt and equity investors, and the additional resources needed to capture synergies and accelerate growth. Acquirers understand that achieving the performance improvements necessary to cover these costs and create value for investors will most likely require a significant effort from mergers and acquisitions (M&A) management teams. This understanding drives the common and longstanding practice of offering hefty performance incentive packages to key managers, assuming that financial incentives will induce in-role and extra-role behaviors that drive organizational change and growth. The present study debunks the assumptions of this common M&A practice, providing quantitative evidence that shared vision and autonomous motivation are far more effective drivers of managerial performance than financial incentives. PMID:25610406

  10. Detection and Tracking Strategies for Autonomous Aerial Refuelling Tasks Based on Monocular Vision

    Directory of Open Access Journals (Sweden)

    Yingjie Yin

    2014-07-01

    Full Text Available Detection and tracking strategies based on monocular vision are proposed for autonomous aerial refuelling tasks. The drogue attached to the fuel tanker aircraft has two important features. The grey values of the drogue's inner part are different from the external umbrella ribs, as shown in the image. The shape of the drogue's inner dark part is nearly circular. According to crucial prior knowledge, the rough and fine positioning algorithms are designed to detect the drogue. Particle filter based on the drogue's shape is proposed to track the drogue. A strategy to switch between detection and tracking is proposed to improve the robustness of the algorithms. The inner dark part of the drogue is segmented precisely in the detecting and tracking process and the segmented circular part can be used to measure its spatial position. The experimental results show that the proposed method has good performance in real-time and satisfied robustness and positioning accuracy.

  11. Shared vision and autonomous motivation vs. financial incentives driving success in corporate acquisitions.

    Science.gov (United States)

    Clayton, Byron C

    2014-01-01

    Successful corporate acquisitions require its managers to achieve substantial performance improvements in order to sufficiently cover acquisition premiums, the expected return of debt and equity investors, and the additional resources needed to capture synergies and accelerate growth. Acquirers understand that achieving the performance improvements necessary to cover these costs and create value for investors will most likely require a significant effort from mergers and acquisitions (M&A) management teams. This understanding drives the common and longstanding practice of offering hefty performance incentive packages to key managers, assuming that financial incentives will induce in-role and extra-role behaviors that drive organizational change and growth. The present study debunks the assumptions of this common M&A practice, providing quantitative evidence that shared vision and autonomous motivation are far more effective drivers of managerial performance than financial incentives.

  12. Robot soccer anywhere: achieving persistent autonomous navigation, mapping, and object vision tracking in dynamic environments

    Science.gov (United States)

    Dragone, Mauro; O'Donoghue, Ruadhan; Leonard, John J.; O'Hare, Gregory; Duffy, Brian; Patrikalakis, Andrew; Leederkerken, Jacques

    2005-06-01

    The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem of "Soccer Anywhere" presents numerous research challenges including: (1) Simultaneous Localization and Mapping (SLAM) in dynamic, unstructured environments, (2) software control architectures for decentralized, distributed control of mobile agents, (3) integration of vision-based object tracking with dynamic control, and (4) social interaction with human participants. In addition to the intrinsic research merit of these topics, we believe that this capability would prove useful for outreach activities, in demonstrating robotics technology to primary and secondary school students, to motivate them to pursue careers in science and engineering.

  13. Shared Vision and Autonomous Motivation versus Financial Incentives Driving Success in Corporate Acquisitions

    Directory of Open Access Journals (Sweden)

    Byron C Clayton

    2015-01-01

    Full Text Available Successful corporate acquisitions require its managers to achieve substantial performance improvements in order to sufficiently cover acquisition premiums, the expected return of debt and equity investors, and the additional resources needed to capture synergies and accelerate growth. Acquirers understand that achieving the performance improvements necessary to cover these costs and create value for investors will most likely require a significant effort from mergers and acquisitions (M&A management teams. This understanding drives the common and longstanding practice of offering hefty performance incentive packages to key managers, assuming that financial incentives will induce in-role and extra-role behaviors that drive organizational change and growth. The present study debunks the assumptions of this common M&A practice, providing quantitative evidence that shared vision and autonomous motivation are far more effective drivers of managerial performance than financial incentives.

  14. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens

    2005-01-01

    condition based cleaning. This paper describes how a novel sensor, developed for the purpose, and algorithms for classification and learning are combined with a commercial robot to obtain an autonomous system which meets the necessary quality attributes. These include features to make selective cleaning...

  15. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...

  16. Autonomous system for launch vehicle range safety

    Science.gov (United States)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  17. An Expert System for Autonomous Spacecraft Control

    Science.gov (United States)

    Sherwood, Rob; Chien, Steve; Tran, Daniel; Cichy, Benjamin; Castano, Rebecca; Davies, Ashley; Rabideau, Gregg

    2005-01-01

    The Autonomous Sciencecraft Experiment (ASE), part of the New Millennium Space Technology 6 Project, is flying onboard the Earth Orbiter 1 (EO-1) mission. The ASE software enables EO-1 to autonomously detect and respond to science events such as: volcanic activity, flooding, and water freeze/thaw. ASE uses classification algorithms to analyze imagery onboard to detect chang-e and science events. Detection of these events is then used to trigger follow-up imagery. Onboard mission planning software then develops a response plan that accounts for target visibility and operations constraints. This plan is then executed using a task execution system that can deal with run-time anomalies. In this paper we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations. We will also describe the current experiment status and future plans.

  18. Intelligent Autonomous Systems 11: IAS-11

    NARCIS (Netherlands)

    Christensen, H.I.; Groen, F.; Petriu, E.

    2010-01-01

    This volume contains the proceedings of the eleventh International Conference on Intelligent Autonomous Systems (IAS-11) at the University of Ottawa in Canada. As ever, the purpose of the IAS conference is to bring together leading international researchers with an interest in all aspects of the

  19. IMPROVING CAR NAVIGATION WITH A VISION-BASED SYSTEM

    Directory of Open Access Journals (Sweden)

    H. Kim

    2015-08-01

    Full Text Available The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  20. Improving Car Navigation with a Vision-Based System

    Science.gov (United States)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  1. Validation of Autonomous Space Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — System validation addresses the question "Will the system do the right thing?" When system capability includes autonomy, the question becomes more pointed. As NASA...

  2. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    Science.gov (United States)

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.

  3. CSIR eNews: Mobile Intelligent Autonomous Systems

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available autonomous systems Distinguished scientist from India to share knowledge with CSIR An esteemed scientist from India, Dr Jitendra Raol, will spend the next 14 months at the CSIR, specifically in the mobile intelligence autonomous systems (MIAS) emerging...

  4. Design of a vision-based sensor for autonomous pighouse cleaning

    DEFF Research Database (Denmark)

    Braithwaite, Ian David; Blanke, Mogens; Zhang, Guo-Quiang

    2005-01-01

    of designing a vision-based system to locate dirty areas and subsequently direct a cleaning robot to remove dirt. Novel results include the characterisation of the spectral properties of real surfaces and dirt in a pig house and the design of illumination to obtain discrimination of clean from dirty areas...

  5. Autonomous System Technologies for Resilient Airspace Operations

    Science.gov (United States)

    Houston, Vincent E.; Le Vie, Lisa R.

    2017-01-01

    Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.

  6. Development of autonomous vehicles’ testing system

    Science.gov (United States)

    Ivanov, A. M.; Shadrin, S. S.

    2018-02-01

    This article describes overview of automated and, in perspective, autonomous vehicles’ (AV) implementation risks. Set of activities, actual before the use of AVs on public roads, minimizing negative technical and social problems of AVs’ implementation is presented. Classification of vehicle’s automated control systems operating conditions is formulated. Groups of tests for AVs are developed and justified, sequence of AVs’ testing system formation is proposed.

  7. Safety performance monitoring of autonomous marine systems

    International Nuclear Information System (INIS)

    Thieme, Christoph A.; Utne, Ingrid B.

    2017-01-01

    The marine environment is vast, harsh, and challenging. Unanticipated faults and events might lead to loss of vessels, transported goods, collected scientific data, and business reputation. Hence, systems have to be in place that monitor the safety performance of operation and indicate if it drifts into an intolerable safety level. This article proposes a process for developing safety indicators for the operation of autonomous marine systems (AMS). The condition of safety barriers and resilience engineering form the basis for the development of safety indicators, synthesizing and further adjusting the dual assurance and the resilience based early warning indicator (REWI) approaches. The article locates the process for developing safety indicators in the system life cycle emphasizing a timely implementation of the safety indicators. The resulting safety indicators reflect safety in AMS operation and can assist in planning of operations, in daily operational decision-making, and identification of improvements. Operation of an autonomous underwater vehicle (AUV) exemplifies the process for developing safety indicators and their implementation. The case study shows that the proposed process leads to a comprehensive set of safety indicators. It is expected that application of the resulting safety indicators consequently will contribute to safer operation of current and future AMS. - Highlights: • Process for developing safety indicators for autonomous marine systems. • Safety indicators based on safety barriers and resilience thinking. • Location of the development process in the system lifecycle. • Case study on AUV demonstrating applicability of the process.

  8. Vision systems for scientific and engineering applications

    International Nuclear Information System (INIS)

    Chadda, V.K.

    2009-01-01

    Human performance can get degraded due to boredom, distraction and fatigue in vision-related tasks such as measurement, counting etc. Vision based techniques are increasingly being employed in many scientific and engineering applications. Notable advances in this field are emerging from continuing improvements in the fields of sensors and related technologies, and advances in computer hardware and software. Automation utilizing vision-based systems can perform repetitive tasks faster and more accurately, with greater consistency over time than humans. Electronics and Instrumentation Services Division has developed vision-based systems for several applications to perform tasks such as precision alignment, biometric access control, measurement, counting etc. This paper describes in brief four such applications. (author)

  9. Autonomous systems for plant protection

    DEFF Research Database (Denmark)

    Griepentrog, Hans W.; Ruckelhausen, Arno; Jørgensen, Rasmus N.

    2010-01-01

    Advances in automation are demanded by the market mainly as a response to high labor costs. Robotic outdoor systems are ready to allow not only economically viable operations but also increased efficiency in agriculture, horticulture and forestry. The aim of this chapter is to give examples of au...

  10. Autonomous grain combine control system

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  11. Autonomous Highway Systems Safety and Security

    OpenAIRE

    Sajjad, Imran

    2017-01-01

    Automated vehicles are getting closer each day to large-scale deployment. It is expected that self-driving cars will be able to alleviate traffic congestion by safely operating at distances closer than human drivers are capable of and will overall improve traffic throughput. In these conditions, passenger safety and security is of utmost importance. When multiple autonomous cars follow each other on a highway, they will form what is known as a cyber-physical system. In a general setting, t...

  12. Health system vision of iran in 2025.

    Science.gov (United States)

    Rostamigooran, N; Esmailzadeh, H; Rajabi, F; Majdzadeh, R; Larijani, B; Dastgerdi, M Vahid

    2013-01-01

    Vast changes in disease features and risk factors and influence of demographic, economical, and social trends on health system, makes formulating a long term evolutionary plan, unavoidable. In this regard, to determine health system vision in a long term horizon is a primary stage. After narrative and purposeful review of documentaries, major themes of vision statement were determined and its context was organized in a work group consist of selected managers and experts of health system. Final content of the statement was prepared after several sessions of group discussions and receiving ideas of policy makers and experts of health system. Vision statement in evolutionary plan of health system is considered to be :"a progressive community in the course of human prosperity which has attained to a developed level of health standards in the light of the most efficient and equitable health system in visionary region(1) and with the regarding to health in all policies, accountability and innovation". An explanatory context was compiled either to create a complete image of the vision. Social values and leaders' strategic goals, and also main orientations are generally mentioned in vision statement. In this statement prosperity and justice are considered as major values and ideals in society of Iran; development and excellence in the region as leaders' strategic goals; and also considering efficiency and equality, health in all policies, and accountability and innovation as main orientations of health system.

  13. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  14. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  15. A stereo vision-based obstacle detection system in vehicles

    Science.gov (United States)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  16. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...

  17. Topological equivalence of nonlinear autonomous dynamical systems

    International Nuclear Information System (INIS)

    Nguyen Huynh Phan; Tran Van Nhung

    1995-12-01

    We show in this paper that the autonomous nonlinear dynamical system Σ(A,B,F): x' = Ax+Bu+F(x) is topologically equivalent to the linear dynamical system Σ(A,B,O): x' = Ax+Bu if the projection of A on the complement in R n of the controllable vectorial subspace is hyperbolic and if lipschitz constant of F is sufficiently small ( * ) and F(x) = 0 when parallel x parallel is sufficiently large ( ** ). In particular, if Σ(A,B,O) is controllable, it is topologically equivalent to Σ(A,B,F) when it is only that F satisfy ( ** ). (author). 18 refs

  18. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and in shallow systems the macrophytes can completely dominate primary production. This was despite the fact that the plants in the studied system were light-saturated most of the light hours and occasionally carbon limited. It was also shown that the GPP and the total phytoplankton biomass in a nutrient...

  19. Vision-based map building and trajectory planning to enable autonomous flight through urban environments

    Science.gov (United States)

    Watkins, Adam S.

    The desire to use Unmanned Air Vehicles (UAVs) in a variety of complex missions has motivated the need to increase the autonomous capabilities of these vehicles. This research presents autonomous vision-based mapping and trajectory planning strategies for a UAV navigating in an unknown urban environment. It is assumed that the vehicle's inertial position is unknown because GPS in unavailable due to environmental occlusions or jamming by hostile military assets. Therefore, the environment map is constructed from noisy sensor measurements taken at uncertain vehicle locations. Under these restrictions, map construction becomes a state estimation task known as the Simultaneous Localization and Mapping (SLAM) problem. Solutions to the SLAM problem endeavor to estimate the state of a vehicle relative to concurrently estimated environmental landmark locations. The presented work focuses specifically on SLAM for aircraft, denoted as airborne SLAM, where the vehicle is capable of six degree of freedom motion characterized by highly nonlinear equations of motion. The airborne SLAM problem is solved with a variety of filters based on the Rao-Blackwellized particle filter. Additionally, the environment is represented as a set of geometric primitives that are fit to the three-dimensional points reconstructed from gathered onboard imagery. The second half of this research builds on the mapping solution by addressing the problem of trajectory planning for optimal map construction. Optimality is defined in terms of maximizing environment coverage in minimum time. The planning process is decomposed into two phases of global navigation and local navigation. The global navigation strategy plans a coarse, collision-free path through the environment to a goal location that will take the vehicle to previously unexplored or incompletely viewed territory. The local navigation strategy plans detailed, collision-free paths within the currently sensed environment that maximize local coverage

  20. ADRES : autonomous decentralized regenerative energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, G.; Einfalt, A.; Leitinger, C.; Tiefgraber, D. [Vienna Univ. of Technology (Austria)

    2007-07-01

    The autonomous decentralized regenerative energy systems (ADRES) research project demonstrates that decentralized network independent microgrids are the target power systems of the future. This paper presented a typical structure of a microgrid, demonstrating that all types of generation available can be integrated, from wind and small hydro to photovoltaic, fuel cell, biomass or biogas operated stirling motors and micro turbines. In grid connected operation the balancing energy and reactive power for voltage control will come from the public grid. If there is no interconnection to a superior grid, it will form an autonomous micro grid. In order to reduce peak power demand and base energy, autonomous microgrid technology requires highly efficient appliances. Otherwise large collector design, high storage and balancing generation capacities would be necessary, which would increase costs. End-use energy efficiency was discussed with reference to demand side management (DSM) strategies that match energy demand with actual supply in order to minimize the storage size needed. This paper also discussed network controls that comprise active and reactive power. Decentralized robust algorithms were investigated with reference to black-start ability and congestion management features. It was concluded that the trend to develop small decentralized grids in parallel to existing large systems will improve security of supply and reduce greenhouse gas emissions. Decentralized grids will also increase energy efficiency because regenerative energy will be used where it is collected in the form of electricity and heat, thus avoiding transport and the extension of transmission lines. Decentralized energy technology is now becoming more economic by efficient and economic mass production of components. Although decentralized energy technology requires energy automation, computer intelligence is becoming increasingly cost efficient. 2 refs., 4 figs.

  1. AN INVESTIGATION OF VISION PROBLEMS AND THE VISION CARE SYSTEM IN RURAL CHINA.

    Science.gov (United States)

    Bai, Yunli; Yi, Hongmei; Zhang, Linxiu; Shi, Yaojiang; Ma, Xiaochen; Congdon, Nathan; Zhou, Zhongqiang; Boswell, Matthew; Rozelle, Scott

    2014-11-01

    This paper examines the prevalence of vision problems and the accessibility to and quality of vision care in rural China. We obtained data from 4 sources: 1) the National Rural Vision Care Survey; 2) the Private Optometrists Survey; 3) the County Hospital Eye Care Survey; and 4) the Rural School Vision Care Survey. The data from each of the surveys were collected by the authors during 2012. Thirty-three percent of the rural population surveyed self-reported vision problems. Twenty-two percent of subjects surveyed had ever had a vision exam. Among those who self-reported having vision problems, 34% did not wear eyeglasses. Fifty-four percent of those with vision problems who had eyeglasses did not have a vision exam prior to receiving glasses. However, having a vision exam did not always guarantee access to quality vision care. Four channels of vision care service were assessed. The school vision examination program did not increase the usage rate of eyeglasses. Each county-hospital was staffed with three eye-doctors having one year of education beyond high school, serving more than 400,000 residents. Private optometrists often had low levels of education and professional certification. In conclusion, our findings shows that the vision care system in rural China is inadequate and ineffective in meeting the needs of the rural population sampled.

  2. Autonomic dysfunction in different subtypes of multiple system atrophy.

    Science.gov (United States)

    Schmidt, Claudia; Herting, Birgit; Prieur, Silke; Junghanns, Susann; Schweitzer, Katherine; Globas, Christoph; Schöls, Ludger; Reichmann, Heinz; Berg, Daniela; Ziemssen, Tjalf

    2008-09-15

    Multiple system atrophy (MSA) can clinically be divided into the cerebellar (MSA-C) and the parkinsonian (MSA-P) variant. However, till now, it is unknown whether autonomic dysfunction in these two entities differs regarding severity and profile. We compared the pattern of autonomic dysfunction in 12 patients with MSA-C and 26 with MSA-P in comparison with 27 age- and sex-matched healthy controls using a standard battery of autonomic function tests and a structured anamnesis of the autonomic nervous system. MSA-P patients complained significantly more often about the symptoms of autonomic dysfunctions than MSA-C patients, especially regarding vasomotor, secretomotor, and gastrointestinal subsystems. However, regarding cardiovascular, sudomotor pupil, urogenital, and sleep subsystems, there were no significant quantitative or qualitative differences as analyzed by autonomic anamnesis and testing. Our results suggest that there are only minor differences in the pattern of autonomic dysfunction between the two clinical MSA phenotypes. (c) 2007 Movement Disorder Society.

  3. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  4. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  5. Missileborne Artificial Vision System (MAVIS)

    Science.gov (United States)

    Andes, David K.; Witham, James C.; Miles, Michael D.

    1994-01-01

    Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be the only way to do high density neural computing. In the last five years, however, digital parallel processing chips capable of performing neural computation functions have evolved to the point of rough equality with analog chips in system level computational density. The Naval Air Warfare Center, China Lake, has developed a real time, hardware and software system designed to implement and evaluate biologically inspired retinal and cortical models. The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards. Each COHO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at 20 MHz in a SIMD configuration. Each COHO board has a companion board built to support a real time VSB interface to an imaging seeker, a NTSC camera, and to other COHO boards. The system is designed to have multiple SIMD machines each performing different corticomorphic functions. The system level software has been developed which allows a high level description of corticomorphic structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are those neural structures with a form similar to that of the retina, the lateral geniculate nucleus, or the visual cortex. This real time hardware system is designed to be shrunk into a volume compatible with air launched tactical missiles. Initial versions of the software and hardware have been completed and are in the early stages of integration with a missile seeker.

  6. Vision enhanced navigation for unmanned systems

    Science.gov (United States)

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on

  7. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... at a constant rate ignoring the spatial variability in weed, soil, and crop. Sensing with a guided vehicle allow cost effective mapping of field variability and inputs may be adjusted accordingly. Essential to such a vehicle is real-time localization. GPS allow precise absolute sensing but it is not practical...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...

  8. Automatic Parking Based on a Bird's Eye View Vision System

    Directory of Open Access Journals (Sweden)

    Chunxiang Wang

    2014-03-01

    Full Text Available This paper aims at realizing an automatic parking method through a bird's eye view vision system. With this method, vehicles can make robust and real-time detection and recognition of parking spaces. During parking process, the omnidirectional information of the environment can be obtained by using four on-board fisheye cameras around the vehicle, which are the main part of the bird's eye view vision system. In order to achieve this purpose, a polynomial fisheye distortion model is firstly used for camera calibration. An image mosaicking method based on the Levenberg-Marquardt algorithm is used to combine four individual images from fisheye cameras into one omnidirectional bird's eye view image. Secondly, features of the parking spaces are extracted with a Radon transform based method. Finally, double circular trajectory planning and a preview control strategy are utilized to realize autonomous parking. Through experimental analysis, we can see that the proposed method can get effective and robust real-time results in both parking space recognition and automatic parking.

  9. Sohbrit: Autonomous COTS System for Satellite Characterization

    Science.gov (United States)

    Blazier, N.; Tarin, S.; Wells, M.; Brown, N.; Nandy, P.; Woodbury, D.

    As technology continues to improve, driving down the cost of commercial astronomical products while increasing their capabilities, manpower to run observations has become the limiting factor in acquiring continuous and repeatable space situational awareness data. Sandia National Laboratories set out to automate a testbed comprised entirely of commercial off-the-shelf (COTS) hardware for space object characterization (SOC) focusing on satellites in geosynchronous orbit. Using an entirely autonomous system allows collection parameters such as target illumination and nightly overlap to be accounted for habitually; this enables repeatable development of target light curves to establish patterns of life in a variety of spectral bands. The system, known as Sohbrit, is responsible for autonomously creating an optimized schedule, checking the weather, opening the observatory dome, aligning and focusing the telescope, executing the schedule by slewing to each target and imaging it in a number of spectral bands (e.g., B, V, R, I, wide-open) via a filter wheel, closing the dome at the end of observations, processing the data, and storing/disseminating the data for exploitation via the web. Sohbrit must handle various situations such as weather outages and focus changes due to temperature shifts and optical seeing variations without human interaction. Sohbrit can collect large volumes of data nightly due to its high level of automation. To store and disseminate these large quantities of data, we utilize a cloud-based big data architecture called Firebird, which exposes the data out to the community for use by developers and analysts. Sohbrit is the first COTS system we are aware of to automate the full process of multispectral geosynchronous characterization from scheduling all the way to processed, disseminated data. In this paper we will discuss design decisions, issues encountered and overcome during implementation, and show results produced by Sohbrit.

