WorldWideScience

Sample records for autonomous vehicle guidance

  1. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  2. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  3. Guidance of Autonomous Amphibious Vehicles for Flood Rescue Support

    Directory of Open Access Journals (Sweden)

    Shankarachary Ragi

    2013-01-01

    Full Text Available We develop a path-planning algorithm to guide autonomous amphibious vehicles (AAVs for flood rescue support missions. Specifically, we develop an algorithm to control multiple AAVs to reach/rescue multiple victims (also called targets in a flood scenario in 2D, where the flood water flows across the scene and the targets move (drifted by the flood water along the flood stream. A target is said to be rescued if an AAV lies within a circular region of a certain radius around the target. The goal is to control the AAVs such that each target gets rescued while optimizing a certain performance objective. The algorithm design is based on the theory of partially observable Markov decision process (POMDP. In practice, POMDP problems are hard to solve exactly, so we use an approximation method called nominal belief-state optimization (NBO. We compare the performance of the NBO approach with a greedy approach.

  4. Commercial application of integrated robotic vehicle drivers and guidance systems for autonomous vehicles

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' vehicle. This is the story of a currently deployed, commercially developed and sold, integrated autonomous automobile. This system was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. The goals of the project were to create a combination of robotic vehicle driver systems and a base traffic control system, that was capable of testing up to 20 vehicles at a time on a 1.3 mile oval test track at speeds up to 50 MPH or greater. As a fixed price commercial project, system and component costs were of paramount importance. As a result, the greater part of the design effort was not technology development, but evaluation, modification, and integration of proven, existing technology in new and often novel ways.

  5. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... at a constant rate ignoring the spatial variability in weed, soil, and crop. Sensing with a guided vehicle allow cost effective mapping of field variability and inputs may be adjusted accordingly. Essential to such a vehicle is real-time localization. GPS allow precise absolute sensing but it is not practical...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...

  6. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...... at a constant rate ignoring the spatial variability in weed, soil, and crop. Sensing with a guided vehicle allow cost effective mapping of field variability and inputs may be adjusted accordingly. Essential to such a vehicle is real-time localization. GPS allow precise absolute sensing but it is not practical...

  7. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.

    Science.gov (United States)

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-08-20

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

  8. Guidance of Autonomous Aerospace Vehicles for Vertical Soft Landing using Nonlinear Control Theory

    Science.gov (United States)

    2015-08-11

    and Bieniaswski Whitehead and Bieniawski [2010] have demonstrated MRAC controller for step command in altitude tracking under actuator degradation...Keystone, CO, volume 63, page 64, 2006. Brian T Whitehead and Stefan R Bieniawski . Model reference adaptive control of a quadrotor uav. In AIAA Guidance

  9. Guidance and Control of an Autonomous Soaring Vehicle with Flight Test Results

    Science.gov (United States)

    Allen, Michael J.

    2007-01-01

    A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.

  10. Towards autonomous vehicles.

    Science.gov (United States)

    2013-11-01

    We are moving towards an age of autonomous vehicles. Cycles of innovation initiated in the public and private sectors : have led one into another since the 1990s; and out of these efforts have sprung a variety of Advanced Driver Assistance : Systems ...

  11. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  12. Automated low-thrust guidance for the orbital maneuvering vehicle

    Science.gov (United States)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  13. DTIC Review: Intelligent Autonomous Vehicles. Volume 9, Number 2 (CD-ROM)

    National Research Council Canada - National Science Library

    2008-01-01

    ...: Intelligent autonomous vehicles are an increasingly important tool in the military arsenal. Autonomous systems act without human guidance and can operate in a far greater range of environments and conditions than manned vehicles...

  14. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  15. Structural Discrimination and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Liu, Hin-Yan

    2016-01-01

    This paper examines the potential for structural discrimination to be woven into the fabric of autonomous vehicle developments, which remain underexplored and undiscussed. The prospect for structural discrimination arises as a result of the coordinated modes of autonomous vehicle behaviour...... discrimination looms with the possibility of crash optimisation impulses in which a protective shield is cast over those individuals in which society may have a vested interest in prioritising or safeguarding. A stark dystopian scenario is introduced to sketch the contours whereby personal beacons signal...

  16. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  17. Connected and autonomous vehicles 2040 vision.

    Science.gov (United States)

    2014-07-01

    The Pennsylvania Department of Transportation (PennDOT) commissioned a one-year project, Connected and Autonomous : Vehicles 2040 Vision, with researchers at Carnegie Mellon University (CMU) to assess the implications of connected and : autonomous ve...

  18. Machine Visual Guidance For An Autonomous Undersea Submersible

    Science.gov (United States)

    Nguyen, Hoa G.; Kaomea, Peter K.; Heckman, Paul J.

    1988-12-01

    Optical imaging is the preferred sensory modality for underwater robotic activities requiring high resolution at close range, such as station keeping, docking, control of manipulator, and object retrieval. Machine vision will play a vital part in the design of next generation autonomous underwater submersibles. This paper describes an effort to demonstrate that real-time vision-based guidance and control of autonomous underwater submersibles is possible with compact, low-power, and vehicle-imbeddable hardware. The Naval Ocean Systems Center's EAVE-WEST (Experimental Autonomous Vehicle-West) submersible is being used as the testbed. The vision hardware consists of a PC-bus video frame grabber and an IBM-PC/AT compatible single-board computer, both residing in the artificial intelligence/vision electronics bottle of the submersible. The specific application chosen involves the tracking of underwater buoy cables. Image recognition is performed in two steps. Feature points are identified in the underwater video images using a technique which detects one-dimensional local brightness minima and maxima. Hough transformation is then used to detect the straight line among these feature points. A hierarchical coarse-to-fine processing method is employed which terminates when enough feature points have been identified to allow a reliable fit. The location of the cable identified is then reported to the vehicle controller computer for automatic steering control. The process currently operates successfully with a throughput of approximately 2 frames per second.

  19. A Generic Architecture for Autonomous Uninhabited Vehicles

    National Research Council Canada - National Science Library

    Barbier, Magali; Gabard, Jean-Francois; Ayreault, Herve

    2007-01-01

    ...; few solutions propose architecture adaptive to several types of platform. Autonomous vehicles that move in partially known and dynamic environments have to deal with asynchronous disruptive events...

  20. Public Health, Ethics, and Autonomous Vehicles.

    Science.gov (United States)

    Fleetwood, Janet

    2017-04-01

    With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles.

  1. A Formal Investigation of the Organization of Guidance Behavior: Implications for Humans and Autonomous Guidance

    Science.gov (United States)

    Kong, Zhaodan

    Guidance behavior generated either by artificial agents or humans has been actively studied in the fields of both robotics and cognitive science. The goals of these two fields are different. The former is the automatic generation of appropriate or even optimal behavior, while the latter is the understanding of the underlying mechanism. Their challenges, though, are closely related, the most important one being the lack of a unified, formal and grounded framework where the guidance behavior can be modeled and studied. This dissertation presents such a framework. In this framework, guidance behavior is analyzed as the closed-loop dynamics of the whole agent-environment system. The resulting dynamics give rise to interaction patterns. The central points of this dissertation are that: first of all, these patterns, which can be explained in terms of symmetries that are inherent to the guidance behavior, provide building blocks for the organization of behavior; second, the existence of these patterns and humans' organization of their guidance behavior based on these patterns are the reasons that humans can generate successful behavior in spite of all the complexities involved in the planning and control. This dissertation first gives an overview of the challenges existing in both scientific endeavors, such as human and animal spatial behavior study, and engineering endeavors, such as autonomous guidance system design. It then lays out the foundation for our formal framework, which states that guidance behavior should be interpreted as the collection of the closed-loop dynamics resulting from the agent's interaction with the environment. The following, illustrated by examples of three different UAVs, shows that the study of the closed-loop dynamics should not be done without the consideration of vehicle dynamics, as is the common practice in some of the studies in both autonomous guidance and human behavior analysis. The framework, the core concepts of which are

  2. Guidance and Control of an Autonomous Soaring UAV

    Science.gov (United States)

    Allen, Michael J.; Lin, Victor

    2007-01-01

    Thermals caused by convection in the lower atmosphere are commonly used by birds and glider pilots to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited Aerial Vehicles (UAVs) can also increase performance and reduce energy consumption by exploiting atmospheric convection. An autonomous soaring research project was conducted at the NASA Dryden Flight Research Center to evaluate the concept through flight test of an electric-powered motorglider with a wingspan of 4.27 m (14 ft). The UAV's commercial autopilot software was modified to include outer-loop soaring guidance and control. The aircraft total energy state was used to detect and soar within thermals. Estimated thermal size and position were used to calculate guidance commands for soaring flight. Results from a total of 23 thermal encounters show good performance of the guidance and control algorithms to autonomously detect and exploit thermals. The UAV had an average climb of 172 m (567 ft) during these encounters.

  3. Mission-based guidance system design for autonomous UAVs

    Science.gov (United States)

    Moon, Jongki

    The advantages of UAVs in the aviation arena have led to extensive research activities on autonomous technology of UAVs to achieve specific mission objectives. This thesis mainly focuses on the development of a mission-based guidance system. Among various missions expected for future needs, autonomous formation flight (AFF) and obstacle avoidance within safe operation limits are investigated. In the design of an adaptive guidance system for AFF, the leader information except position is assumed to be unknown to a follower. Thus, the only measured information related to the leader is the line-of-sight (LOS) range and angle. Adding an adaptive element with neural networks into the guidance system provides a capability to effectively handle leader's velocity changes. Therefore, this method can be applied to the AFF control systems that use a passive sensing method. In this thesis, an adaptive velocity command guidance system and an adaptive acceleration command guidance system are developed and presented. Since relative degrees of the LOS range and angle are different depending on the outputs from the guidance system, the architecture of the guidance system changes accordingly. Simulations and flight tests are performed using the Georgia Tech UAV helicopter, the GTMax, to evaluate the proposed guidance systems. The simulation results show that the neural network (NN) based adaptive element can improve the tracking performance by effectively compensating for the effect of unknown dynamics. It has also been shown that the combination of an adaptive velocity command guidance system and the existing GTMax autopilot controller performs better than the combination of an adaptive acceleration command guidance system and the GTMax autopilot controller. The successful flight evaluation using an adaptive velocity command guidance system clearly shows that the adaptive guidance control system is a promising solution for autonomous formation flight of UAVs. In addition, an

  4. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  5. Semi-Autonomous Vehicle Project

    Science.gov (United States)

    Stewart, Christopher

    2016-01-01

    The primary objective this summer is "evaluating standards for wireless architecture for the internet of things". The Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network connectivity which enables these objects to collect and exchange data and make decisions based on said data. This was accomplished by creating a semi-autonomous vehicle that takes advantage of multiple sensors, cameras, and onboard computers and combined them with a mesh network which enabled communication across large distances with little to no interruption. The mesh network took advantage of what is known as DTN - Disruption Tolerant Networking which according to NASA is the new communications protocol that is "the first step towards interplanetary internet." The use of DTN comes from the fact that it will store information if an interruption in communications is detected and even forward that information via other relays within range so that the data is not lost. This translates well into the project because as the car moves further away from whatever is sending it commands (in this case a joystick), the information can still be forwarded to the car with little to no loss of information thanks to the mesh nodes around the driving area.

  6. Interpersonal communication and issues for autonomous vehicles.

    Science.gov (United States)

    2017-06-01

    Interpersonal roadway communication is a vital component of the transportation system. Road users communicate to coordinate movement and increase roadway safety. Future autonomous vehicle research needs to account for the role of interpersonal roadwa...

  7. Development of an Autonomous Vehicle for Weed and Crop Registration

    DEFF Research Database (Denmark)

    Pedersen, Tom Søndergaard; Nielsen, Kirsten Mølgaard; Andersen, Palle

    is responsible for the construction of the electronic part and the guidance system of the vehicle and the Agricultural Institute is responsible for the mechanical part, the image processing and the route planning. This paper focuses on the control, guidance and navigation system. A prototype platform......The extension of information technology and computers on farming tools results in new possibilities for crop/weed handling. In this paper a system using an autonomous field robot (vehicle) able to make images in the field is described. In the recent farming has come to rely on intensive use...... be a solution but at present the image analysis technology does not have the capability for online analysis. An alternative way is to construct a weed map prior to the spraying. In order to avoid damage to the soil a light weight vehicle carrying a camera is an obvious choice. To minimize damage to the crop...

  8. Feasible Path Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Vu Trieu Minh

    2014-01-01

    Full Text Available The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an automatic control for autonomous vehicles.

  9. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  10. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Science.gov (United States)

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  11. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Directory of Open Access Journals (Sweden)

    Vinayak V Dixit

    Full Text Available Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  12. Irresponsibilities, inequalities and injustice for autonomous vehicles

    DEFF Research Database (Denmark)

    Liu, Hin-Yan

    2017-01-01

    With their prospect for causing both novel and known forms of damage, harm and injury, the issue of responsibility has been a recurring theme in the debate concerning autonomous vehicles. Yet, the discussion of responsibility has obscured the finer details both between the underlying concepts...... of responsibility, and their application to the interaction between human beings and artificial decision-making entities. By developing meaningful distinctions and examining their ramifications, this article contributes to this debate by refining the underlying concepts that together inform the idea...... of responsibility. Two different approaches are offered to the question of responsibility and autonomous vehicles: targeting and risk distribution. The article then introduces a thought experiment which situates autonomous vehicles within the context of crash optimisation impulses and coordinated or networked...

  13. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  14. Vehicle Guidance and Control Along Circular Trajectories

    Science.gov (United States)

    1992-09-01

    the line of sight, while Chism [2] studied a cross track error based control law. Hawkinson [3] extended the results to the multiple input case when...Thesis, Naval Postgraduate School, Monterey, California, June. 2. Chism , S., (1990) "Robust path tracking of autonomous underwater vehicles using sliding

  15. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  17. An autonomous vehicle: Constrained test and evaluation

    Science.gov (United States)

    Griswold, Norman C.

    1991-11-01

    The objective of the research is to develop an autonomous vehicle which utilizes stereo camera sensors (using ambient light) to follow complex paths at speeds up to 35 mph with consideration of moving vehicles within the path. The task is intended to demonstrate the contribution to safety of a vehicle under automatic control. All of the long-term scenarios investigating future reduction in congestion involve an automatic system taking control, or partial control, of the vehicle. A vehicle which includes a collision avoidance system is a prerequisite to an automatic control system. The report outlines the results of a constrained test of a vision controlled vehicle. In order to demonstrate its ability to perform on the current street system the vehicle was constrained to recognize, approach, and stop at an ordinary roadside stop sign.

  18. Navigation of autonomous underwater vehicle using extended kalman filter

    Digital Repository Service at National Institute of Oceanography (India)

    Ranjan, T.N.; Nherakkol, A.; Navelkar, G.S.

    To navigate the Autonomous Underwater Vehicle (AUV) accurately is one of the most important aspects in its application. A truly autonomous vehicle must determine its position which requires the optimal integration of all available attitude...

  19. Autonomous Vehicle Survey of Bicyclists and Pedestrians in Pittsburgh, 2017

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — In Pittsburgh, Autonomous Vehicle (AV) companies have been testing autonomous vehicles since September 2016. However, the tech is new, and there have been some...

  20. Conference proceedings of the Northeast Autonomous Vehicle Summit.

    Science.gov (United States)

    2017-05-24

    The development of autonomous vehicle technology and potential adoption of autonomous vehicles is occurring at a rapid rate in the United States. As this technology evolves, there are many technical, logistical and legal issues that need to be addres...

  1. Vision-Based Localization and Guidance for Unmanned Aerial Vehicles

    OpenAIRE

    Conte, Gianpaolo

    2009-01-01

    The thesis has been developed as part of the requirements for a PhD degree at the Artificial Intelligence and Integrated Computer System division (AIICS) in the Department of Computer and Information Sciences at Linköping University.The work focuses on issues related to Unmanned Aerial Vehicle (UAV) navigation, in particular in the areas of guidance and vision-based autonomous flight in situations of short and long term GPS outage.The thesis is divided into two parts. The first part presents ...

  2. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  3. A Primer on Autonomous Aerial Vehicle Design

    Directory of Open Access Journals (Sweden)

    Hugo H. G. Coppejans

    2015-12-01

    Full Text Available There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV, such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  4. Contour Tracking Control for the REMUS Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Van Reet, Alan R

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles used in US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation...

  5. Essential kinematics for autonomous vehicles

    Science.gov (United States)

    Kelly, Alonzo

    1994-05-01

    A short tutorial on Homogeneous Transforms is presented covering the triple interpretation of a homogeneous transform as an operator, a coordinate frame, and a coordinate transform. The operator transform duality is derived and its use in the Denavit Hartenberg convention is explained. Forward, inverse, and differential kinematics are derived for a simple manipulator to illustrate concepts. A standard set of coordinate frames is proposed for wheeled mobile robots. It is shown that the RPY transform serves the same purpose as the DH matrix in this case. It serves to interface with vehicle position estimation systems of all kinds, to control and model pan/tilt mechanisms and stabilized platforms, and to model the rigid transforms from place to place on the vehicle. Forward and inverse kinematics and the Euler angle rate to the angular velocity transform are derived for the RPY transform. Projective kinematics for ideal video cameras and laser rangefinders, and the imaging Jacobian relating world space and image space is derived. Finally, the kinematics of the Ackerman steer vehicle is presented for reference purposes. This report is both a tutorial and a reference for the transforms used in the RANGER vehicle controller. It is both because the models keep evolving and it was necessary to provide the tools, mechanisms, and discipline required to continue the evolution.

  6. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  7. Autonomous vehicles: from paradigms to technology

    Science.gov (United States)

    Ionita, Silviu

    2017-10-01

    Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

  8. Enhanced mission performance from autonomous instrument guidance

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Jørgensen, Peter Siegbjørn; Betto, Maurizio

    2006-01-01

    During the last decade improvements in electronics, on-board processing power and software design has lead to significant advances in the development of autonomous instrumentation for spacecraft use. The Advanced Stellar Compass (ASC) and the newly developed micro-ASC (mu ASC) are excellent...... and power consumption makes the mu ASC an ideal instrument for small, high yielding satellite missions. The ASC has hitherto been used by the satellite AOCS and the high accuracy scientific instrument for attitude recovery (among others onboard ORSTED, CHAMP, and GRACE), and satellite high accuracy target...

  9. Developments and challenges for autonomous unmanned vehicles

    CERN Document Server

    Finn, Anthony

    2010-01-01

    It is widely anticipated that autonomous vehicles will have a transformational impact on military forces and will play a key role in many future force structures. As a result, many tasks have already been identified that unmanned systems could undertake more readily than humans. However, for this to occur, such systems will need to be agile, versatile, persistent, reliable, survivable and lethal. This will require many of the vehicles 'cognitive' or higher order functions to be more fully developed, whereas to date only the 'component' or physical functions have been successfully automated and

  10. A Generic Architecture for Autonomous Uninhabited Vehicles

    Science.gov (United States)

    2007-11-01

    RTO-MP-AVT-146 20 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED A Generic Architecture for Autonomous Uninhabited Vehicles Magali BARBIER ...it fires the event- triggered transitions of the Petri nets and runs actions associated to transitions; Barbier , M.; Gabard, J.-F.; Ayreault, H...affect the mission; a reaction is specified for each one: • in case of an engine failure, transit to the nearest emergency site; • in case of a

  11. A Conceptual Framework for Design of Embedded Systems and Data Communication for Autonomous Vehicles

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Bendtsen, Jan Dimon; Nielsen, Kirsten Mølgaard

    2005-01-01

    -board the vehicle, the integration of sensors and actuators using different communication protocols, integration of wireless communication to a base and payload data handling as well as control, reliability and safety issues. The system is implemented on an autonomous platform mapping spatial density of weed......This paper describes a conceptual framework for the development of a hierarchal control architecture for an autonomous vehicle. The concept is based on time/frequency and safety analysis on board the vehicle. The time/frequency analysis is used to structure the guidance, navigation and control...