  10. A Secure, Scalable and Elastic Autonomic Computing Systems Paradigm: Supporting Dynamic Adaptation of Self-* Services from an Autonomic Cloud

    Directory of Open Access Journals (Sweden)

    Abdul Jaleel

    2018-05-01

    Full Text Available Autonomic computing embeds self-management features in software systems using external feedback control loops, i.e., autonomic managers. In existing models of autonomic computing, adaptive behaviors are defined at the design time, autonomic managers are statically configured, and the running system has a fixed set of self-* capabilities. An autonomic computing design should accommodate autonomic capability growth by allowing the dynamic configuration of self-* services, but this causes security and integrity issues. A secure, scalable and elastic autonomic computing system (SSE-ACS paradigm is proposed to address the runtime inclusion of autonomic managers, ensuring secure communication between autonomic managers and managed resources. Applying the SSE-ACS concept, a layered approach for the dynamic adaptation of self-* services is presented with an online ‘Autonomic_Cloud’ working as the middleware between Autonomic Managers (offering the self-* services and Autonomic Computing System (requiring the self-* services. A stock trading and forecasting system is used for simulation purposes. The security impact of the SSE-ACS paradigm is verified by testing possible attack cases over the autonomic computing system with single and multiple autonomic managers running on the same and different machines. The common vulnerability scoring system (CVSS metric shows a decrease in the vulnerability severity score from high (8.8 for existing ACS to low (3.9 for SSE-ACS. Autonomic managers are introduced into the system at runtime from the Autonomic_Cloud to test the scalability and elasticity. With elastic AMs, the system optimizes the Central Processing Unit (CPU share resulting in an improved execution time for business logic. For computing systems requiring the continuous support of self-management services, the proposed system achieves a significant improvement in security, scalability, elasticity, autonomic efficiency, and issue resolving time

  11. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  12. One-dimensional autonomous systems and dissipative systems

    International Nuclear Information System (INIS)

    Lopez, G.

    1996-01-01

    The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc

  13. Sweden: Autonomous Reactivity Control (ARC) Systems

    International Nuclear Information System (INIS)

    Qvist, Staffan A.

    2015-01-01

    The next generation of nuclear energy systems must be licensed, constructed, and operated in a manner that will provide a competitively priced supply of energy, keeping in consideration an optimum use of natural resources, while addressing nuclear safety, waste, and proliferation resistance, and the public perception concerns of the countries in which those systems are deployed. These issues are tightly interconnected, and the implementation of passive and inherent safety features is a high priority in all modern reactor designs since it helps to tackle many of the issues at once. To this end, the Autonomous Reactivity Control (ARC) system was developed to ensure excellent inherent safety performance of Generation-IV reactors while having a minimal impact on core performance and economic viability. This paper covers the principles for ARC system design and analysis, the problem of ensuring ARC system response stability and gives examples of the impact of installing ARC systems in well-known fast reactor core systems. It is shown that even with a relatively modest ARC installation, having a near-negligible impact on core performance during standard operation, cores such as the European Sodium Fast Reactor (ESFR) can be made to survive any postulated unprotected transient without coolant boiling or fuel melting

  14. Autonomous Formations of Multi-Agent Systems

    Science.gov (United States)

    Dhali, Sanjana; Joshi, Suresh M.

    2013-01-01

    Autonomous formation control of multi-agent dynamic systems has a number of applications that include ground-based and aerial robots and satellite formations. For air vehicles, formation flight ("flocking") has the potential to significantly increase airspace utilization as well as fuel efficiency. This presentation addresses two main problems in multi-agent formations: optimal role assignment to minimize the total cost (e.g., combined distance traveled by all agents); and maintaining formation geometry during flock motion. The Kuhn-Munkres ("Hungarian") algorithm is used for optimal assignment, and consensus-based leader-follower type control architecture is used to maintain formation shape despite the leader s independent movements. The methods are demonstrated by animated simulations.

  15. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  16. Mechanical deployment system on aries an autonomous mobile robot

    International Nuclear Information System (INIS)

    Rocheleau, D.N.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail

  17. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  18. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  19. Digital Autonomous Terminal Access Communication (DATAC) system

    Science.gov (United States)

    Novacki, Stanley M., III

    1987-01-01

    In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.

  20. Design of an Autonomous Transport System for Coastal Areas

    Directory of Open Access Journals (Sweden)

    Andrzej Lebkowski

    2018-03-01

    Full Text Available The article presents a project of an autonomous transport system that can be deployed in coastal waters, bays or between islands. Presented solutions and development trends in the transport of autonomous and unmanned units (ghost ships are presented. The structure of the control system of autonomous units is discussed together with the presentation of applied solutions in the field of artificial intelligence. The paper presents the concept of a transport system consisting of autonomous electric powered vessels designed to carry passengers, bikes, mopeds, motorcycles or passenger cars. The transport task is to be implemented in an optimal way, that is, most economically and at the same time as safe as possible. For this reason, the structure of the electric propulsion system that can be found on such units is shown. The results of simulation studies of autonomous system operation using simulator of marine navigational environment are presented.

  1. 12th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Cho, Hyungsuck; Yoon, Kwang-Joon; Lee, Jangmyung

    2013-01-01

    Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of “Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security ...

  2. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  3. Semiautonomous teleoperation system with vision guidance

    Science.gov (United States)

    Yu, Wai; Pretlove, John R. G.

    1998-12-01

    This paper describes the ongoing research work on developing a telerobotic system in Mechatronic Systems and Robotics Research group at the University of Surrey. As human operators' manual control of remote robots always suffer from reduced performance and difficulties in perceiving information from the remote site, a system with a certain level of intelligence and autonomy will help to solve some of these problems. Thus, this system has been developed for this purpose. It also serves as an experimental platform to test the idea of using the combination of human and computer intelligence in teleoperation and finding out the optimum balance between them. The system consists of a Polhemus- based input device, a computer vision sub-system and a graphical user interface which communicates the operator with the remote robot. The system description is given in this paper as well as the preliminary experimental results of the system evaluation.

  4. Lightweight autonomous chemical identification system (LACIS)

    Science.gov (United States)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  5. Multi-channel automotive night vision system

    Science.gov (United States)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  6. Wireless IR Image Transfer System for Autonomous Vehicles

    Science.gov (United States)

    2003-12-01

    the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received

  7. Autonomous Segmentation of Outcrop Images Using Computer Vision and Machine Learning

    Science.gov (United States)

    Francis, R.; McIsaac, K.; Osinski, G. R.; Thompson, D. R.

    2013-12-01

    As planetary exploration missions become increasingly complex and capable, the motivation grows for improved autonomous science. New capabilities for onboard science data analysis may relieve radio-link data limits and provide greater throughput of scientific information. Adaptive data acquisition, storage and downlink may ultimately hold implications for mission design and operations. For surface missions, geology remains an essential focus, and the investigation of in place, exposed geological materials provides the greatest scientific insight and context for the formation and history of planetary materials and processes. The goal of this research program is to develop techniques for autonomous segmentation of images of rock outcrops. Recognition of the relationships between different geological units is the first step in mapping and interpreting a geological setting. Applications of automatic segmentation include instrument placement and targeting and data triage for downlink. Here, we report on the development of a new technique in which a photograph of a rock outcrop is processed by several elementary image processing techniques, generating a feature space which can be interrogated and classified. A distance metric learning technique (Multiclass Discriminant Analysis, or MDA) is tested as a means of finding the best numerical representation of the feature space. MDA produces a linear transformation that maximizes the separation between data points from different geological units. This ';training step' is completed on one or more images from a given locality. Then we apply the same transformation to improve the segmentation of new scenes containing similar materials to those used for training. The technique was tested using imagery from Mars analogue settings at the Cima volcanic flows in the Mojave Desert, California; impact breccias from the Sudbury impact structure in Ontario, Canada; and an outcrop showing embedded mineral veins in Gale Crater on Mars

  8. Cislunar Autonomous Positioning System (CAPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent efforts led by the PI of this proposal have studied the benefits of a satellite navigation technique known as Linked Autonomous Interplanetary Satellite Orbit...

  9. Data Provisioning Systems for Autonomous Vehicles

    National Research Council Canada - National Science Library

    Varaiya, Pravin

    1999-01-01

    This project is part of a portfolio comprising four other projects to investigate the possibility of operating a collection of intelligent autonomous agents so that the collection can undertakes complex missions...

  10. Future Autonomous and Automated Systems Testbed

    Data.gov (United States)

    National Aeronautics and Space Administration — Trust is the greatest obstacle to implementing greater autonomy and automation (A&A) in the human spaceflight program. The Future Autonomous and Automated...

  11. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  12. 50-57 Effects of the Autonomic Nervous System, Centra

    African Journals Online (AJOL)

    admin

    facilitation of absorption process and expulsion of the undigested food material through ... which is associated with the enteric nervous system , autonomic nervous system and the higher ..... short-chain neutralized fatty acids and 5-HT or radial ...

  13. 12th International Conference on Intelligent Autonomous Systems (IAS-12)

    CERN Document Server

    Yoon, Kwang-Joon; Lee, Jangmyung; Frontiers of Intelligent Autonomous Systems

    2013-01-01

    This carefully edited volume aims at providing readers with the most recent progress on intelligent autonomous systems, with its particular emphasis on intelligent autonomous ground, aerial and underwater vehicles as well as service robots for home and healthcare under the context of the aforementioned convergence. “Frontiers of Intelligent Autonomous Systems” includes thoroughly revised and extended papers selected from the 12th International Conference on Intelligent Autonomous Systems (IAS-12), held in Jeju, Korea, June 26-29, 2012. The editors chose 35 papers out of the 202 papers presented at IAS-12 which are organized into three chapters: Chapter 1 is dedicated to autonomous navigation and mobile manipulation, Chapter 2 to unmanned aerial and underwater vehicles and Chapter 3 to service robots for home and healthcare. To help the readers to easily access this volume, each chapter starts with a chapter summary introduced by one of the editors: Chapter 1 by Sukhan Lee, Chapter 2 by Kwang Joon Yoon and...

  14. Synthetic vision systems: operational considerations simulation experiment

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-04-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents / accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  15. Synthetic Vision Systems - Operational Considerations Simulation Experiment

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-01-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents/accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  16. Vision-based obstacle recognition system for automated lawn mower robot development

    Science.gov (United States)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  17. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    Science.gov (United States)

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  18. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  19. Star tracker and vision systems performance in a high radiation environment

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Riis, Troels; Betto, Maurizio

    1999-01-01

    A part of the payload of the second Ariane 5 prototype vehicle to be launched by Arianespace, was a small technology demonstration satellite. On October 30th, 1997, this test satellite, dubbed Teamsat, was launched into Geostationary Transfer Orbit and would as such pass the Van Allen radiation...... belts twice per orbit. One of the experiments onboard Teamsat was the so-called Autonomous Vision System (AVS). The AVS instrument is a fully autonomous star tracker with several advanced features for non-stellar object detection and tracking, real-time image compression and transmission. The objectives...... for the AVS in Teamsat were to test these functions, to validate their autonomous operation in space, and to assess the operational constraints of a high radiation environment on such processes. This paper describes the AVS experiment, and the radiation flux experienced onboard TEAMSAT. This overview...

  20. DLP™-based dichoptic vision test system

    Science.gov (United States)

    Woods, Russell L.; Apfelbaum, Henry L.; Peli, Eli

    2010-01-01

    It can be useful to present a different image to each of the two eyes while they cooperatively view the world. Such dichoptic presentation can occur in investigations of stereoscopic and binocular vision (e.g., strabismus, amblyopia) and vision rehabilitation in clinical and research settings. Various techniques have been used to construct dichoptic displays. The most common and most flexible modern technique uses liquid-crystal (LC) shutters. When used in combination with cathode ray tube (CRT) displays, there is often leakage of light from the image intended for one eye into the view of the other eye. Such interocular crosstalk is 14% even in our state of the art CRT-based dichoptic system. While such crosstalk may have minimal impact on stereo movie or video game experiences, it can defeat clinical and research investigations. We use micromirror digital light processing (DLP™) technology to create a novel dichoptic visual display system with substantially lower interocular crosstalk (0.3% remaining crosstalk comes from the LC shutters). The DLP system normally uses a color wheel to display color images. Our approach is to disable the color wheel, synchronize the display directly to the computer's sync signal, allocate each of the three (former) color presentations to one or both eyes, and open and close the LC shutters in synchrony with those color events.

  1. From Autonomous Systems to Sociotechnical Systems: Designing Effective Collaborations

    Directory of Open Access Journals (Sweden)

    Kyle J. Behymer

    Full Text Available Effectiveness in sociotechnical systems often depends on coordination among multiple agents (including both humans and autonomous technologies. This means that autonomous technologies must be designed to function as collaborative systems, or team players. In many complex work domains, success is beyond the capabilities of humans unaided by technologies. However, at the same time, human capabilities are often critical to ultimate success, as all automated control systems will eventually face problems their designers did not anticipate. Unfortunately, there is often an either/or attitude with respect to humans and technology that tends to focus on optimizing the separate human and autonomous components, with the design of interfaces and team processes as an afterthought. The current paper discusses the limitations of this approach and proposes an alternative where the goal of design is a seamless integration of human and technological capabilities into a well-functioning sociotechnical system. Drawing lessons from both the academic (SRK Framework and commercial (IBM’s Watson, video games worlds, suggestions for enriching the coupling between the human and automated systems by considering both technical and social aspects are discussed.

  2. Ground Stereo Vision-Based Navigation for Autonomous Take-off and Landing of UAVs: A Chan-Vese Model Approach

    Directory of Open Access Journals (Sweden)

    Dengqing Tang

    2016-04-01

    Full Text Available This article aims at flying target detection and localization of a fixed-wing unmanned aerial vehicle (UAV autonomous take-off and landing within Global Navigation Satellite System (GNSS-denied environments. A Chan-Vese model–based approach is proposed and developed for ground stereo vision detection. Extended Kalman Filter (EKF is fused into state estimation to reduce the localization inaccuracy caused by measurement errors of object detection and Pan-Tilt unit (PTU attitudes. Furthermore, the region-of-interest (ROI setting up is conducted to improve the real-time capability. The present work contributes to real-time, accurate and robust features, compared with our previous works. Both offline and online experimental results validate the effectiveness and better performances of the proposed method against the traditional triangulation-based localization algorithm.

  3. Embedded Active Vision System Based on an FPGA Architecture

    Directory of Open Access Journals (Sweden)

    Chalimbaud Pierre

    2007-01-01

    Full Text Available In computer vision and more particularly in vision processing, the impressive evolution of algorithms and the emergence of new techniques dramatically increase algorithm complexity. In this paper, a novel FPGA-based architecture dedicated to active vision (and more precisely early vision is proposed. Active vision appears as an alternative approach to deal with artificial vision problems. The central idea is to take into account the perceptual aspects of visual tasks, inspired by biological vision systems. For this reason, we propose an original approach based on a system on programmable chip implemented in an FPGA connected to a CMOS imager and an inertial set. With such a structure based on reprogrammable devices, this system admits a high degree of versatility and allows the implementation of parallel image processing algorithms.

  4. Embedded Active Vision System Based on an FPGA Architecture

    Directory of Open Access Journals (Sweden)

    Pierre Chalimbaud

    2006-12-01

    Full Text Available In computer vision and more particularly in vision processing, the impressive evolution of algorithms and the emergence of new techniques dramatically increase algorithm complexity. In this paper, a novel FPGA-based architecture dedicated to active vision (and more precisely early vision is proposed. Active vision appears as an alternative approach to deal with artificial vision problems. The central idea is to take into account the perceptual aspects of visual tasks, inspired by biological vision systems. For this reason, we propose an original approach based on a system on programmable chip implemented in an FPGA connected to a CMOS imager and an inertial set. With such a structure based on reprogrammable devices, this system admits a high degree of versatility and allows the implementation of parallel image processing algorithms.

  5. Cardiovascular Autonomic Neuropathy in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Alam, Md Mahboob; Das, Pinaki; Ghosh, Parasar; Zaman, Md Salim Uz; Boro, Madhusmita; Sadhu, Manika; Mazumdar, Ardhendu

    2015-01-01

    Objective is to evaluate cardiovascular autonomic function in SLE by simple non-invasive tests. A case control study was carried out involving 18-50 yrs old previously diagnosed SLE patients and same number of age and sex-matched controls. Parasympathetic function was assessed by heart rate (HR) response to Valsalva maneuver, deep breathing and standing. Sympathetic function was evaluated by blood pressure response to standing and sustained hand-grip test (HGT). There were 50 female SLE patients. They had significantly higher minimum resting HR and diastolic blood pressure (DBP). HR variation with deep breathing, expiratory inspiratory ratio, 30:15 ratio and DBP change in response to HGT were significantly lower inpatients compared to controls. Thirty patients (60%) had at least one abnormal or two borderline test results indicating autonomic impairment of which 27 had parasympathetic dysfunction and 7 had sympathetic dysfunction. Autonomic dysfunction is common in SLE with higher prevalence of parasympathetic impairment.

  6. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.

    Science.gov (United States)

    Walter, Matthias; Krassioukov, Andrei V

    2018-05-01

    Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A System for Fast Navigation of Autonomous Vehicles

    Science.gov (United States)

    1991-09-01

    AD-A243 523 4, jj A System for Fast Navigation of Autonomous Vehicles Sanjiv Singh, Dai Feng, Paul Keller, Gary Shaffer, Wen Fan Shi, Dong Hun Shin...FUNDING NUMBERS A System for Fast Navigation of Autonomous Vehicles 6. AUTHOR(S) S. Singh, D. Feng, P. Keller, G. Shaffer, W.F. Shi, D.H. Shin, J. West...common in the control of autonomous vehicles to establish the necessary kinematic models but to ignore an explicit representation of the vehicle dynamics

  8. Integration Framework for Building Autonomous Intelligent Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many challenges of Mars exploration is the creation of autonomous systems that support crew activities without reliance on Earth mission control. These...

  9. Self-Organizing and Autonomous Learning Agents and Systems

    National Research Council Canada - National Science Library

    Shen, Wei-Min

    2004-01-01

    ...) Autonomous discovery and response to unexpected topology changes; (2) A new distributed functional language called DH2 for programming of self-reconfigurable systems using hormone-inspired computational methods...

  10. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  11. A Vision in Jeopardy: Royal Navy Maritime Autonomous Systems (MAS)

    Science.gov (United States)

    2017-03-31

    Change .....................................................................................................32 Hedging our Bets ̶ What if we are Wrong... think , out decide and 5 United Kingdom, Ministry of Defence, British Maritime Doctrine, 4th...needs organizational slack in the form of money, people, and time to think beyond the immediate. 9 The Strategic Defence Review 2015 can be found

  12. An autonomic security monitor for distributed operating systems

    OpenAIRE

    Arenas, A.; Aziz, Benjamin; Maj, S.; Matthews, B.

    2011-01-01

    This paper presents an autonomic system for the monitoring of security-relevant information in a Grid-based operating system. The system implements rule-based policies using Java Drools. Policies are capable of controlling the system environment based on changes in levels of CPU/memory usage, accesses to system resources, detection of abnormal behaviour such as DDos attacks.

  13. A Machine Vision System for Automatically Grading Hardwood Lumber - (Proceedings)

    Science.gov (United States)

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; Philip A. Araman; Robert L. Brisbon

    1990-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  14. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  15. Hi-Vision telecine system using pickup tube

    Science.gov (United States)

    Iijima, Goro

    1992-08-01

    Hi-Vision broadcasting, offering far more lifelike pictures than those produced by existing television broadcasting systems, has enormous potential in both industrial and commercial fields. The dissemination of the Hi-Vision system will enable vivid, movie theater quality pictures to be readily enjoyed in homes in the near future. To convert motion film pictures into Hi-Vision signals, a telecine system is needed. The Hi-Vision telecine systems currently under development are the "laser telecine," "flying-spot telecine," and "Saticon telecine" systems. This paper provides an overview of the pickup tube type Hi-Vision telecine system (referred to herein as the Saticon telecine system) developed and marketed by Ikegami Tsushinki Co., Ltd.

  16. Development of an Automatic Identification System Autonomous Positioning System

    Directory of Open Access Journals (Sweden)

    Qing Hu

    2015-11-01

    Full Text Available In order to overcome the vulnerability of the global navigation satellite system (GNSS and provide robust position, navigation and time (PNT information in marine navigation, the autonomous positioning system based on ranging-mode Automatic Identification System (AIS is presented in the paper. The principle of the AIS autonomous positioning system (AAPS is investigated, including the position algorithm, the signal measurement technique, the geometric dilution of precision, the time synchronization technique and the additional secondary factor correction technique. In order to validate the proposed AAPS, a verification system has been established in the Xinghai sea region of Dalian (China. Static and dynamic positioning experiments are performed. The original function of the AIS in the AAPS is not influenced. The experimental results show that the positioning precision of the AAPS is better than 10 m in the area with good geometric dilution of precision (GDOP by the additional secondary factor correction technology. This is the most economical solution for a land-based positioning system to complement the GNSS for the navigation safety of vessels sailing along coasts.

  17. Intelligent Computer Vision System for Automated Classification

    International Nuclear Information System (INIS)

    Jordanov, Ivan; Georgieva, Antoniya

    2010-01-01

    In this paper we investigate an Intelligent Computer Vision System applied for recognition and classification of commercially available cork tiles. The system is capable of acquiring and processing gray images using several feature generation and analysis techniques. Its functionality includes image acquisition, feature extraction and preprocessing, and feature classification with neural networks (NN). We also discuss system test and validation results from the recognition and classification tasks. The system investigation also includes statistical feature processing (features number and dimensionality reduction techniques) and classifier design (NN architecture, target coding, learning complexity and performance, and training with our own metaheuristic optimization method). The NNs trained with our genetic low-discrepancy search method (GLPτS) for global optimisation demonstrated very good generalisation abilities. In our view, the reported testing success rate of up to 95% is due to several factors: combination of feature generation techniques; application of Analysis of Variance (ANOVA) and Principal Component Analysis (PCA), which appeared to be very efficient for preprocessing the data; and use of suitable NN design and learning method.

  18. Vision Systems with the Human in the Loop

    Science.gov (United States)

    Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard

    2005-12-01

    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.

  19. Vision Systems with the Human in the Loop

    Directory of Open Access Journals (Sweden)

    Bauckhage Christian

    2005-01-01

    Full Text Available The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.

  20. Autonomous Car Parking System through a Cooperative Vehicular Positioning Network.

    Science.gov (United States)

    Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose

    2017-04-13

    The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car.

  1. Autonomous Car Parking System through a Cooperative Vehicular Positioning Network

    Science.gov (United States)

    Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose

    2017-01-01

    The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car. PMID:28406426

  2. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice

    Directory of Open Access Journals (Sweden)

    Liu Kang-Jen

    2011-01-01

    Full Text Available Abstract Background Dystonia musculorum (dt is an autosomal recessive hereditary neuropathy with a characteristic uncoordinated movement and is caused by a defect in the bullous pemphigoid antigen 1 (BPAG1 gene. The neural isoform of BPAG1 is expressed in various neurons, including those in the central and peripheral nerve systems of mice. However, most previous studies on neuronal degeneration in BPAG1-deficient mice focused on peripheral sensory neurons and only limited investigation of the autonomic system has been conducted. Methods In this study, patterns of nerve innervation in cutaneous and iridial tissues were examined using general neuronal marker protein gene product 9.5 via immunohistochemistry. To perform quantitative analysis of the autonomic neuronal number, neurons within the lumbar sympathetic and parasympathetic ciliary ganglia were calculated. In addition, autonomic neurons were cultured from embryonic dt/dt mutants to elucidate degenerative patterns in vitro. Distribution patterns of neuronal intermediate filaments in cultured autonomic neurons were thoroughly studied under immunocytochemistry and conventional electron microscopy. Results Our immunohistochemistry results indicate that peripheral sensory nerves and autonomic innervation of sweat glands and irises dominated degeneration in dt/dt mice. Quantitative results confirmed that the number of neurons was significantly decreased in the lumbar sympathetic ganglia as well as in the parasympathetic ciliary ganglia of dt/dt mice compared with those of wild-type mice. We also observed that the neuronal intermediate filaments were aggregated abnormally in cultured autonomic neurons from dt/dt embryos. Conclusions These results suggest that a deficiency in the cytoskeletal linker BPAG1 is responsible for dominant sensory nerve degeneration and severe autonomic degeneration in dt/dt mice. Additionally, abnormally aggregated neuronal intermediate filaments may participate in

  3. Machine Vision Systems for Processing Hardwood Lumber and Logs

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline

    1992-01-01

    Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...

  4. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  5. Improving Human/Autonomous System Teaming Through Linguistic Analysis

    Science.gov (United States)

    Meszaros, Erica L.

    2016-01-01

    An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.

  6. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  7. Intensity measurement of automotive headlamps using a photometric vision system

    Science.gov (United States)

    Patel, Balvant; Cruz, Jose; Perry, David L.; Himebaugh, Frederic G.

    1996-01-01

    Requirements for automotive head lamp luminous intensity tests are introduced. The rationale for developing a non-goniometric photometric test system is discussed. The design of the Ford photometric vision system (FPVS) is presented, including hardware, software, calibration, and system use. Directional intensity plots and regulatory test results obtained from the system are compared to corresponding results obtained from a Ford goniometric test system. Sources of error for the vision system and goniometer are discussed. Directions for new work are identified.

  8. Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work

    Science.gov (United States)

    Baldassari, James D.; Kopec, Christopher L.; Leshay, Eric S.; Truszkowski, Walt; Finkel, David

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of achieving significant computational capabilities for high-performance computing applications, while simultaneously affording the ability to. increase that capability simply by adding more (inexpensive) processors. However, the task of manually managing and con.guring a cluster quickly becomes impossible as the cluster grows in size. Autonomic computing is a relatively new approach to managing complex systems that can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Automatic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management.

  9. Truly random dynamics generated by autonomous dynamical systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.

    2001-09-01

    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.

  10. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera's performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  11. Integrated vision-based GNC for autonomous rendezvous and capture around Mars

    Science.gov (United States)

    Strippoli, L.; Novelli, G.; Gil Fernandez, J.; Colmenarejo, P.; Le Peuvedic, C.; Lanza, P.; Ankersen, F.

    2015-06-01

    Integrated GNC (iGNC) is an activity aimed at designing, developing and validating the GNC for autonomously performing the rendezvous and capture phase of the Mars sample return mission as defined during the Mars sample return Orbiter (MSRO) ESA study. The validation cycle includes testing in an end-to-end simulator, in a real-time avionics-representative test bench and, finally, in a dynamic HW in the loop test bench for assessing the feasibility, performances and figure of merits of the baseline approach defined during the MSRO study, for both nominal and contingency scenarios. The on-board software (OBSW) is tailored to work with the sensors, actuators and orbits baseline proposed in MSRO. The whole rendezvous is based on optical navigation, aided by RF-Doppler during the search and first orbit determination of the orbiting sample. The simulated rendezvous phase includes also the non-linear orbit synchronization, based on a dedicated non-linear guidance algorithm robust to Mars ascent vehicle (MAV) injection accuracy or MAV failures resulting in elliptic target orbits. The search phase is very demanding for the image processing (IP) due to the very high visual magnitude of the target wrt. the stellar background, and the attitude GNC requires very high pointing stability accuracies to fulfil IP constraints. A trade-off of innovative, autonomous navigation filters indicates the unscented Kalman filter (UKF) as the approach that provides the best results in terms of robustness, response to non-linearities and performances compatibly with computational load. At short range, an optimized IP based on a convex hull algorithm has been developed in order to guarantee LoS and range measurements from hundreds of metres to capture.

  12. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  13. Fuzzy Decision-Making Fuser (FDMF for Integrating Human-Machine Autonomous (HMA Systems with Adaptive Evidence Sources

    Directory of Open Access Journals (Sweden)

    Yu-Ting Liu

    2017-06-01

    Full Text Available A brain-computer interface (BCI creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This

  14. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources.

    Science.gov (United States)

    Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion

  15. Autonomous Cargo Transport System for an Unmanned Aerial Vehicle, using Visual Servoing

    Directory of Open Access Journals (Sweden)

    Noah Kuntz

    2009-12-01

    Full Text Available This paper presents the design and testing of a system for autonomous tracking, pickup, and delivery of cargo via an unmanned helicopter. The tracking system uses a visual servoing algorithm and is tested using open loop velocity control of a six degree of freedom gantry system with a camera mounted via a pan-tilt unit on the end effecter. The pickup system uses vision to direct the camera pan tilt unit to track the target, and uses a hook attached to a second pan tilt unit to pick up the cargo. The ability of the pickup system to hook a target is tested by mounting it on the Systems Integrated Sensor Test Rig gantry system while recorded helicopter velocities are played back by the test rig.

  16. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  17. INVIS : Integrated night vision surveillance and observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Dijk, J.; Son, R. van

    2010-01-01

    We present the design and first field trial results of the all-day all-weather INVIS Integrated Night Vision surveillance and observation System. The INVIS augments a dynamic three-band false-color nightvision image with synthetic 3D imagery in a real-time display. The night vision sensor suite

  18. Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle

    Directory of Open Access Journals (Sweden)

    Riccardo Polvara

    2018-04-01

    Full Text Available Autonomous landing on the deck of an unmanned surface vehicle (USV is still a major challenge for unmanned aerial vehicles (UAVs. In this paper, a fiducial marker is located on the platform so as to facilitate the task since it is possible to retrieve its six-degrees of freedom relative-pose in an easy way. To compensate interruption in the marker’s observations, an extended Kalman filter (EKF estimates the current USV’s position with reference to the last known position. Validation experiments have been performed in a simulated environment under various marine conditions. The results confirmed that the EKF provides estimates accurate enough to direct the UAV in proximity of the autonomous vessel such that the marker becomes visible again. Using only the odometry and the inertial measurements for the estimation, this method is found to be applicable even under adverse weather conditions in the absence of the global positioning system.

  19. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and environmental variables. The results can be formulated in three main conclusions. 1) Primary production and respiration in stratified lakes are not evenly distributed in the water column. Generally you can expect the net production to decreases with depth as gross primary production (GPP) decreases with depth......, unless it is a very clear lake, while respiration is relatively stable. Metabolism estimates based on data from the epilimnion will only represent a minor proportion of the whole lake metabolism under conditions of strong stratification and high water transparency. At a low depth of the upper mixed layer...

  20. Vision system for dial gage torque wrench calibration

    Science.gov (United States)

    Aggarwal, Neelam; Doiron, Theodore D.; Sanghera, Paramjeet S.

    1993-11-01

    In this paper, we present the development of a fast and robust vision system which, in conjunction with the Dial Gage Calibration system developed by AKO Inc., will be used by the U.S. Army in calibrating dial gage torque wrenches. The vision system detects the change in the angular position of the dial pointer in a dial gage. The angular change is proportional to the applied torque. The input to the system is a sequence of images of the torque wrench dial gage taken at different dial pointer positions. The system then reports the angular difference between the different positions. The primary components of this vision system include modules for image acquisition, linear feature extraction and angle measurements. For each of these modules, several techniques were evaluated and the most applicable one was selected. This system has numerous other applications like vision systems to read and calibrate analog instruments.

  1. Dynamic market behaviour of autonomous network based power systems

    NARCIS (Netherlands)

    Jokic, A.; Wittebol, E.H.M.; Bosch, van den P.P.J.

    2006-01-01

    Dynamic models of real-time markets are important since they lead to additional insights of the behavior and stability of power system markets. The main topic of this paper is the analysis of real-time market dynamics in a novel power system structure that is based on the concept of autonomous

  2. Meaningful Human Control Over Autonomous Systems : A Philosophical Account

    NARCIS (Netherlands)

    Santoni De Sio, F.; van den Hoven, M.J.

    2018-01-01

    Debates on lethal autonomous weapon systems have proliferated in the past 5 years. Ethical concerns have been voiced about a possible raise in the number of wrongs and crimes in military operations and about the creation of a “responsibility gap” for harms caused by these systems. To address these

  3. TERESA: a socially intelligent semi-autonomous telepresence system

    NARCIS (Netherlands)

    Shiarlis, Kyriacos; Messias, Joao; van Someren, Maarten; Whiteson, Shimon; Kim, Jaebok; Vroon, Jered Hendrik; Englebienne, Gwenn; Truong, Khiet Phuong; Pérez-Higueras, Noé; Pérez-Hurtado, Ignacio; Ramon-Vigo, Rafael; Caballero, Fernando; Merino, Luis; Shen, Jie; Petridis, Stavros; Pantic, Maja; Hedman, Lasse; Scherlund, Marten; Koster, Raphaël; Michel, Hervé

    2015-01-01

    TERESA is a socially intelligent semi-autonomous telepresence system that is currently being developed as part of an FP7-STREP project funded by the European Union. The ultimate goal of the project is to deploy this system in an elderly day centre to allow elderly people to participate in social

  4. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  5. Visions of sustainable urban energy systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, Ursula [HFT Stuttgart (Germany). zafh.net - Centre of Applied Research - Sustainable Energy Technology; Mikosch, Milena [Steinbeis-Zentrum, Stuttgart (Germany). Europaeischer Technologietransfer; Liesner, Lisa (eds.)

    2010-09-15

    Within the polycity final conference from 15th to 17th September, 2010, in Stuttgart (Federal Republic of Germany) the following lectures were held: (1) Visions of sustainable urban energy system (Ursula Eicker); (2) Words of welcome (Tanja Goenner); (3) Zero-energy Europe - We are on our way (Jean-Marie Bemtgen); (4) Polycity - Energy networks in sustainable cities An introduction (Ursula Pietzsch); (5) Energy efficient city - Successful examples in the European concerto initiative (Brigitte Bach); (6) Sustainable building and urban concepts in the Catalonian polycity project contributions to the polycity final conference 2010 (Nuria Pedrals); (7) Energy efficient buildings and renewable supply within the German polycity project (Ursula Eicker); (8) Energy efficient buildings and cities in the US (Thomas Spiegehalter); (9) Energy efficient communities - First results from an IEA collaboration project (Reinhard Jank); (10) The European energy performance of buildings directive (EPBD) - Lessons learned (Eduardo Maldonado); (11) Passive house standard in Europe - State-of-the-art and challenges (Wolfgang Feist); (12) High efficiency non-residential buildings: Concepts, implementations and experiences from the UK (Levin Lomas); (13) This is how we can save our world (Franz Alt); (14) Green buildings and renewable heating and cooling concepts in China (Yanjun Dai); (15) Sustainable urban energy solutions for Asia (Brahmanand Mohanty); (16) Description of ''Parc de l'Alba'' polygeneration system: A large-scale trigeneration system with district heating within the Spanish polycity project (Francesc Figueras Bellot); (17) Improved building automation and control systems with hardware-in-the loop solutions (Martin Becker); (18) The Italian polycity project area: Arquata (Luigi Fazari); (19) Photovoltaic system integration: In rehabilitated urban structures: Experiences and performance results from the Italian polycity project in Turin (Franco

  6. Using Multimodal Input for Autonomous Decision Making for Unmanned Systems

    Science.gov (United States)

    Neilan, James H.; Cross, Charles; Rothhaar, Paul; Tran, Loc; Motter, Mark; Qualls, Garry; Trujillo, Anna; Allen, B. Danette

    2016-01-01

    Autonomous decision making in the presence of uncertainly is a deeply studied problem space particularly in the area of autonomous systems operations for land, air, sea, and space vehicles. Various techniques ranging from single algorithm solutions to complex ensemble classifier systems have been utilized in a research context in solving mission critical flight decisions. Realized systems on actual autonomous hardware, however, is a difficult systems integration problem, constituting a majority of applied robotics development timelines. The ability to reliably and repeatedly classify objects during a vehicles mission execution is vital for the vehicle to mitigate both static and dynamic environmental concerns such that the mission may be completed successfully and have the vehicle operate and return safely. In this paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition system planned for our autonomous framework, AEON, in selected domains, which fuse decision criteria, using prior experience on both the individual classifier layer and the ensemble layer to mitigate environmental uncertainty during operation.

  7. Expert system isssues in automated, autonomous space vehicle rendezvous

    Science.gov (United States)

    Goodwin, Mary Ann; Bochsler, Daniel C.

    1987-01-01

    The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.

  8. Airborne Use of Night Vision Systems

    Science.gov (United States)

    Mepham, S.

    1990-04-01

    Mission Management Department of the Royal Aerospace Establishment has won a Queen's Award for Technology, jointly with GEC Sensors, in recognition of innovation and success in the development and application of night vision technology for fixed wing aircraft. This work has been carried out to satisfy the operational needs of the Royal Air Force. These are seen to be: - Operations in the NATO Central Region - To have a night as well as a day capability - To carry out low level, high speed penetration - To attack battlefield targets, especially groups of tanks - To meet these objectives at minimum cost The most effective way to penetrate enemy defences is at low level and survivability would be greatly enhanced with a first pass attack. It is therefore most important that not only must the pilot be able to fly at low level to the target but also he must be able to detect it in sufficient time to complete a successful attack. An analysis of the average operating conditions in Central Europe during winter clearly shows that high speed low level attacks can only be made for about 20 per cent of the 24 hours. Extending this into good night conditions raises the figure to 60 per cent. Whilst it is true that this is for winter conditions and in summer the situation is better, the overall advantage to be gained is clear. If our aircraft do not have this capability the potential for the enemy to advance his troops and armour without hinderance for considerable periods is all too obvious. There are several solutions to providing such a capability. The one chosen for Tornado GR1 is to use Terrain Following Radar (TFR). This system is a complete 24 hour capability. However it has two main disadvantages, it is an active system which means it can be jammed or homed into, and is useful in attacking pre-planned targets. Second it is an expensive system which precludes fitting to other than a small number of aircraft.

  9. TOWARD HIGHLY SECURE AND AUTONOMIC COMPUTING SYSTEMS: A HIERARCHICAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hsien-Hsin S

    2010-05-11

    The overall objective of this research project is to develop novel architectural techniques as well as system software to achieve a highly secure and intrusion-tolerant computing system. Such system will be autonomous, self-adapting, introspective, with self-healing capability under the circumstances of improper operations, abnormal workloads, and malicious attacks. The scope of this research includes: (1) System-wide, unified introspection techniques for autonomic systems, (2) Secure information-flow microarchitecture, (3) Memory-centric security architecture, (4) Authentication control and its implication to security, (5) Digital right management, (5) Microarchitectural denial-of-service attacks on shared resources. During the period of the project, we developed several architectural techniques and system software for achieving a robust, secure, and reliable computing system toward our goal.

  10. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  11. Autonomous Weapon Systems and Risk Management in Hybrid Networks

    DEFF Research Database (Denmark)

    Nørgaard, Katrine

    In recent years, the development of autonomous weapon systems and so-called ‘killer robots’, has caused a number of serious legal and ethical concerns in the international community, including questions of compliance with International Humanitarian Law and the Laws of Armed Conflict. On the other...

  12. Autonomous Weapon Systems and Risk Management in Hybrid Networks

    DEFF Research Database (Denmark)

    Nørgaard, Katrine

    hand, governments and military services hope to develop game-changing technologies, that are ‘better, faster and cheaper’. In this paper, I wish to show how different and competing regimes of justification shape the technopolitical controversy and risk management of autonomous weapon systems...... of justification and risk management in contemporary conflicts....

  13. Why the United States Must Adopt Lethal Autonomous Weapon Systems

    Science.gov (United States)

    2017-05-25

    intelligence , Lethal Autonomous Weapon Systems, energy production, energy storage, three-dimensional printing , bandwidth improvements, computer...views on the morality of artificial intelligence (AI) and robotics technology. Eastern culture sees artificial intelligence as an economic savior...capable of improving their society. In contrast, Western culture regards artificial intelligence with paranoia, anxiety, and skepticism. As Eastern

  14. Vision system for diagnostic task | Merad | Global Journal of Pure ...

    African Journals Online (AJOL)

    Due to environment degraded conditions, direct measurements are not possible. ... Degraded conditions: vibrations, water and chip of metal projections, ... Before tooling, the vision system has to answer: “is it the right piece at the right place?

  15. Central- and autonomic nervous system coupling in schizophrenia

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  16. An Integrated Calibration Technique for Stereo Vision Systems (PREPRINT)

    Science.gov (United States)

    2010-03-01

    technique for stereo vision systems has been developed. To demonstrate and evaluate this calibration technique, multiple Wii Remotes (Wiimotes) from Nintendo ...from Nintendo were used to form stereo vision systems to perform 3D motion capture in real time. This integrated technique is a two-step process...Wiimotes) used in Nintendo Wii games. Many researchers have successfully dealt with the problem of camera calibration by taking images from a 2D

  17. Cooperative Autonomous Resilient Defense Platform for Cyber-Physical Systems

    OpenAIRE

    Azab, Mohamed Mahmoud Mahmoud

    2013-01-01

    Cyber-Physical Systems (CPS) entail the tight integration of and coordination between computational and physical resources. These systems are increasingly becoming vital to modernizing the national critical infrastructure systems ranging from healthcare, to transportation and energy, to homeland security and national defense. Advances in CPS technology are needed to help improve their current capabilities as well as their adaptability, autonomicity, efficiency, reliability, safety and usabili...

  18. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  19. Tuning permissiveness of active safety monitors for autonomous systems

    OpenAIRE

    Masson , Lola; Guiochet , Jérémie; Waeselynck , Hélène; Cabrera , Kalou; Cassel , Sofia; Törngren , Martin

    2018-01-01

    International audience; Robots and autonomous systems have become a part of our everyday life, therefore guaranteeing their safety is crucial.Among the possible ways to do so, monitoring is widely used, but few methods exist to systematically generate safety rules to implement such monitors. Particularly, building safety monitors that do not constrain excessively the system's ability to perform its tasks is necessary as those systems operate with few human interventions.We propose in this pap...

  20. Development of Control Algorithm for the Autonomous Gliding Delivery System

    OpenAIRE

    Kaminer, I.; Yakimenko, O.

    2003-01-01

    Proceedings of 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Monterey, CA, May 19-22, 2003. An autonomous HAHO (high altitude, high-opening) parafoil system design is presented as a solution to the final descent phase of an on-demand International Space Station (ISS) sample return concept. The system design is tailored to meet specific constraints defined by a larger study at NASA Ames Research Center, called SPQR (Small Payload Quick-Return). Building ...

  1. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2016-10-01

    Full Text Available In order to improve the performance of an inertial navigation system, many aiding sensors can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated navigation method for poor vision navigation environments. The proposed method uses focal plane measurements of landmarks in order to provide position, velocity and attitude outputs even when the number of landmarks on the focal plane is not enough for navigation. In order to verify the proposed method, computer simulations and van tests are carried out. The results show that the proposed method gives accurate and reliable position, velocity and attitude outputs when the number of landmarks is insufficient.

  2. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    Science.gov (United States)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  3. An autonomous rendezvous and docking system using cruise missile technologies

    Science.gov (United States)

    Jones, Ruel Edwin

    1991-01-01

    In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.

  4. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  5. Human Supervision of Multiple Autonomous Vehicles

    Science.gov (United States)

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  6. Scheduling lessons learned from the Autonomous Power System

    Science.gov (United States)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  7. Research methods of simulate digital compensators and autonomous control systems

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The peculiarity of the present stage of development of the production is the need to control and regulate a large number of process parameters, the mutual influence on each other that when using single-circuit systems significantly reduces the quality of the transition process, resulting in significant costs of raw materials and energy, reduce the quality of the products. Using a stand-alone digital control system eliminates the correlation of technological parameters, to give the system the desired dynamic and static properties, improve the quality of regulation. However, the complexity of the configuration and implementation of procedures (modeling compensators autonomous systems of this type, associated with the need to perform a significant amount of complex analytic transformation significantly limit the scope of their application. In this regard, the approach based on the decompo sition proposed methods of calculation and simulation (realization, consisting in submitting elements autonomous control part digital control system in a series parallel connection. The above theoretical study carried out in a general way for any dimension systems. The results of computational experiments, obtained during the simulation of the four autonomous control systems, comparative analysis and conclusions on the effectiveness of the use of each of the methods. The results obtained can be used in the development of multi-dimensional process control systems.