  12. Kinodynamic Motion Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Jiwung Choi

    2014-06-01

    Full Text Available This article proposes a computationally effective motion planning algorithm for autonomous ground vehicles operating in a semi-structured environment with a mission specified by waypoints, corridor widths and obstacles. The algorithm switches between two kinds of planners, (i static planners and (ii moving obstacle avoidance manoeuvre planners, depending on the mobility of any detected obstacles. While the first is broken down into a path planner and a controller, the second generates a sequence of controls without global path planning. Each subsystem is implemented as follows. The path planner produces an optimal piecewise linear path by applying a variant of cell decomposition and dynamic programming. The piecewise linear path is smoothed by Bézier curves such that the maximum curvatures of the curves are minimized. The controller calculates the highest allowable velocity profile along the path, consistent with the limits on both tangential and radial acceleration and the steering command for the vehicle to track the trajectory using a pure pursuit method. The moving obstacle avoidance manoeuvre produces a sequence of time-optimal local velocities, by minimizing the cost as determined by the safety of the current velocity against obstacles in the velocity obstacle paradigm and the deviation of the current velocity relative to the desired velocity, to satisfy the waypoint constraint. The algorithms are shown to be robust and computationally efficient, and to demonstrate a viable methodology for autonomous vehicle control in the presence of unknown obstacles.

  13. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  14. Objective speckle velocimetry for autonomous vehicle odometry.

    Science.gov (United States)

    Francis, D; Charrett, T O H; Waugh, L; Tatam, R P

    2012-06-01

    Speckle velocimetry is investigated as a means of determining odometry data with potential for application on autonomous robotic vehicles. The technique described here relies on the integration of translation measurements made by normalized cross-correlation of speckle patterns to determine the change in position over time. The use of objective (non-imaged) speckle offers a number of advantages over subjective (imaged) speckle, such as a reduction in the number of optical components, reduced modulation of speckles at the edges of the image, and improved light efficiency. The influence of the source/detector configuration on the speckle translation to vehicle translation scaling factor for objective speckle is investigated using a computer model and verified experimentally. Experimental measurements are presented at velocities up to 80  mm s(-1) which show accuracy better than 0.4%.

  15. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a

  16. Development of an Autonomous Navigation Technology Test Vehicle

    National Research Council Canada - National Science Library

    Tobler, Chad K

    2004-01-01

    .... In order to continue these research activities at CIMAR, a new Kawasaki Mule All-Terrain Vehicle was chosen to be automated as a test-bed for the purpose of developing and testing autonomous vehicle technologies...

  17. Examining accident reports involving autonomous vehicles in California

    Science.gov (United States)

    Nader, Nazanin; Eurich, Sky O.; Tripp, Michelle; Varadaraju, Naresh

    2017-01-01

    Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017). The data provides important information on autonomous vehicles accidents’ dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama. PMID:28931022

  18. Examining accident reports involving autonomous vehicles in California.

    Science.gov (United States)

    Favarò, Francesca M; Nader, Nazanin; Eurich, Sky O; Tripp, Michelle; Varadaraju, Naresh

    2017-01-01

    Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017). The data provides important information on autonomous vehicles accidents' dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama.

  19. Examining accident reports involving autonomous vehicles in California.

    Directory of Open Access Journals (Sweden)

    Francesca M Favarò

    Full Text Available Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017. The data provides important information on autonomous vehicles accidents' dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama.

  20. Autonomous control of a locomotion vehicle

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoh, Makoto; Miyata, Kenji

    1984-01-01

    A path planner and an execution system are proposed for autonomous vehicle control. The planner creates a near shortest path avoiding obstacles that are represented by combinations of circles and line segments on a two dimensional map. For realizing real time execution, path search procedures employ a heuristic pruning strategies in selecting a node to expand and in generating successor nodes. Nodes are selected for expansion in order, according to a cost assigned to each node. The cost is mainly evaluated by approximating a path length from the initial node to the goal node. In order to expand a node and to generate successor nodes, a specific search procedure is activated that finds positions avoiding obstacles in the direction of the goal, and creates successor nodes corresponding to the positions. The execution system, utilizing an ultrasonic range finder equipped to the vehicle performs a plan repair against unknown obstacles when echoes from the obstacles are observed. The plan repair is conducted by a map edition and replanning in such a way that new circles representing the echoes are added to the map. Obstacle avoidance tests with a vehicle controlled by microprocessors demonstrate the utility of heuristics just outlined. (author)

  1. Increasing Road Infrastructure Capacity Through the Use of Autonomous Vehicles

    Science.gov (United States)

    2016-12-01

    Simultaneously, the millennial generation has eschewed ownership of modes of transportation, and technology has facilitated the entrance of the...capacity increases to roadways enabled by autonomous vehicle technology . Public policy can enhance the adoption rate of autonomous vehicles to...maximize the benefit of this emergent technology on the roadway system. A policy analysis provides a comparison of options and outlines regulations that

  2. Control of autonomous ground vehicles: a brief technical review

    Science.gov (United States)

    Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri

    2017-07-01

    This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.

  3. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  4. Guidance Concept for a Mars Ascent Vehicle First Stage

    Science.gov (United States)

    Queen, Eric M.

    2000-01-01

    This paper presents a guidance concept for use on the first stage of a Mars Ascent Vehicle (MAV). The guidance is based on a calculus of variations approach similar to that used for the final phase of the Apollo Earth return guidance. A three degree-of-freedom (3DOF) Monte Carlo simulation is used to evaluate performance and robustness of the algorithm.

  5. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV

    Directory of Open Access Journals (Sweden)

    Chang Luo

    2016-01-01

    Full Text Available An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restriction of gesture, a novel adaptive sliding mode control method is suggested to design the integrated guidance and control system of UCAV in the process of autonomous attack occupation. Key parameters of the control system are adaptively regulated, which further economize control energy at the same time. The simulation results show that compared with traditional methods our approach can guide the UCAV to the optimum attack position with stable gesture and economize nearly 25% control energy.

  6. Trajectory planning and tracking for autonomous vehicles navigation

    OpenAIRE

    Chebly , Alia

    2017-01-01

    In this thesis, the trajectory planning and the control of autonomous vehicles are addressed. As a first step, a multi-body modeling technique is used to develop a four wheeled vehicle planar model. This technique considers the vehicle as a robot consisting of articulated bodies. The geometric description of the vehicle system is derived using the modified Denavit Hartenberg parameterization and then the dynamic model of the vehicle is computed by applying a recursive method used in robotics,...

  7. Developing Policy for Urban Autonomous Vehicles: Impact on Congestion

    Directory of Open Access Journals (Sweden)

    David Metz

    2018-04-01

    Full Text Available An important problem for surface transport is road traffic congestion, which is ubiquitous and difficult to mitigate. Accordingly, a question for policymakers is the possible impact on congestion of autonomous vehicles. It seems likely that the main impact of vehicle automation will not be seen until driverless vehicles are sufficiently safe for use amid general traffic on urban streets. Shared use driverless vehicles could reduce the cost of taxis and a wider range of public transport vehicles could be economic. Individually owned autonomous vehicles would have the ability to travel unoccupied and may need to be regulated where this might add to congestion. It is possible that autonomous vehicles could provide mobility services at lower cost and wider scope, such that private car use in urban areas could decline and congestion reduce. City authorities should be alert to these possibilities in developing transport policy.

  8. Research of autonomous landing control of unmanned combat air vehicle

    Science.gov (United States)

    Li, Shaoyan; Chen, Zongji

    2003-09-01

    This paper is to present a robust controller design method for developing autonomous landing systems of Unmanned Combat Air Vehicle (UCAV). We first analyze the characteristic of autonomous landing of UCAV, and put forward its landing performance specifications. Structure singular value μ| synthesis is used to develop autonomous landing systems to accurately follow the pre-designed ideal landing track or online generated optimal landing track. The robust performance of system is analyzed. The simulation results demonstrate that the designed autonomous landing system satisfies the performance requirements of autonomous landing of UCAV when there are uncertainties of UCAV aircraft model, measurement noises and exogenous disturbances.

  9. Autonomous Underwater Vehicle Thermoelectric Power Generation

    Science.gov (United States)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  10. Risk analysis of autonomous vehicles in mixed traffic streams.

    Science.gov (United States)

    2017-05-01

    The objective of this study was to identify the risks associated with the failure of autonomous vehicles in mixed traffic streams and develop strategies to minimize these risks. Three distinct and interconnected phases were used to conduct the risk a...

  11. Experimental Autonomous Road Vehicle with Logical Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Sergey Sergeevich Shadrin

    2017-01-01

    Full Text Available This article describes some technical issues regarding the adaptation of a production car to a platform for the development and testing of autonomous driving technologies. A universal approach to performing the reverse engineering of electric power steering (EPS for the purpose of external control is also presented. The primary objective of the related study was to solve the problem associated with the precise prediction of the dynamic trajectory of an autonomous vehicle. This was accomplished by deriving a new equation for determining the lateral tire forces and adjusting some of the vehicle parameters under road test conductions. A Mivar expert system was also integrated into the control system of the experimental autonomous vehicle. The expert system was made more flexible and effective for the present application by the introduction of hybrid artificial intelligence with logical reasoning. The innovation offers a solution to the major problem of liability in the event of an autonomous transport vehicle being involved in a collision.

  12. Project : transit demand and routing after autonomous vehicle availability.

    Science.gov (United States)

    2015-12-01

    Autonomous vehicles (AVs) create the potential for improvements in traffic operations as well as : new behaviors for travelers such as car sharing among trips through driverless repositioning. Most studies : on AVs have focused on technology or traff...

  13. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    International Nuclear Information System (INIS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-01-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed

  14. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Gheorghe Polizu, no. 1, PC 011061, Sector 1, Bucharest (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Sector 6, Bucharest (Romania)

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  15. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    Science.gov (United States)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  16. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  17. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  18. Impact of Personal Attitudes on Propensity to Use Autonomous Vehicles for Intercity Travel.

    Science.gov (United States)

    2016-01-01

    The autonomous vehicles are about to become a reality. The researchers estimate the benefits from each autonomous vehicle to be between $2000 and $4500 per vehicles. The : societal benefits include higher travel time savings, reduced congestion, fuel...

  19. Development of an Experimental Platform for Testing Autonomous UAV Guidance and Control Algorithms

    National Research Council Canada - National Science Library

    Rufa, Justin R

    2007-01-01

    With the United States? push towards using unmanned aerial vehicles (UAVs) for more military missions, wide area search theory is being researched to determine the viability of multiple vehicle autonomous searches over the battle area...

  20. A Fuzzy Rule-based Controller For Automotive Vehicle Guidance

    OpenAIRE

    Hessburg, Thomas; Tomizuka, Masayoshi

    1991-01-01

    A fuzzy rule-based controller is applied to lateral guidance of a vehicle for an automated highway system. The fuzzy rules, based on human drivers' experiences, are developed to track the center of a lane in the presence of external disturbances and over a range of vehicle operating conditions.

  1. An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles

    Science.gov (United States)

    2013-02-01

    remote control of such vehicles requires the use of a tether , limiting the vehicle’s range; however operating underwater vehicles autonomously requires...URBI Universal Robot Body Interface UUV Unmanned Underwater Vehicle UNCLASSIFIED xi DSTO–TN–1194 UNCLASSIFIED THIS PAGE IS INTENTIONALLY BLANK xii... underwater environment, where many platforms are still reliant upon an umbilical tether for power and high bandwidth communications. This tether

  2. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  3. Data Provisioning Systems for Autonomous Vehicles

    National Research Council Canada - National Science Library

    Varaiya, Pravin

    1999-01-01

    This project is part of a portfolio comprising four other projects to investigate the possibility of operating a collection of intelligent autonomous agents so that the collection can undertakes complex missions...

  4. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique

    Directory of Open Access Journals (Sweden)

    Xiangdong LIU

    2017-08-01

    Full Text Available An autonomous approach and landing (A&L guidance law is presented in this paper for landing an unpowered reusable launch vehicle (RLV at the designated runway touchdown. Considering the full nonlinear point-mass dynamics, a guidance scheme is developed in three-dimensional space. In order to guarantee a successful A&L movement, the multiple sliding surfaces guidance (MSSG technique is applied to derive the closed-loop guidance law, which stems from higher order sliding mode control theory and has advantage in the finite time reaching property. The global stability of the proposed guidance approach is proved by the Lyapunov-based method. The designed guidance law can generate new trajectories on-line without any specific requirement on off-line analysis except for the information on the boundary conditions of the A&L phase and instantaneous states of the RLV. Therefore, the designed guidance law is flexible enough to target different touchdown points on the runway and is capable of dealing with large initial condition errors resulted from the previous flight phase. Finally, simulation results show the effectiveness of the proposed guidance law in different scenarios.

  5. Autonomous intelligent vehicles theory, algorithms, and implementation

    CERN Document Server

    Cheng, Hong

    2011-01-01

    Here is the latest on intelligent vehicles, covering object and obstacle detection and recognition and vehicle motion control. Includes a navigation approach using global views; introduces algorithms for lateral and longitudinal motion control and more.

  6. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  7. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  8. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  9. Autonomous Aerodynamic Control of Micro Air Vehicles

    Science.gov (United States)

    2009-10-19

    29 Design of the Air Force Research Laboratory Micro Aerial Vehicle Research Configuration Kelly Stewart*, Jeffrey Wagener †, and Gregg Abate‡ Air...Development and Initial Flight Tests of a Single-Jointed Articulated-Wing Micro Air Vehicle Kelly C. Stewart*, Ken Blackburn†, Jeffrey Wagener ‡, Lt... Wagener , J., Abate, G., and Salichon, M., “Design of the Air Force Research Laboratory Micro Aerial Vehicle Research Configuration,” AIAA 45th Aerospace

  10. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  11. Autonomous Navigation Apparatus With Neural Network for a Mobile Vehicle

    Science.gov (United States)

    Quraishi, Naveed (Inventor)

    1996-01-01

    An autonomous navigation system for a mobile vehicle arranged to move within an environment includes a plurality of sensors arranged on the vehicle and at least one neural network including an input layer coupled to the sensors, a hidden layer coupled to the input layer, and an output layer coupled to the hidden layer. The neural network produces output signals representing respective positions of the vehicle, such as the X coordinate, the Y coordinate, and the angular orientation of the vehicle. A plurality of patch locations within the environment are used to train the neural networks to produce the correct outputs in response to the distances sensed.

  12. Motion coordination of multiple autonomous vehicles in a spatiotemporal flowfield

    Science.gov (United States)

    Peterson, Cameron Kai

    The long-term goal of this research is to provide theoretically justified control strategies to operate autonomous vehicles in spatiotemporal flowfields. The specific objective of this dissertation is to use estimation and nonlinear control techniques to generate decentralized control algorithms that enable motion coordination for multiple autonomous vehicles while operating in a time-varying flowfield. A cooperating team of vehicles can benefit from sharing data and tasking responsibilities. Many existing control algorithms promote collaboration of autonomous vehicles. However, these algorithms often fail to account for the degradation of control performance caused by flowfields. This dissertation presents decentralized multivehicle coordination algorithms designed for operation in a spatially or temporally varying flowfield. Each vehicle is represented using a Newtonian particle traveling in a plane at constant speed relative to the flow and subject to a steering control. Initially, we assume the flowfield is known and describe algorithms that stabilize a circular formation in a time-varying spatially nonuniform flow of moderate intensity. These algorithms are extended by relaxing the assumption that the flow is known: the vehicles dynamically estimate the flow and use that estimate in the control. We propose a distributed estimation and control algorithm comprising a consensus filter to share information gleaned from noisy position measurements, and an information filter to reconstruct a spatially varying flowfield. The theoretical results are illustrated with numerical simulations of circular formation control and validated in outdoor unmanned aerial vehicle (UAV) flight tests.

  13. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  14. Trajectory generation for an on-road autonomous vehicle

    Science.gov (United States)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  15. Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.

  16. Fault-Tolerant Vision for Vehicle Guidance in Agriculture

    DEFF Research Database (Denmark)

    Blas, Morten Rufus

    The emergence of widely available vision technologies is enabling for a wide range of automation tasks in industry and other areas. Agricultural vehicle guidance systems have benefitted from advances in 3D vision based on stereo camera technology. By automatically guiding vehicles along crops...... the field that is seen by the stereo camera, it is possible to support the guidance system by storing salient information about the environment. By tracking the motion of the vehicle, vision output can be fused over time to create more reliable and robust estimates of crop location. This thesis approaches...... in tracking vehicle motion using 3D vision is demonstrated to allow unprecedented high accuracy maps to be created of the local environment. Features in the environment are extracted and tracked using novel feature detectors relying on approximating the Laplacian operator with a bi-level octagonal kernel...

  17. Supporting autonomous vehicles by creating HD maps

    Directory of Open Access Journals (Sweden)

    Arpad Barsi

    2017-10-01

    Full Text Available Maps are constantly developing, also, the newly defined High Definition (HD maps increase the map content remarkably. They are based on three-dimensional survey, like laser scanning, and then stored in a fully new structured way to be able to support modern-day vehicles. Beyond the traditional lane based map content, they contain information about the roads’ neighbourhood. The goal of these maps is twofold. Primarily, they store the connections where the vehicles can travel with the description of the road-environment. Secondly, they efficiently support the exact vehicle positioning. The paper demonstrates the first results of a pilot study in the creation of HD map of an urban and a rural environment. The applied data collection technology was the terrestrial laser scanning, where the obtained point cloud was evaluated. The data storage has been solved by an in-house developed information storage model with the ability to help in vehicle control processes.

  18. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  19. GPS/DR Error Estimation for Autonomous Vehicle Localization

    Directory of Open Access Journals (Sweden)

    Byung-Hyun Lee

    2015-08-01

    Full Text Available Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  20. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    Science.gov (United States)

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  1. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload.

  2. Killing by Autonomous Vehicles and the Legal Doctrine of Necessity

    NARCIS (Netherlands)

    Santoni De Sio, F.

    2017-01-01

    How should autonomous vehicles (aka self-driving cars) be programmed to behave in the event of an unavoidable accident in which the only choice open is one between causing different damages or losses to different objects or persons? This paper addresses this ethical question starting from the

  3. Navigation of the autonomous vehicle reverse movement

    Science.gov (United States)

    Rachkov, M.; Petukhov, S.

    2018-02-01

    The paper presents a mathematical formulation of the vehicle reverse motion along a multi-link polygonal trajectory consisting of rectilinear segments interconnected by nodal points. Relevance of the problem is caused by the need to solve a number of tasks: to save the vehicle in the event of а communication break by returning along the trajectory already passed, to avoid a turn on the ground in constrained obstacles or dangerous conditions, or a partial return stroke for the subsequent bypass of the obstacle and continuation of the forward movement. The method of navigation with direct movement assumes that the reverse path is elaborated by using landmarks. To measure landmarks on board, a block of cameras is placed on a vehicle controlled by the operator through the radio channel. Errors in estimating deviation from the nominal trajectory of motion are determined using the multidimensional correlation analysis apparatus based on the dynamics of a lateral deviation error and a vehicle speed error. The result of the experiment showed a relatively high accuracy in determining the state vector that provides the vehicle reverse motion relative to the reference trajectory with a practically acceptable error while returning to the start point.

  4. Form 2290, heavy highway vehicle use tax, schedule 1 guidance for state motor vehicle licensing offices.

    Science.gov (United States)

    2010-01-01

    The purpose of this memorandum is to provide guidance to the state Motor : Vehicle Licensing Offices on acceptable proof of payment regarding Form 2290, : Schedule 1. Please review this material and share it with your employees.

  5. The Visual Representation and Acquisition of Driving Knowledge for Autonomous Vehicle

    Science.gov (United States)

    Zhang, Zhaoxia; Jiang, Qing; Li, Ping; Song, LiangTu; Wang, Rujing; Yu, Biao; Mei, Tao

    2017-09-01

    In this paper, the driving knowledge base of autonomous vehicle is designed. Based on the driving knowledge modeling system, the driving knowledge of autonomous vehicle is visually acquired, managed, stored, and maintenanced, which has vital significance for creating the development platform of intelligent decision-making systems of automatic driving expert systems for autonomous vehicle.