  8. On analysis of operating efficiency of autonomous ventilation systems

    Directory of Open Access Journals (Sweden)

    Kostuganov Arman

    2017-01-01

    Full Text Available The paper deals with the causes and consequences of malfunctioning of natural and mechanical ventilation systems in civil buildings of Russia. Furthermore it gives their classification and analysis based on the literature review. On the basis of the analysis technical solutions for improving the efficiency of ventilation systems in civil buildings are summarized and the field of their application is specified. Among the offered technical solutions the use of autonomous ventilation systems with heat recovery is highlighted as one of the most promising and understudied. Besides it has a wide range of applications. The paper reviews and analyzes the main Russian and foreign designs of ventilation systems with heat recovery that are mostly used in practice. Three types of such systems: UVRK-50, Prana-150, ТеFо are chosen for consideration. The sequence of field tests of selected autonomous ventilation systems have been carried out in order to determine the actual air exchange and efficiency of heat recovery. The paper presents the processed results of the research on the basis of which advantages and disadvantages of the tested ventilation systems are identified and recommendations for engineering and manufacturing of new design models of autonomous ventilation systems with heat recovery are formulated.

  9. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2012-09-01

    Full Text Available This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  10. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    Science.gov (United States)

    Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou

    2012-01-01

    This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  11. The organization of an autonomous learning system

    Science.gov (United States)

    Kanerva, Pentti

    1988-01-01

    The organization of systems that learn from experience is examined, human beings and animals being prime examples of such systems. How is their information processing organized. They build an internal model of the world and base their actions on the model. The model is dynamic and predictive, and it includes the systems' own actions and their effects. In modeling such systems, a large pattern of features represents a moment of the system's experience. Some of the features are provided by the system's senses, some control the system's motors, and the rest have no immediate external significance. A sequence of such patterns then represents the system's experience over time. By storing such sequences appropriately in memory, the system builds a world model based on experience. In addition to the essential function of memory, fundamental roles are played by a sensory system that makes raw information about the world suitable for memory storage and by a motor system that affects the world. The relation of sensory and motor systems to the memory is discussed, together with how favorable actions can be learned and unfavorable actions can be avoided. Results in classical learning theory are explained in terms of the model, more advanced forms of learning are discussed, and the relevance of the model to the frame problem of robotics is examined.

  12. Accomplishments and challenges in development of an autonomous operation system

    International Nuclear Information System (INIS)

    Endou, A.; Saiki, A.; Yoshikawa, S.; Okusa, K.; Suda, K.

    1994-01-01

    The authors are studying an autonomous operation system for nuclear power plants in which AI plays key roles as an alternative of plant operators and traditional controllers. In contrast with past studies dedicated to assist the operators, the ultimate target of development of the autonomous operation system is to operate the nuclear plants by AI. To realize humanlike decision-making process by means of AI, the authors used a model-based approach from multiple viewpoints and methodology diversity. A hierarchical distributed cooperative multi-agent system configuration is adopted to allow to incorporate diversified methodologies and to dynamically reorganize system functions. In the present paper, accomplishments to date in the course of the development are described. Challenges for developing methodologies to attain dynamic reorganization are also addressed. (author)

  13. Large autonomous spacecraft electrical power system (LASEPS)

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  14. An Intelligent Multiagent System for Autonomous Microgrid Operation

    Directory of Open Access Journals (Sweden)

    Tetsuo Kinoshita

    2012-09-01

    Full Text Available A microgrid is an eco-friendly power system because renewable sources such as solar and wind power are used as the main power sources. For this reason, much research, development, and demonstration projects have recently taken place in many countries. Operation is one of the important research topics for microgrids. For efficient and economical microgrid operation, a human operator is required as in other power systems, but it is difficult because there are some restrictions related to operation costs and privacy issues. To overcome the restriction, autonomous operation for microgrids is required. Recently, an intelligent agent system for autonomous microgrid operation has been studied as a potential solution. This paper proposes a multiagent system for autonomous microgrid operation. To build the multiagent system, the functionalities of agents, interactions among agents, and an effective agent protocol have been designed. The proposed system has been implemented by using an ADIPS/DASH framework as an agent platform. The intelligent multiagent system for microgrid operation based on the proposed scheme is tested to show the functionality and feasibility on a distributed environment through the Internet.

  15. Panoramic stereo sphere vision

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  16. Latency in Visionic Systems: Test Methods and Requirements

    Science.gov (United States)

    Bailey, Randall E.; Arthur, J. J., III; Williams, Steven P.; Kramer, Lynda J.

    2005-01-01

    A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec.

  17. Feasibility Analysis and Prototyping of a Fast Autonomous Recon system

    Science.gov (United States)

    2017-06-01

    these systems is a gasoline or jet propellant fueled engine. a. ScanEagle The ScanEagle UAS designed for ISR missions on land or at sea (Insitu...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. FEASIBILITY...ANALYSIS AND PROTOTYPING OF A FAST AUTONOMOUS RECON SYSTEM by Marcus A. Torres June 2017 Thesis Advisor: Oleg A. Yakimenko Second Reader

  18. Global structure of a polynomial autonomous system on the plane

    International Nuclear Information System (INIS)

    Nguyen Van Chau.

    1991-10-01

    This note is to study the global behaviour of a polynomial autonomous system on the plane with divergence non-positive outside a bounded set. It is shown that in some certain conditions the global structure of such system can be simple. The main result here can be seen as an improvement of the result of Olech and Meister concerning with the global asymptotical stable conjecture of Markur and Yamable and the Jacobian Conjecture. (author). 13 refs

  19. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  20. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    Directory of Open Access Journals (Sweden)

    M. Mayer

    2005-07-01

    Full Text Available Many  authors have proposed  that contextualization of reality  is necessary  to teach  Biology, empha- sizing students´ social and  economic realities.   However, contextualization means  more than  this;  it is related  to working with  different kinds of phenomena  and/or objects  which enable  the  expression of scientific concepts.  Thus,  contextualization allows the integration of different contents.  Under this perspective,  the  objectives  of this  work were to articulate different  biology concepts  in order  to de- velop a systemic vision of biology; to establish  relationships with other areas of knowledge and to make concrete the  cell molecular  structure and organization as well as their  implications  on living beings´ environment, using  contextualization.  The  methodology  adopted  in this  work  was based  on three aspects:  interdisciplinarity, contextualization and development of competences,  using energy:  its flux and transformations as a thematic axis and  an approach  which allowed the  interconnection between different situations involving  these  concepts.   The  activities developed  were:  1.   dialectic exercise, involving a movement around  micro and macroscopic aspects,  by using questions  and activities,  sup- ported  by the use of alternative material  (as springs, candles on the energy, its forms, transformations and  implications  in the  biological way (microscopic  concepts;  2, Construction of molecular  models, approaching the concepts of atom,  chemical bonds and bond energy in molecules; 3. Observations de- veloped in Manguezal¨(mangrove swamp  ecosystem (Itapissuma, PE  were used to work macroscopic concepts  (as  diversity  and  classification  of plants  and  animals,  concerning  to  energy  flow through food chains and webs. A photograph register of all activities  along the course plus texts

  1. Neural associative memories for the integration of language, vision and action in an autonomous agent.

    Science.gov (United States)

    Markert, H; Kaufmann, U; Kara Kayikci, Z; Palm, G

    2009-03-01

    Language understanding is a long-standing problem in computer science. However, the human brain is capable of processing complex languages with seemingly no difficulties. This paper shows a model for language understanding using biologically plausible neural networks composed of associative memories. The model is able to deal with ambiguities on the single word and grammatical level. The language system is embedded into a robot in order to demonstrate the correct semantical understanding of the input sentences by letting the robot perform corresponding actions. For that purpose, a simple neural action planning system has been combined with neural networks for visual object recognition and visual attention control mechanisms.

  2. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  3. Machine vision systems using machine learning for industrial product inspection

    Science.gov (United States)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  4. Visual Peoplemeter: A Vision-based Television Audience Measurement System

    Directory of Open Access Journals (Sweden)

    SKELIN, A. K.

    2014-11-01

    Full Text Available Visual peoplemeter is a vision-based measurement system that objectively evaluates the attentive behavior for TV audience rating, thus offering solution to some of drawbacks of current manual logging peoplemeters. In this paper, some limitations of current audience measurement system are reviewed and a novel vision-based system aiming at passive metering of viewers is prototyped. The system uses camera mounted on a television as a sensing modality and applies advanced computer vision algorithms to detect and track a person, and to recognize attentional states. Feasibility of the system is evaluated on a secondary dataset. The results show that the proposed system can analyze viewer's attentive behavior, therefore enabling passive estimates of relevant audience measurement categories.

  5. Exploration of a Vision for Actor Database Systems

    DEFF Research Database (Denmark)

    Shah, Vivek

    of these services. Existing popular approaches to building these services either use an in-memory database system or an actor runtime. We observe that these approaches have complementary strengths and weaknesses. In this dissertation, we propose the integration of actor programming models in database systems....... In doing so, we lay down a vision for a new class of systems called actor database systems. To explore this vision, this dissertation crystallizes the notion of an actor database system by defining its feature set in light of current application and hardware trends. In order to explore the viability...... of the outlined vision, a new programming model named Reactors has been designed to enrich classic relational database programming models with logical actor programming constructs. To support the reactor programming model, a high-performance in-memory multi-core OLTP database system named REACTDB has been built...

  6. Integrating Autonomous Load Controllers in Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James

    , but they are characterized by variable generation that is only partly predictable. Managing loads is already used in limited circumstances to improve security and efficiency of the power system. In power systems with a large penetration of variable generation, load management has large role to play in adapting consumption......Electric energy systems stand on the brink of radical change as the urgent need to reduce greenhouse gas emissions pushes more efficient utilization of energy resources and the adoption of renewable energy sources. New renewable sources such as wind and solar have a large potential......-sensitive load controller has been designed, implemented, and tested in real-life settings. Its performance demonstrated a large potential resource, in some cases greater than the average power consumption. The accuracy of load models was validated by comparison with field data. A voltage-sensitive controller...

  7. Autonomous electrochemical biosensors: A new vision to direct methanol fuel cells.

    Science.gov (United States)

    Sales, M Goreti F; Brandão, Lúcia

    2017-12-15

    A new approach to biosensing devices is demonstrated aiming an easier and simpler application in routine health care systems. Our methodology considered a new concept for the biosensor transducing event that allows to obtain, simultaneously, an equipment-free, user-friendly, cheap electrical biosensor. The use of the anode triple-phase boundary (TPB) layer of a passive direct methanol fuel cell (DMFC) as biosensor transducer is herein proposed. For that, the ionomer present in the anode catalytic layer of the DMFC is partially replaced by an ionomer with molecular recognition capability working as the biorecognition element of the biosensor. In this approach, fuel cell anode catalysts are modified with a molecularly imprinted polymer (plastic antibody) capable of protein recognition (ferritin is used as model protein), inserted in a suitable membrane electrode assembly (MEA) and tested, as initial proof-of-concept, in a non-passive fuel cell operation environment. The anchoring of the ionomer-based plastic antibody on the catalyst surface follows a simple one-step grafting from approach through radical polymerization. Such modification increases fuel cell performance due to the proton conductivity and macroporosity characteristics of the polymer on the TPB. Finally, the response and selectivity of the bioreceptor inside the fuel cell showed a clear and selective signal from the biosensor. Moreover, such pioneering transducing approach allowed amplification of the electrochemical response and increased biosensor sensitivity by 2 orders of magnitude when compared to a 3-electrodes configuration system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  9. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  10. Smart Systems Integration for Autonomous Wireless Communications

    NARCIS (Netherlands)

    Danesh, M.

    2012-01-01

    Integration of sensors and wireless transceivers for system networking aims at emerging applications that are highly integrated, self-powered, and low cost, relying on efficient power management schemes to prolong lifetime, thus eliminating the need for batteries as a limited primary source of

  11. Requirement analysis for autonomous systems and intelligent ...

    African Journals Online (AJOL)

    user

    Danish Power System and a requirement analysis for the use of intelligent agents and ..... tries to make an optimal islanding plan at this state and tries to blackstart. ... 4 Foundation for Physical Intelligent Agents (FIPA): http://www.fipa.org ...

  12. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  13. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-03-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  14. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  15. Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems

    Science.gov (United States)

    Sterritt, Roy; Hinchey, Mike

    2006-01-01

    Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.

  16. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis

    NARCIS (Netherlands)

    Koopman, F. A.; van Maanen, M. A.; Vervoordeldonk, M. J.; Tak, P. P.

    2017-01-01

    Imbalance in the autonomic nervous system (ANS) has been observed in many established chronic autoimmune diseases, including rheumatoid arthritis (RA), which is a prototypic immune-mediated inflammatory disease (IMID). We recently discovered that autonomic dysfunction precedes and predicts arthritis

  17. Bio-Inspired Autonomous Communications Systems with Anomaly Detection Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate BioComm, a bio-inspired autonomous communications system (ACS) aimed at dynamically reconfiguring and redeploying autonomous...

  18. Self-organizing energy-autonomous systems

    OpenAIRE

    Liu, Q.

    2016-01-01

    With the rapid development of mobile technology, more and more devices connect to the Internet of Things (IoT). The management of such large-scale networks becomes a challenge. Firstly, a large number of heterogeneous devices are distributed over a wide area, leading to a variation of the requirements of users, the performance of mobile devices, and the application scenarios. As the size of the IoT increases, the complexity of controlling such systems becomes a challenge. Most existing soluti...

  19. Simulation of Aircraft Sortie Generation Under an Autonomic Logistics System

    Science.gov (United States)

    2016-12-01

    Lockheed Martin and the Joint Program Office are developing a new autonomic logistics system for the multibillion F-35 Lightning Joint Strike Fighter...partners (United Kingdom, Italy, the Netherlands, Turkey, Canada, Australia, Denmark, and Norway). Lockheed Martin is the primary aircraft contractor...Accountability Office, 2014). Lockheed Martin , the prime contractor of the F-35 project, describes ALIS in its official website as: “ALIS serves as

  20. Energy harvesting autonomous sensor systems design, analysis, and practical implementation

    CERN Document Server

    Tan, Yen Kheng

    2013-01-01

    This book is the considered the first to describe sensor-oriented energy harvesting issues. Its content is derived from the author's research on the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). This network harvests energy from a variety of ambient energy sources and converts it into electrical energy to power batteries. The book discusses various types of energy harvesting (EH) systems and their respective main components.

  1. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  2. LHC train control system for autonomous inspections and measurements

    OpenAIRE

    Di Castro, Mario; Baiguera Tambutti, Maria Laura; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    Intelligent robotic systems are becoming essential for inspection and measurements in harsh environments, such as the European Organization for Nuclear Research (CERN) accelerators complex. Aiming at increasing safety and machine availability, robots can help to perform repetitive or dangerous tasks, reducing the risk for the personnel as the exposure to radiation. The Large Hadron Collider (LHC) tunnel at CERN has been equipped with fail-safe trains on monorail able to perform autonomously d...

  3. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  4. On non-autonomous dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Anzaldo-Meneses, A., E-mail: answald@ymail.com [Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Distrito Federal 02200, México (Mexico)

    2015-04-15

    In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.

  5. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Charles V. Smith Iii

    2010-06-01

    Full Text Available Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed requires little to no training and is adaptable to chaotic environments. The traversable area is mapped once and from that map a fully customized route is generated to the user

  6. Modelling of a Hybrid Energy System for Autonomous Application

    Directory of Open Access Journals (Sweden)

    Yang He

    2013-10-01

    Full Text Available A hybrid energy system (HES is a trending power supply solution for autonomous devices. With the help of an accurate system model, the HES development will be efficient and oriented. In spite of various precise unit models, a HES system is hardly developed. This paper proposes a system modelling approach, which applies the power flux conservation as the governing equation and adapts and modifies unit models of solar cells, piezoelectric generators, a Li-ion battery and a super-capacitor. A generalized power harvest, storage and management strategy is also suggested to adapt to various application scenarios.

  7. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  8. Autonomous system for pathogen detection and identification

    International Nuclear Information System (INIS)

    Belgrader, P.; Benett, W.; Langlois, R.; Long, G.; Mariella, R.; Milanovich, F.; Miles, R.; Nelson, W.; Venkateswaran, K.

    1998-01-01

    This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify stimulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air

  9. Autonomous Control Capabilities for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-01-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission

  10. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  11. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  12. Micro Autonomous Systems Research: Systems Engineering Processes for Micro Autonomous Systems

    Science.gov (United States)

    2016-11-01

    technician with automated manufacturing tools (such as 3-D printing ) who starts the automated manufacturing, assembles components, and delivers the...of a small unmanned aerial system SUAS. This SUAS can be constructed in-situ from algorithmically generated parts which are printed on a 3D printer...of intelligence , surveillance, and reconnaissance (ISR) information. Ideally, troops in the field would employ UAS assets on-demand to acquire

  13. A Layered Active Memory Architecture for Cognitive Vision Systems

    OpenAIRE

    Kolonias, Ilias; Christmas, William; Kittler, Josef

    2007-01-01

    Recognising actions and objects from video material has attracted growing research attention and given rise to important applications. However, injecting cognitive capabilities into computer vision systems requires an architecture more elaborate than the traditional signal processing paradigm for information processing. Inspired by biological cognitive systems, we present a memory architecture enabling cognitive processes (such as selecting the processes required for scene understanding, laye...

  14. Reconfigurable vision system for real-time applications

    Science.gov (United States)

    Torres-Huitzil, Cesar; Arias-Estrada, Miguel

    2002-03-01

    Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.

  15. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  16. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  17. The role of the autonomic nervous system in Tourette Syndrome

    Science.gov (United States)

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  18. An autonomous fuel-cell system. Optimisation approach; Ein autonomes Brennstoffzellensystem. Optimierungsansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Heideck, Guenter

    2006-07-20

    The reduction of the consumption of fossil energy sources and CO2 Emissions has become a worldwide issue. One promising way to accomplish this is by using hydrogen, which is predominantly produced by renewable energy sources, as energy storage. Fuel cell technology will play a key role in the field of converting chemically stored energy into electrical energy. This work contributes ways to make this conversion more effective. Because autonomous fuel cell systems have the largest application potential, this work concentrates on their optimization. To clarify the interrelationship of the parameters and the influencing physical factors as well as the potentials of optimization, models in the form of mathematical equation systems are given in the main part of this work. The focus is on the energy balance of the subsystems. The theoretical analyses showed that with improved efficiency of single subsystems, the system efficiency does not necessarily improve too, because the subsystems are not free of interactions. Instead, the system efficiency is improved through adapting single subsystems to match the needs of a given application. (orig.)

  19. Epidemiological survey of school-age children with low vision in Zhouqu County of Gannan Tibetan autonomous prefecture of Gansu province

    Directory of Open Access Journals (Sweden)

    Le-Xin Yang,

    2013-05-01

    Full Text Available AIM: To have a detailed picture of school-age children's eyesight status, and the main factors that caused their low vision in Zhouqu County of Gannan Tibetan autonomous prefecture of Gansu province. METHODS: The census work of knowing school-age children's eyesight status was implemented through visual inspection, conventional ophthalmic examination, optometry checks, etc. The results were compared with other domestic epidemiological data. RESULTS: Altogether 536 people with low vision were identified through survey and the rate was 21.12%. Among those people, the number of myopia patients accounted for 80.59% and the prevalence rate was 17.02%. Besides, the prevalence rate of presbyopia was 2.05%, amblyopia 2.76%, strabismus 1.02%, ocular trauma 0.95%, and congenital eye disease 0.71%. CONCLUSION: The prevalence rate of low vision was related with several factors such as gender and nationality. The rate increases with age and the myopia is the primary element that causes low vision.

  20. Simulation Framework for Rebalancing of Autonomous Mobility on Demand Systems

    Directory of Open Access Journals (Sweden)

    Marczuk Katarzyna A.

    2016-01-01

    This study is built upon our previous work on Autonomous Mobility on Demand (AMOD systems. Our methodology is simulation-based and we make use of SimMobility, an agent-based microscopic simulation platform. In the current work we focus on the framework for testing different rebalancing policies for the AMOD systems. We compare three different rebalancing methods: (i no rebalancing, (ii offline rebalancing, and (iii online rebalancing. Simulation results indicate that rebalancing reduces the required fleet size and shortens the customers’ wait time.

  1. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Autonomic nervous system response patterns specificity to basic emotions.

    Science.gov (United States)

    Collet, C; Vernet-Maury, E; Delhomme, G; Dittmar, A

    1997-01-12

    The aim of this study was to test the assumption that the autonomic nervous system responses to emotional stimuli are specific. A series of six slides was randomly presented to the subjects while six autonomic nervous system (ANS) parameters were recorded: skin conductance, skin potential, skin resistance, skin blood flow, skin temperature and instantaneous respiratory frequency. Each slide induced a basic emotion: happiness, surprise, anger, fear, sadness and disgust. Results have been first considered with reference to electrodermal responses (EDR) and secondly through thermo-vascular and respiratory variations. Classical as well as original indices were used to quantify autonomic responses. The six basic emotions were distinguished by Friedman variance analysis. Thus, ANS values corresponding to each emotion were compared two-by-two. EDR distinguished 13 emotion-pairs out of 15. 10 emotion-pairs were separated by skin resistance as well as skin conductance ohmic perturbation duration indices whereas conductance amplitude was only capable of distinguishing 7 emotion-pairs. Skin potential responses distinguished surprise and fear from sadness, and fear from disgust, according to their elementary pattern analysis in form and sign. Two-by-two comparisons of skin temperature, skin blood flow (estimated by the new non-oscillary duration index) and instantaneous respiratory frequency, enabled the distinction of 14 emotion-pairs out of 15. 9 emotion-pairs were distinguished by the non-oscillatory duration index values. Skin temperature was demonstrated to be different i.e. positive versus negative in response to anger and fear. The instantaneous respiratory frequency perturbation duration index was the only one capable of separating sadness from disgust. From the six ANS parameters study, different autonomic patterns were identified, each characterizing one of the six basic emotion used as inducing signals. No index alone, nor group of parameters (EDR and thermovascular

  3. Conceptual design of autonomous operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Endou, A.; Saiki, A.; Miki, T.; Himeno, Y.

    1993-01-01

    Conceptual design of an autonomous operation system for nuclear power plants has been carried out. Prime objective is to grade up operation reliability by eliminating human factors and enhancing control capabilities. For this objective, operators' role and traditional controllers are replaced with artificial intelligence (AI). Norms of autonomy are defined as (a) to maintain its own basic functions, (b) to protect oneself from catastrophic events, (c) to reorganize oneself in case of its partial failure, (d) to harmonize with the environment, and (e) to improve its performance by itself. For the present, a great emphasis is put on realizing humanlike knowledge-based decision-making process by AI in accordance with the norms (a) and (c). To do this, the authors take a model-based approach and it is intended to make modeling of a problem-solving process from multiple viewpoints and structurization of knowledge used in the process. A hierarchical distributed cooperative system configuration is adopted to allow to dynamically reorganize system functions and it is realized by an object-oriented multi-agent system. Plural agents based on different methodology from each other are applied to individual function or methodology diversity is assured to prevent loss of system functions by common cause failure and to reorganize integrant agents. A prototype autonomous operation system is now under development. (orig.)

  4. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    Science.gov (United States)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  5. Application of autonomous mobile patrol system for nuclear power plants

    International Nuclear Information System (INIS)

    Kanemoto, S.; Hattori, Y.; Ochiai, M.; Tai, I.; Ozaki, O.; Shimada, H.; Okano, H.

    1995-01-01

    The integrity of the components of an operating nuclear power plant (NPP) is usually monitored daily by an operator patrol. Currently, there is a great need to replace such human patrol activities by automated remote monitoring in order to reduce radiation exposure and severe workload. From this perspective, we started an R and D project with the objective of developing an autonomous mobile patrol system for NPPs. The project started in 1991 and is scheduled to be completed in 1996. The main targets of this project are as follows. (1) Development of an autonomous and independent mobile robot, (2) Development of a transportable compact remote sensing system for plant component inspection, (3) Development of a patrol guidance and sensing data evaluation system. The remote sensing system has the capability of detecting video image, sound, temperature and vibration distribution of component surfaces. A laser Doppler vibrometer is newly developed to measure a wide range of vibration distribution remotely. Also, in order to integrate and recognize various kinds of remote sensing data, a 3-dimensional (3D) computer aided design database and 3D graphics technology is extensively used. Operators can interpret the measured image data by mapping their textures onto the 3-dimensional model surface. In this paper, we describe the concept of the entire patrol system and its three main component technologies, that is, mobile robot, remote sensing and inspected data evaluations. (author)

  6. Multivariate Analysis Techniques for Optimal Vision System Design

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara

    The present thesis considers optimization of the spectral vision systems used for quality inspection of food items. The relationship between food quality, vision based techniques and spectral signature are described. The vision instruments for food analysis as well as datasets of the food items...... used in this thesis are described. The methodological strategies are outlined including sparse regression and pre-processing based on feature selection and extraction methods, supervised versus unsupervised analysis and linear versus non-linear approaches. One supervised feature selection algorithm...... (SSPCA) and DCT based characterization of the spectral diffused reflectance images for wavelength selection and discrimination. These methods together with some other state-of-the-art statistical and mathematical analysis techniques are applied on datasets of different food items; meat, diaries, fruits...

  7. Computer Vision Systems for Hardwood Logs and Lumber

    Science.gov (United States)

    Philip A. Araman; Tai-Hoon Cho; D. Zhu; R. Conners

    1991-01-01

    Computer vision systems being developed at Virginia Tech University with the support and cooperation from the U.S. Forest Service are presented. Researchers at Michigan State University, West Virginia University, and Mississippi State University are also members of the research team working on various parts of this research. Our goals are to help U.S. hardwood...

  8. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...

  9. Robot path planning using expert systems and machine vision

    Science.gov (United States)

    Malone, Denis E.; Friedrich, Werner E.

    1992-02-01

    This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.

  10. Autonomous wind/solar power systems with battery storage

    Energy Technology Data Exchange (ETDEWEB)

    Protogeropoulos, C I

    1993-12-31

    The performance of an autonomous hybrid renewable energy system consisting of combined photovoltaic/wind power generation with battery storage is under evaluation in this thesis. Detailed mathematical analysis of the renewable components and the battery was necessary in order to establish the theoretical background for accurate simulation results. Model validation was achieved through experimentation. The lack of a sizing method to combine both hybrid system total cost and long-term reliability level was the result of an extended literature survey. The new achievements which are described in this research work refer to: - simplified modelling for the performance of amorphous-silicon photovoltaic panels for all solar irradiance levels. -development of a new current-voltage expression with respect to wind speed for wind turbine performance simulation. -establishment of the battery storage state of voltage, SOV, simulation algorithm for long-term dynamic operational conditions. The proposed methodology takes into account 8 distinct cases covering steady state and transient effects and can be used for autonomous system reliability calculations. -techno-economic evaluation of the size of the hybrid system components by considering both reliability and economic criteria as design parameters. Two sizing scenarios for the renewable components are examined : the average year method and the ``worst renewable`` month method. (Author)

  11. Design and realization of an autonomous solar system

    Science.gov (United States)

    Gaga, A.; Diouri, O.; Es-sbai, N.; Errahimi, F.

    2017-03-01

    The aim of this work is the design and realization of an autonomous solar system, with MPPT control, a regulator charge/discharge of batteries, an H-bridge multi-level inverter with acquisition system and supervising based on a microcontroller. The proposed approach is based on developing a software platform in the LabVIEW environment which gives the system a flexible structure for controlling, monitoring and supervising the whole system in real time while providing power maximization and best quality of energy conversion from DC to AC power. The reliability of the proposed solar system is validated by the simulation results on PowerSim and experimental results achieved with a solar panel, a Lead acid battery, solar regulator and an H-bridge cascaded topology of single-phase inverter.

  12. Autonomous data acquisition system for Paks NPP process noise signals

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Czibok, T.; Dezso, Z.; Horvath, Cs.

    2005-01-01

    A prototype of a new concept noise diagnostics data acquisition system has been developed recently to renew the aged present system. This new system is capable of collecting the whole available noise signal set simultaneously. Signal plugging and data acquisition are performed by autonomous systems (installed at each reactor unit) that are controlled through the standard plant network from a central computer installed at a suitable location. Experts can use this central unit to process and archive data series downloaded from the reactor units. This central unit also provides selected noise diagnostics information for other departments. The paper describes the hardware and software architecture of the new system in detail, emphasising the potential benefits of the new approach. (author)

  13. Study on autonomous decentralized-cooperative function monitoring system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Tanba, Yasuyuki

    1999-01-01

    In this study, a study further advanced on a base of results of study on artificial intelligence for nuclear power', one of nuclear basis crossover studies, conducted at five years planning from 1989 fiscal year was executed. Here was conducted on study on a system technology for supplying cooperation, judgement process, judgement results, and so forth between decentralized artificial intelligent elements (agents) to operation managers (supervisors) by focussing a system for monitoring if autonomous decentralized system containing plant operation and robot group action functioned appropriately. In 1997 fiscal year, by mainly conducting development for displaying working state of robot group, some investigations on integrated management of each function already development and maintained were executed. Furthermore, some periodical meetings on realization of its integration with operation control system and maintenance system with other research institutes were conducted. (G.K.)

  14. Accurate Localization of Communicant Vehicles using GPS and Vision Systems

    Directory of Open Access Journals (Sweden)

    Georges CHALLITA

    2009-07-01

    Full Text Available The new generation of ADAS systems based on cooperation between vehicles can offer serious perspectives to the road security. The inter-vehicle cooperation is made possible thanks to the revolution in the wireless mobile ad hoc network. In this paper, we will develop a system that will minimize the imprecision of the GPS used to car tracking, based on the data given by the GPS which means the coordinates and speed in addition to the use of the vision data that will be collected from the loading system in the vehicle (camera and processor. Localization information can be exchanged between the vehicles through a wireless communication device. The creation of the system must adopt the Monte Carlo Method or what we call a particle filter for the treatment of the GPS data and vision data. An experimental study of this system is performed on our fleet of experimental communicating vehicles.

  15. Monitoring system of multiple fire fighting based on computer vision

    Science.gov (United States)

    Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2010-10-01

    With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.

  16. Effects of insula resection on autonomic nervous system activity

    NARCIS (Netherlands)

    de Morree, Helma; Rutten, Geert-Jan; Szabo, B.M.; Sitskoorn, Margriet; Kop, Wijo

    2016-01-01

    Background: The insula is an essential component of the central autonomic network and plays a critical role in autonomic regulation in response to environmental stressors. The role of the insula in human autonomic regulation has been primarily investigated following cerebrovascular accidents, but

  17. Robust adaptive optics systems for vision science

    Science.gov (United States)

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  18. Meaningful Human Control over Autonomous Systems: A Philosophical Account

    Directory of Open Access Journals (Sweden)

    Filippo Santoni de Sio

    2018-02-01

    Full Text Available Debates on lethal autonomous weapon systems have proliferated in the past 5 years. Ethical concerns have been voiced about a possible raise in the number of wrongs and crimes in military operations and about the creation of a “responsibility gap” for harms caused by these systems. To address these concerns, the principle of “meaningful human control” has been introduced in the legal–political debate; according to this principle, humans not computers and their algorithms should ultimately remain in control of, and thus morally responsible for, relevant decisions about (lethal military operations. However, policy-makers and technical designers lack a detailed theory of what “meaningful human control” exactly means. In this paper, we lay the foundation of a philosophical account of meaningful human control, based on the concept of “guidance control” as elaborated in the philosophical debate on free will and moral responsibility. Following the ideals of “Responsible Innovation” and “Value-sensitive Design,” our account of meaningful human control is cast in the form of design requirements. We identify two general necessary conditions to be satisfied for an autonomous system to remain under meaningful human control: first, a “tracking” condition, according to which the system should be able to respond to both the relevant moral reasons of the humans designing and deploying the system and the relevant facts in the environment in which the system operates; second, a “tracing” condition, according to which the system should be designed in such a way as to grant the possibility to always trace back the outcome of its operations to at least one human along the chain of design and operation. As we think that meaningful human control can be one of the central notions in ethics of robotics and AI, in the last part of the paper, we start exploring the implications of our account for the design and use of non

  19. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-01-01

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  20. A machine vision system for the calibration of digital thermometers

    International Nuclear Information System (INIS)

    Vázquez-Fernández, Esteban; Dacal-Nieto, Angel; González-Jorge, Higinio; Alvarez-Valado, Victor; Martín, Fernando; Formella, Arno

    2009-01-01

    Automation is a key point in many industrial tasks such as calibration and metrology. In this context, machine vision has shown to be a useful tool for automation support, especially when there is no other option available. A system for the calibration of portable measurement devices has been developed. The system uses machine vision to obtain the numerical values shown by displays. A new approach based on human perception of digits, which works in parallel with other more classical classifiers, has been created. The results show the benefits of the system in terms of its usability and robustness, obtaining a success rate higher than 99% in display recognition. The system saves time and effort, and offers the possibility of scheduling calibration tasks without excessive attention by the laboratory technicians

  1. Anxiety, depression and autonomic nervous system dysfunction in hypertension.

    Science.gov (United States)

    Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László

    2012-06-15

    This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    Science.gov (United States)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  3. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  4. Integration and coordination in a cognitive vision system

    OpenAIRE

    Wrede, Sebastian; Hanheide, Marc; Wachsmuth, Sven; Sagerer, Gerhard

    2006-01-01

    In this paper, we present a case study that exemplifies general ideas of system integration and coordination. The application field of assistant technology provides an ideal test bed for complex computer vision systems including real-time components, human-computer interaction, dynamic 3-d environments, and information retrieval aspects. In our scenario the user is wearing an augmented reality device that supports her/him in everyday tasks by presenting information tha...

  5. Nanomedical device and systems design challenges, possibilities, visions

    CERN Document Server

    2014-01-01

    Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devices and systems. It endeavors to explore remarkable possibilities spanning medical diagnostics, therapeutics, and other advancements that may be enabled within this discipline. In particular, this book investigates just how nanomedical diagnostic and

  6. The Systemic Vision of the Educational Learning

    Science.gov (United States)

    Lima, Nilton Cesar; Penedo, Antonio Sergio Torres; de Oliveira, Marcio Mattos Borges; de Oliveira, Sonia Valle Walter Borges; Queiroz, Jamerson Viegas

    2012-01-01

    As the sophistication of technology is increasing, also increased the demand for quality in education. The expectation for quality has promoted broad range of products and systems, including in education. These factors include the increased diversity in the student body, which requires greater emphasis that allows a simple and dynamic model in the…

  7. Bifurcation theory for finitely smooth planar autonomous differential systems

    Science.gov (United States)

    Han, Maoan; Sheng, Lijuan; Zhang, Xiang

    2018-03-01

    In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.

  8. Study on autonomous decentralized-cooperative function monitoring system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi

    1998-01-01

    In this study, on a base of result of a nuclear substrate cross-over study on 'Artificial intelligence for nuclear plant' promoted by 5 years plan since 1989 fiscal year, further developed studies are conducted. The studies are promoted by next 5 years plan on following 6 items: (1) Study on stratified expression technique of autonomous function. (2) Study on expression technique of motion state in decentralized-cooperative function. (3) Study on expression technique of decision making process. (4) Integration to operation control system. (5) Integration to maintenance system. And, (6) Comprehensive evaluation experiment. In 1996 fiscal year, improvement and investigation on automatic classification function of plant state were executed. And, preparation of development environment for expression of robot group motion state was conducted. Furthermore, communication experiment using network to realize integration to operation control and maintenance systems and periodical meetings with other institutes were conducted. (G.K.)

  9. Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation

    Directory of Open Access Journals (Sweden)

    Došen Strahinja

    2010-08-01

    Full Text Available Abstract Background Dexterous prosthetic hands that were developed recently, such as SmartHand and i-LIMB, are highly sophisticated; they have individually controllable fingers and the thumb that is able to abduct/adduct. This flexibility allows implementation of many different grasping strategies, but also requires new control algorithms that can exploit the many degrees of freedom available. The current study presents and tests the operation of a new control method for dexterous prosthetic hands. Methods The central component of the proposed method is an autonomous controller comprising a vision system with rule-based reasoning mounted on a dexterous hand (CyberHand. The controller, termed cognitive vision system (CVS, mimics biological control and generates commands for prehension. The CVS was integrated into a hierarchical control structure: 1 the user triggers the system and controls the orientation of the hand; 2 a high-level controller automatically selects the grasp type and size; and 3 an embedded hand controller implements the selected grasp using closed-loop position/force control. The operation of the control system was tested in 13 healthy subjects who used Cyberhand, attached to the forearm, to grasp and transport 18 objects placed at two different distances. Results The system correctly estimated grasp type and size (nine commands in total in about 84% of the trials. In an additional 6% of the trials, the grasp type and/or size were different from the optimal ones, but they were still good enough for the grasp to be successful. If the control task was simplified by decreasing the number of possible commands, the classification accuracy increased (e.g., 93% for guessing the grasp type only. Conclusions The original outcome of this research is a novel controller empowered by vision and reasoning and capable of high-level analysis (i.e., determining object properties and autonomous decision making (i.e., selecting the grasp type and

  10. Research on support effectiveness modeling and simulating of aviation materiel autonomic logistics system

    Science.gov (United States)

    Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo

    2018-05-01

    Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.

  11. Low Cost Night Vision System for Intruder Detection

    Science.gov (United States)

    Ng, Liang S.; Yusoff, Wan Azhar Wan; R, Dhinesh; Sak, J. S.

    2016-02-01

    The growth in production of Android devices has resulted in greater functionalities as well as lower costs. This has made previously more expensive systems such as night vision affordable for more businesses and end users. We designed and implemented robust and low cost night vision systems based on red-green-blue (RGB) colour histogram for a static camera as well as a camera on an unmanned aerial vehicle (UAV), using OpenCV library on Intel compatible notebook computers, running Ubuntu Linux operating system, with less than 8GB of RAM. They were tested against human intruders under low light conditions (indoor, outdoor, night time) and were shown to have successfully detected the intruders.

  12. A vision fusion treatment system based on ATtiny26L

    Science.gov (United States)

    Zhang, Xiaoqing; Zhang, Chunxi; Wang, Jiqiang

    2006-11-01

    Vision fusion treatment is an important and effective project to strabismus children. The vision fusion treatment system based on the principle for eyeballs to follow the moving visual survey pole is put forward first. In this system the original position of visual survey pole is about 35 centimeters far from patient's face before its moving to the middle position between the two eyeballs. The eyeballs of patient will follow the movement of the visual survey pole. When they can't follow, one or two eyeballs will turn to other position other than the visual survey pole. This displacement is recorded every time. A popular single chip microcomputer ATtiny26L is used in this system, which has a PWM output signal to control visual survey pole to move with continuously variable speed. The movement of visual survey pole accords to the modulating law of eyeballs to follow visual survey pole.

  13. Computer Vision for Artificially Intelligent Robotic Systems

    Science.gov (United States)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main

  14. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  15. Virtual Vision

    Science.gov (United States)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  16. A vision system for a Mars rover

    Science.gov (United States)

    Wilcox, Brian H.; Gennery, Donald B.; Mishkin, Andrew H.; Cooper, Brian K.; Lawton, Teri B.; Lay, N. Keith; Katzmann, Steven P.

    1988-01-01

    A Mars rover must be able to sense its local environment with sufficient resolution and accuracy to avoid local obstacles and hazards while moving a significant distance each day. Power efficiency and reliability are extremely important considerations, making stereo correlation an attractive method of range sensing compared to laser scanning, if the computational load and correspondence errors can be handled. Techniques for treatment of these problems, including the use of more than two cameras to reduce correspondence errors and possibly to limit the computational burden of stereo processing, have been tested at JPL. Once a reliable range map is obtained, it must be transformed to a plan view and compared to a stored terrain database, in order to refine the estimated position of the rover and to improve the database. The slope and roughness of each terrain region are computed, which form the basis for a traversability map allowing local path planning. Ongoing research and field testing of such a system is described.

  17. Bifurcation diagram of a cubic three-parameter autonomous system

    Directory of Open Access Journals (Sweden)

    Lenka Barakova

    2005-07-01

    Full Text Available In this paper, we study the cubic three-parameter autonomous planar system $$displaylines{ dot x_1 = k_1 + k_2x_1 - x_1^3 - x_2,cr dot x_2 = k_3 x_1 - x_2, }$$ where $k_2, k_3$ are greater than 0. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldor's assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation. We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.

  18. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  19. Functional envelope of a non-autonomous discrete system

    Directory of Open Access Journals (Sweden)

    Barzanouni Ali

    2017-11-01

    Full Text Available Let (X, F = {fn}n =0∞ be a non-autonomous discrete system by a compact metric space X and continuous maps fn : X → X, n = 0, 1, ....We introduce functional envelope (S(X, G = {Gn}n =0∞, of (X, F = {fn}n =0∞, where S(X is the space of all continuous self maps of X and the map Gn : S(X → S(X is defined by Gn(ϕ = Fn ∘ ϕ, Fn = fn ∘ fn-1 ∘ . . . ∘ f1 ∘ f0. The paper mainly deals with the connection between the properties of a system and the properties of its functional envelope.

  20. Autonomous identification of matrices in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1995-01-01

    The APNea System is a passive and active neutron assay device which features imaging to correct for nonuniform distributions of source material. Since the imaging procedure requires a detailed knowledge of both the detection efficiency and the thermal neutron flux for (sub)volumes of the drum of interest, it is necessary to identify which mocked-up matrix, to be used for detailed characterization studies, best matches the matrix of interest. A methodology referred to as the external matrix probe (EMP) has been established which links external measures of a drum matrix to those of mocked-up matrices. These measures by themselves are sufficient to identify the appropriate mock matrix, from which the necessary characterization data are obtained. This independent matrix identification leads to an autonomous determination of the required system response parameters for the assay analysis

  1. Embedded active vision system based on an FPGA architecture

    OpenAIRE

    Chalimbaud , Pierre; Berry , François

    2006-01-01

    International audience; In computer vision and more particularly in vision processing, the impressive evolution of algorithms and the emergence of new techniques dramatically increase algorithm complexity. In this paper, a novel FPGA-based architecture dedicated to active vision (and more precisely early vision) is proposed. Active vision appears as an alternative approach to deal with artificial vision problems. The central idea is to take into account the perceptual aspects of visual tasks,...

  2. An Autonomous Data Reduction Pipeline for Wide Angle EO Systems

    Science.gov (United States)

    Privett, G.; George, S.; Feline, W.; Ash, A.; Routledge, G.

    The UK’s National Space and Security Policy states that the identification of potential on-orbit collisions and re-entry warning over the UK is of high importance, and is driving requirements for indigenous Space Situational Awareness (SSA) systems. To meet these requirements options are being examined, including the creation of a distributed network of simple, low cost commercial–off-the-shelf electro-optical sensors to support survey work and catalogue maintenance. This paper outlines work at Dstl examining whether data obtained using readily-deployable equipment could significantly enhance UK SSA capability and support cross-cueing between multiple deployed systems. To effectively exploit data from this distributed sensor architecture, a data handling system is required to autonomously detect satellite trails in a manner that pragmatically handles highly variable target intensities, periodicity and rates of apparent motion. The processing and collection strategies must be tailored to specific mission sets to ensure effective detections of platforms as diverse as stable geostationary satellites and low altitude CubeSats. Data captured during the Automated Transfer Vehicle-5 (ATV-5) de-orbit trial and images captured of a rocket body break up and a deployed deorbit sail have been employed to inform the development of a prototype processing pipeline for autonomous on-site processing. The approach taken employs tools such as Astrometry.Net and DAOPHOT from the astronomical community, together with image processing and orbit determination software developed inhouse by Dstl. Interim results from the automated analysis of data collected from wide angle sensors are described, together with the current perceived limitations of the proposed system and our plans for future development.

  3. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  4. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  5. Sensory systems II senses other than vision

    CERN Document Server

    Wolfe, Jeremy M

    1988-01-01

    This series of books, "Readings from the Encyclopedia of Neuroscience." consists of collections of subject-clustered articles taken from the Encyclopedia of Neuroscience. The Encyclopedia of Neuroscience is a reference source and compendium of more than 700 articles written by world authorities and covering all of neuroscience. We define neuroscience broadly as including all those fields that have as a primary goal the under­ standing of how the brain and nervous system work to mediate/control behavior, including the mental behavior of humans. Those interested in specific aspects of the neurosciences, particular subject areas or specialties, can of course browse through the alphabetically arranged articles of the En­ cyclopedia or use its index to find the topics they wish to read. However. for those readers-students, specialists, or others-who will find it useful to have collections of subject-clustered articles from the Encyclopedia, we issue this series of "Readings" in paperback. Students in neuroscienc...

  6. Machine vision system for automated detection of stained pistachio nuts

    Science.gov (United States)

    Pearson, Tom C.

    1995-01-01

    A machine vision system was developed to separate stained pistachio nuts, which comprise of about 5% of the California crop, from unstained nuts. The system may be used to reduce labor involved with manual grading or to remove aflatoxin contaminated product from low grade process streams. The system was tested on two different pistachio process streams: the bi- chromatic color sorter reject stream and the small nut shelling stock stream. The system had a minimum overall error rate of 14% for the bi-chromatic sorter reject stream and 15% for the small shelling stock stream.