  6. A Priori User Acceptance and the Perceived Driving Pleasure in Semi-autonomous and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Bjørner, Thomas

    The aim of this minor pilot study is, from a sociological user perspective, to explore a priori user acceptance and the perceived driving pleasure in semi- autonomous and autonomous vehicles. The methods used were 13 in-depth interviews while having participants watch video examples within four...... concerns about trust, user interactions and legislation, as well as the use of technology when driving on highways. Future studies should use a more substantial theoretical framework and real-life tests for a better understanding of user acceptance of driving automation....

  7. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Remenyte-Prescott, R.; Andrews, J.D.; Chung, P.W.H.

    2010-01-01

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  8. Design and Implementation of Autonomous Sonar Based Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Ansari

    2011-07-01

    Full Text Available Autonomous robots are intelligent machines that are capable of performing desired tasks by themselves, without explicit human control. This paper presents design and implementation of the ASVR (Autonomous Sonar Based Vehicle Robot. ASVR is a microcontroller based, programmable mobile robot that can sense and react to its environment and can work in partially known and unpredictable environments. A novel algorithm based on ultrasonic sensors and simple calculations for real-time obstacle detection and avoidance that is intended for mobile robots is also outlined. Also a novel technique is proposed and implemented for steering referencing of vehicle. The design is implemented in air using ultrasonic sensors but can be adapted using sonar to underwater environments where it has important applications such as deep sea maintenance and reconnaissance tasks. The paper also presents performance results of a prototype developed to prove the design concept.

  9. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    Science.gov (United States)

    2017-01-09

    state.; 2. Correct the relative path with in-time deck state to reform the inertial A-V-P command. The advantage of the method is in that: if the...Contract # N00014-14-C-0004 Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States Progress Report...framework will focus on some of the most critical components of autonomous landing control laws with the objective of improving safety and expanding the

  10. Autonomous vehicles' disengagements: Trends, triggers, and regulatory limitations.

    Science.gov (United States)

    Favarò, Francesca; Eurich, Sky; Nader, Nazanin

    2018-01-01

    Autonomous Vehicle (AV) technology is quickly becoming a reality on US roads. Testing on public roads is currently undergoing, with many AV makers located and testing in Silicon Valley, California. The California Department of Motor Vehicles (CA DMV) currently mandates that any vehicle tested on California public roads be retrofitted to account for a back-up human driver, and that data related to disengagements of the AV technology be publicly available. Disengagements data is analyzed in this work, given the safety-critical role of AV disengagements, which require the control of the vehicle to be handed back to the human driver in a safe and timely manner. This study provides a comprehensive overview of the fragmented data obtained from AV manufacturers testing on California public roads from 2014 to 2017. Trends of disengagement reporting, associated frequencies, average mileage driven before failure, and an analysis of triggers and contributory factors are here presented. The analysis of the disengagements data also highlights several shortcomings of the current regulations. The results presented thus constitute an important starting point for improvements on the current drafts of the testing and deployment regulations for autonomous vehicles on public roads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2018-03-01

    Full Text Available In order to autonomously transfer from one point of the environment to the other, Autonomous Underwater Vehicles (AUV need a navigational system. While navigating underwater the vehicles usually use a dead reckoning method which calculates vehicle movement on the basis of the information about velocity (sometimes also acceleration and course (heading provided by on-board devicesl ike Doppler Velocity Logs and Fibre Optical Gyroscopes. Due to inaccuracies of the devices and the influence of environmental forces, the position generated by the dead reckoning navigational system (DRNS is not free from errors, moreover the errors grow exponentially in time. The problem becomes even more serious when we deal with small AUVs which do not have any speedometer on board and whose course measurement device is inaccurate. To improve indications of the DRNS the vehicle can emerge onto the surface from time to time, record its GPS position, and measure position error which can be further used to estimate environmental influence and inaccuracies caused by mechanisms of the vehicle. This paper reports simulation tests which were performed to determine the most effective method for correction of DRNS designed for a real Biomimetic AUV.

  12. Sampling Based Motion Planning for Heavy Duty Autonomous Vehicles

    OpenAIRE

    Evestedt, Niclas

    2016-01-01

    The automotive industry is undergoing a revolution where the more traditional mechanical values are replaced by an ever increasing number of Advanced Driver Assistance Systems (ADAS) where advanced algorithms and software development are taking a bigger role. Increased safety, reduced emissions and the possibility of completely new business models are driving the development and most automotive companies have started projects that aim towards fully autonomous vehicles. For industrial applicat...

  13. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  14. Human detection for underground autonomous mine vehicles using thermal imaging

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-07-01

    Full Text Available Page 1 of 12 26th International Conference on CAD/CAM, Robotics & Factories of the Future, 26-28 July 2011, Kuala Lumpur, Malaysia HUMAN DETECTION FOR UNDERGROUND AUTONOMOUS MINE VEHICLES USING THERMAL IMAGING J. S. Dickens1, J. J. Green2.... Dickens Page 2 of 12 26th International Conference on CAD/CAM, Robotics & Factories of the Future, 26-28 July 2011, Kuala Lumpur...

  15. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  16. Guidance and control for an autonomous soaring UAV

    Science.gov (United States)

    Allen, Michael J. (Inventor)

    2008-01-01

    The present invention provides a practical method for UAVs to take advantage of thermals in a manner similar to piloted aircrafts and soaring birds. In general, the invention is a method for a UAV to autonomously locate a thermal and be guided to the thermal to greatly improve range and endurance of the aircraft.

  17. Experience of the ARGO autonomous vehicle

    Science.gov (United States)

    Bertozzi, Massimo; Broggi, Alberto; Conte, Gianni; Fascioli, Alessandra

    1998-07-01

    This paper presents and discusses the first results obtained by the GOLD (Generic Obstacle and Lane Detection) system as an automatic driver of ARGO. ARGO is a Lancia Thema passenger car equipped with a vision-based system that allows to extract road and environmental information from the acquired scene. By means of stereo vision, obstacles on the road are detected and localized, while the processing of a single monocular image allows to extract the road geometry in front of the vehicle. The generality of the underlying approach allows to detect generic obstacles (without constraints on shape, color, or symmetry) and to detect lane markings even in dark and in strong shadow conditions. The hardware system consists of a PC Pentium 200 Mhz with MMX technology and a frame-grabber board able to acquire 3 b/w images simultaneously; the result of the processing (position of obstacles and geometry of the road) is used to drive an actuator on the steering wheel, while debug information are presented to the user on an on-board monitor and a led-based control panel.

  18. A small autonomous surface vehicle for ocean color remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Maurya, P.; Pereira, A.; Pascoal, A.M.; Desai, R.G.P.; Mascarenhas, A.A.M.Q.; Desa, E.; Madhan, R.; Matondkar, S.G.P.; Navelkar, G.S.; Prabhudesai, S.; Afzulpurkar, S.

    who can in- struct it to execute a mission control (MC) program (Sections V and VI). A vehicle model is derived from open-loop responses, and used in the simulation and in setting the gains of the heading autopilot (Section VII). GPS-assisted... in the field. VIII. GPS-ASSISTED GUIDANCE OF ROSS Simple LOS waypoint guidance [10] for ROSS was accom- plished by providing a heading angle to the heading controller of ROSS. The heading angle is computed by finding the LOS between the current GPS position...

  19. Responsibility for crashes of autonomous vehicles: an ethical analysis.

    Science.gov (United States)

    Hevelke, Alexander; Nida-Rümelin, Julian

    2015-06-01

    A number of companies including Google and BMW are currently working on the development of autonomous cars. But if fully autonomous cars are going to drive on our roads, it must be decided who is to be held responsible in case of accidents. This involves not only legal questions, but also moral ones. The first question discussed is whether we should try to design the tort liability for car manufacturers in a way that will help along the development and improvement of autonomous vehicles. In particular, Patrick Lin's concern that any security gain derived from the introduction of autonomous cars would constitute a trade-off in human lives will be addressed. The second question is whether it would be morally permissible to impose liability on the user based on a duty to pay attention to the road and traffic and to intervene when necessary to avoid accidents. Doubts about the moral legitimacy of such a scheme are based on the notion that it is a form of defamation if a person is held to blame for causing the death of another by his inattention if he never had a real chance to intervene. Therefore, the legitimacy of such an approach would depend on the user having an actual chance to do so. The last option discussed in this paper is a system in which a person using an autonomous vehicle has no duty (and possibly no way) of interfering, but is still held (financially, not criminally) responsible for possible accidents. Two ways of doing so are discussed, but only one is judged morally feasible.

  20. Tethered Operation of Autonomous Aerial Vehicles to Provide Extended Field of View for Autonomous Ground Vehicles

    Science.gov (United States)

    2006-12-01

    competition that started in the late 1970s, with small robot mice solving a 16 x 16 maze autonomously. Seydou SOUMARE in [2] has discussed, in depth, the...1915, San Jose, CA, Feb. 1993. 11. Eva Pärt-Enander, Anders Sjöberg, Bo Melin, and Pernilla Isaksson, “The MATLAB Handbook,”Addison-Wesley, 1998

  1. A fixed-point framework for launch vehicle ascent guidance

    Science.gov (United States)

    Zhang, Lijun

    Recent interests in responsive launch have highlighted the need for rapid and fully automated ascent guidance planning and guidance parameter generation for launch vehicles. This dissertation aims at developing methodology and algorithms for on-demand generation of optimal launch vehicle ascent trajectories from lift-off to achieving targeting conditions outside the atmosphere. The entire ascent trajectory from lift-off to final target point is divided into two parts: atmospheric ascent portion and vacuum ascent portion. The two portions are integrated via a fixed-point iteration based on the continuity condition at the switch point between atmospheric ascent portion and vacuum ascent portion. The previous research works on closed-loop endo-atmospheric ascent guidance shows that the classical finite difference method is well suited for fast solution of the constrained optimal three-dimensional ascent problem. The exploitation of certain unique features in the integration procedure between the atmospheric portion and vacuum portion and the finite difference method, allows us to cast the atmospheric ascent problem into a nested fixed-point iteration problem. Therefore a novel Fixed-Point Iteration algorithm is presented for solving the endo-atmospheric ascent guidance problem. Several approaches are also provided for facilitating the convergence of the fixed-point iteration. The exo-atmospheric ascent portion allows an optimal coast in between the two vacuum powered stages. The optimal coast enables more efficient usage of the propellant. The Analytical Multiple-Shooting algorithm is developed to find the optimal trajectory for this portion. A generic launch vehicle model is adopted in the numerical simulation. A series of open-loop and closed-loop simulations are performed. The results verify the effectiveness, robustness and reliability of the Fixed-Point Iteration (FPI) algorithm and Analytical Multiple-Shooting (AMS) algorithm developed in this research. In

  2. Autocommander: A Supervisory Controller for Integrated Guidance and Control for the 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Fisher, J. E.; Lawrence, D. A.; Zhu, J. J.; Jackson, Scott (Technical Monitor)

    2002-01-01

    This paper presents a hierarchical architecture for integrated guidance and control that achieves risk and cost reduction for NASA's 2d generation reusable launch vehicle (RLV). Guidance, attitude control, and control allocation subsystems that heretofore operated independently will now work cooperatively under the coordination of a top-level autocommander. In addition to delivering improved performance from a flight mechanics perspective, the autocommander is intended to provide an autonomous supervisory control capability for traditional mission management under nominal conditions, G&C reconfiguration in response to effector saturation, and abort mode decision-making upon vehicle malfunction. This high-level functionality is to be implemented through the development of a relational database that is populated with the broad range of vehicle and mission specific data and translated into a discrete event system model for analysis, simulation, and onboard implementation. A Stateflow Autocoder software tool that translates the database into the Stateflow component of a Matlab/Simulink simulation is also presented.

  3. Algorithm of trajectory guidance of a planning unmanned flight vehicle to a ground target providing the guidance in case the final conditions of guidance are given

    Directory of Open Access Journals (Sweden)

    О.Г. Водчиць

    2004-01-01

    Full Text Available  In the article are obtained the mathematical relations which allow to implement algorithm of trajectory guidance of a unmanned flight vehicle to a ground target providing the guidance in case the final conditions of guidance are given.

  4. Optimal Wind Corrected Flight Path Planning for Autonomous Micro Air Vehicles

    National Research Council Canada - National Science Library

    Zollars, Michael D

    2007-01-01

    ...) fixed sensor on a target in the presence of a constant wind. Autonomous flight is quickly becoming the future of air power and over the past several years, the size and weight of autonomous vehicles has decreased dramatically...

  5. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    Science.gov (United States)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  6. Vision-based guidance for an automated roving vehicle

    Science.gov (United States)

    Griffin, M. D.; Cunningham, R. T.; Eskenazi, R.

    1978-01-01

    A controller designed to guide an automated vehicle to a specified target without external intervention is described. The intended application is to the requirements of planetary exploration, where substantial autonomy is required because of the prohibitive time lags associated with closed-loop ground control. The guidance algorithm consists of a set of piecewise-linear control laws for velocity and steering commands, and is executable in real time with fixed-point arithmetic. The use of a previously-reported object tracking algorithm for the vision system to provide position feedback data is described. Test results of the control system on a breadboard rover at the Jet Propulsion Laboratory are included.

  7. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Uwe Zimmer

    2008-11-01

    Full Text Available In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end points using general curve evolution theory but will also propose appropriate motions for the end robots of an open chain.

  8. Aluminum-Water Energy System for Autonomous Undersea Vehicles

    Science.gov (United States)

    2015-04-10

    between the Department of Mechanical Engineering at MIT and Lincoln Laboratory to address the problems inherent in powering autonomous undersea vehicles...Many fuel sources have been considered to power AUVs. Combustible organic fuels, such as gasoline or jet propellant, are energy dense but have not...refuel Safe Low noise Power on demand Eco-friendly Battery       Wave energy N/A N/A    Solar N/A    Docking N/A

  9. Covering path generation for autonomous turf-care vehicle

    DEFF Research Database (Denmark)

    Mai, Christian; Jouffroy, Jerome; Top, Søren

    2017-01-01

    A covering path generation algorithm is developed to generate a lengthwise pattern based on a polygon describing the outer boundary and obstacles (polygon holes) of a geographical area. The algorithm is applied to an autonomous lawn-care robot for application to large grass turfs, for example golf......-courses, which require structured and precise cutting patterns. The geographical polygon is recorded by manually driving the vehicle around the contour, resulting in a polygon given as geographical (latitude, longitude) coordinates of the vertices, which together with machine parameters are used to generate...

  10. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  11. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Directory of Open Access Journals (Sweden)

    Tianhong Yan

    2011-11-01

    Full Text Available This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM, and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China. Weak links in the information matrix in an extended information filter (EIF can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM. All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  12. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    Science.gov (United States)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  13. Guidance and Control System for an Autonomous Vehicle

    Science.gov (United States)

    1990-06-01

    136 [Crowley 85] Crowley, J.L., "Navigation for an Intelligent Mobile Robot," Proc. of 1985 Conference on Artificial Intelligence Applications , pp. 79... Artificial Intelligence Applications , pp. 57-63, Computer Society, Denver, CO, 1984. [Jalbert 88] Jalbert, J. and others, "EAVE III Untethered AUV Submersible...1985 Conference on Artificial Intelligence Applications , pp. 176- 183, Computer Society Press, Washington D.C., 1985. [Nitao 86] Nitao, J.J., and Parodi

  14. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  15. PRIMUS: autonomous navigation in open terrain with a tracked vehicle

    Science.gov (United States)

    Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph

    2004-09-01

    The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.

  16. Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Aleksandra Deluka Tibljaš

    2018-04-01

    Full Text Available Driving experiences provided by the introduction of new vehicle technologies are directly impacting the criteria for road network design. New criteria should be taken into consideration by designers, researchers and car owners in order to assure traffic safety in changed conditions that will appear with, for example, introduction of Autonomous Vehicles (AVs in everyday traffic. In this paper, roundabout safety level is analysed on the originally developed microsimulation model in circumstances where different numbers of AVs vehicles are mixed with Conventional Vehicles (CVs. Field data about speed and traffic volumes from existing roundabouts in Croatia were used for development of the model. The simulations done with the Surrogate Safety Assessment Model (SSAM give some relevant highlights on how the introduction of AVs could change both operational and safety parameters at roundabouts. To further explore the effects on safety of roundabouts with the introduction of different shares of AVs, hypothetical safety treatments could be tested to explore whether their effects may change, leading to the estimation of a new set of Crash Modification Factors.

  17. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.

    Science.gov (United States)

    Flemisch, Frank Ole; Bengler, Klaus; Bubb, Heiner; Winner, Hermann; Bruder, Ralph

    2014-01-01

    This article provides a general ergonomic framework of cooperative guidance and control for vehicles with an emphasis on the cooperation between a human and a highly automated vehicle. In the twenty-first century, mobility and automation technologies are increasingly fused. In the sky, highly automated aircraft are flying with a high safety record. On the ground, a variety of driver assistance systems are being developed, and highly automated vehicles with increasingly autonomous capabilities are becoming possible. Human-centred automation has paved the way for a better cooperation between automation and humans. How can these highly automated systems be structured so that they can be easily understood, how will they cooperate with the human? The presented research was conducted using the methods of iterative build-up and refinement of framework by triangulation, i.e. by instantiating and testing the framework with at least two derived concepts and prototypes. This article sketches a general, conceptual ergonomic framework of cooperative guidance and control of highly automated vehicles, two concepts derived from the framework, prototypes and pilot data. Cooperation is exemplified in a list of aspects and related to levels of the driving task. With the concept 'Conduct-by-Wire', cooperation happens mainly on the guidance level, where the driver can delegate manoeuvres to the automation with a specialised manoeuvre interface. With H-Mode, a haptic-multimodal interaction with highly automated vehicles based on the H(orse)-Metaphor, cooperation is mainly done on guidance and control with a haptically active interface. Cooperativeness should be a key aspect for future human-automation systems. Especially for highly automated vehicles, cooperative guidance and control is a research direction with already promising concepts and prototypes that should be further explored. The application of the presented approach is every human-machine system that moves and includes high

  18. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  19. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    Science.gov (United States)

    Heddebaut, M.; Rioult, J.; Ghys, J. P.; Gransart, Ch; Ambellouis, S.

    2005-06-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driving solution, car drivers use information about speed and position of preceding and following vehicles. This information is essentially perceived using the driver's eyes, binocular stereoscopic vision performed through the windscreens and rear-view mirrors. Furthermore, within a line of vehicles, the frontal road perception of the first vehicle is very particular and highly significant. Currently, all these available data remain strictly on-board the vehicle that has captured the perception information and performed these measurements. To get the maximum effectiveness of all these approaches, we propose that this information be shared in real time with the following vehicles, within the convoy. On the basis of these considerations, this paper technically explores a cost-effective solution to extend the basic ACC sensor function in order to simultaneously provide a vehicle-to-vehicle radio link. This millimetre wave radio link transmits relevant broadband perception data (video, localization...) to following vehicles, along the line of vehicles. The propagation path between the vehicles uses essentially grazing angles of incidence of signals over the road surface including millimetre wave paths beneath the cars.

  20. Lighter than Air Robots Guidance and Control of Autonomous Airships

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2012-01-01

    An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The sec...

  1. Motion Planning of Autonomous Vehicles on a Dual Carriageway without Speed Lanes

    Directory of Open Access Journals (Sweden)

    Rahul Kala

    2015-01-01

    Full Text Available The problem of motion planning of an autonomous vehicle amidst other vehicles on a straight road is considered. Traffic in a number of countries is unorganized, where the vehicles do not move within predefined speed lanes. In this paper, we formulate a mechanism wherein an autonomous vehicle may travel on the “wrong” side in order to overtake a vehicle. Challenges include assessing a possible overtaking opportunity, cooperating with other vehicles, partial driving on the “wrong” side of the road and safely going to and returning from the “wrong” side. The experimental results presented show vehicles cooperating to accomplish overtaking manoeuvres.