  7. Vision-based pedestrian protection systems for intelligent vehicles

    CERN Document Server

    Geronimo, David

    2013-01-01

    Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human's appearance, not only in

  8. Artificial intelligence, expert systems, computer vision, and natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  9. International Border Management Systems (IBMS) Program : visions and strategies.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Michael; Mohagheghi, Amir Hossein

    2011-02-01

    Sandia National Laboratories (SNL), International Border Management Systems (IBMS) Program is working to establish a long-term border security strategy with United States Central Command (CENTCOM). Efforts are being made to synthesize border security capabilities and technologies maintained at the Laboratories, and coordinate with subject matter expertise from both the New Mexico and California offices. The vision for SNL is to provide science and technology support for international projects and engagements on border security.

  10. R1 autonomic nervous system in acute kidney injury.

    Science.gov (United States)

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  11. A robust embedded vision system feasible white balance algorithm

    Science.gov (United States)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  12. Vector disparity sensor with vergence control for active vision systems.

    Science.gov (United States)

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  13. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    Science.gov (United States)

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  14. Throughput Evaluation of an Autonomous Sustainment Cargo Container System

    National Research Council Canada - National Science Library

    Yeh, Mingtze

    2007-01-01

    .... Autonomous containers will play an essential role in the ability to deliver logistical supplies to waterborne littoral vessels enabling them to maintain station and complete there military operations...

  15. Autonomous control systems: applications to remote sensing and image processing

    Science.gov (United States)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  16. The Montana ALE (Autonomous Lunar Excavator) Systems Engineering Report

    Science.gov (United States)

    Hull, Bethanne J.

    2012-01-01

    On May 2 1-26, 20 12, the third annual NASA Lunabotics Mining Competition will be held at the Kennedy Space Center in Florida. This event brings together student teams from universities around the world to compete in an engineering challenge. Each team must design, build and operate a robotic excavator that can collect artificial lunar soil and deposit it at a target location. Montana State University, Bozeman, is one of the institutions selected to field a team this year. This paper will summarize the goals of MSU's lunar excavator project, known as the Autonomous Lunar Explorer (ALE), along with the engineering process that the MSU team is using to fulfill these goals, according to NASA's systems engineering guidelines.

  17. A Ship Cargo Hold Inspection Approach Using Laser Vision Systems

    OpenAIRE

    SHEN Yang; ZHAO Ning; LIU Haiwei; MI Chao

    2013-01-01

    Our paper represents a vision system based on the laser measurement system (LMS) for bulk ship inspection. The LMS scanner with 2-axis servo system is installed on the ship loader to build the shape of the ship. Then, a group of real-time image processing algorithms are implemented to compute the shape of the cargo hold, the inclination angle of the ship and the relative position between the ship loader and the cargo hold. Based on those computed inspection data of the ship, the ship loader c...

  18. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  19. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  20. Computer vision in roadway transportation systems: a survey

    Science.gov (United States)

    Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja

    2013-10-01

    There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.

  1. Intelligent Vision System for Door Sensing Mobile Robot

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-08-01

    Full Text Available Wheeled Mobile Robots find numerous applications in the Indoor man made structured environments. In order to operate effectively, the robots must be capable of sensing its surroundings. Computer Vision is one of the prime research areas directed towards achieving these sensing capabilities. In this paper, we present a Door Sensing Mobile Robot capable of navigating in the indoor environment. A robust and inexpensive approach for recognition and classification of the door, based on monocular vision system helps the mobile robot in decision making. To prove the efficacy of the algorithm we have designed and developed a ‘Differentially’ Driven Mobile Robot. A wall following behavior using Ultra Sonic range sensors is employed by the mobile robot for navigation in the corridors.  Field Programmable Gate Arrays (FPGA have been used for the implementation of PD Controller for wall following and PID Controller to control the speed of the Geared DC Motor.

  2. A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems: Technical Areas

    Science.gov (United States)

    2016-03-01

    autonomous tractor-trailer, the natural next evolution of the self - driving cars under development today. The tractor-trailer must be able to drive safely...letting other teens drive the vehicle , etc.) In this example, gradual permission for additional licensure and extended autonomous driving privileges under...to achieve a quasi-structured goal such as landing an airplane or driving a vehicle . This kind of autonomous system begins with core

  3. On how AI & Law can help autonomous systems obey the law: a position paper

    NARCIS (Netherlands)

    Prakken, Hendrik

    2016-01-01

    In this position paper I discuss to what extent current and past AI & law research is relevant for research on autonomous intelligent systems that exhibit legally relevant behaviour. After a brief review of the history of AI & law, I will compare the problems faced by autonomous intelligent systems

  4. Distributed Hardware-in-the-loop simulator for autonomous continuous dynamical systems with spatially constrained interactions

    NARCIS (Netherlands)

    Verburg, D.J.; Papp, Z.; Dorrepaal, M.

    2003-01-01

    The state-of-the-art intelligent vehicle, autonomous guided vehicle and mobile robotics application domains can be described as collection of interacting highly autonomous complex dynamical systems. Extensive formal analysis of these systems – except special cases – is not feasible, consequently the

  5. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate,

  6. An Autonomous Distributed Fault-Tolerant Local Positioning System

    Science.gov (United States)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  7. Control system for solar tracking based on artificial vision; Sistema de control para seguimiento solar basado en vision artificial

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Ramirez, Jesus Horacio; Anaya Perez, Maria Elena; Benitez Baltazar, Victor Hugo [Universidad de onora, Hermosillo, Sonora (Mexico)]. E-mail: jpacheco@industrial.uson.mx; meanaya@industrial.uson.mx; vbenitez@industrial.uson.mx

    2010-11-15

    This work shows how artificial vision feedback can be applied to control systems. The control is applied to a solar panel in order to track the sun position. The algorithms to calculate the position of the sun and the image processing are developed in LabView. The responses obtained from the control show that it is possible to use vision for a control scheme in closed loop. [Spanish] El presente trabajo muestra la manera en la cual un sistema de control puede ser retroalimentado mediante vision artificial. El control es aplicado en un panel solar para realizar el seguimiento del sol a lo largo del dia. Los algoritmos para calcular la posicion del sol y para el tratamiento de la imagen fueron desarrollados en LabView. Las respuestas obtenidas del control muestran que es posible utilizar vision para un esquema de control en lazo cerrado.

  8. Machine vision system for measuring conifer seedling morphology

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  9. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    Directory of Open Access Journals (Sweden)

    Amedeo Rodi Vetrella

    2016-12-01

    Full Text Available Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS receivers and Micro-Electro-Mechanical Systems (MEMS-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  10. Acute irradiation injury and autonomic nervous system. 2

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Sekine, Ichiro; Shichijo, Kazuko; Ito, Masahiro; Ikeda, Yuzi; Matsuzaki, Sumihiro; Zea-Iriate, W.-L.; Kondo, Takahito

    1996-01-01

    In order to elucidate the mechanism of occurrence of radiation sickness, whole body irradiation of various doses of X-ray was done on male spontaneously hypertensive rats (SHR) whose sympathetic nervous system is functionally activated and on their original male Wistar Kyoto rats (WKY) and the change of their body weights was examined. Further, changes of blood pressure in rats irradiated at 7.5 Gy, of norepinephrine contents in their gut as a parameter of sympathetic nervous function and of acetylcholine contents as that of parasympathetic nervous function were measured. Histopathological examinations were also performed. SHR died at smaller dose than WKY. The blood pressure as a parameter of systemic sympathetic nervous system varied greatly in SHR. Norepinephrine contents elevated rapidly and greatly in SHR after irradiation and acetylcholine contents rapidly elevated in WKY. Apoptosis was more frequently observed in the intestinal crypt of SHR. Participation of autonomic nervous system was thus shown in the appearance of acute radiation injury and sickness in SHR, which was thought to be a useful model for the investigation. (K.H.)

  11. Laser rangefinders for autonomous intelligent cruise control systems

    Science.gov (United States)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  12. Low Cost Vision Based Personal Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    M. M. Amami

    2014-03-01

    Full Text Available Mobile mapping systems (MMS can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS. A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  13. Low Cost Vision Based Personal Mobile Mapping System

    Science.gov (United States)

    Amami, M. M.; Smith, M. J.; Kokkas, N.

    2014-03-01

    Mobile mapping systems (MMS) can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS). A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  14. Using infrared HOG-based pedestrian detection for outdoor autonomous searching UAV with embedded system

    Science.gov (United States)

    Shao, Yanhua; Mei, Yanying; Chu, Hongyu; Chang, Zhiyuan; He, Yuxuan; Zhan, Huayi

    2018-04-01

    Pedestrian detection (PD) is an important application domain in computer vision and pattern recognition. Unmanned Aerial Vehicles (UAVs) have become a major field of research in recent years. In this paper, an algorithm for a robust pedestrian detection method based on the combination of the infrared HOG (IR-HOG) feature and SVM is proposed for highly complex outdoor scenarios on the basis of airborne IR image sequences from UAV. The basic flow of our application operation is as follows. Firstly, the thermal infrared imager (TAU2-336), which was installed on our Outdoor Autonomous Searching (OAS) UAV, is used for taking pictures of the designated outdoor area. Secondly, image sequences collecting and processing were accomplished by using high-performance embedded system with Samsung ODROID-XU4 and Ubuntu as the core and operating system respectively, and IR-HOG features were extracted. Finally, the SVM is used to train the pedestrian classifier. Experiment show that, our method shows promising results under complex conditions including strong noise corruption, partial occlusion etc.

  15. Autonomic nervous system mediated effects of food intake. Interaction between gastrointestinal and cardiovascular systems.

    NARCIS (Netherlands)

    van Orshoven, N.P.

    2008-01-01

    The studies presented in this thesis focused on the autonomic nervous system mediated interactions between the gastrointestinal and cardiovascular systems in response to food intake and on potential consequences of failure of these interactions. The effects of food intake on cardiovascular

  16. The mathematical model of dynamic stabilization system for autonomous car

    Science.gov (United States)

    Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.

    2018-02-01

    Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.

  17. Autonomous Monitoring Aerial Robot System for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji H.; Gu, Beom W; Thai, Van X.; Rim, C. T. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, autonomous monitoring aerial robot system (AMARS), which includes omnidirectional wireless charging platform, aerial robot, landing coils and a battery management board, is proposed to guarantee automatic monitoring of NPPs. The prototype of the system is fabricated, and omnidirectional charging of the system is experimentally validated with 1 C charging state. AR(Aerial Robots)s are essential for NPP accident management because human cannot access to the accident site due to the risks of unexpected explosions, collapses, and high level of radioactive contaminants. Moreover, ARs can support operators to manage normal operation of NPPs built in harsh environment of high temperature and humidity such as UAE Barakah NPP. Because these ARs usually have very low energy capacity, however, the operation time of ARs is less than 30 minutes and should be recharged regularly by human powers, which makes it impossible to monitor NPPs by ARs automatically. In this paper, the concept of AMARS has been proposed and its performance was successfully verified with a fabricated prototype. The charging state of the on board battery in AR was measured as 0.5 C with the induced voltage of 18.6 V, which is well matched to the designed induced voltage when the AR was placed on the edge of the wireless charging platform.

  18. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  19. Fulfilling the vision of automatic computing

    OpenAIRE

    Dobson, Simon; Sterritt, Roy; Nixon, Paddy; Hinchey, Mike

    2010-01-01

    Efforts since 2001 to design self-managing systems have yielded many impressive achievements, yet the original vision of autonomic computing remains unfulfilled. Researchers must develop a comprehensive systems engineering approach to create effective solutions for next-generation enterprise and sensor systems. Publisher PDF Peer reviewed

  20. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    International Nuclear Information System (INIS)

    Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso

    2011-01-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)

  1. Image processing algorithm design and implementation for real-time autonomous inspection of mixed waste

    International Nuclear Information System (INIS)

    Schalkoff, R.J.; Shaaban, K.M.; Carver, A.E.

    1996-01-01

    The ARIES number-sign 1 (Autonomous Robotic Inspection Experimental System) vision system is used to acquire drum surface images under controlled conditions and subsequently perform autonomous visual inspection leading to a classification as 'acceptable' or 'suspect'. Specific topics described include vision system design methodology, algorithmic structure,hardware processing structure, and image acquisition hardware. Most of these capabilities were demonstrated at the ARIES Phase II Demo held on Nov. 30, 1995. Finally, Phase III efforts are briefly addressed

  2. Exact Solutions for Certain Nonlinear Autonomous Ordinary Differential Equations of the Second Order and Families of Two-Dimensional Autonomous Systems

    Directory of Open Access Journals (Sweden)

    M. P. Markakis

    2010-01-01

    Full Text Available Certain nonlinear autonomous ordinary differential equations of the second order are reduced to Abel equations of the first kind ((Ab-1 equations. Based on the results of a previous work, concerning a closed-form solution of a general (Ab-1 equation, and introducing an arbitrary function, exact one-parameter families of solutions are derived for the original autonomous equations, for the most of which only first integrals (in closed or parametric form have been obtained so far. Two-dimensional autonomous systems of differential equations of the first order, equivalent to the considered herein autonomous forms, are constructed and solved by means of the developed analysis.

  3. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  4. Finite-time synchronization of a class of autonomous chaotic systems

    Indian Academy of Sciences (India)

    Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method. Keywords. Finite-time synchronization; autonomous chaotic ...

  5. Statistical Hypothesis Testing using CNN Features for Synthesis of Adversarial Counterexamples to Human and Object Detection Vision Systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Sunny [Univ. of Central Florida, Orlando, FL (United States); Jha, Sumit Kumar [Univ. of Central Florida, Orlando, FL (United States); Pullum, Laura L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramanathan, Arvind [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Validating the correctness of human detection vision systems is crucial for safety applications such as pedestrian collision avoidance in autonomous vehicles. The enormous space of possible inputs to such an intelligent system makes it difficult to design test cases for such systems. In this report, we present our tool MAYA that uses an error model derived from a convolutional neural network (CNN) to explore the space of images similar to a given input image, and then tests the correctness of a given human or object detection system on such perturbed images. We demonstrate the capability of our tool on the pre-trained Histogram-of-Oriented-Gradients (HOG) human detection algorithm implemented in the popular OpenCV toolset and the Caffe object detection system pre-trained on the ImageNet benchmark. Our tool may serve as a testing resource for the designers of intelligent human and object detection systems.

  6. Vision and dual IMU integrated attitude measurement system

    Science.gov (United States)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Lu, Huang

    2018-01-01

    To determination relative attitude between two space objects on a rocking base, an integrated system based on vision and dual IMU (inertial determination unit) is built up. The determination system fuses the attitude information of vision with the angular determinations of dual IMU by extended Kalman filter (EKF) to obtain the relative attitude. One IMU (master) is attached to the measured motion object and the other (slave) to the rocking base. As the determination output of inertial sensor is relative to inertial frame, thus angular rate of the master IMU includes not only motion of the measured object relative to inertial frame but also the rocking base relative to inertial frame, where the latter can be seen as redundant harmful movement information for relative attitude determination between the measured object and the rocking base. The slave IMU here assists to remove the motion information of rocking base relative to inertial frame from the master IMU. The proposed integrated attitude determination system is tested on practical experimental platform. And experiment results with superior precision and reliability show the feasibility and effectiveness of the proposed attitude determination system.

  7. Rapid hyperspectral image classification to enable autonomous search systems

    Directory of Open Access Journals (Sweden)

    Raj Bridgelal

    2016-11-01

    Full Text Available The emergence of lightweight full-frame hyperspectral cameras is destined to enable autonomous search vehicles in the air, on the ground and in water. Self-contained and long-endurance systems will yield important new applications, for example, in emergency response and the timely identification of environmental hazards. One missing capability is rapid classification of hyperspectral scenes so that search vehicles can immediately take actions to verify potential targets. Onsite verifications minimise false positives and preclude the expense of repeat missions. Verifications will require enhanced image quality, which is achievable by either moving closer to the potential target or by adjusting the optical system. Such a solution, however, is currently impractical for small mobile platforms with finite energy sources. Rapid classifications with current methods demand large computing capacity that will quickly deplete the on-board battery or fuel. To develop the missing capability, the authors propose a low-complexity hyperspectral image classifier that approaches the performance of prevalent classifiers. This research determines that the new method will require at least 19-fold less computing capacity than the prevalent classifier. To assess relative performances, the authors developed a benchmark that compares a statistic of library endmember separability in their respective feature spaces.

  8. VISION: a Versatile and Innovative SIlicOn tracking system

    CERN Document Server

    Lietti, Daniela; Vallazza, Erik

    This thesis work focuses on the study of the performance of different tracking and profilometry systems (the so-called INSULAB, INSUbria LABoratory, and VISION, Versatile and Innovative SIlicON, Telescopes) used in the last years by the NTA-HCCC, the COHERENT (COHERENT effects in crystals for the physics of accelerators), ICE-RAD (Interaction in Crystals for Emission of RADiation) and CHANEL (CHAnneling of NEgative Leptons) experiments, four collaborations of the INFN (Istituto Nazionale di Fisica Nucleare) dedicated to the research in the crystals physics field.

  9. Vision system for measuring wagon buffers’ lateral movements

    Directory of Open Access Journals (Sweden)

    Barjaktarović Marko

    2013-01-01

    Full Text Available This paper presents a vision system designed for measuring horizontal and vertical displacements of a railway wagon body. The model comprises a commercial webcam and a cooperative target of an appropriate shape. The lateral buffer movement is determined by calculating target displacement in real time by processing the camera image in a LabVIEW platform using free OpenCV library. Laboratory experiments demonstrate an accuracy which is better than ±0.5 mm within a 50 mm measuring range.

  10. Aromatherapy Improves Work Performance Through Balancing the Autonomic Nervous System.

    Science.gov (United States)

    Huang, Lin; Capdevila, Lluis

    2017-03-01

    This study analyzed the efficacy of aromatherapy in improving work performance and reducing workplace stress. The initial sample comprised 42 administrative university workers (M age  = 42.21 years, standard deviation = 7.12; 10 male). All sessions were performed in a university computer classroom. The participants were randomly assigned into an aromatherapy group (AG) and a control group (CG), and they were invited to participate in a specific session only once. They were seated in front of a computer. During the intervention period, some oil diffusers were switched on and were in operation throughout the session with petitgrain essential oil for AG sessions and a neutral oil (almond) for CG sessions. At the same time, participants completed a computer task on a specific Web site typing on their keyboard until they had finished it. The single times were different for all participants and were recorded on the Web site as "performance time." Before and after the intervention, participants completed anxiety and mood state questionnaires (the Stait-Trait Anxiety Inventory [STAI] and the Profile of Mood States [POMS]). Heart-rate variability (HRV) was measured before (PRE), during (20-25 min), and after (POS) the intervention to analyze autonomic nervous system regulation. The AG performed the Web site task 2.28 min faster than the CG (p = 0.05). The two groups showed differences in the following HRV parameters: low frequency (p = 0.05), high frequency (p = 0.02), standard deviation of all RR intervals (p = 0.05), and root mean square of differences (p = 0.02). All participants in all groups showed a decrease from PRE to POST for STAI (p Aromatherapy (inhaling petitgrain essential oil) can improve performance in the workplace. These results could be explained by an autonomic balance on the sympathetic/parasympathetic system through a combined action of the petitgrain main components (linalyl acetate, linalool, and myrcene). The final

  11. Integrating Symbolic and Statistical Methods for Testing Intelligent Systems Applications to Machine Learning and Computer Vision

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL

    2016-01-01

    Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.

  12. Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility

    Science.gov (United States)

    Pulskamp, Jeffrey S.

    2012-06-01

    Millimeter-scale robotic systems based on highly integrated microelectronics and micro-electromechanical systems (MEMS) could offer unique benefits and attributes for small-scale autonomous systems. This extreme scale for robotics will naturally constrain the realizable system capabilities significantly. This paper assesses the feasibility of developing such systems by defining the fundamental design trade spaces between component design variables and system level performance parameters. This permits the development of mobility enabling component technologies within a system relevant context. Feasible ranges of system mass, required aerodynamic power, available battery power, load supported power, flight endurance, and required leg load bearing capability are presented for millimeter-scale platforms. The analysis illustrates the feasibility of developing both flight capable and ground mobile millimeter-scale autonomous systems while highlighting the significant challenges that must be overcome to realize their potential.

  13. Autonomous, On-board Processing for Sensor Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Fuse high performance reconfigurable processors with emerging fault-tolerance & autonomous processing techniques for a 10-100x decrease in processing time. This...

  14. Intelligent, Autonomous Electrical Power System Management and Distribution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EPS-MAESTRO (EPS Management through intelligent, AdaptivE, autonomouS, faulT identification and diagnosis, Reconfiguration/replanning/rescheduling Optimization)...

  15. Autonomous Vehicle Systems Laboratory Research Capability Expansion Program

    Science.gov (United States)

    2017-12-03

    those of the author(s) and should not contrued as an official Department of the Army position, policy or decision , unless so designated by other...autonomous control, collaboration, and decision -making in unstructured, dynamic, and uncertain nonlinear environments for autonomous ground and air...demonstrate these techniques’ effectiveness using the equipment purchased by HBCU/MI funding in the areas of collaborative control, obstacle sense/avoid

  16. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  17. In search of synergies between policy-based systems management and economic models for autonomic computing

    OpenAIRE

    Anthony, Richard

    2011-01-01

    Policy-based systems management (PBM) and economics-based systems management (EBM) are two of the many techniques available for implementing autonomic systems, each having specific benefits and limitations, and thus different applicability; choosing the most appropriate technique is\\ud the first of many challenges faced by the developer. This talk begins with a critical discussion of the general design goals of autonomic systems and the main issues involved with their development and deployme...

  18. Research into the Architecture of CAD Based Robot Vision Systems

    Science.gov (United States)

    1988-02-09

    Vision 󈨚 and "Automatic Generation of Recognition Features for Com- puter Vision," Mudge, Turney and Volz, published in Robotica (1987). All of the...Occluded Parts," (T.N. Mudge, J.L. Turney, and R.A. Volz), Robotica , vol. 5, 1987, pp. 117-127. 5. "Vision Algorithms for Hypercube Machines," (T.N. Mudge

  19. Early Cognitive Vision as a Frontend for Cognitive Systems

    DEFF Research Database (Denmark)

    Krüger, Norbert; Pugeault, Nicolas; Baseski, Emre

    We discuss the need of an elaborated in-between stage bridging early vision and cognitive vision which we call `Early Cognitive Vision' (ECV). This stage provides semantically rich, disambiguated and largely task independent scene representations which can be used in many contexts. In addition...

  20. Enhanced/Synthetic Vision Systems - Human factors research and implications for future systems

    Science.gov (United States)

    Foyle, David C.; Ahumada, Albert J.; Larimer, James; Sweet, Barbara T.

    1992-01-01

    This paper reviews recent human factors research studies conducted in the Aerospace Human Factors Research Division at NASA Ames Research Center related to the development and usage of Enhanced or Synthetic Vision Systems. Research discussed includes studies of field of view (FOV), representational differences of infrared (IR) imagery, head-up display (HUD) symbology, HUD advanced concept designs, sensor fusion, and sensor/database fusion and evaluation. Implications for the design and usage of Enhanced or Synthetic Vision Systems are discussed.

  1. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    Science.gov (United States)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  2. Abnormally Malicious Autonomous Systems and their Internet Connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Shue, Craig A [ORNL; Kalafut, Prof. Andrew [Grand Valley State University (GVSU), Michigan; Gupta, Prof. Minaxi [Indiana University

    2011-01-01

    While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using ten popular blacklists, plus local spam data, and extensive DNS resolutions based on the contents of the blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted. Yet others account for large fractions of blacklisted IP addresses. Several ASes regularly peer with ASes associated with significant malicious activity. We also find that malicious ASes as a whole differ from benign ones in other properties not obviously related to their malicious activities, such as more frequent connectivity changes with their BGP peers. Overall, we conclude that examining malicious activity at AS granularity can unearth networks with lax security or those that harbor cybercrime.

  3. Novel Color Depth Mapping Imaging Sensor System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous robotic systems require information about their surroundings in order to navigate properly. A video camera machine vision system can...

  4. Novel Color Depth Mapping Imaging Sensor System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous robotic systems require information about their surroundings in order to navigate properly. A video camera machine vision system can...

  5. Vision-Based SLAM System for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-03-01

    Full Text Available The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs. The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i an orientation sensor (AHRS; (ii a position sensor (GPS; and (iii a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  6. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-03-15

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  7. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jun [University of Denver; Gao, Wenzhong [University of Denver; Zheng, Xinhu [University of Minnesota; Yang, Liuqing [Colorado State University; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver

    2017-09-01

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logic and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.

  8. On the market of wind with hydro-pumped storage systems in autonomous Greek islands

    International Nuclear Information System (INIS)

    Caralis, G.; Zervos, A.; Rados, K.

    2010-01-01

    In autonomous islands, the wind penetration is restricted due to technical reasons related with the safe operation of the electrical systems. The combined use of wind energy with pumped storage (WPS) is considered as a mean to exploit the abundant wind potential, increase the wind installed capacity and substitute conventional peak supply. In this paper, the experience gained from the analysis of WPS in three specific islands is used towards the estimation of the WPS market in autonomous Greek islands. Parameterized diagrams and a methodology towards the pre-dimensioning and initial design of the WPS are proposed and used towards the estimation of the market in autonomous Greek islands. The objective is to make an initial general prefeasibility study of WPS prospects in the autonomous Greek islands. Results show that there is a significant market for WPS in Greece and the development cost of WPS is competitive to the fuel cost of local power stations in autonomous islands. (author)

  9. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    Science.gov (United States)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  10. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Creating photorealistic virtual model with polarization-based vision system

    Science.gov (United States)

    Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi

    2005-08-01

    Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.

  12. Methods of monitoring the technical condition of the braking system of an autonomous vehicle during operation

    Science.gov (United States)

    Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.

    2018-02-01

    Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.

  13. Autonomous Soil Assessment System: A Data-Driven Approach to Planetary Mobility Hazard Detection

    Science.gov (United States)

    Raimalwala, K.; Faragalli, M.; Reid, E.

    2018-04-01

    The Autonomous Soil Assessment System predicts mobility hazards for rovers. Its development and performance are presented, with focus on its data-driven models, machine learning algorithms, and real-time sensor data fusion for predictive analytics.

  14. Development of Mission Enabling Infrastructure — Cislunar Autonomous Positioning System (CAPS)

    Science.gov (United States)

    Cheetham, B. W.

    2017-10-01

    Advanced Space, LLC is developing the Cislunar Autonomous Positioning System (CAPS) which would provide a scalable and evolvable architecture for navigation to reduce ground congestion and improve operations for missions throughout cislunar space.

  15. Autonomous Ocean Sampling Networks II (AOSN-II): System Engineering and Project Coordination

    National Research Council Canada - National Science Library

    Bellingham, James

    2003-01-01

    .... Over 21 different autonomous robotic systems, three ships, an aircraft, CODAR, drifters, floats, and numerous moored observation assets were used in the field program to produce an unprecedented data...

  16. Autonomous Monitoring of Radiation Environment and Personal Systems for Crew Enhanced SPE Protection (AMORE and PSYCHE)

    Science.gov (United States)

    Narici, L.; Baiocco, G.; Berrilli, F.; Giraudo, M.; Ottolenghi, A.; Rizzo, A.; Salina, G.

    2018-02-01

    Understand the relationship between SPE precursors, the related SPE radiation inside the Deep Space Gateway, and the associated risk levels, validating existing models, proposing countermeasures actions via a real time, autonomous intelligent system.

  17. A Hybrid Systems Strategy to Support Autonomous Spacecraft Trajectory Design and Optimization in Multiple Dynamical Regimes

    Data.gov (United States)

    National Aeronautics and Space Administration — With ever increasing numbers of near-Earth satellites and deep space missions, autonomous spacecraft guidance, navigation, and control (GNC) systems are increasingly...

  18. Central nervous system involvement in the autonomic responses to psychological distress

    NARCIS (Netherlands)

    de Morree, H.M.; Szabó, B.M.; Rutten, G.J.; Kop, W.J.

    2013-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and

  19. Proving autonomous vehicle and advanced driver assistance systems safety : final research report.

    Science.gov (United States)

    2016-02-15

    The main objective of this project was to provide technology for answering : crucial safety and correctness questions about verification of autonomous : vehicle and advanced driver assistance systems based on logic. : In synergistic activities, we ha...

  20. Hyperchaos of four state autonomous system with three positive Lyapunov exponents

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang, C-H.

    2009-01-01

    This Letter gives the results of numerical simulations of Quantum Cellular Neural Network (Quantum-CNN) autonomous system with four state variables. Three positive Lyapunov exponents confirm hyperchaotic nature of its dynamics

  1. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  2. A stochastic perturbation theory for non-autonomous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, W., E-mail: wm275@damtp.cam.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Wettlaufer, J. S., E-mail: wettlaufer@maths.ox.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)

    2013-12-15

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  3. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  4. Stereoscopic Machine-Vision System Using Projected Circles

    Science.gov (United States)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a

  5. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  6. Autonomic nervous system status and responsiveness and the ...

    African Journals Online (AJOL)

    inflexibility or decreased responsiveness in the face of a challenge.1,2 In view of the ... and parasympathetic control were seen with time domain and Poincare ... autonomic shift that results in heart rate acceleration.7 The differences between ...

  7. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis

    Directory of Open Access Journals (Sweden)

    Michael F La Fountaine

    2016-02-01

    Full Text Available The arterial pulse wave (APW has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate, it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW, has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure was performed in the seated upright position in ten athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 seconds (F60 of an isometric handgrip test (IHGT in concussed athletes and non-injured controls within 48 hours (48hr and 1 week (1wk of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP>1wk; RTP≤1wk. SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48hr and 1wk; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP>1wk group had lower SysSlope (405±200; 420±88; 454±236 mmHg/s, respectively at rest 48hr compared to the RTP≤1wk and controls. Similarly at 48hr rest, several measurements of arterial stiffness were abnormal in RTP>1wk compared to RTP≤1wk and controls: Peak-to-Notch Latency (0.12±0.04; 0.16±0.02; 0.17±0.05, respectively, Notch Relative Amplitude (0.70±0.03; 0.71±0.04; 0.66±0.14, respectively and Stiffness Index (6.4±0.2; 5.7±0.4; 5.8±0.5, respectively. Use of APW revealed that concussed athletes have a transient increase in peripheral artery

  8. Vision system for precision alignment of coolant channels

    International Nuclear Information System (INIS)

    Kar, S.; Rao, Y.V.; Valli Kumar; Joshi, D.G.; Chadda, V.K.; Nigam, R.K.; Kayal, J.N.; Panwar, S.; Sinha, R.K.

    1997-01-01

    This paper describes a vision system which has been developed for precision alignment of Coolant Channel Replacement Machine (CCRM) with respect to the front face of the coolant channel under repair/replacement. It has provisions for automatic as well as semi-automatic alignment. A special lighting scheme has been developed for providing illumination to the front face of the channel opening. This facilitates automatic segmentation of the digitized image. The segmented image is analysed to obtain the centre of the front face of the channel opening and thus the extent of misalignment i.e. offset of the camera with respect to the front face of the channel opening. The offset information is then communicated to the PLC to generate an output signal to drive the DC servo motors for precise positioning of the co-ordinate table. 2 refs., 5 figs

  9. A Vision-Based Wireless Charging System for Robot Trophallaxis

    Directory of Open Access Journals (Sweden)

    Jae-O Kim

    2015-12-01

    Full Text Available The need to recharge the batteries of a mobile robot has presented an important challenge for a long time. In this paper, a vision-based wireless charging method for robot energy trophallaxis between two robots is presented. Even though wireless power transmission allows more positional error between receiver-transmitter coils than with a contact-type charging system, both coils have to be aligned as accurately as possible for efficient power transfer. To align the coils, a transmitter robot recognizes the coarse pose of a receiver robot via a camera image and the ambiguity of the estimated pose is removed with a Bayesian estimator. The precise pose of the receiver coil is calculated using a marker image attached to a receiver robot. Experiments with several types of receiver robots have been conducted to verify the proposed method.

  10. THE PHENOMENON OF EUROPEAN MUSICAL ROMANTICISM IN SYSTEMIC RESEARCH VISION

    Directory of Open Access Journals (Sweden)

    FLOREA AUGUSTINA

    2015-09-01

    Full Text Available The Romanticism – European cultural-artistic phenomenon of the 20th century, developed in various fields of philosophy, literature, arts, and in terms of its amplitude and universality marked the respective century as a Romantic Era – is promoted in the most pointed manner in musical art. The Research of musical Romanticism – in the conceptual, aesthetic, musical aspect – can be achieved only on the basis of a systemic vision, which inputs the necessity of a study of synthesis. The respective study will integrate in a single process the investigation of all the above – mentioned aspects and will take place at the intersection of different scientific domains: aesthetics and musical aesthetics, historical and theoretical musicology, history and theory of interpretative art.

  11. Automatic Calibration and Reconstruction for Active Vision Systems

    CERN Document Server

    Zhang, Beiwei

    2012-01-01

    In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the computational efficiency and redundancy in the data can be easily incorporated to improve reliability of the estimations. This volume will therefore prove valuable and practical tool for researchers and practioners working in image processing and computer vision and related subjects.

  12. A survey of camera error sources in machine vision systems

    Science.gov (United States)

    Jatko, W. B.

    In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.

  13. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    Science.gov (United States)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  14. An Intelligent Control for the Distributed Flexible Network Photovoltaic System using Autonomous Control and Agent

    Science.gov (United States)

    Park, Sangsoo; Miura, Yushi; Ise, Toshifumi

    This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.

  15. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  16. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations

  17. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  18. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  19. A Machine Vision System for Automatically Grading Hardwood Lumber - (Industrial Metrology)

    Science.gov (United States)

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas T. Drayer; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  20. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Fukuto, Junji; Sugasawa, Shinobu; Miyazaki, Keiko; Someya, Minoru; Haraki, Nobuo

    1994-01-01

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  1. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  2. A novel 3D autonomous system with different multilayer chaotic attractors

    International Nuclear Information System (INIS)

    Dong Gaogao; Du Ruijin; Tian Lixin; Jia Qiang

    2009-01-01

    This Letter proposes a novel three-dimensional autonomous system which has complex chaotic dynamics behaviors and gives analysis of novel system. More importantly, the novel system can generate three-layer chaotic attractor, four-layer chaotic attractor, five-layer chaotic attractor, multilayer chaotic attractor by choosing different parameters and initial condition. We analyze the new system by means of phase portraits, Lyapunov exponent spectrum, fractional dimension, bifurcation diagram and Poincare maps of the system. The three-dimensional autonomous system is totally different from the well-known systems in previous work. The new multilayer chaotic attractors are also worth causing attention.

  3. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    Science.gov (United States)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  4. Systems, methods and apparatus for modeling, specifying and deploying policies in autonomous and autonomic systems using agent-oriented software engineering

    Science.gov (United States)

    Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.

  5. Examples of design and achievement of vision systems for mobile robotics applications

    Science.gov (United States)

    Bonnin, Patrick J.; Cabaret, Laurent; Raulet, Ludovic; Hugel, Vincent; Blazevic, Pierre; M'Sirdi, Nacer K.; Coiffet, Philippe

    2000-10-01

    Our goal is to design and to achieve a multiple purpose vision system for various robotics applications : wheeled robots (like cars for autonomous driving), legged robots (six, four (SONY's AIBO) legged robots, and humanoid), flying robots (to inspect bridges for example) in various conditions : indoor or outdoor. Considering that the constraints depend on the application, we propose an edge segmentation implemented either in software, or in hardware using CPLDs (ASICs or FPGAs could be used too). After discussing the criteria of our choice, we propose a chain of image processing operators constituting an edge segmentation. Although this chain is quite simple and very fast to perform, results appear satisfactory. We proposed a software implementation of it. Its temporal optimization is based on : its implementation under the pixel data flow programming model, the gathering of local processing when it is possible, the simplification of computations, and the use of fast access data structures. Then, we describe a first dedicated hardware implementation of the first part, which requires 9CPLS in this low cost version. It is technically possible, but more expensive, to implement these algorithms using only a signle FPGA.

  6. Towards the Verification of Safety-critical Autonomous Systems in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Adina Aniculaesei

    2016-12-01

    Full Text Available There is an increasing necessity to deploy autonomous systems in highly heterogeneous, dynamic environments, e.g. service robots in hospitals or autonomous cars on highways. Due to the uncertainty in these environments, the verification results obtained with respect to the system and environment models at design-time might not be transferable to the system behavior at run time. For autonomous systems operating in dynamic environments, safety of motion and collision avoidance are critical requirements. With regard to these requirements, Macek et al. [6] define the passive safety property, which requires that no collision can occur while the autonomous system is moving. To verify this property, we adopt a two phase process which combines static verification methods, used at design time, with dynamic ones, used at run time. In the design phase, we exploit UPPAAL to formalize the autonomous system and its environment as timed automata and the safety property as TCTL formula and to verify the correctness of these models with respect to this property. For the runtime phase, we build a monitor to check whether the assumptions made at design time are also correct at run time. If the current system observations of the environment do not correspond to the initial system assumptions, the monitor sends feedback to the system and the system enters a passive safe state.

  7. A future vision of nuclear material information systems

    International Nuclear Information System (INIS)

    Suski, N.; Wimple, C.

    1999-01-01

    To address the current and future needs for nuclear materials management and safeguards information, Lawrence Livermore National Laboratory envisions an integrated nuclear information system that will support several functions. The vision is to link distributed information systems via a common communications infrastructure designed to address the information interdependencies between two major elements: Domestic, with information about specific nuclear materials and their properties, and International, with information pertaining to foreign nuclear materials, facility design and operations. The communication infrastructure will enable data consistency, validation and reconciliation, as well as provide a common access point and user interface for a broad range of nuclear materials information. Information may be transmitted to, from, and within the system by a variety of linkage mechanisms, including the Internet. Strict access control will be employed as well as data encryption and user authentication to provide the necessary information assurance. The system can provide a mechanism not only for data storage and retrieval, but will eventually provide the analytical tools necessary to support the U.S. government's nuclear materials management needs and non-proliferation policy goals

  8. Autonomous intelligent assembly systems LDRD 105746 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.

  9. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  10. Modeling an autonomous wind turbine electric pump system

    Directory of Open Access Journals (Sweden)

    Andreea Forcos

    2009-10-01

    Full Text Available Being one of the variable renewable energy sources, wind energy integration can be made using storage methods. All of these have been developed during time, but one might be more accessible than others because is using a free natural resource, water. This is pump storage. The purpose of this paper is modeling an autonomous wind turbine connected to an electric pump, in the aim of storage, and finally the determination of the efficiency.

  11. Collaborative autonomous systems in models of urban logistics

    OpenAIRE

    Arango Serna, Martín Darío; Serna Uran, Conrado Augusto; Alvarez Uribe, Karla Cristina; Arango Serna, Martín Darío

    2012-01-01

    Cities growth and along with them the exchange and distribution of goods and services has led in recent years to a greater increasing interest for the optimization of logistic processes carried out in urban areas. In this article, the main approaches and solutions which have been proposed from academic research will be described, focusing mainly on collaborative autonomic logistics, which is offered as an attractive solution to the urban goods distribution problems in complex cities.

  12. Neuromorphic VLSI vision system for real-time texture segregation.

    Science.gov (United States)

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  13. A Real-Time Embedded System for Stereo Vision Preprocessing Using an FPGA

    DEFF Research Database (Denmark)

    Kjær-Nielsen, Anders; Jensen, Lars Baunegaard With; Sørensen, Anders Stengaard

    2008-01-01

    In this paper a low level vision processing node for use in existing IEEE 1394 camera setups is presented. The processing node is a small embedded system, that utilizes an FPGA to perform stereo vision preprocessing at rates limited by the bandwidth of IEEE 1394a (400Mbit). The system is used...

  14. New vision solar system mission study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mondt, J.F.; Zubrin, R.M.

    1996-03-01

    The vision for the future of the planetary exploration program includes the capability to deliver {open_quotes}constellations{close_quotes} or {open_quotes}fleets{close_quotes} of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a {open_quotes}virtual{close_quotes} {open_quotes}presence{close_quotes} in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.

  15. KNOWLEDGE-BASED ROBOT VISION SYSTEM FOR AUTOMATED PART HANDLING

    Directory of Open Access Journals (Sweden)

    J. Wang

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses an algorithm incorporating a knowledge-based vision system into an industrial robot system for handling parts intelligently. A continuous fuzzy controller was employed to extract boundary information in a computationally efficient way. The developed algorithm for on-line part recognition using fuzzy logic is shown to be an effective solution to extract the geometric features of objects. The proposed edge vector representation method provides enough geometric information and facilitates the object geometric reconstruction for gripping planning. Furthermore, a part-handling model was created by extracting the grasp features from the geometric features.

    AFRIKAANSE OPSOMMING: Hierdie artikel beskryf ‘n kennis-gebaseerde visiesisteemalgoritme wat in ’n industriёle robotsisteem ingesluit word om sodoende intelligente komponenthantering te bewerkstellig. ’n Kontinue wasige beheerder is gebruik om allerlei objekinligting deur middel van ’n effektiewe berekeningsmetode te bepaal. Die ontwikkelde algoritme vir aan-lyn komponentherkenning maak gebruik van wasige logika en word bewys as ’n effektiewe metode om geometriese inligting van objekte te bepaal. Die voorgestelde grensvektormetode verskaf voldoende inligting en maak geometriese rekonstruksie van die objek moontlik om greepbeplanning te kan doen. Voorts is ’n komponenthanteringsmodel ontwikkel deur die grypkenmerke af te lei uit die geometriese eienskappe.

  16. [Functional state of vision system under chronic mercury intoxication].

    Science.gov (United States)

    Iablonskaia, D A; Mishchenko, T S; Lakhman, O L; Rukavishnikov, V S; Malyshev, V V

    2010-01-01

    Examination of chronic mercury intoxication patients in distant (post-contact) period revealed marked vision disorders and inhibited neuro-conductivity--inhibited neuronal structures of retina and optic nerve.

  17. HDR video synthesis for vision systems in dynamic scenes

    Science.gov (United States)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  18. Defining the Symmetry of the Universal Semi-Regular Autonomous Asynchronous Systems

    Directory of Open Access Journals (Sweden)

    Serban E. Vlad

    2012-02-01

    Full Text Available The regular autonomous asynchronous systems are the non-deterministic Boolean dynamical systems and universality means the greatest in the sense of the inclusion. The paper gives four definitions of symmetry of these systems in a slightly more general framework, called semi-regularity, and also many examples.

  19. ARM-based visual processing system for prosthetic vision.

    Science.gov (United States)

    Matteucci, Paul B; Byrnes-Preston, Philip; Chen, Spencer C; Lovell, Nigel H; Suaning, Gregg J

    2011-01-01

    A growing number of prosthetic devices have been shown to provide visual perception to the profoundly blind through electrical neural stimulation. These first-generation devices offer promising outcomes to those affected by degenerative disorders such as retinitis pigmentosa. Although prosthetic approaches vary in their placement of the stimulating array (visual cortex, optic-nerve, epi-retinal surface, sub-retinal surface, supra-choroidal space, etc.), most of the solutions incorporate an externally-worn device to acquire and process video to provide the implant with instructions on how to deliver electrical stimulation to the patient, in order to elicit phosphenized vision. With the significant increase in availability and performance of low power-consumption smart phone and personal device processors, the authors investigated the use of a commercially available ARM (Advanced RISC Machine) device as an externally-worn processing unit for a prosthetic neural stimulator for the retina. A 400 MHz Samsung S3C2440A ARM920T single-board computer was programmed to extract 98 values from a 1.3 Megapixel OV9650 CMOS camera using impulse, regional averaging and Gaussian sampling algorithms. Power consumption and speed of video processing were compared to results obtained to similar reported devices. The results show that by using code optimization, the system is capable of driving a 98 channel implantable device for the restoration of visual percepts to the blind.

  20. Materials learning from life: concepts for active, adaptive and autonomous molecular systems.

    Science.gov (United States)

    Merindol, Rémi; Walther, Andreas

    2017-09-18

    Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.

  1. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S; Zanela, S; Santini, A; Nanni, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  2. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  3. On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.