  2. Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned Aerial Vehicle Imagery

    Science.gov (United States)

    2015-03-27

    INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL VEHICLE...protection in the United States. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS

  3. Impact of connected vehicle guidance information on network-wide average travel time

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2016-12-01

    Full Text Available With the emergence of connected vehicle technologies, the potential positive impact of connected vehicle guidance on mobility has become a research hotspot by data exchange among vehicles, infrastructure, and mobile devices. This study is focused on micro-modeling and quantitatively evaluating the impact of connected vehicle guidance on network-wide travel time by introducing various affecting factors. To evaluate the benefits of connected vehicle guidance, a simulation architecture based on one engine is proposed representing the connected vehicle–enabled virtual world, and connected vehicle route guidance scenario is established through the development of communication agent and intelligent transportation systems agents using connected vehicle application programming interface considering the communication properties, such as path loss and transmission power. The impact of connected vehicle guidance on network-wide travel time is analyzed by comparing with non-connected vehicle guidance in response to different market penetration rate, following rate, and congestion level. The simulation results explore that average network-wide travel time in connected vehicle guidance shows a significant reduction versus that in non–connected vehicle guidance. Average network-wide travel time in connected vehicle guidance have an increase of 42.23% comparing to that in non-connected vehicle guidance, and average travel time variability (represented by the coefficient of variance increases as the travel time increases. Other vital findings include that higher penetration rate and following rate generate bigger savings of average network-wide travel time. The savings of average network-wide travel time increase from 17% to 38% according to different congestion levels, and savings of average travel time in more serious congestion have a more obvious improvement for the same penetration rate or following rate.

  4. Negotiating the Traffic: Can Cognitive Science Help Make Autonomous Vehicles a Reality?

    Science.gov (United States)

    Chater, Nick; Misyak, Jennifer; Watson, Derrick; Griffiths, Nathan; Mouzakitis, Alex

    2018-02-01

    To drive safely among human drivers, cyclists and pedestrians, autonomous vehicles will need to mimic, or ideally improve upon, humanlike driving. Yet, driving presents us with difficult problems of joint action: 'negotiating' with other users over shared road space. We argue that autonomous driving provides a test case for computational theories of social interaction, with fundamental implications for the development of autonomous vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  6. Fuzzy Adaptive Control for Trajectory Tracking of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Saeed Nakhkoob

    2014-01-01

    Full Text Available In this paper, the problem of the position and attitude tracking of an autonomous underwater vehicle (AUV in the horizontal plane, under the presence of ocean current disturbances is discussed. The effect of the gradual variation of the parameters is taken into account. The effectiveness of the adaptive controller is compared with a feedback linearization method and fuzzy gain control approach. The proposed strategy has been tested through simulations. Also, the performance of the propos-ed method is compared with other strategies given in some other studies. The boundedness and asymptotic converge-nce properties of the control algorithm and its semi-global stability are analytically proven using Lyapunov stability theory and Barbalat’s lemma.

  7. A Mission Management Framework for Unmanned Autonomous Vehicles

    Science.gov (United States)

    Asmare, Eskindir; Gopalan, Anandha; Sloman, Morris; Dulay, Naranker; Lupu, Emil

    Unmanned Autonomous Vehicles (UAVs) are increasingly deployed for missions that are deemed dangerous or impractical to perform by humans in many military and disaster scenarios. UAVs in a team need to operate in sub-groups or independently to perform specific tasks, but still synchronise state information regularly and cope with intermittent communication failures as well as permanent UAV failures. This paper describes a failure management scheme that copes with failures, which may result in disjoint sub-networks within the team. A communication management protocol is proposed to control UAVs performing disconnected individual operations, while maintaining the team’s structure by trying to ensure that all members of the mission rendezvous to communicate at intermittent intervals. The evaluation of the proposed approaches shows that the schemes are scalable and perform significantly better than similar centralised approaches.

  8. Autonomous guided vehicles methods and models for optimal path planning

    CERN Document Server

    Fazlollahtabar, Hamed

    2015-01-01

      This book provides readers with extensive information on path planning optimization for both single and multiple Autonomous Guided Vehicles (AGVs), and discusses practical issues involved in advanced industrial applications of AGVs. After discussing previously published research in the field and highlighting the current gaps, it introduces new models developed by the authors with the goal of reducing costs and increasing productivity and effectiveness in the manufacturing industry. The new models address the increasing complexity of manufacturing networks, due for example to the adoption of flexible manufacturing systems that involve automated material handling systems, robots, numerically controlled machine tools, and automated inspection stations, while also considering the uncertainty and stochastic nature of automated equipment such as AGVs. The book discusses and provides solutions to important issues concerning the use of AGVs in the manufacturing industry, including material flow optimization with A...

  9. Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.

    2013-01-01

    This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.

  10. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  11. New applications for autonomous aerial vehicles in coastal oceanographic research

    Science.gov (United States)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B. M.

    2016-02-01

    We describe the use of small, autonomous aerial vehicles (AAVs) for two applications to improve observations of the coastal ocean. Two types of aerial vehicles are used in these applications: small, fixed-wing airplanes and quad-rotor vehicles constructed in our laboratory. A key characteristic of these vehicles is their ability to accurately follow prescribed flight trajectories. The first application is a new method using AAVs for antenna pattern measurements (APMs) of high frequency (HF), oceanographic radars. HF radar is arguably the best observational approach for mapping coastal surface currents. Accurate surface current measurements by HF radar require APMs and these are typically made from small vessels carrying radio transponders in arcs around individual radar sites. This is costly because it requires sea-going technicians, a vessel, and other equipment for small boat operations. Adverse sea conditions often limit small vessels in conducting APMs. AAVs can conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. The AAVs carry small radio-frequency signal sources designed and fabricated in our laboratory. AAV-based patterns extend farther shoreward through the surf zone. This increases the range of bearings over which APMs are determined. Use of AAVs also allows more frequent APMs. The second application is water sample collection by AAVs for calibrating time series obtained from newly available pH sensors. Influx of low pH waters into subtidal and intertidal habitats is an emerging threat to coastal ecosystems. Acquisition of bottle samples for calibrating these sensors is important for accurate pH measurement. We have developed a lightweight sampling bottle as a payload for quad-rotor AAVs to collect water samples near moored pH sensors. The use of quad-rotor AAVs allows collection of numerous samples during sensor deployments so the effects of sensor drift and bio-fouling can be quantified.

  12. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    Science.gov (United States)

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009. © 2010 Society for Risk Analysis.

  13. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  14. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV

    OpenAIRE

    Luo, Chang; Wang, Jie; Huang, Hanqiao; Wang, Pengfei

    2016-01-01

    An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs) is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restri...

  15. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    Science.gov (United States)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  16. Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle

    Directory of Open Access Journals (Sweden)

    B. Mashadi

    Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.

  17. Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles

    Science.gov (United States)

    Cowlagi, Raghvendra V.

    Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption

  18. Automated Escape Guidance Algorithms for An Escape Vehicle

    Science.gov (United States)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly

  19. USDOT guidance summary for connected vehicle deployments : safety management.

    Science.gov (United States)

    2016-07-01

    This document provides guidance material in regards to safety management plan for the CV Pilots DeploymentConcept Development Phase. This guidance provides key concepts and references in developing the SafetyManagement Plan in Task 4, lists relevant ...

  20. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  1. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    Science.gov (United States)

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  2. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    International Nuclear Information System (INIS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-01-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains. (paper)

  3. Boxfishes as unusually well-controlled autonomous underwater vehicles.

    Science.gov (United States)

    Gordon, M S; Hove, J R; Webb, P W; Weihs, D

    2000-01-01

    Boxfishes (family Ostraciidae) are tropical reef-dwelling marine bony fishes that have about three-fourths of their body length encased in a rigid bony test. As a result, almost all of their swimming movements derive from complex combinations of movements of their median and paired fins (MPF locomotion). In terms of both body design and swimming performance, they are among the most sophisticated examples known of naturally evolved vertebrate autonomous underwater vehicles. Quantitative studies of swimming performance, biomechanics, and energetics in one model species have shown that (i) they are surprisingly strong, fast swimmers with great endurance; (ii) classical descriptions of how they swim were incomplete: they swim at different speeds using three different gaits; (iii) they are unusually dynamically well controlled and stable during sustained and prolonged rectilinear swimming; and (iv) despite unusually high parasite (fuselage) drag, they show energetic costs of transport indistinguishable from those of much better streamlined fishes using body and caudal fin (BCF) swimming modes at similar water temperatures and over comparable ranges of swimming speeds. We summarize an analysis of these properties based on a dynamic model of swimming in these fishes. This model accounts for their control, stability, and efficiency in moving through the water at moderate speeds in terms of gait changes, of water-flow patterns over body surfaces, and of complex interactions of thrust vectors generated by fin movements.

  4. Search and Classification Using Multiple Autonomous Vehicles Decision-Making and Sensor Management

    CERN Document Server

    Wang, Yue

    2012-01-01

    Search and Classification Using Multiple Autonomous Vehicles provides a comprehensive study of decision-making strategies for domain search and object classification using multiple autonomous vehicles (MAV) under both deterministic and probabilistic frameworks. It serves as a first discussion of the problem of effective resource allocation using MAV with sensing limitations, i.e., for search and classification missions over large-scale domains, or when there are far more objects to be found and classified than there are autonomous vehicles available. Under such scenarios, search and classification compete for limited sensing resources. This is because search requires vehicle mobility while classification restricts the vehicles to the vicinity of any objects found. The authors develop decision-making strategies to choose between these competing tasks and vehicle-motion-control laws to achieve the proposed management scheme. Deterministic Lyapunov-based, probabilistic Bayesian-based, and risk-based decision-mak...

  5. The impact of vehicle appearance and vehicle behavior on pedestrian interaction with autonomous vehicles

    NARCIS (Netherlands)

    Dey, D.; Martens, M.H.; Eggen, J.H.; Terken, J.M.B.

    2017-01-01

    In this paper, we present the preliminary results of a study that aims to investigate the role of an approaching vehicle's behavior and outer appearance in determining pedestrians' decisions while crossing a street. Concerning appearance, some vehicles are designed to look more assertive than

  6. The Impact of Vehicle Appearance and Vehicle Behavior on Pedestrian Interaction with Autonomous Vehicles

    NARCIS (Netherlands)

    Dey, Debargha; Martens, Marieke; Eggen, Berry; Terken, Jacques

    2017-01-01

    In this paper, we present the preliminary results of a study that aims to investigate the role of an approaching vehicle's behavior and outer appearance in determining pedestrians' decisions while crossing a street. Concerning appearance, some vehicles are designed to look more assertive than

  7. A Framework for Evaluating Advanced Search Concepts for Multiple Autonomous Underwater Vehicle (AUV) Mine Countermeasures (MCM)

    National Research Council Canada - National Science Library

    Gooding, Trent

    2001-01-01

    .... In recent years, autonomous underwater vehicles (AUV) have emerged as a viable technology for conducting underwater search, survey, and clearance operations in support of the mine countermeasures (MCM) mission...

  8. Proving autonomous vehicle and advanced driver assistance systems safety : final research report.

    Science.gov (United States)

    2016-02-15

    The main objective of this project was to provide technology for answering : crucial safety and correctness questions about verification of autonomous : vehicle and advanced driver assistance systems based on logic. : In synergistic activities, we ha...

  9. Ensuring safety in autonomous vehicle legislation in Louisiana : [research project capsule].

    Science.gov (United States)

    2015-04-01

    The states of Michigan, California, Nevada, and Florida, along with the District of Columbia, have : recently passed legislation to allow the use of autonomous motor vehicles on public roads in : their states under restricted conditions. Other states...

  10. Deployment of Shaped Charges by a Semi-Autonomous Ground Vehicle

    National Research Council Canada - National Science Library

    Herkamp, John F

    2007-01-01

    .... BigFoot incorporates improved communication range over previous Autonomous Ground Vehicles and an updated user interface that includes controls for the arm and camera by interfacing multiple microprocessor...

  11. Adaptive Oceanographic Sampling in a Coastal Environmental Using Autonomous Gliding Vehicles

    National Research Council Canada - National Science Library

    Fratantoni, David

    2004-01-01

    Our long-term goal is to develop an efficient, relocatable, infrastructure-free ocean observing system composed of high-endurance, low-cost autonomous vehicles with near-global range and modular sensor payload...

  12. Methods of monitoring the technical condition of the braking system of an autonomous vehicle during operation

    Science.gov (United States)

    Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.

    2018-02-01

    Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.

  13. AFSC/ABL: Autonomous underwater vehicle for tracking acoustically-tagged fish 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous underwater vehicles (AUVs) are increasingly being used to collect physical, chemical, and biological information in the marine environment. Recent efforts...

  14. An autonomous underwater vehicle "Maya", for monitoring coastal waters, estuaries, rivers and dams

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.A.M.Q.; Navelkar, G.S.; Madhan, R.; Dabholkar, N.A.; Prabhudesai, S.P.; Maurya, P.K.; Desa, E.; Afzulpurkar, S.; Suresh, T.; Matondkar, S.G.P.; Mahalunkar, A.

    This article demonstrates the use of Maya, Autonomous Underwater Vehicle (AUV) for monitoring coastal waters, estuaries, rivers and dams. Maya is a mono hull structure with detachable nose and tail cones. The nose cone is mission specific...

  15. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer...... coordinates the movements of the wheel units, the third layer is path execution and perception and the upper layer performs planning and reasoning. The control system is implemented on an autonomous vehicle. The vehicle has been tested for path following and position accuracy. Based on the results a new...... vehicle is under construction....

  16. Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles

    Science.gov (United States)

    Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick

    2012-01-01

    Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.

  17. Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age

    OpenAIRE

    Hulse, Lynn M.; Xie, Hui; Galea, Edwin R.

    2018-01-01

    Fully automated self-driving cars, with expected benefits including improved road safety, are closer to becoming a reality. Thus, attention has turned to gauging public perceptions of these autonomous vehicles. To date, surveys have focused on the public as potential passengers of autonomous cars, overlooking other road users who would interact with them. Comparisons with perceptions of other existing vehicles are also lacking. This study surveyed almost 1000 participants on their perceptions...

  18. The development of an autonomous gust insensitive unmanned aerial vehicle

    Science.gov (United States)

    Pisano, William James

    The study of a small Unmanned Aerial Vehicle (UAV) that is designed towards eventual operation in harsh storm-like conditions is presented. Investigation of the aircraft equations of motion shows that the selection of certain aerodynamic derivatives has a significant effect on the gust response of a small unmanned aircraft. Analytical comparison of this newly formulated Autonomous Gust Insensitive Aircraft (AGIA) to a conventionally designed aircraft shows a significant reduction in undesirable roll motion caused by gusts. A simulation is presented showing that the AGIA is capable of operating in more extreme environments than a conventional aircraft, and puts less strain on the control system components in both extreme and calm environments. The role that aircraft size plays in gust response is also studied. Pilot instinct dictates that smaller aircraft are more difficult to fly in windy environments than larger ones. This phenomenon is investigated using an analytic approach, providing insight into why smaller aircraft are indeed more difficult to fly in more challenging environments. As an aircraft gets smaller, its natural aerodynamic modes and response get faster. In an ideal system, this does not limit small aircraft to poor performance (in fact it will be shown that idealized small aircraft theoretically perform better than their larger counterparts). A more realistic system is presented that includes not only aerodynamics, but also realistic sensor and actuator dynamics. It is shown that these additional dynamics become a limiting factor in control system performance, and thus limit the closed-loop flight performance of small aircraft in turbulent environments. It is shown that the AGIA design approach plays a more significant role the as an aircraft gets smaller. To provide experimental validation of the gust insensitive theory presented herein, a representative small conventional aircraft was built alongside a similar aircraft that incorporated the AGIA

  19. Concept for a common operational picture in a guidance vehicle

    Science.gov (United States)

    Wagner, Boris; Eck, Ralf; Maier, Sebastian

    2017-05-01

    A Common Operational Picture (COP) shows many operational aspects in coded form inside a geodata representation like a map. For building this picture, many specialized groups produce information. Beside the operating forces these are intelligences, logistics, or the own leaders planning group. Operations in which a COP is used typically are disaster management or military actions. An existing software for Interactive Visualization of Integrated Geodata runs on Tablet-PCs, PCs, Digital Map Tables and video walls. It is already used by the Deutsche Führungsakademie (military academy) for the education of staff officers. German civil disaster management agency decided to use the Digital Map Table for their intelligence analysis. In a mobile scenario, however, novel requirements have to be taken into account to adapt the software to the new environment. This paper investigates these requirements as well as the possible adaptions to provide a COP across multiple players on the go. When acting together, the groups do this in a widespread manner. They are physically spread and they use a variety of software and hardware to produce their contribution. This requires hardware to be ruggedized, mobile, and to support a variety of interfaces. The limited bandwidth in such a setting poses the main challenge for the software, which has to synchronize exchanging a minimum of information. Especially for mobile participants, a solution is planned that scales the amount of data (maps/intelligence data) to the available equipment, the upcoming mission, and the underlying theatre. Special focus is laid on a guidance vehicle leading a convoy.

  20. A Framework for Analysing Driver Interactions with Semi-Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Siraj Shaikh

    2012-12-01

    Full Text Available Semi-autonomous vehicles are increasingly serving critical functions in various settings from mining to logistics to defence. A key characteristic of such systems is the presence of the human (drivers in the control loop. To ensure safety, both the driver needs to be aware of the autonomous aspects of the vehicle and the automated features of the vehicle built to enable safer control. In this paper we propose a framework to combine empirical models describing human behaviour with the environment and system models. We then analyse, via model checking, interaction between the models for desired safety properties. The aim is to analyse the design for safe vehicle-driver interaction. We demonstrate the applicability of our approach using a case study involving semi-autonomous vehicles where the driver fatigue are factors critical to a safe journey.

  1. Intelligent Autonomous Aerial Vehicles in the National Airspace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS) and, in particular, intelligent, autonomous aircraft operating in the National Airspace (NAS) have the potential to significantly...

  2. Tracking Object Existence From an Autonomous Patrol Vehicle

    Science.gov (United States)

    Wolf, Michael; Scharenbroich, Lucas

    2011-01-01

    An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the

  3. Behavioral aspects of automatic vehicle guidance : relationship between headway and driver comfort

    Science.gov (United States)

    1997-01-01

    Automation of road traffic has the potential to greatly improve the performance of traffic systems. The acceptance of automated driving may play an important role in the feasibility of automated vehicle guidance (AVG), comparable to automated highway...

  4. Working together on automated vehicle guidance AVG : preliminary business plan, abridged version.

    NARCIS (Netherlands)

    Awareness (ed.)

    1998-01-01

    This plan describes the questions which will have to be answered in the short term, and the action which need to be taken in a phased and structured manner to gain insight into the potential of automated vehicle guidance (AVG).

  5. Impacts of Autonomous Vehicles on Consumers Time-Use Patterns

    Directory of Open Access Journals (Sweden)

    Saptarshi Das

    2017-12-01

    Full Text Available We use the American Time Use Survey (ATUS to characterize how different consumers in the US might use Autonomous Vehicles (AVs. Our approach is to identify sub-groups of the population likely to benefit from AVs and compare their activity patterns with an otherwise similar group. The first subgroup is working individuals who drive to work with long total travel times. Auto-travelers in the top 20% of travel time number 19 million and travel 1.6 h more on a workday than those in the bottom 80%. For car-commuting professionals, the additional travel time of the long-traveling group comes from 30 min less work, 29 min less sleep, and 30 min less television watching per day. The second subgroup is working individuals with a long travel time and who take public transport. Long public transit riders show very similar differences in activity times as the driving subgroup. Work, sleep, and video functionalities of AVs are presumably in high demand by both groups. The third sub-group identified is elderly retired people. AVs enable mobility-restricted groups to travel more like those without restrictions. We compare two age groups, 60–75 years and >75 years old, the latter, on average, experiencing more mobility restrictions than their younger counterparts. The retired population older than 75 years numbers 16 million and travels 14 min less per day than retirees aged 60–75 years. The main activity change corresponding to this reduced travel is 7 min per day less shopping and 8 min per day less socializing. If older retired people use AVs to match the lifestyle of the 60–75 years old group, this would induce additional personal travel and retail sector demand. The economic, environmental and social implications of AV are very difficult to predict but expected to be transformative. The contribution of this work is that it utilizes time-use surveys to suggest how AV adoption could induce lifestyle changes inside and outside the vehicle.

  6. Equipment Proposal for the Autonomous Vehicle Systems Laboratory at UIW

    Science.gov (United States)

    2015-04-29

    testing, 5) 38 Lego Mindstorm EV3 and Hitechnic Sensors for use in feedback control and autonomous systems for STEM undergraduate and High School...autonomous robots using the Lego Mindstorm EV3. This robotics workshop will be used as a pilot study for next summer when more High School students

  7. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    International Nuclear Information System (INIS)

    Dohner, J.L.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed

  8. A new car-following model for autonomous vehicles flow with mean expected velocity field

    Science.gov (United States)

    Wen-Xing, Zhu; Li-Dong, Zhang

    2018-02-01

    Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.

  9. Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles

    Directory of Open Access Journals (Sweden)

    Chu Haiyan

    2017-01-01

    Full Text Available A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP, is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.

  10. Commute Equilibrium for Mixed Networks with Autonomous Vehicles and Traditional Vehicles

    Directory of Open Access Journals (Sweden)

    Yangbeibei Ji

    2017-01-01

    Full Text Available Recent development of autonomous vehicle (AV provides new travel opportunities for citizens, and traditional vehicles (TVs will still be used for a long time. Therefore, it is highly possible that both AVs and TVs will be used as travel modes in a city. In a transportation system with both AVs and TVs, the traffic pattern is worthy of studying. This paper investigates user equilibrium traffic pattern based on the traditional bottleneck model considering AVs and TVs. For both TVs and AVs, travel costs include queuing delay and schedule delay. However, they also have different components of travel costs; more specifically, for AVs, passengers have to pay a riding fare, and, for TVs, travelers encounter a walking time cost after parking their cars. For different combinations of travel demands and riding fare of AVs, analytical solutions of three different user equilibrium traffic patterns are obtained. Finally, numerical examples are provided to demonstrate the usefulness of the analytical models. Sensitivity analyses are examined to show the impacts of AV’s time-dependent fee and trip-based fixed fee on the traffic pattern and travel costs.

  11. Characteristic Analysis of Mixed Traffic Flow of Regular and Autonomous Vehicles Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Yangzexi Liu

    2017-01-01

    Full Text Available The technology of autonomous vehicles is expected to revolutionize the operation of road transport systems. The penetration rate of autonomous vehicles will be low at the early stage of their deployment. It is a challenge to explore the effects of autonomous vehicles and their penetration on heterogeneous traffic flow dynamics. This paper aims to investigate this issue. An improved cellular automaton was employed as the modeling platform for our study. In particular, two sets of rules for lane changing were designed to address mild and aggressive lane changing behavior. With extensive simulation studies, we obtained some promising results. First, the introduction of autonomous vehicles to road traffic could considerably improve traffic flow, particularly the road capacity and free-flow speed. And the level of improvement increases with the penetration rate. Second, the lane-changing frequency between neighboring lanes evolves with traffic density along a fundamental-diagram-like curve. Third, the impacts of autonomous vehicles on the collective traffic flow characteristics are mainly related to their smart maneuvers in lane changing and car following, and it seems that the car-following impact is more pronounced.

  12. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  13. Expert system isssues in automated, autonomous space vehicle rendezvous

    Science.gov (United States)

    Goodwin, Mary Ann; Bochsler, Daniel C.

    1987-01-01

    The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.

  14. Autopilot Using Differential Thrust for ARIES Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Sarton, Christopher

    2003-01-01

    .... Unfortunately, communication antennas must point to specific satellites in this system and thus underwater vehicles must steer a specific course on the surface during the communication process...

  15. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles.

    Science.gov (United States)

    Meng, Xiaoli; Wang, Heng; Liu, Bingbing

    2017-09-18

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  16. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    Science.gov (United States)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  17. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    Science.gov (United States)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.

  18. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  19. Autonomous prediction of performance-based standards for heavy vehicles

    CSIR Research Space (South Africa)

    Berman, R

    2015-11-01

    Full Text Available performance-based standards approach which specifies on-road vehicle performance measures. One such standard is the low-speed swept path, which is a measure of road width required by a vehicle to complete a prescribed turning manoeuvre. This is typically...

  20. Autonomous underwater vehicle for research and rescue operations

    CSIR Research Space (South Africa)

    Holtzhausen S

    2008-11-01

    Full Text Available . This paper will touch on the issues encountered in designing such a vehicle. Typical solutions as well as new ideas will be discussed to overcome these design problems or obstacles. The paper will also show the implementation of such a vehicle...

  1. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  2. Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles

    Science.gov (United States)

    Greenblatt, Jeffery B.; Saxena, Samveg

    2015-09-01

    Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.

  3. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  4. A POMDP Framework for Coordinated Guidance of Autonomous UAVs for Multitarget Tracking

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available This paper discusses the application of the theory of partially observable Markov decision processes (POMDPs to the design of guidance algorithms for controlling the motion of unmanned aerial vehicles (UAVs with onboard sensors to improve tracking of multiple ground targets. While POMDP problems are intractable to solve exactly, principled approximation methods can be devised based on the theory that characterizes optimal solutions. A new approximation method called nominal belief-state optimization (NBO, combined with other application-specific approximations and techniques within the POMDP framework, produces a practical design that coordinates the UAVs to achieve good long-term mean-squared-error tracking performance in the presence of occlusions and dynamic constraints. The flexibility of the design is demonstrated by extending the objective to reduce the probability of a track swap in ambiguous situations.

  5. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  6. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  7. Orthogonal Wall Following and Obstacle Avoidance by an Autonomous Vehicle

    National Research Council Canada - National Science Library

    Wells, Daniel

    1999-01-01

    .... To implement the new motion mode, the vehicle was required to follow a straight wall with minor variations, navigate around comers, and avoid obstacles in its path while maintaining a specified...

  8. The Challenges of the March towards Autonomous Vehicles

    OpenAIRE

    Palanisamy, Andy; Miailhe, Nicolas

    2018-01-01

    In this interview, Andy Palanisamy walks us through the dynamics and challenges associated with the rise of self-driving vehicles. He also discusses the limits of the technology in addressing 21st century mobility needs around the world.

  9. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...... DC motors in total) with dimension of approx. 1x1x1 meters. It is constructed with four simular wheel units each consisting of 2 DC motors and sensors for measuring wheel angle, wheel speed and momentum....

  10. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    OpenAIRE

    Wei Peng Lin; Cheng Siong Chin; Leonard Chin Wai Looi; Jun Jie Lim; Elvin Min Ee Teh

    2015-01-01

    Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV) with a docking hoop (DH) to recover an autonomous underwater vehicle (AUV) named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and sim...

  11. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...would otherwise be impractical. Contingency Planning This paper presents a novel optimization based path planner capable of planning multiple...adjacent lane. An obstacle trajectory clustering algorithm is also presented to enable the path planner to scale to multiple- obstacle scenarios

  12. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    Science.gov (United States)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  13. Combining A Priori Knowledge and Sensor Information for Updating the Global Position of an Autonomous Vehicle

    NARCIS (Netherlands)

    Zivkovic, Z.; Schoute, Albert L.; van der Heijden, Ferdinand; van Amerongen, J.; Jonker, B.; Regtien, P.P.L; Stramigioli, S.

    The problem of updating the global position of an autonomous vehicle is considered. An iterative procedure is proposed to fit a map to a set of noisy measurements. The procedure is inspired by a non-parametric procedure for probability density function mode searching. We show how this could be used

  14. Hybrid path planning for non-holonomic autonomous vehicles: An experimental evaluation

    NARCIS (Netherlands)

    Esposto, F.; Goos, J.; Teerhuis, A.; Alirezaei, M.

    2017-01-01

    Path planning of an autonomous vehicle as a non-holonomic system is an essential part for many automated driving applications. Parking a car into a parking lot and maneuvering it through a narrow corridor would be a common driving scenarios in an urban environment. In this study a hybrid approach

  15. Unmanned Tactical Autonomous Control and Collaboration (UTACC) unmanned aerial vehicle analysis of alternatives

    OpenAIRE

    Roth, Brian M.; Buckler, Jade L.

    2016-01-01

    Approved for public release; distribution is unlimited Includes supplementary material The further development of Unmanned Tactical Autonomous Control and Collaboration (UTACC) requires a thorough analysis of potential unmanned aerial vehicles (UAV) capable of supporting the program. This thesis developed a comprehensive database with which to conduct an analytical evaluation of UAVs to include physical specifications, performance specifications, and sensor capabilities. This research d...

  16. Unmanned Tactical Autonomous Control and Collaboration (UTACC) Unmanned Aerial Vehicle Analysis of Alternatives

    Science.gov (United States)

    2016-03-01

    The further development of Unmanned Tactical Autonomous Control and Collaboration (UTACC) requires a thorough analysis of potential unmanned aerial...vehicles ( UAV ) capable of supporting the program. This thesis developed a comprehensive database with which to conduct an analytical evaluation of UAVs

  17. Location Estimation for an Autonomously Guided Vehicle using an Augmented Kalman Filter to Autocalibrate the Odometry

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Bak, Martin; Andersen, Nils Axel

    1998-01-01

    A Kalman filter using encoder readings as inputs and vision measurements as observations is designed as a location estimator for an autonomously guided vehicle (AGV). To reduce the effect of modelling errors an augmented filter that estimates the true system parameters is designed. The traditional...

  18. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer...

  19. Modeling the kinematics of an autonomous underwater vehicle for range-bearing Simultaneous Localization and Mapping

    CSIR Research Space (South Africa)

    Matsebe, O

    2008-12-01

    Full Text Available realizing more general SLAM solutions and notably in building and using perceptually rich maps as part of a SLAM algorithm. This paper describes the Autonomous Underwater Vehicle (AUV) kinematic and sensor models, it overviews the basic theoretical solution...

  20. Autonomous underwater vehicle motion tracking using a Kalman filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-11-01

    Full Text Available it will be shown how a Kalman Filter is used to estimate the position of an autonomous vehicle in a three dimensional space. The Kalman filter is used to estimate movement and position using measurements from multiple sensors...

  1. Autonomous underwater vehicle motion tracking using a Kalman Filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-01-01

    Full Text Available it will be shown how a Kalman Filter is used to estimate the position of an autonomous vehicle in a three dimensional space. The Kalman filter is used to estimate movement and position using measurements from multiple sensors...

  2. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Austin Brown, Brittany Repac, Jeff Gonder

    2013-07-15

    Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine many of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.

  3. Automated driving and autonomous functions on road vehicles

    Science.gov (United States)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  4. What do autonomous vehicles mean to traffic congestion and crash? : Network traffic flow modeling and simulation for autonomous vehicles.

    Science.gov (United States)

    2016-01-01

    Transportation infrastructure is quickly moving towards revolutionary changes to : accommodate the deployment of AVs. On the other hand, the transition to new : vehicle technologies will be shaped in large part by changes in performance of : roadway ...

  5. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays

    Science.gov (United States)

    2012-06-01

    like the JASON II[31] or Nereus[12] Remotely Operated Vehicles (ROVs), AUV sensor data is typically inaccessible until after the vehicle has been...Bowen, M. Heintz, M. Naiman, C. Taylor, W. Seller, J.C. How- land, and L.L. Whitcomb. Jason 2: a review of capabilities. In EOS: Trans. Amer...Sousa, M. Correia, H. Ferreira, R. Goncalves, R. Martins, D.P. Horner, A.J. Healey , G.M. Goncalves, and J.B. Sousa. AUV control and communication

  6. Interactive Safety Analysis Framework of Autonomous Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Cui You Xiang

    2016-01-01

    Full Text Available More than 100,000 people were killed and around 2.6 million injured in road accidents in the People’s Republic of China (PRC, that is four to eight times that of developed countries, equivalent to 6.2 mortality per 10 thousand vehicles—the highest rate in the world. There are more than 1,700 fatalities and 840,000 injuries yearly due to vehicle crashes off public highways. In this paper, we proposed a interactive safety situation and threat analysis framework based on driver behaviour and vehicle dynamics risk analysis based on ISO26262…

  7. Simulating an underwater vehicle self-correcting guidance system with Simulink

    Science.gov (United States)

    Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe

    2008-09-01

    Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.

  8. Task and Motion Planning for Selective Weed Conrol using a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; la Cour-Harbo, Anders; Hansen, Karl Damkjær

    2014-01-01

    with the right amount. In this article, a task and motion planning for a team of autonomous vehicles to reduce chemicals in farming is presented. Field data are collected by small unmanned helicopters equipped with a range of sensors, including multispectral and thermal cameras. Data collected are transmitted...... to a ground station to be analyzed and triggers aerial and ground-based vehicles to start close inspection and/or plant/weed treatment in specified areas. A complete trajectory is generated to enable ground-based vehicle to visit infested areas and start chemical/mechanical weed treatment....

  9. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  10. Covering path generation for autonomous turf-care vehicle

    DEFF Research Database (Denmark)

    Mai, Christian; Jouffroy, Jerome; Top, Søren

    2017-01-01

    -courses, which require structured and precise cutting patterns. The geographical polygon is recorded by manually driving the vehicle around the contour, resulting in a polygon given as geographical (latitude, longitude) coordinates of the vertices, which together with machine parameters are used to generate...

  11. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    Science.gov (United States)

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  12. Modeling the Turning Speed and Car Following Behaviors of Autonomous Vehicles in a Virtual World

    Directory of Open Access Journals (Sweden)

    Carrillo-González José Gerardo

    2015-07-01

    Full Text Available This article deals with mathematical models for controlling vehicles behavior in a virtual world, where two behaviors are considered: 1 curve turning and 2 car following situations, in this last is essential to provide a safety distance between the leader and the follower and at the same time keep the follower not delayed with respect to the leader, and in a curve turning the complexity is to provide a safety speed inside the curve and keep the car inside the lane. Using basic information as vehicles position, mathematical models can be developed for explaining the heading angle and the autonomous vehicles speed on curves, i.e. the controlled by the models. A model that predicts the autonomous vehicle speed on curves is developed considering previous data in other curves. Two models that control the acceleration/deceleration behavior of autonomous vehicles in a car following situation are proposed. In the first model, the parameters are calibrated with a proposed algorithm which enables accuracy in order to imitate the human behavior for accelerating and braking, and the second model provides a safety distance between the follower and the leader at sudden stops of the latter and employs the acceleration/deceleration top capabilities to follow the leader car similar to the human behavior.

  13. Evolution of an artificial neural network based autonomous land vehicle controller.

    Science.gov (United States)

    Baluja, S

    1996-01-01

    This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks.

  14. Autonomous health management for PMSM rail vehicles through demagnetization monitoring and prognosis control.

    Science.gov (United States)

    Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael

    2018-01-01

    Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.

    Science.gov (United States)

    Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe

    2017-10-16

    Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.

  16. Closed Loop Guidance with Multiple Constraints for Low Orbit Vehicle Trajectory Optimization

    Science.gov (United States)

    Zhang, Rufei; Zhao, Shifan

    Low orbit has features of strong invisibility and penetration, but needs more shutdown energy comparable to high orbit under the same range, which strongly requires studying the problem of delivery capacity optimization for multi-stage launch vehicles. Based on remnant apparent velocity and constraints models, multi-constraint closed-loop guidance with constraints of trajectory maximum height and azimuth was proposed, which adopted elliptical orbit theory and Newton iteration algorithm to optimize trajectory and thrust direction, reached to take full advantage of multi-stage launch vehicle propellant, and guided low orbit vehicle to enter maximum range trajectory. Theory deduction and numerical example demonstrate that the proposed guidance method could extend range and achieve precise control for orbit maximum height and azimuth.

  17. Terrain Aided Navigation for Remus Autonomous Underwater Vehicle

    Science.gov (United States)

    2014-06-01

    INS) in order to estimate the state of the vehicle. However, due to the dead - reckoning nature of INS systems, they are susceptible to drift over time...in the subsequent sections. 4. Bayesian Methods As previously stated, given the dead reckoning nature of navigating by INS, there is a growing... algorithms . The thesis presents a methodology coupled with analysis on datasets collected from joint Naval Postgraduate School/National Aeronautical Space

  18. Onboard assessment of XRF spectra using genetic algorithms for decision making on an autonomous underwater vehicle

    International Nuclear Information System (INIS)

    Breen, Jeremy; Souza, P. de; Timms, G.P.; Ollington, R.

    2011-01-01

    In order to optimise use of the limited resources (time, power) of an autonomous underwater vehicle (AUV) with a miniaturised X-ray fluorescence (XRF) spectrometer on board to carry out in situ autonomous chemical mapping of the surface of sediments with desired resolution, a genetic algorithm for rapid curve fitting is reported in this paper. This method quickly converges and provides an accurate in situ assessment of metals present, which helps the control system of the AUV to decide on future sampling locations. More thorough analysis of the available data could be performed once the AUV has returned to the base (laboratory).

  19. PaTAVTT: A Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available With the advent of autonomous vehicles, in particular its adaptability to harsh conditions, the research and development of autonomous vehicles attract significant attention by not only academia but also practitioners. Due to the high risk, high cost, and difficulty to test autonomous vehicles under harsh conditions, the hardware-in-the-loop (HIL scaled platform has been proposed as it is a safe, inexpensive, and effective test method. This platform system consists of scaled autonomous vehicle, scaled roadway, monitoring center, transmission device, positioning device, and computers. This paper uses a case of the development process of tracking control for high-speed U-turn to build the tracking control function. Further, a simplified vehicle dynamics model and a trajectory tracking algorithm have been considered to build the simulation test. The experiment results demonstrate the effectiveness of the HIL scaled platform.

  20. Biological Inspired Direct Adaptive Guidance and Control for Autonomous Flight Systems

    National Research Council Canada - National Science Library

    Corban, J. E; Gilbert, Cole; Calise, Anthony J; Tannenbaum, Allen R

    2004-01-01

    ... of the target on the eye during the pursuit. The results provided a means to compare the guidance strategy of the fly with traditional proportional navigation, and to look for inspiration in the development of new guidance laws...

  1. Development of an Autonomous Vehicle for Weed and Crop Registration

    DEFF Research Database (Denmark)

    Pedersen, Tom Søndergaard; Nielsen, Kirsten Mølgaard; Andersen, Palle

    be a solution but at present the image analysis technology does not have the capability for online analysis. An alternative way is to construct a weed map prior to the spraying. In order to avoid damage to the soil a light weight vehicle carrying a camera is an obvious choice. To minimize damage to the crop....... This work is funded by The Danish Ministry of Food, Agriculture and Fisheries and carried out by The Danish Institute of Agricultural Science, Research Centre Bygholm and Aalborg University in corporation with Sauer Danfoss A/S, Dronningborg A/S, Hardi International A/S and Eco-Dan. The University...

  2. Point features extraction: towards slam for an autonomous underwater vehicle

    CSIR Research Space (South Africa)

    Matsebe, O

    2010-07-01

    Full Text Available at different viewing angles, the navigation features should not be close to other strong sonar reflectors. Spatial Compactness: The feature should be observed over a narrow bearing range when observed with a range bearing sonar for it to be small enough... to objects in the environment. The bearing information corresponding to HIR scan line and the current vehicle pose is also stored. The Range Buffer is then differentiated to form a new buffer (Difference Buffer, iD ). The thi element of the Difference...