    Science.gov (United States)

    Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P

    2014-06-01

    Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The imaging capability of a surveillance vision system from harsh low-visibility environments such as in fire and detonation areas is a key function to monitor the safety of the facilities. 2D and range image data acquired from low-visibility environment are important data to assess the safety and prepare appropriate countermeasures. Passive vision systems, such as conventional camera and binocular stereo vision systems usually cannot acquire image information when the reflected light is highly scattered and absorbed by airborne particles such as fog. In addition, the image resolution captured through low-density airborne particles is decreased because the image is blurred and dimmed by the scattering, emission and absorption. Active vision systems, such as structured light vision and projected stereo vision are usually more robust for harsh environment than passive vision systems. However, the performance is considerably decreased in proportion to the density of the particles. The RGI system provides 2D and range image data from several RGI images and it moreover provides clear images from low-visibility fog and smoke environment by using the sum of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays becoming more applicable by virtue of the rapid development of optical and sensor technologies. Especially, this system can be adopted in robot-vision system by virtue of its compact portable configuration. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been

  5. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    The imaging capability of a surveillance vision system from harsh low-visibility environments such as in fire and detonation areas is a key function to monitor the safety of the facilities. 2D and range image data acquired from low-visibility environment are important data to assess the safety and prepare appropriate countermeasures. Passive vision systems, such as conventional camera and binocular stereo vision systems usually cannot acquire image information when the reflected light is highly scattered and absorbed by airborne particles such as fog. In addition, the image resolution captured through low-density airborne particles is decreased because the image is blurred and dimmed by the scattering, emission and absorption. Active vision systems, such as structured light vision and projected stereo vision are usually more robust for harsh environment than passive vision systems. However, the performance is considerably decreased in proportion to the density of the particles. The RGI system provides 2D and range image data from several RGI images and it moreover provides clear images from low-visibility fog and smoke environment by using the sum of time-sliced images. Nowadays, the Range-gated (RG) imaging is an emerging technology in the field of surveillance for security applications, especially in the visualization of invisible night and fog environment. Although RGI viewing was discovered in the 1960's, this technology is, nowadays becoming more applicable by virtue of the rapid development of optical and sensor technologies. Especially, this system can be adopted in robot-vision system by virtue of its compact portable configuration. In contrast to passive vision systems, this technology enables operation even in harsh environments like fog and smoke. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been

  6. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  7. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  8. Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems

    International Nuclear Information System (INIS)

    Struckmeier, Juergen

    2005-01-01

    We will present a consistent description of Hamiltonian dynamics on the 'symplectic extended phase space' that is analogous to that of a time-independent Hamiltonian system on the conventional symplectic phase space. The extended Hamiltonian H 1 and the pertaining extended symplectic structure that establish the proper canonical extension of a conventional Hamiltonian H will be derived from a generalized formulation of Hamilton's variational principle. The extended canonical transformation theory then naturally permits transformations that also map the time scales of the original and destination system, while preserving the extended Hamiltonian H 1 , and hence the form of the canonical equations derived from H 1 . The Lorentz transformation, as well as time scaling transformations in celestial mechanics, will be shown to represent particular canonical transformations in the symplectic extended phase space. Furthermore, the generalized canonical transformation approach allows us to directly map explicitly time-dependent Hamiltonians into time-independent ones. An 'extended' generating function that defines transformations of this kind will be presented for the time-dependent damped harmonic oscillator and for a general class of explicitly time-dependent potentials. In the appendix, we will re-establish the proper form of the extended Hamiltonian H 1 by means of a Legendre transformation of the extended Lagrangian L 1

  9. Diagnosis of Fault Modes Masked by Control Loops with an Application to Autonomous Hovercraft Systems

    Directory of Open Access Journals (Sweden)

    Ioannis A. Raptis

    2013-01-01

    Full Text Available This paper introduces a methodology for the design, testing and assessment of incipient failure detection techniques for failing components/systems of an autonomous vehicle masked or hidden by feedback control loops. It is recognized that the optimum operation of critical assets (aircraft, autonomous systems, etc. may be compromised by feedback control loops by masking severe fault modes while compensating for typical disturbances. Detrimental consequences of such occurrences include the inability to detect expeditiously and accurately incipient failures, loss of control and inefficient operation of assets in the form of fuel overconsumption and adverse environmental impact. We pursue a systems engineering process to design, construct and test an autonomous hovercraft instrumented appropriately for improved autonomy. Hidden fault modes are detected with performance guarantees by invoking a Bayesian estimation approach called particle filtering. Simulation and experimental studies are employed to demonstrate the efficacy of the proposed methods.

  10. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  11. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  12. Vision and laterality: does occlusion disclose a feedback processing advantage for the right hand system?

    Science.gov (United States)

    Buekers, M J; Helsen, W F

    2000-09-01

    The main purpose of this study was to examine whether manual asymmetries could be related to the superiority of the left hemisphere/right hand system in processing visual feedback. Subjects were tested when performing single (Experiment 1) and reciprocal (Experiment 2) aiming movements under different vision conditions (full vision, 20 ms on/180 ms off, 10/90, 40/160, 20/80, 60/120, 20/40). Although in both experiments right hand advantages were found, manual asymmetries did not interact with intermittent vision conditions. Similar patterns of results were found across vision conditions for both hands. These data do not support the visual feedback processing hypothesis of manual asymmetry. Motor performance is affected to the same extent for both hand systems when vision is degraded.

  13. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  14. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  15. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  16. Computer vision and imaging in intelligent transportation systems

    CERN Document Server

    Bala, Raja; Trivedi, Mohan

    2017-01-01

    Acts as a single source reference providing readers with an overview of how computer vision can contribute to the different applications in the field of road transportation. This book presents a survey of computer vision techniques related to three key broad problems in the roadway transportation domain: safety, efficiency, and law enforcement. The individual chapters present significant applications within these problem domains, each presented in a tutorial manner, describing the motivation for and benefits of the application, and a description of the state of the art.

  17. Measurement of meat color using a computer vision system.

    Science.gov (United States)

    Girolami, Antonio; Napolitano, Fabio; Faraone, Daniela; Braghieri, Ada

    2013-01-01

    The limits of the colorimeter and a technique of image analysis in evaluating the color of beef, pork, and chicken were investigated. The Minolta CR-400 colorimeter and a computer vision system (CVS) were employed to measure colorimetric characteristics. To evaluate the chromatic fidelity of the image of the sample displayed on the monitor, a similarity test was carried out using a trained panel. The panelists found the digital images of the samples visualized on the monitor very similar to the actual ones (Pmeat sample and the sample image on the monitor in order to evaluate the similarity between them (test A). Moreover, the panelists were asked to evaluate the similarity between two colors, both generated by the software Adobe Photoshop CS3 one using the L, a and b values read by the colorimeter and the other obtained using the CVS (test B); which of the two colors was more similar to the sample visualized on the monitor was also assessed (test C). The panelists found the digital images very similar to the actual samples (Pcolors the panelists found significant differences between them (Pcolor of the sample on the monitor was more similar to the CVS generated color than to the colorimeter generated color. The differences between the values of the L, a, b, hue angle and chroma obtained with the CVS and the colorimeter were statistically significant (Pcolor of meat. Instead, the CVS method seemed to give valid measurements that reproduced a color very similar to the real one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Using Vision Metrology System for Quality Control in Automotive Industries

    Science.gov (United States)

    Mostofi, N.; Samadzadegan, F.; Roohy, Sh.; Nozari, M.

    2012-07-01

    The need of more accurate measurements in different stages of industrial applications, such as designing, producing, installation, and etc., is the main reason of encouraging the industry deputy in using of industrial Photogrammetry (Vision Metrology System). With respect to the main advantages of Photogrammetric methods, such as greater economy, high level of automation, capability of noncontact measurement, more flexibility and high accuracy, a good competition occurred between this method and other industrial traditional methods. With respect to the industries that make objects using a main reference model without having any mathematical model of it, main problem of producers is the evaluation of the production line. This problem will be so complicated when both reference and product object just as a physical object is available and comparison of them will be possible with direct measurement. In such case, producers make fixtures fitting reference with limited accuracy. In practical reports sometimes available precision is not better than millimetres. We used a non-metric high resolution digital camera for this investigation and the case study that studied in this paper is a chassis of automobile. In this research, a stable photogrammetric network designed for measuring the industrial object (Both Reference and Product) and then by using the Bundle Adjustment and Self-Calibration methods, differences between the Reference and Product object achieved. These differences will be useful for the producer to improve the production work flow and bringing more accurate products. Results of this research, demonstrate the high potential of proposed method in industrial fields. Presented results prove high efficiency and reliability of this method using RMSE criteria. Achieved RMSE for this case study is smaller than 200 microns that shows the fact of high capability of implemented approach.

  19. USING VISION METROLOGY SYSTEM FOR QUALITY CONTROL IN AUTOMOTIVE INDUSTRIES

    Directory of Open Access Journals (Sweden)

    N. Mostofi

    2012-07-01

    Full Text Available The need of more accurate measurements in different stages of industrial applications, such as designing, producing, installation, and etc., is the main reason of encouraging the industry deputy in using of industrial Photogrammetry (Vision Metrology System. With respect to the main advantages of Photogrammetric methods, such as greater economy, high level of automation, capability of noncontact measurement, more flexibility and high accuracy, a good competition occurred between this method and other industrial traditional methods. With respect to the industries that make objects using a main reference model without having any mathematical model of it, main problem of producers is the evaluation of the production line. This problem will be so complicated when both reference and product object just as a physical object is available and comparison of them will be possible with direct measurement. In such case, producers make fixtures fitting reference with limited accuracy. In practical reports sometimes available precision is not better than millimetres. We used a non-metric high resolution digital camera for this investigation and the case study that studied in this paper is a chassis of automobile. In this research, a stable photogrammetric network designed for measuring the industrial object (Both Reference and Product and then by using the Bundle Adjustment and Self-Calibration methods, differences between the Reference and Product object achieved. These differences will be useful for the producer to improve the production work flow and bringing more accurate products. Results of this research, demonstrate the high potential of proposed method in industrial fields. Presented results prove high efficiency and reliability of this method using RMSE criteria. Achieved RMSE for this case study is smaller than 200 microns that shows the fact of high capability of implemented approach.

  20. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  1. PENGEMBANGAN COMPUTER VISION SYSTEM SEDERHANA UNTUK MENENTUKAN KUALITAS TOMAT Development of a simple Computer Vision System to determine tomato quality

    Directory of Open Access Journals (Sweden)

    Rudiati Evi Masithoh

    2012-05-01

    Full Text Available The purpose of this research was to develop a simple computer vision system (CVS to non-destructively measure tomato quality based on its Red Gren Blue (RGB color parameter. Tomato quality parameters measured were Brix, citric acid, vitamin C, and total sugar. This system consisted of a box to place object, a webcam to capture images, a computer to process images, illumination system, and an image analysis software which was equipped with artificial neural networks technique for determining tomato quality. Network architecture was formed with 3 layers consisting of1 input layer with 3 input neurons, 1 hidden layer with 14 neurons using logsig activation function, and 5 output layers using purelin activation function by using backpropagation training algorithm. CVS developed was able to predict the quality parameters of a Brix value, vitamin C, citric acid, and total sugar. To obtain the predicted values which were equal or close to the actual values, a calibration model was required. For Brix value, the actual value obtained from the equation y = 12,16x – 26,46, with x was Brix predicted. The actual values of vitamin C, citric acid, and total sugar were obtained from y = 1,09x - 3.13, y = 7,35x – 19,44,  and  y = 1.58x – 0,18,, with x was the value of vitamin C, citric acid, and total sugar, respectively. ABSTRAK Tujuan penelitian adalah mengembangkan computer vision system (CVS sederhana untuk menentukan kualitas tomat secara non­destruktif berdasarkan parameter warna Red Green Blue (RGB. Parameter kualitas tomat yang diukur ada­ lah Brix, asam sitrat, vitamin C, dan gula total. Sistem ini terdiri peralatan utama yaitu kotak untuk meletakkan obyek, webcam untuk menangkap citra, komputer untuk mengolah data, sistem penerangan, dan perangkat lunak analisis citra yang dilengkapi dengan jaringan syaraf tiruan untuk menentukan kualitas tomat. Arsitektur jaringan dibentuk dengan3 lapisan yang terdiri dari 1 lapisan masukan dengan 3 sel

  2. The characteristics of autonomic nervous system disorders in burning mouth syndrome and Parkinson disease.

    Science.gov (United States)

    Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir

    2012-01-01

    To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.

  3. [Characteristics of communication systems of suspected occupational disease in the Autonomous Communities, Spain].

    Science.gov (United States)

    García Gómez, Montserrat; Urbaneja Arrúe, Félix; García López, Vega; Estaban Buedo, Valentín; Rodríguez Suárez, Valentín; Miralles Martínez-Portillo, Lourdes; González García, Isabel; Egea Garcia, Josefa; Corraliza Infanzon, Emma; Ramírez Salvador, Laura; Briz Blázquez, Santiago; Armengol Rosell, Ricard; Cisnal Gredilla, José María; Correa Rodríguez, Juan Francisco; Coto Fernández, Juan Carlos; Díaz Peral, Mª Rosario; Elvira Espinosa, Mercedes; Fernández Fernández, Iñigo; García-Ramos Alonso, Eduardo; Martínez Arguisuelas, Nieves; Rivas Pérez, Ana Isabel

    2017-03-17

    There are several initiatives to develop systems for the notification of suspected occupational disease (OD) in different autonomous communities. The objective was to describe the status of development and characteristics of these systems implemented by the health authorities. A cross-sectional descriptive study was carried out on the existence of systems for the information and surveillance of suspected OD, their legal framework, responsible institution and availability of information. A specific meeting was held and a survey was designed and sent to all autonomous communities and autonomous cities (AACC). Information was collected on the existence of a regulatory standard, assigned human resources, notifiers, coverage and number of suspected OD received, processed and recognized. 18 of 19 AACC responded. 10 have developed a suspected OD notification system, 3 of them supported by specific autonomic law. The notifiers were physicians of the public health services, physicians of the occupational health services and, in 2 cases, medical inspectors. 7 AACC had specific software to support the system. The OD recognition rate of suspected cases was 53% in the Basque Country; 41% in Castilla-La Mancha; 36% in Murcia; 32.6% in the Valencian Community and 31% in La Rioja. The study has revealed an heterogeneous development of suspected OD reporting systems in Spain. Although the trend is positive, only 55% of the AACC have some type of development and 39% have specific software supporting it. Therefore unequal OD recognition rates have been obtained depending on the territory.

  4. The Unseen Déjà-Vu: From Erkki Huhtamo's Topoi to Ken Jacobs' Remakes: Commentary to Edwin Carels "Revisiting Tom Tom: Performative anamnesis and autonomous vision in Ken Jacobs' appropriations of Tom Tom the Piper's Son".

    Science.gov (United States)

    Strauven, Wanda

    2018-01-01

    This commentary on Edwin Carels' essay "Revisiting Tom Tom : Performative anamnesis and autonomous vision in Ken Jacobs' appropriations of Tom Tom the Piper's Son " broadens up the media-archaeological framework in which Carels places his text. Notions such as Huhtamo's topos and Zielinski's "deep time" are brought into the discussion in order to point out the difficulty to see what there is to see and to question the position of the viewer in front of experimental films like Tom Tom the Piper's Son and its remakes.

  5. Requirement analysis for autonomous systems and intelligent agents in future Danish electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten

    2010-01-01

    we review innovative control architectures in electric power systems such as Microgrids, Virtual power plants and Cell based systems. We evaluate application of autonomous systems and intelligent agents in each of these control architectures particularly in the context of Denmark's strategic energy...... plans. The second part formulates a flexible control architecture for electric power systems with very high penetration of distributed generation. This control architecture is based upon the requirements identified in the first part. We also present development of a software framework to test......Denmark has already achieved a record of 20% penetration of wind power and now moving towards even higher targets with an increasing part of the electricity produced by distributed generators (DGs). In this paper we report work from a sub activity "subgrid design" of the EcoGrid.dk project. First...

  6. Development of Vision System for Dimensional Measurement for Irradiated Fuel Assembly

    International Nuclear Information System (INIS)

    Shin, Jungcheol; Kwon, Yongbock; Park, Jongyoul; Woo, Sangkyun; Kim, Yonghwan; Jang, Youngki; Choi, Joonhyung; Lee, Kyuseog

    2006-01-01

    In order to develop an advanced nuclear fuel, a series of pool side examination (PSE) is performed to confirm in-pile behavior of the fuel for commercial production. For this purpose, a vision system was developed to measure for mechanical integrity, such as assembly bowing, twist and growth, of the loaded lead test assembly. Using this vision system, three(3) times of PSE were carried out at Uljin Unit 3 and Kori Unit 2 for the advanced fuels, PLUS7 TM and 16ACE7 TM , developed by KNFC. Among the main characteristics of the vision system is very simple structure and measuring principal. This feature enables the equipment installation and inspection time to reduce largely, and leads the PSE can be finished without disturbance on the fuel loading and unloading activities during utility overhaul periods. And another feature is high accuracy and repeatability achieved by this vision system

  7. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  8. System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles

    Science.gov (United States)

    Stone, William C. (Inventor); Clark, Evan (Inventor); Richmond, Kristof (Inventor); Paulus, Jeremy (Inventor); Kapit, Jason (Inventor); Scully, Mark (Inventor); Kimball, Peter (Inventor)

    2018-01-01

    A system for automated rendezvous, docking, and capture of autonomous underwater vehicles at the conclusion of a mission comprising of comprised of a docking rod having lighted, pulsating (in both frequency and light intensity) series of LED light strips thereon, with the LEDs at a known spacing, and the autonomous underwater vehicle specially designed to detect and capture the docking rod and then be lifted structurally by a spherical end strop about which the vehicle can be pivoted and hoisted up (e.g., onto a ship). The method of recovery allows for very routine and reliable automated recovery of an unmanned underwater asset.

  9. Analysis of the minimum swerving distance for the development of a motorcycle autonomous braking system.

    Science.gov (United States)

    Giovannini, Federico; Savino, Giovanni; Pierini, Marco; Baldanzini, Niccolò

    2013-10-01

    In the recent years the autonomous emergency brake (AEB) was introduced in the automotive field to mitigate the injury severity in case of unavoidable collisions. A crucial element for the activation of the AEB is to establish when the obstacle is no longer avoidable by lateral evasive maneuvers (swerving). In the present paper a model to compute the minimum swerving distance needed by a powered two-wheeler (PTW) to avoid the collision against a fixed obstacle, named last-second swerving model (Lsw), is proposed. The effectiveness of the model was investigated by an experimental campaign involving 12 volunteers riding a scooter equipped with a prototype autonomous emergency braking, named motorcycle autonomous emergency braking system (MAEB). The tests showed the performance of the model in evasive trajectory computation for different riding styles and fixed obstacles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Thermoelectric energy harvesting system for demonstrating autonomous operation of a wireless sensor node enabled by a multipurpose interface

    International Nuclear Information System (INIS)

    Leicht, Joachim; Heilmann, Peter; Maurath, Dominic; Moranz, Christian; Manoli, Yiannos; Hehn, Thorsten; Li, Xiaoming; Thewes, Marcell; Scholl, Gerd

    2013-01-01

    This paper demonstrates the autonomous operation of a wireless sensor node exclusively powered by thermoelectric energy harvesting. Active operation of a wireless sensor system is demonstrated successfully by means of an on-line programmable emulation kit that enables various thermoelectric energy harvesting scenarios. Moreover, this emulation kit accomplishes autonomous wireless sensor node operation by interfacing a small-scaled thermogenerator via a CMOS integrated autonomous multipurpose energy harvesting interface circuit performing maximum power point tracking

  11. Embedded Platforms for Computer Vision-based Advanced Driver Assistance Systems: a Survey

    OpenAIRE

    Velez, Gorka; Otaegui, Oihana

    2015-01-01

    Computer Vision, either alone or combined with other technologies such as radar or Lidar, is one of the key technologies used in Advanced Driver Assistance Systems (ADAS). Its role understanding and analysing the driving scene is of great importance as it can be noted by the number of ADAS applications that use this technology. However, porting a vision algorithm to an embedded automotive system is still very challenging, as there must be a trade-off between several design requisites. Further...

  12. Predictive routing for autonomous mobility-on-demand systems with ride-sharing

    NARCIS (Netherlands)

    Alonso Mora, J.; Wallar, Alex; Rus, Daniela; Bicchi, A.; Maciejewski, T.

    2017-01-01

    Ride-sharing, or carpooling, systems with autonomous vehicles will provide efficient and reliable urban mobility on demand. In this work we present a method for dynamic vehicle routing that leverages historical data to improve the performance of a network of self-driving taxis. In particular, we

  13. A Role for the Autonomic Nervous System in Modulating the Immune Response during Mild Emotional Stimuli

    NARCIS (Netherlands)

    Croiset, Gerda; Heijnen, Cobi J.; Wal, Wim E. van der; Boer, Sietse F. de; Wied, David de

    1990-01-01

    The role of the autonomic nervous system in the modulation of the immune response to emotional stimuli, was established in rats subjected to the passive avoidance test. An increase in splenic primary antibody response directed against SRBC was found after exposure of rats to the passive avoidance

  14. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  15. Nocturnal airflow obstruction, histamine, and the autonomic central nervous system in children with allergic asthma

    NARCIS (Netherlands)

    van Aalderen, W. M.; Postma, D. S.; Koëter, G. H.; Knol, K.

    1991-01-01

    A study was carried out to investigate whether an imbalance in the autonomic nervous system or release of histamine, or both, is responsible for the nocturnal increase in airflow obstruction in asthmatic children. The study comprised 18 children with allergic asthma, nine with (group 1) and nine

  16. The science of autonomy: integrating autonomous systems with the ISR enterprise

    Science.gov (United States)

    Creech, Gregory S.

    2013-05-01

    Consider a future where joint, unmanned operations are the norm. A fleet of autonomous airborne systems conducts overwatch and surveillance for their land and sea brethren, accurately reporting adversary position and aptly guiding the group of autonomous land and sea warriors into position to conduct a successful takedown. Sounds a bit like science fiction, but reality is just around the corner. The DoD ISR Enterprise has evolved significantly over the past decade and has learned many a harsh lesson along the way. Autonomous system operations supporting the warfighter have also evolved, arguably to a point where integration into the ISR Enterprise is a must, in order to reap the benefits that these highly capable systems possess. Achieving meaningful integration, however, is not without its challenges. The ISR Enterprise, for example, is still plagued with "stovepipe" efforts - sufficiently filling a niche for an immediate customer need, but doing little to service the needs of the greater enterprise. This paper will examine the science of autonomy, the challenges and potential benefits that it brings to the ISR Enterprise and recommendations that will facilitate smooth integration of emerging autonomous systems with the mature suite of traditional manned and unmanned ISR platforms.

  17. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    Science.gov (United States)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  18. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  19. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    Science.gov (United States)

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  20. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism

    NARCIS (Netherlands)

    Eustatia-Rutten, Carmen F. A.; Corssmit, Eleonora P. M.; Heemstra, Karen A.; Smit, Johannes W. A.; Schoemaker, Rik C.; Romijn, Johannes A.; Burggraaf, Jacobus

    2008-01-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the