  3. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi-sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree-of-freedom dynamic model is developed to formulate the path-tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive-PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  4. A feature matching and fusion-based positive obstacle detection algorithm for field autonomous land vehicles

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2017-03-01

    Full Text Available Positive obstacles will cause damage to field robotics during traveling in field. Field autonomous land vehicle is a typical field robotic. This article presents a feature matching and fusion-based algorithm to detect obstacles using LiDARs for field autonomous land vehicles. There are three main contributions: (1 A novel setup method of compact LiDAR is introduced. This method improved the LiDAR data density and reduced the blind region of the LiDAR sensor. (2 A mathematical model is deduced under this new setup method. The ideal scan line is generated by using the deduced mathematical model. (3 Based on the proposed mathematical model, a feature matching and fusion (FMAF-based algorithm is presented in this article, which is employed to detect obstacles. Experimental results show that the performance of the proposed algorithm is robust and stable, and the computing time is reduced by an order of two magnitudes by comparing with other exited algorithms. This algorithm has been perfectly applied to our autonomous land vehicle, which has won the champion in the challenge of Chinese “Overcome Danger 2014” ground unmanned vehicle.

  5. Operational performance of a congested corridor with lanes dedicated to autonomous vehicle traffic

    Directory of Open Access Journals (Sweden)

    Zachary Vander Laan

    2017-06-01

    Full Text Available This paper considers the operational performance impact of autonomous vehicles (AV on a multi-lane freeway corridor with separate lanes dedicated to AV and non-AV traffic. Autonomous vehicle behavior is modeled at the macroscopic level by modifying the fundamental diagram relating hourly traffic flow and vehicle density, a step that is justified by adjusting a parameter from Newell’s car-following model at the microscopic level and transforming back to a macroscopic representation. The model is applied to the I-95 corridor between Washington, DC and Baltimore, MD during the PM peak period, where the impact of introducing a managed AV-only lane is assessed at varying penetration rates of autonomous vehicles. The results show that the overall corridor performance metrics improve with increasing penetration rates up to 30%, 40% or 50% (depending on the underlying assumptions that govern AV behavior, after which the performance deteriorates drastically. Implications of the results are discussed in light of the per-lane and aggregated metrics, and future directions for research are proposed.

  6. Acoustic inversion with self noise of an autonomous underwater vehicle to measure sound speed in marine sediments

    NARCIS (Netherlands)

    van Leijen, A.V.; Rothkranz, L.J.M.; Groen, F.C.A.

    2009-01-01

    This work reports on an experiment from the Maritime Rapid Environmental Assessment sea trials in 2007, where autonomous underwater vehicles were deployed for environmental assessment. Even though these underwater vehicles are very quiet platforms, this work investigates the potential of vehicle

  7. Adaptive Source Localization Based Station Keeping of Autonomous Vehicles

    KAUST Repository

    Guler, Samet

    2016-10-26

    We study the problem of driving a mobile sensory agent to a target whose location is specied only in terms of the distances to a set of sensor stations or beacons. The beacon positions are unknown, but the agent can continuously measure its distances to them as well as its own position. This problem has two particular applications: (1) capturing a target signal source whose distances to the beacons are measured by these beacons and broadcasted to a surveillance agent, (2) merging a single agent to an autonomous multi-agent system so that the new agent is positioned at desired distances from the existing agents. The problem is solved using an adaptive control framework integrating a parameter estimator producing beacon location estimates, and an adaptive motion control law fed by these estimates to steer the agent toward the target. For location estimation, a least-squares adaptive law is used. The motion control law aims to minimize a convex cost function with unique minimizer at the target location, and is further augmented for persistence of excitation. Stability and convergence analysis is provided, as well as simulation results demonstrating performance and transient behavior.

  8. Computer system evolution requirements for autonomous checkout of exploration vehicles

    Science.gov (United States)

    Davis, Tom; Sklar, Mike

    1991-01-01

    This study, now in its third year, has had the overall objective and challenge of determining the needed hooks and scars in the initial Space Station Freedom (SSF) system to assure that on-orbit assembly and refurbishment of lunar and Mars spacecraft can be accomplished with the maximum use of automation. In this study automation is all encompassing and includes physical tasks such as parts mating, tool operation, and human visual inspection, as well as non-physical tasks such as monitoring and diagnosis, planning and scheduling, and autonomous visual inspection. Potential tasks for automation include both extravehicular activity (EVA) and intravehicular activity (IVA) events. A number of specific techniques and tools have been developed to determine the ideal tasks to be automated, and the resulting timelines, changes in labor requirements and resources required. The Mars/Phobos exploratory mission developed in FY89, and the Lunar Assembly/Refurbishment mission developed in FY90 and depicted in the 90 Day Study as Option 5, have been analyzed in detailed in recent years. The complete methodology and results are presented in FY89 and FY90 final reports.

  9. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    Science.gov (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  10. Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle

    Science.gov (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The design of the next evolution of SLS, Block-1B, is well underway. The Block-1B vehicle is more capable overall than Block-1; however, the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) presents a challenge to the Powered Explicit Guidance (PEG) algorithm used by Block-1. To handle the long burn durations (on the order of 1000 seconds) of EUS missions, two algorithms were examined. An alternative algorithm, OPGUID, was introduced, while modifications were made to PEG. A trade study was conducted to select the guidance algorithm for future SLS vehicles. The chosen algorithm needs to support a wide variety of mission operations: ascent burns to LEO, apogee raise burns, trans-lunar injection burns, hyperbolic Earth departure burns, and contingency disposal burns using the Reaction Control System (RCS). Additionally, the algorithm must be able to respond to a single engine failure scenario. Each algorithm was scored based on pre-selected criteria, including insertion accuracy, algorithmic complexity and robustness, extensibility for potential future missions, and flight heritage. Monte Carlo analysis was used to select the final algorithm. This paper covers the design criteria, approach, and results of this trade study, showing impacts and considerations when adapting launch vehicle guidance algorithms to a broader breadth of in-space operations.

  11. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  12. 78 FR 41852 - Hours of Service for Commercial Motor Vehicle Drivers; Regulatory Guidance Concerning Off-Duty Time

    Science.gov (United States)

    2013-07-12

    ... motor vehicle (CMV) driver to record meal and other routine stops made during a work shift as off-duty... Commercial Motor Vehicle (CMV) driver to record meal and other routine stops made during a tour of duty as... Commercial Motor Vehicle Drivers Regulatory Guidance for 49 CFR 395.2, Definitions Question 2: What...

  13. Autonomous Coil Alignment System Using Fuzzy Steering Control for Electric Vehicles with Dynamic Wireless Charging

    Directory of Open Access Journals (Sweden)

    Karam Hwang

    2015-01-01

    Full Text Available An autonomous coil alignment system (ACAS using fuzzy steering control is proposed for vehicles with dynamic wireless charging. The misalignment between the power receiver coil and power transmitter coil is determined based on the voltage difference between two coils installed on the front-left/front-right of the power receiver coil and is corrected through autonomous steering using fuzzy control. The fuzzy control is chosen over other control methods for implementation in ACAS due to the nonlinear characteristic between voltage difference and lateral misalignment distance, as well as the imprecise and constantly varying voltage readings from sensors. The operational validity and feasibility of the ACAS are verified through simulation, where the vehicle equipped with ACAS is able to align with the power transmitter in the road majority of the time during operation, which also implies achieving better wireless power delivery.

  14. Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner.

    Science.gov (United States)

    An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai

    2016-07-20

    There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation.

  15. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  16. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Bo He

    2015-08-01

    Full Text Available In this paper, a novel iterative sparse extended information filter (ISEIF was proposed to solve the simultaneous localization and mapping problem (SLAM, which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF, standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  17. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles.

    Science.gov (United States)

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-08-13

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  18. A practical receding horizon control framework for path planning and control of autonomous vtol vehicles

    Science.gov (United States)

    Liu, C.; Chen, W.-H.

    2013-12-01

    This paper describes an integrated path planning and tracking control framework for autonomous vertical-take-off-and-landing (VTOL) vehicles, particularly quadrotors. The path planning adopts a receding horizon strategy to repeatedly plan a local trajectory that satisfies both the vehicle dynamics and obstacle-free requirement. A tracking controller is then designed to track the planned path. The differential flatness property of the quadrotor is exploited in both path planner and tracking controller designs. The proposed framework is verified by real-time simulations incorporating online optimization.

  19. Autonomous Planning and Replanning for Mine-Sweeping Unmanned Underwater Vehicles

    Science.gov (United States)

    Gaines, Daniel M.

    2010-01-01

    This software generates high-quality plans for carrying out mine-sweeping activities under resource constraints. The autonomous planning and replanning system for unmanned underwater vehicles (UUVs) takes as input a set of prioritized mine-sweep regions, and a specification of available UUV resources including available battery energy, data storage, and time available for accomplishing the mission. Mine-sweep areas vary in location, size of area to be swept, and importance of the region. The planner also works with a model of the UUV, as well as a model of the power consumption of the vehicle when idle and when moving.

  20. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    Science.gov (United States)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  1. The Design of an Autonomous Underwater Vehicle for Water Quality Monitoring

    Science.gov (United States)

    Li, Yulong; Liu, Rong; Liu, Shujin

    2018-01-01

    This paper describes the development of a civilian-used autonomous underwater vehicle (AUV) for water quality monitoring at reservoirs and watercourses that can obtain realtime visual and locational information. The mechanical design was completed with CAD software Solidworks. Four thrusters—two horizontal and two vertical—on board enable the vehicle to surge, heave, yaw, and pitch. A specialized water sample collection compartment is designed to perform water collection at target locations. The vehicle has a central controller—STM32—and a sub-coordinate controller—Arduino MEGA 2560—that coordinates multiple sensors including an inertial sensor, ultrasonic sensors, etc. Global Navigation Satellite System (GNSS) and the inertial sensor enable the vehicle’s localization. Remote operators monitor and control the vehicle via a host computer system. Operators choose either semi-autonomous mode in which they set target locations or manual mode. The experimental results show that the vehicle is able to perform well in either mode.

  2. Coordination of Multiple Biomimetic Autonomous Underwater Vehicles Using Strategies Based on the Schooling Behaviour of Fish

    Directory of Open Access Journals (Sweden)

    Jonathan McColgan

    2016-01-01

    Full Text Available Biomimetic Autonomous Underwater Vehicles (BAUVs are Autonomous Underwater Vehicles (AUVs that employ similar propulsion and steering principles as real fish. While the real life applicability of these vehicles has yet to be fully investigated, laboratory investigations have demonstrated that at low speeds, the propulsive mechanism of these vehicles is more efficient when compared with propeller based AUVs. Furthermore, these vehicles have also demonstrated superior manoeuvrability characteristics when compared with conventional AUVs and Underwater Glider Systems (UGSs. Further performance benefits can be achieved through coordination of multiple BAUVs swimming in formation. In this study, the coordination strategy is based on the schooling behaviour of fish, which is a decentralized approach that allows multiple AUVs to be self-organizing. Such a strategy can be effectively utilized for large spatiotemporal data collection for oceanic monitoring and surveillance purposes. A validated mathematical model of the BAUV developed at the University of Glasgow, RoboSalmon, is used to represent the agents within a school formation. The performance of the coordination algorithm is assessed through simulation where system identification techniques are employed to improve simulation run time while ensuring accuracy is maintained. The simulation results demonstrate the effectiveness of implementing coordination algorithms based on the behavioural mechanisms of fish to allow a group of BAUVs to be considered self-organizing.

  3. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  4. Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios.

    Science.gov (United States)

    Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen

    2017-08-23

    To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification.

  5. Serious Gaming Technologies Support Human Factors Investigations of Advanced Interfaces for Semi-Autonomous Vehicles

    Science.gov (United States)

    2006-06-01

    with EADS Defence and Security Systems UK. Stone, R.; Guest, R.; Ch’ng, E .; McCririe, C.; Collis, C.; Mannur, R.; Rehmi, I. (2006) Serious Gaming ...RTO-MP-HFM-136 8 - 1 Serious Gaming Technologies Support Human Factors Investigations of Advanced Interfaces for Semi-Autonomous Vehicles...University of Birmingham Electronic , Electrical & Computer Engineering Department Edgbaston Birmingham, B15 2TT UK r.j.stone@bham.ac.uk ABSTRACT

  6. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle.

    Science.gov (United States)

    Gebbie, John; Siderius, Martin; Allen, John S

    2012-11-01

    This paper presents an analysis of the acoustic emissions emitted by an underway REMUS-100 autonomous underwater vehicle (AUV) that were obtained near Honolulu Harbor, HI using a fixed, bottom-mounted horizontal line array (HLA). Spectral analysis, beamforming, and cross-correlation facilitate identification of independent sources of noise originating from the AUV. Fusion of navigational records from the AUV with acoustic data from the HLA allows for an aspect-dependent presentation of calculated source levels of the strongest propulsion tone.

  7. Investigating the Usefulness of Operator Aids for Autonomous Unmanned Ground Vehicles Performing Reconnaissance Tasks

    Science.gov (United States)

    2013-09-01

    participants monitored the displays, searching for targets (represented as “ smiley faces ”) along the route traveled. Participants were given an opportunity to...still represented as “ smiley faces .” In addition to scanning for targets, participants monitored the UGV to ensure that it remained on its intended...Operator Aids for Autonomous Unmanned Ground Vehicles Performing Reconnaissance Tasks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  8. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    Science.gov (United States)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  9. Inexpensive semi-autonomous ground vehicles for defusing IEDs

    Science.gov (United States)

    Davenport, Chris; Lodmell, James; Womble, Phillip C.; Barzilov, Alexander; Paschal, Jon; Hernandez, Robert; Moss, Kyle T.; Hopper, Lindsay

    2008-04-01

    Improvised explosive devices (IEDs) are an important concern to coalition forces during the conflicts in the Middle East. These devices are responsible for many casualties to American armed forces in the Middle East. These explosives are particularly dangerous because they are improvised with materials readily available to the designer, and there is no systematic way of explosive ordinance disposal. IEDs can be made from things such as standard military ammunition and can be detonated with common electronic devices such as cell phones and garage door openers. There is a great need for a low cost solution to neutralize these IEDs. At the Applied Physics Institute we are building a single function disrupter robot whose sole purpose is to neutralize these IEDs. We are modifying a toy remote control car to control it either wirelessly using WI-FI (IEEE 802.11) or wired by tethering the vehicle with an Ethernet cable (IEEE 802.3). The robot will be equipped with a high velocity fuze disrupter to neutralize the IED as well as a video camera for inspection and aiming purposes. This robot utilizes commercial-off-the-shelf (COTS) components which keeps the cost relatively low. Currently, similar robot systems have been deployed in Iraq and elsewhere but their method of operation is such that it is impractical to use in non-combat situations. We will discuss our design and possible deployment scenarios.

  10. Toward autonomous avian-inspired grasping for micro aerial vehicles

    International Nuclear Information System (INIS)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Kumar, Vijay; Sreenath, Koushil

    2014-01-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. (papers)

  11. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    Science.gov (United States)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  12. Adaptive Command Filtered Integrated Guidance and Control for Hypersonic Vehicle with Magnitude, Rate and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2018-01-01

    Full Text Available This paper proposes a novel integrated guidance and control (IGC method for hypersonic vehicle in terminal phase. Firstly, the system model is developed with a second order actuator dynamics. Then the back-stepping controller is designed hierarchically with command filters, where the first order command filters are implemented to construct the virtual control input with ideal states predicted by an adaptive estimator, and the nonlinear command filter is designed to produce magnitude, rate and bandwidth limited control surface deflection finally tracked by a terminal sliding mode controller with finite convergence time. Through a series of 6-DOF numerical simulations, it’s indicated that the proposed method successfully cancels out the large aerodynamics coefficient uncertainties and disturbances in hypersonic flight under limited control surface deflection. The contribution of this paper lies in the application and determination of nonlinear integrated design of guidance and control system for hypersonic vehicle.

  13. Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles

    Science.gov (United States)

    Holland, K. T.; Calantoni, J.; Slocum, D.

    2016-02-01

    Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.

  14. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application

    Directory of Open Access Journals (Sweden)

    Rafael Vivacqua

    2017-10-01

    Full Text Available Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.

  15. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    Science.gov (United States)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  16. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  17. Adaptive Surveying and Early Treatment of Crops with a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Bisgaard, Morten; Garcia-Ruiz, Francisco

    2011-01-01

    in agricultural fields. The purpose is to control and reduce the amount of herbicides, consumed energy and vehicle emissions in the weed detection and treatment process, thus reducing the environmental impact. The project addresses this issue through a closed loop cooperation among a team of unmanned aircraft...... system (UAS) and unmanned ground vehicles (UGV) with advanced vision sensors for 3D and multispectral imaging. This paper presents the scientific and technological challenges in the project, which include multivehicle estimation and guidance, heterogeneous multi-agent systems, task generation...

  18. An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles.

    Science.gov (United States)

    Rodríguez-Molina, Jesús; Bilbao, Sonia; Martínez, Belén; Frasheri, Mirgita; Cürüklü, Baran

    2017-08-05

    Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance.

  19. An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Jesús Rodríguez-Molina

    2017-08-01

    Full Text Available Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity. This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer where other technologies are also interweaved with middleware (wireless communications, acoustic networks. Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance.

  20. Autonomous Underwater Vehicle(AUV) and Towed Vehicle Technologies for Under-Ice Hydrothermal Vent Studies at the Gakkel Ridge

    Science.gov (United States)

    Singh, H.; Akin, D.; Reves-Sohn, R.; Humphris, S.; Shank, T.; Edmonds, H.

    2006-12-01

    The extreme polar environment presents a unique challenge to the use of the otherwise mature oceanographic technologies associated with Autonomous Underwater Vehicles (AUVs), Remotely Operated Vehicles (ROVs) and towed vehicles. For deep water mapping and sampling applications, ice cover in the arctic is a formidable obstacle. In pursuing our goals to locate, map and sample hydrothermal vents on the Gakkel Ridge, we have built and plan to deploy two AUVs named JAGUAR and PUMA and a towed sampling sled with hydraulically actuated sampling chambers. Our methodologies for working with AUVs in the Arctic differ significantly from standard blue-water operations. Specifically, we have focused on, deploying and calibrating acoustic transponders with the limited mobility imposed by multi-year ice; a far more robust system architecture for dealing with component failures underwater; an autonomous manipulation system on the AUV for capturing sessile biological organisms and geological samples; and a low bandwidth acoustic tether for vehicle status, navigation and mission redirection. Our sampling sled was designed with the premise that the limited mobility associated with working in ice will at best provide us with a few, short opportunities to image and sample on a hydrothermal vent site. To this end our sled is equipped with a suite of imaging and chemical sensors as well as devices for quickly obtaining multiple samples of both sessile and motile biological organisms. We plan to deploy these new technologies during the International Polar Year in 2007 as part of a collaborative international effort to characterize the biological and geological characteristics of hydrothermal venting on the ultra-slow spreading Gakkel Ridge in the eastern Arctic basin.

  1. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    NARCIS (Netherlands)

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; van Hoesel, L.F.W.; Marron, Pedro J.; Lepley, Jason; de Andres, Eduardo

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  2. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  3. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-02-21

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  4. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  5. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    Directory of Open Access Journals (Sweden)

    Joshué Pérez

    2013-02-01

    Full Text Available Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  6. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  7. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  8. Research on key technology of prognostic and health management for autonomous underwater vehicle

    Science.gov (United States)

    Zhou, Zhi

    2017-12-01

    Autonomous Underwater Vehicles (AUVs) are non-cable and autonomous motional underwater robotics. With a wide range of activities, it can reach thousands of kilometers. Because it has the advantages of wide range, good maneuverability, safety and intellectualization, it becomes an important tool for various underwater tasks. How to improve diagnosis accuracy of the AUVs electrical system faults, and how to repair AUVs by the information are the focus of navy in the world. In turn, ensuring safe and reliable operation of the system has very important significance to improve AUVs sailing performance. To solve these problems, in the paper the prognostic and health management(PHM) technology is researched and used to AUV, and the overall framework and key technology are proposed, such as data acquisition, feature extraction, fault diagnosis, failure prediction and so on.

  9. Application of Sigmoidal Gompertz Curves in Reverse Parallel Parking for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Aneesh Chand

    2015-09-01

    Full Text Available A new method for the planning and autonomous execution of a single-trajectory, velocity-independent, parallel parking manoeuvre for autonomous vehicles is presented. The procedure commences with the identification and pre-selection of a smooth sigmoidal trajectory known as the Gompertz curve in parametric format. Trajectory parameters are determined in real-time during the path-planning phase using an optimization scheme in order to generate a candidate path. The optimization scheme takes into account the maximum steering angles that can be physically realized and checks the generated candidate trajectory for collisions. Thereafter, the trajectory is reparametrized to arc-length format using the cubic interpolation method and the vehicle orientation at every point of the trajectory is deduced. Following that, values of the steering angle(s are determined. In the final step, the vehicle uses dead-reckoning to follows the arc-length parametrized path in reverse in order to park itself in a single-manoeuvre. The proposed method is substantiated through both extensive simulations and real sensor data.

  10. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  11. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  12. Modeling Travel Time Reliability of Road Network Considering Connected Vehicle Guidance Characteristics Indexes

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2017-01-01

    Full Text Available Travel time reliability (TTR is one of the important indexes for effectively evaluating the performance of road network, and TTR can effectively be improved using the real-time traffic guidance information. Compared with traditional traffic guidance, connected vehicle (CV guidance can provide travelers with more timely and accurate travel information, which can further improve the travel efficiency of road network. Five CV characteristics indexes are selected as explanatory variables including the Congestion Level (CL, Penetration Rate (PR, Compliance Rate (CR, release Delay Time (DT, and Following Rate (FR. Based on the five explanatory variables, a TTR model is proposed using the multilogistic regression method, and the prediction accuracy and the impact of characteristics indexes on TTR are analyzed using a CV guidance scenario. The simulation results indicate that 80% of the RMSE is concentrated within the interval of 0 to 0.0412. The correlation analysis of characteristics indexes shows that the influence of CL, PR, CR, and DT on the TTR is significant. PR and CR have a positive effect on TTR, and the average improvement rate is about 77.03% and 73.20% with the increase of PR and CR, respectively, while CL and DT have a negative effect on TTR, and TTR decreases by 31.21% with the increase of DT from 0 to 180 s.

  13. 77 FR 33098 - Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oilfield Exception

    Science.gov (United States)

    2012-06-05

    ... commercial motor vehicles (CMVs) that are being used for direct support of the operation ] of oil and gas... Federal Motor Carrier Safety Administration 49 CFR Part 395 Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oilfield Exception AGENCY: Federal Motor Carrier Safety...

  14. A new technique for robot vision in autonomous underwater vehicles using the color shift in underwater imaging

    Science.gov (United States)

    2017-06-01

    FOR ROBOT VISION IN AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING by Jake A. Jones June 2017 Thesis Advisor... VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING 5. FUNDING NUMBERS 6. AUTHOR(S) Jake A. Jones 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...underwater vehicles (AUVs), robot vision, autonomy, visual odometry, underwater color shift, optical properties of water 15. NUMBER OF PAGES 75 16

  15. Data-based depth estimation of an incoming autonomous underwater vehicle.

    Science.gov (United States)

    Yang, T C; Xu, Wen

    2016-10-01

    The data-based method for estimating the depth of a moving source is demonstrated experimentally for an incoming autonomous underwater vehicle traveling toward a vertical line array (VLA) of receivers at constant speed/depth. The method assumes no information on the sound-speed and bottom profile. Performing a wavenumber analysis of a narrowband signal for each hydrophone, the energy of the (modal) spectral peaks as a function of the receiver depth is used to estimate the depth of the source, traveling within the depth span of the VLA. This paper reviews the theory, discusses practical implementation issues, and presents the data analysis results.

  16. A Vision-Based Method for Autonomous Landing of a Rotor-Craft Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Z. Yuan

    2006-01-01

    Full Text Available This article introduces a real-time vision-based method for guided autonomous landing of a rotor-craft unmanned aerial vehicle. In the process of designing the pattern of landing target, we have fully considered how to make this easier for simplified identification and calibration. A linear algorithm was also applied using a three-dimensional structure estimation in real time. In addition, multiple-view vision technology is utilized to calibrate intrinsic parameters of camera online, so calibration prior to flight is unnecessary and the focus of camera can be changed freely in flight, thus upgrading the flexibility and practicality of the method.

  17. Using Autonomous Underwater Vehicles as Sensor Platforms for Ice-Monitoring

    OpenAIRE

    Norgren, Petter; Skjetne, Roger

    2014-01-01

    Due to the receding sea-ice extent in the Arctic, and the potentially large undiscovered petroleum resources present north of the Arctic circle, offshore activities in ice-infested waters are increasing. Due to the presence of drifting sea-ice and icebergs, ice management (IM) becomes an important part of the offshore operation, and an important part of an IM system is the ability to reliably monitor the ice conditions. An autonomous underwater vehicle (AUV) has a unique capability of high un...

  18. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    Directory of Open Access Journals (Sweden)

    Wei Peng Lin

    2015-12-01

    Full Text Available Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV with a docking hoop (DH to recover an autonomous underwater vehicle (AUV named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and simulation to testing in water. As shown in a three-dimensional simulation of an AUVDH model using MATLAB™/Simulink™ during the launch and recovery process, the control simulation of a sliding mode controller is able to control the positions and velocities under the external wave, current, and tether forces. In the water test using the proposed Python-based GUI platform, it shows that the AUVDH is capable to perform station-keeping under the external disturbances.

  19. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Joung

    2012-03-01

    Full Text Available Autonomous Underwater Vehicles (AUVs provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc. around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys™. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

  20. Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT, that is, liveness-based RRT (Li-RRT, to address autonomous underwater vehicles (AUVs motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.

  1. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

    Directory of Open Access Journals (Sweden)

    Yu-shan Sun

    2016-05-01

    Full Text Available Autonomous Underwater Vehicles (AUVs generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

  2. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  3. TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    DEFF Research Database (Denmark)

    Christiansen, Peter

    ) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset...... the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time...... algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is - compared to a state-of-the-art object detector Faster R-CNN - for an agricultural use-case able to detect humans better and at longer ranges (45-90m...

  4. Sonar-based iceberg-relative navigation for autonomous underwater vehicles

    Science.gov (United States)

    Kimball, Peter; Rock, Stephen

    2011-06-01

    Iceberg-relative navigation for autonomous underwater vehicles (AUVs) will enable a new mode of data collection for studies of free-floating icebergs. Compared to current data collection methods, autonomous underwater vehicles offer substantially expanded coverage area and continuous sampling. However, because icebergs translate and rotate through inertial space, standard vehicle navigation methods which rely on inertial sensors are unable to provide iceberg-relative position estimates. Presented here is a new iceberg-relative vehicle navigation technique which is an extension of existing work in terrain-relative navigation. The technique comprises a mapping step and localization step, each of which is modified here to account for the translation and the rotation of free-floating icebergs. In the mapping step, the AUV circumnavigates the iceberg at a sequence of constant depths, collecting multibeam sonar imagery of the iceberg's submerged surface. A map is then generated in post-processing by projecting these sonar data from their corresponding vehicle positions (accounting for iceberg motion) in a frame that is fixed to the iceberg. Overlapping sonar data from the beginning and end of a circumnavigation provide the information necessary to enforce self-consistency of the iceberg map. In the localization step, the AUV uses the previously generated map to determine its position and orientation with respect to the iceberg by correlating incoming sonar ranges with the map. The estimator works by maintaining explicit estimates not only of the vehicle position and orientation, but also of the iceberg translation and rotation rates through inertial space. Results from a proof-of-concept field demonstration of this new iceberg-relative AUV navigation technique prove the feasibility of both generating a self-consistent three-dimensional map of a moving iceberg and localizing a vehicle's position with respect to that iceberg. The data for the experiment were collected

  5. vSLAM: vision-based SLAM for autonomous vehicle navigation

    Science.gov (United States)

    Goncalves, Luis; Karlsson, Niklas; Ostrowski, Jim; Di Bernardo, Enrico; Pirjanian, Paolo

    2004-09-01

    Among the numerous challenges of building autonomous/unmanned vehicles is that of reliable and autonomous localization in an unknown environment. In this paper we present a system that can efficiently and autonomously solve the robotics 'SLAM' problem, where a robot placed in an unknown environment, simultaneously must localize itself and make a map of the environment. The system is vision-based, and makes use of Evolution Robotic's powerful object recognition technology. As the robot explores the environment, it is continuously performing four tasks, using information from acquired images and the drive system odometry. The robot: (1) recognizes previously created 3-D visual landmarks; (2) builds new 3-D visual landmarks; (3) updates the current estimate of its location, using the map; (4) updates the landmark map. In indoor environments, the system can build a map of a 5m by 5m area in approximately 20 minutes, and can localize itself with an accuracy of approximately 15 cm in position and 3 degrees in orientation relative to the global reference frame of the landmark map. The same system can be adapted for outdoor, vehicular use.

  6. 360-Degree Visual Detection and Target Tracking on an Autonomous Surface Vehicle

    Science.gov (United States)

    Wolf, Michael T; Assad, Christopher; Kuwata, Yoshiaki; Howard, Andrew; Aghazarian, Hrand; Zhu, David; Lu, Thomas; Trebi-Ollennu, Ashitey; Huntsberger, Terry

    2010-01-01

    This paper describes perception and planning systems of an autonomous sea surface vehicle (ASV) whose goal is to detect and track other vessels at medium to long ranges and execute responses to determine whether the vessel is adversarial. The Jet Propulsion Laboratory (JPL) has developed a tightly integrated system called CARACaS (Control Architecture for Robotic Agent Command and Sensing) that blends the sensing, planning, and behavior autonomy necessary for such missions. Two patrol scenarios are addressed here: one in which the ASV patrols a large harbor region and checks for vessels near a fixed asset on each pass and one in which the ASV circles a fixed asset and intercepts approaching vessels. This paper focuses on the ASV's central perception and situation awareness system, dubbed Surface Autonomous Visual Analysis and Tracking (SAVAnT), which receives images from an omnidirectional camera head, identifies objects of interest in these images, and probabilistically tracks the objects' presence over time, even as they may exist outside of the vehicle's sensor range. The integrated CARACaS/SAVAnT system has been implemented on U.S. Navy experimental ASVs and tested in on-water field demonstrations.

  7. Autonomous Path Planning for Road Vehicles in Narrow Environments: An Efficient Continuous Curvature Approach

    Directory of Open Access Journals (Sweden)

    Domokos Kiss

    2017-01-01

    Full Text Available In this paper we introduce a novel method for obtaining good quality paths for autonomous road vehicles (e.g., cars or buses in narrow environments. There are many traffic situations in urban scenarios where nontrivial maneuvering in narrow places is necessary. Navigating in cluttered parking lots or having to avoid obstacles blocking the way and finding a detour even in narrow streets are challenging, especially if the vehicle has large dimensions like a bus. We present a combined approximation-based approach to solve the path planning problem in such situations. Our approach consists of a global planner which generates a preliminary path consisting of straight and turning-in-place primitives and a local planner which is used to make the preliminary path feasible to car-like vehicles. The approximation methodology is well known in the literature; however, both components proposed in this paper differ from existing similar planning methods. The approximation process with the proposed local planner is proven to be convergent for any preliminary global paths. The resulting path has continuous curvature which renders our method well suited for application on real vehicles. Simulation experiments show that the proposed method outperforms similar approaches in terms of path quality in complicated planning tasks.

  8. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    Science.gov (United States)

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  9. Autonomous Underwater Vehicle Data Management and Metadata Interoperability for Coastal Ocean Studies

    Science.gov (United States)

    McCann, M. P.; Ryan, J. P.; Chavez, F. P.; Rienecker, E.

    2004-12-01

    Data from over 1000 km of Autonomous Underwater Vehicle (AUV) surveys of Monterey Bay have been collected and cataloged in an ocean observatory data management system. The Monterey Bay Aquarium Institute's AUV is equipped with a suite of instruments that include a conductivity, temperature, depth (CTD) instrument, transmissometers, a fluorometer, a nitrate sensor, and an inertial navigation system. Data are logged on the vehicle and upon completion of a survey XML descriptions of the data are submitted to the Shore Side Data System (SSDS). Instrument data are then processed on shore to apply calibrations and produce scientifically useful data products. The SSDS employs a data model that tracks data from the instrument that created it through all the consuming processes that generate derived products. SSDS employs OPeNDAP and netCDF to provide data set interoperability at the data level. The core of SSDS is the metadata that is the catalog of these data sets and their relation to all other relevant data. The metadata is managed in a relational database and governed by a Enterprise Java Bean (EJB) server application. Cross-platform Java applications have been written to manage and visualize these data. A Java Swing application - the Hierarchical Ocean Observatory Visualization and Editing System (HOOVES) - has been developed to provide visualization of data set pedigree and data set variables. Because the SSDS data model is generalized according to "Data Producers" and "Data Containers" many different types of data can be represented in SSDS allowing for interoperability at a metadata level. Comparisons of appropriate data sets, whether they are from an autonomous underwater vehicle or from a fixed mooring are easily made using SSDS. The authors will present the SSDS data model and show examples of how the model helps organize data set metadata allowing for data discovery and interoperability. With improved discovery and interoperability the system is helping us

  10. Planar Smooth Path Guidance Law for a Small Unmanned Aerial Vehicle with Parameter Tuned by Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2017-01-01

    Full Text Available A guidance law has been designed to guide the small unmanned aerial vehicle towards the predefined horizontal smooth path. The guidance law only needs the mathematical expression for the predefined path, the positions, and the velocities of the vehicle in the horizontal inertial frame. The stability of the guidance law has been demonstrated by the Lyapunov stability arguments. In order to improve the path following performance, one of the parameters of the guidance law is tuned by using the fuzzy logic which will still keep its stability. The simulation experiments in the Matlab/Simulink environment to realize the square-, circular-, and the athletics track-style paths following are given to verify the effectiveness of the proposed method. The simulation results show that the path following performance will be improved with smaller overshoot and oscillation amplitude and shorter arrival time with the parameter tuned.

  11. Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle

    Directory of Open Access Journals (Sweden)

    Adam Norsharimie

    2017-01-01

    Full Text Available This paper presents the omnidirectional configuration and control approach on Mini Heavy Loaded Forklift Autonomous Guided Vehicle (MHeLFAGV for flexibility maneuverability in confine and narrow area. The issue in turning motion for nonholonomic vehicle in confine area becoming a motivation in MHeLFAGV design to provide holonomic vehicle with flexible movement. Therefore an omni-wheeled named Mecanum wheel has been configured in this vehicle design as well as omnidirectional control algorithm. MHeLFAGV system is developed with collaboration and inspired from Vacuumshmelze (M Sdn. Bhd. Pekan, Pahang in order to have a customized mini forklift that able to work in a very confined warehouse (170cm × 270cm square with heavy payload in a range of 20-200kg. In electronics control design, two stages of controller boards are developed namely as Board 1 and 2 that specifically for movement controller board and monitoring controller board respectively. In addition separate module of left, right, forward, backward, diagonal and zigzagging movement is developed as embedded modules for MHeLFAGV system’s control architecture. A few experiments are done to verify the algorithm for each omnidirectional movement of MHeLFAGV system in the wide area. The waypoint of MHeLFAGV movement is plotted using Global Positioning System (GPS as well as a digital compass by mapping the longitude and latitude of the vehicle. There are slightly different between the targeted movements with recorded data since Mecanum wheeled affected by the uneven surface of the landscape. The experiment is also further on moving in confine are on the actual targeted warehouse.

  12. Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle

    Science.gov (United States)

    Allen, Michael J.

    2005-01-01

    A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.

  13. 3D Photo Mosaicing of Tagiri Shallow Vent Field by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao

    Although underwater visual observation is an ideal method for detailed survey of seafloors, it is currently a costly process that requires the use of Remotely Operated Vehicles (ROVs) or Human Occupied Vehicles (HOVs), and can cover only a limited area. This paper proposes an innovative method to navigate an autonomous underwater vehicle (AUV) to create both 2D and 3D photo mosaics of seafloors with high positioning accuracy without using any vision-based matching. The vehicle finds vertical pole-like acoustic reflectors to use as positioning landmarks using a profiling sonar based on a SLAM (Simultaneous Localization And Mapping) technique. These reflectors can be either artificial or natural objects, and so the method can be applied to shallow vent fields where conventional acoustic positioning is difficult, since bubble plumes can also be used as landmarks as well as artificial reflectors. Path-planning is performed in real-time based on the positions and types of landmarks so as to navigate safely and stably using landmarks of different types (artificial reflector or bubble plume) found at arbitrary times and locations. Terrain tracker switches control reference between depth and altitude from the seafloor based on a local map of hazardous area created in real-time using onboard perceptual sensors, in order to follow rugged terrains at an altitude of 1 to 2 meters, as this range is ideal for visual observation. The method was implemented in the AUV Tri-Dog 1 and experiments were carried out at Tagiri vent field, Kagoshima Bay in Japan. The AUV succeeded in fully autonomous observation for more than 160 minutes to create a photo mosaic with an area larger than 600 square meters, which revealed the spatial distribution of detailed features such as tube-worm colonies, bubble plumes and bacteria mats. A fine bathymetry of the same area was also created using a light-section ranging system mounted on the vehicle. Finally a 3 D representation of the environment was

  14. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  15. Navigation Behaviors Based on Fuzzy ArtMap Neural Networks for Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Amine Chohra

    2011-01-01

    Full Text Available The use of hybrid intelligent systems (HISs is necessary to bring the behavior of intelligent autonomous vehicles (IAVs near the human one in recognition, learning, adaptation, generalization, decision making, and action. First, the necessity of HIS and some navigation approaches based on fuzzy ArtMap neural networks (FAMNNs are discussed. Indeed, such approaches can provide IAV with more autonomy, intelligence, and real-time processing capabilities. Second, an FAMNN-based navigation approach is suggested. Indeed, this approach must provide vehicles with capability, after supervised fast stable learning: simplified fuzzy ArtMap (SFAM, to recognize both target-location and obstacle-avoidance situations using FAMNN1 and FAMNN2, respectively. Afterwards, the decision making and action consist of two association stages, carried out by reinforcement trial and error learning, and their coordination using NN3. Then, NN3 allows to decide among the five (05 actions to move towards 30∘, 60∘, 90∘, 120∘, and 150∘. Third, simulation results display the ability of the FAMNN-based approach to provide IAV with intelligent behaviors allowing to intelligently navigate in partially structured environments. Finally, a discussion, dealing with the suggested approach and how its robustness would be if implemented on real vehicle, is given.

  16. Study of the Use of a Terminal Controller Technique for Reentry Guidance of a Capsule-Type Vehicle

    Science.gov (United States)

    Foudriat, Edwin C.

    1961-01-01

    A study has been made of the use o f a terminal controller technique i n the guidance of a high-drag, variable-lift reentry vehicle to a desired landing point. The technique uses linearized equations of motion attained by the perturbation of the dependent variables from those of a reference trajectory. The guidance system continuously predicts the terminal range error and uses this error to control the angle of attack of the vehicle in an on-off manner until the predicted range error is within +-O.1 degrees of the required arc or +-6.9 miles.

  17. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2012-09-01

    Full Text Available This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  18. Modifications of Control Loop to Improve the Depth Response of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Hsu

    2014-01-01

    Full Text Available During a constant depth maneuver of an autonomous underwater vehicle (AUV, its pitch attitude and stern plane deflections create forces and moments to achieve equilibrium in the vertical plane. If an AUV has a proportional controller only in its depth control loop, then different weights or centers of gravity will cause different steady-state depth errors at trimmed conditions. In general, a steady-state depth error can be eliminated by adding an integral controller in the depth control loop. However, an improper integrator may lead to a bad transient response, even though the steady-state depth error can finally be eliminated. To remove the steady-state depth error, this study proposes methods that adjust the depth command and add a switching integral controller in the depth control loop. Simulation results demonstrate that the steady-state depth error can be eliminated and the transient response can be improved.

  19. A Fusion of Sensors Information for Autonomous Driving Control of an Electric Vehicle (EV)

    International Nuclear Information System (INIS)

    Haris, Hasri; Wan, Khairunizam; Hazry, D; Razlan, Zuradzman M

    2013-01-01

    The study uses the environment of the road as input variables for the main system to control steering wheel, brake and acceleration pedals. A camera is installed on the roof of the Electric Vehicles (EV) and is used to obtain image information of the road. On the other hand, users or drivers do not have to directly contact with the main system because it will autonomously control the devices by using fuzzy information of the road conditions. A fuzzy information means in the preliminary experiments, reasoning of the various environments will be done by using fuzzy approach. At the end of the study, several existing algorithms for controlling motors and image processing technique could be combined into an algorithm that could be used to move EV without assist from human

  20. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    Science.gov (United States)

    Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou

    2012-01-01

    This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  1. Improved Line Tracking System for Autonomous Navigation of High-Speed Vehicle

    Directory of Open Access Journals (Sweden)

    Yahya Zare Khafri

    2012-07-01

    Full Text Available Line tracking navigation is one of the most widely techniques used in the robot navigation. In this paper, a customized line tracking system is proposed for autonomous navigation of high speed vehicles. In the presented system, auxiliary information -in addition to the road path- is added to the tracking lines such as locations of turn and intersections in the real roads. Moreover, the geometric position of line sensors is re-designed enables the high rate sensing with higher reliability. Finally, a light-weight navigation algorithm is proposed allow the high-speed movement using a reasonable processing power. This system is implemented on a MIPS-based embedded processor and experimental results with this embedded system show more than 98% accuracy at 200km/h with a 1GHz processor is viable.

  2. Flow around an autonomous underwater vehicle with bio-inspired coating

    Science.gov (United States)

    Watkins, Scott; Montoya-Segnini, Jose; Bocanegra Evans, Humberto; Curet, Oscar; Gorumlu, Serdar; Aksak, Burak; Kazemi, Amirkhosro; Chamorro, Leonardo; Castillo, Luciano

    2017-11-01

    Flow separation plays a major factor in the form drag of a moving object. In particular, suppressing or reducing flow separation is critical in the energy expenditure of autonomous underwater vehicles. Previous research suggests that bio-inspired micro-fibrillar structures are capable of reducing the boundary layer separation in a turbulent flow. Here, we present laboratory measurements using PIV near the wall and in the wake of two submersible vessel models; one had a coating composed of ordered fibers, and the other had smooth walls. Flow characterization with planar PIV included the presence or absence of a tail fin at multiple angles of attack of the vessels. Preliminary results reveal changes of the flow in the wake of the vessel with coating resulting in lower or similar velocity deficit in the wake compared to the smooth vessel.

  3. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in Unknown Environments.

    Science.gov (United States)

    Yan, Zheping; Li, Jiyun; Zhang, Gengshi; Wu, Yi

    2018-02-02

    A novel real-time reaction obstacle avoidance algorithm (RRA) is proposed for autonomous underwater vehicles (AUVs) that must adapt to unknown complex terrains, based on forward looking sonar (FLS). To accomplish this algorithm, obstacle avoidance rules are planned, and the RRA processes are split into five steps Introduction only lists 4 so AUVs can rapidly respond to various environment obstacles. The largest polar angle algorithm (LPAA) is designed to change detected obstacle's irregular outline into a convex polygon, which simplifies the obstacle avoidance process. A solution is designed to solve the trapping problem existing in U-shape obstacle avoidance by an outline memory algorithm. Finally, simulations in three unknown obstacle scenes are carried out to demonstrate the performance of this algorithm, where the obtained obstacle avoidance trajectories are safety, smooth and near-optimal.

  4. Efficient Multivariable Generalized Predictive Control for Autonomous Underwater Vehicle in Vertical Plane

    Directory of Open Access Journals (Sweden)

    Xuliang Yao

    2016-01-01

    Full Text Available This paper presents the design and simulation validation of a multivariable GPC (generalized predictive control for AUV (autonomous underwater vehicle in vertical plane. This control approach has been designed in the case of AUV navigating with low speed near water surface, in order to restrain wave disturbance effectively and improve pitch and heave motion stability. The proposed controller guarantees compliance with rudder manipulation, AUV output constraints, and driving energy consumption. Performance index based on pitch stabilizing performance, energy consumption, and system constraints is used to derive the control action applied for each time step. In order to deal with constrained optimization problems, a Hildreth’s QP procedure is adopted. Simulation results of AUV longitudinal control show better stabilizing performance and minimized energy consumption improved by multivariable GPC.

  5. High–Level Control System for Biomimetic Autonomous Under-water Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2017-01-01

    Full Text Available Usually, a rough software architecture designed for a robot can be can be shortly presented in the form of layers. The lowest layer is responsible for direct control of the hardware, i.e. engines, energy system, sensors, navigation devices, etc. A next layer is a low–level control which knows how to use the hardware in order to achieve a desired state of the robot, e.g. to stay on a desired course. And the last layer, the layer which is the nearest to the human–operator, is a high–level control which decides how to use the low–level control and sometimes also individual pieces of the hardware to achieve predefined objectives. The paper describes architecture, tasks and operation of the high–level control system (HLCS designed for Biomimetic Autonomous Underwater Vehicle (BAUV.

  6. Accuracy of Positioning Autonomous Biomimetic Underwater Vehicle Using Additional Measurement of Distances

    Directory of Open Access Journals (Sweden)

    Naus Krzysztof

    2016-12-01

    Full Text Available The article describes a study of problem of estimating the position coordinates of Autonomous Biomimetic Underwater Vehicle (ABUV using two methods: dead reckoning (DR and extended Kalman filter (EKF. In the first part of the paper, navigation system of ABUV is described and scientific problem with underwater positioning is formulated. The main part describes a way of estimating the position coordinates using DR and EKF and a numerical experiment involving motion of ABUV along the predetermined test distance. The final part of the paper contains a comparative statistical analysis of the results, carried out for assessing the accuracy of estimation of the position coordinates using DR and EKF methods. It presents the generalized conclusions from the research and the problems relating to the proper placement of the components of the system measuring distances.

  7. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  8. Autonomous Micro-Air-Vehicle Control Based on Visual Sensing for Odor Source Localization

    Directory of Open Access Journals (Sweden)

    Kenzo Kurotsuchi

    2017-07-01

    Full Text Available In this paper, we propose a novel control method for autonomous-odor-source localization using visual and odor sensing by micro air vehicles (MAVs. Our method is based on biomimetics, which enable highly autonomous localization. Our method does not need any instruction signals, including even global positioning system (GPS signals. An experimenter simply blows a whistle, and the MAV will then start to hover, to seek an odor source, and to keep hovering near the source. The GPS-signal-free control based on visual sense enables indoor/underground use. Moreover, the MAV is light-weight (85 grams and does not cause harm to others even if it accidentally falls. Experiments conducted in the real world were successful in enabling odor source localization using the MAV with a bio-inspired searching method. The distance error of the localization was 63 cm, more accurate than the target distance of 120 cm for individual identification. Our odor source localization is the first step to a proof of concept for a danger warning system. These localization experiments were the first step to a proof of concept for a danger warning system to enable a safer and more secure society.

  9. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    Science.gov (United States)

    Riaz, Faisal; Niazi, Muaz A

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  10. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson’s arms race model

    Science.gov (United States)

    Niazi, Muaz A.

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294

  11. Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ali Bin Junaid

    2017-06-01

    Full Text Available Rotary-wing unmanned aerial vehicles (UAVs have the ability to operate in confined spaces and to hover over point of interest, but they have limited flight time and endurance. Conventional contact-based charging system for UAVs has been used, but it requires high landing accuracy for proper docking. Instead of the conventional system, autonomous wireless battery charging system for UAVs in outdoor conditions is proposed in this paper. UAVs can be wirelessly charged using the proposed charging system, regardless of yaw angle between UAVs and wireless charging pad, which can further reduce their control complexity for autonomous landing. The increased overall mission time eventually relaxes the limitations on payload and flight time. In this paper, a cost effective automatic recharging solution for UAVs in outdoor environments is proposed using wireless power transfer (WPT. This research proposes a global positioning system (GPS and vision-based closed-loop target detection and a tracking system for precise landing of quadcopters in outdoor environments. The system uses the onboard camera to detect the shape, color and position of the defined target in image frame. Based on the offset of the target from the center of the image frame, control commands are generated to track and maintain the center position. Commercially available AR.Drone. was used to demonstrate the proposed concept which is equppied with bottom camera and GPS. Experiments and analyses showed good performance, and about 75% average WPT efficiency was achieved in this research.

  12. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Science.gov (United States)

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  13. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    Directory of Open Access Journals (Sweden)

    Faisal Riaz

    Full Text Available This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs, which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM level of the Cognitive Agent Based Computing (CABC framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  14. Design of a swarm of autonomous ground vehicles for use in remote sensing applications

    Science.gov (United States)

    Benavidez, Patrick J.

    As current technological trends are leading towards relatively small, cheap and powerful computational platforms that can support a multitude of sensors, systems of multiple smaller robots are becoming more cost effective than use of a single larger robot. Small, cheap and powerful are three key ingredients in enabling the development and deployment of larger swarms of robots. This thesis explores the concepts required for developing and deploying a swarm of autonomous ground vehicle (AGV) robots. The concepts investigated are communication, obstacle avoidance, navigation, path planning, formation planning, autonomous control, and task allocation. Each swarm robot concept is explored through comparison in the use of different instruments and methods to reach the end goal in creation and use of the system component. Verification of the need for these concepts in a multi-robot system is performed through simulation and experiments. Results from simulations and experiments provide a promising outlook for deployment of the robotic swarm on current wireless networks for long range experiments. Products of this thesis are the set of concepts that can be used to create and deploy an expandable system of heterogeneous robots for use in remote sensing applications, and software created to control two coordinator robots that were used to test the concepts.

  15. Design and Integration of a Three Degrees-of-Freedom Robotic Vehicle with Control Moment Gyro for the Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) Testbed

    National Research Council Canada - National Science Library

    Hall, Jason S

    2006-01-01

    ...) Spacecraft Simulator. This simulator will be used in the Proximity Operations Simulator Facility, as part of the Naval Postgraduate School's Spacecraft Robotics Laboratory, to simulate autonomous guidance, navigation and control (GNC...

  16. Experiences from using Autonomous Underwater Vehicles and Synthetic Aperture Sonar for Sediment and Habitat Mapping

    Science.gov (United States)

    Thorsnes, T.; Bjarnadóttir, L. R.

    2017-12-01

    Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.

  17. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    Science.gov (United States)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  18. Localization and Tracking of Submerged Phytoplankton Bloom Patches by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.

    2012-12-01

    Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in

  19. 77 FR 57068 - Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field...

    Science.gov (United States)

    2012-09-17

    ... Federal Motor Carrier Safety Administration (FMCSA) 49 CFR Part 395 Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field Exception AGENCY: Federal Motor Carrier Safety... Operations Division, Federal Motor Carrier Safety Administration, 1200 New Jersey Avenue SE., Washington, DC...

  20. Samen werken aan Automatische VoertuigGeleiding: aanzet tot een businessplan [Working together on Automated Vehicle Guidance; Preliminary business plan

    NARCIS (Netherlands)

    Coemet, M.J.; Vos, A.P. de; Arem, B. van; Brookhuis, K.A.; Heijer, T.; Marchau, V.A.W.J.

    1998-01-01

    Automated Vehicle Guidance (AVG) systems are expected to have a major impact on traffic and transport. In order to reap the benefits and offset or avoid the disadvantages of AVG, correct and timely choices will have to be made. The Ministry of Transport, Public Works and Water Manage-ment, the

  1. Second Order Sliding Mode Control Scheme for an Autonomous Underwater Vehicle with Dynamic Region Concept

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2015-01-01

    Full Text Available The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC, gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.

  2. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  3. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Basam Musleh

    2016-09-01

    Full Text Available Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels and the vehicle environment (meters depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  4. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.

    Science.gov (United States)

    Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J

    2018-03-15

    Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.

  5. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  6. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  7. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    Science.gov (United States)

    Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  8. Public health, autonomous automobiles, and the rush to market.

    Science.gov (United States)

    Kelley, Ben

    2017-05-01

    The USA has the worst motor vehicle safety problem among high-income countries and is pressing forward with the development of autonomous automobiles to address it. Government guidance and regulation, still inadequate, will be critical to the safety of the public. The analysis of this public health problem in the USA reveals the key factors that will determine the benefits and risks of autonomous vehicles around the world.

  9. Powered Explicit Guidance Modifications and Enhancements for Space Launch System Block-1 and Block-1B Vehicles

    Science.gov (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.

  10. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  11. BRUSHLESS VALVE ELECTRIC DRIVE WITH MINIMUM EQUIPMENT EXCESS FOR AUTONOMOUS FLOATING VEHICLE

    Directory of Open Access Journals (Sweden)

    Ya. B. Volyanskaya

    2017-08-01

    Full Text Available Purpose. Development of a brushless valve electric drive with a minimum apparatus excess for an autonomous floating vehicle. Methodology. The construction of models of an automated electric drive with a contactless DC motor and the subsequent technical implementation of such automated electric drive under various control methods are possible using coordinate transformations of differential equations describing the electric motor under the assumed assumptions. Results. The analysis of the current state of an automated electric drive with a brushless DC motor in a special technique is carried out, possible directions for the improvement of automated electric drives are determined. A simple technical solution of an automated electric drive with a brushless DC motor was proposed and its mathematical model for an electric drive of an automatic floating vehicle with improved technical and economic parameters was developed. Model of an automated electric drive with a brushless DC motor are carried out. Originality. A simple technical solution for the construction of an automated electric drive with a brushless DC motor is proposed, which excludes the use of intermediate computation of coordinates and an expensive encoder. Practical value. Model of the proposed scheme of an automated electric drive with a minimum hardware redundancy, which confirmed the operability of the proposed solution, were carried out. Analysis of the dynamic and static characteristics of the proposed scheme of an automated asynchronous electric drive with a brushless DC motor with a simplified rotor position sensor has made it possible to determine the maximum speed control range with an allowable level of its pulsations.

  12. Automated guidance algorithms for a space station-based crew escape vehicle.

    Science.gov (United States)

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H

    2003-04-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires

  13. Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle

    Directory of Open Access Journals (Sweden)

    Riccardo Polvara

    2018-04-01

    Full Text Available Autonomous landing on the deck of an unmanned surface vehicle (USV is still a major challenge for unmanned aerial vehicles (UAVs. In this paper, a fiducial marker is located on the platform so as to facilitate the task since it is possible to retrieve its six-degrees of freedom relative-pose in an easy way. To compensate interruption in the marker’s observations, an extended Kalman filter (EKF estimates the current USV’s position with reference to the last known position. Validation experiments have been performed in a simulated environment under various marine conditions. The results confirmed that the EKF provides estimates accurate enough to direct the UAV in proximity of the autonomous vessel such that the marker becomes visible again. Using only the odometry and the inertial measurements for the estimation, this method is found to be applicable even under adverse weather conditions in the absence of the global positioning system.

  14. DISTRIBUTED CONTROL ARCHITECTURE OF AN OMNI-DIRECTIONAL AUTONOMOUS GUIDED VEHICLE

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Omni-directionality is the ability of a mobile robot to move instantaneously in any direction. This paper describes the wheel and controller designs of a Mecanumwheeled, autonomous guided vehicle (AGV for reconfigurable manufacturing systems. Mecanum wheels use slip developed between rollers and surface, surface and ground, to achieve omni-directionality. An advantage of omni-directional robotic platforms is that they are capable of performing tasks in congested environments such as those found in factory workshops, narrow aisles, warehouses, etc. Controller Area Network (CAN is implemented as a distributed controller to control motion and navigation tasks of the developed robot. The design of the distributed controller is described and its performance analyzed. This increases the reliability and functionality of the mobile robot.

    AFRIKAANSE OPSOMMING: Die artikel beskryf wiel - en beheerontwerpe van ‘n veelrigting mobiele robot. Die robot is ‘n selfstandigbeheerde voertuig vir gebruik by vervaardigingstelsels met veranderbare konfigurasie. Die ontwerp van die robot en bypassende beheerstelsel word beskryf en ontleed teen die agterground van bewegings – en navigeertake. Die betroubaarheid en funksionering van die sisteem word beoordeel.

  15. Oscillatory Adaptive Yaw-Plane Control of Biorobotic Autonomous Underwater Vehicles Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Mugdha S. Naik

    2007-01-01

    Full Text Available This article considers the control of a biorobotic autonomous underwater vehicle (BAUV in the yaw plane using biologically inspired oscillatory pectoral-like fins of marine animals. The fins are assumed to be oscillating harmonically with a combined linear (sway and angular (yaw motion producing unsteady forces, which are used for fish-like control of BAUVs. Manoeuvring of the BAUV in the yaw plane is accomplished by altering the bias (mean angle of the angular motion of the fin. For the derivation of the adaptive control system, it is assumed that the physical parameters, the hydrodynamic coefficients, and the fin force and moment are not known. A direct adaptive sampled-data control system for the trajectory control of the yaw-angle using only yaw-angle measurement is derived. The parameter adaptation law is based on the normalised gradient scheme. Simulation results for the set point control, sinusoidal trajectory tracking and turning manoeuvres are presented, which show that the control system accomplishes precise trajectory control in spite of the parameter uncertainties.

  16. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    Science.gov (United States)

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  17. Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets

    International Nuclear Information System (INIS)

    Walter, C.E.

    1991-07-01

    The radioisotope thulium-170 is a safe and environmentally benign heat source for providing the high endurance and energy densities needed by advanced power systems for autonomous underwater vehicles (AUV). Thulium Isotope Power (TIP) systems have an endurance of ∼3000 h, and gravimetric and volumetric energy densities of 3 x 10 4 Wh/kg and 3 x 10 8 Wh/m 3 , respectively. These energy densities are more than 200 times higher than those currently provided by Ag-Zn battery technology. In order to capitalize on these performance levels with about one hundred AUVs in continuous use, it will be necessary to establish an infrastructure for isotope production and heat-source refurbishment. The infrastructure cost is not trivial, and studies are needed to determine its optimum configuration. The major component of the projected infrastructure is the nuclear reactor used to produce Tm- 170 by neutron absorption in Tm-169. The reactor design should ideally be optimized for TM-170 production. Using the byproduct ''waste'' heat beneficially would help defray the cost of isotope production. However, generating electric power with the reactor would compromise both the cost of electricity and the isotope production capacity. A coastal location for the reactor would be most convenient from end-use considerations, and the ''waste'' heat could be used to desalinate seawater in water-thirsty states. 13 refs., 6 figs., 2 tabs

  18. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    Science.gov (United States)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  19. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm.

    Science.gov (United States)

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.

  20. Using Autonomous Underwater Vehicles as Sensor Platforms for Ice-Monitoring

    Directory of Open Access Journals (Sweden)

    Petter Norgren

    2014-10-01

    Full Text Available Due to the receding sea-ice extent in the Arctic, and the potentially large undiscovered petroleum resources present north of the Arctic circle, offshore activities in ice-infested waters are increasing. Due to the presence of drifting sea-ice and icebergs, ice management (IM becomes an important part of the offshore operation, and an important part of an IM system is the ability to reliably monitor the ice conditions. An autonomous underwater vehicle (AUV has a unique capability of high underwater spatial and temporal coverage, making it suitable for monitoring applications. Since the first Arctic AUV deployment in 1972, AUV technology has matured and has been used in complex under-ice operations. This paper motivates the use of AUVs as an ice-monitoring sensor platform. It discusses relevant sensor capabilities and challenges related to communication and navigation. This paper also presents experiences from a field campaign that took place in Ny-Aalesund at Svalbard in January 2014, where a REMUS 100 AUV was used for sea-floor mapping and collection of oceanographic parameters. Based on this, we discuss the experiences related to using AUVs for ice-monitoring. We conclude that AUVs are highly applicable for ice-monitoring, but further research is needed.

  1. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle.

    Science.gov (United States)

    Milligan, R J; Morris, K J; Bett, B J; Durden, J M; Jones, D O B; Robert, K; Ruhl, H A; Bailey, D M

    2016-05-16

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1-10 km(2)) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km(-2) (95% CI: 601-844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km(-2) respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed.

  2. Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.

    Science.gov (United States)

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.

  3. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.

  4. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles

    Science.gov (United States)

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently. PMID:28255297

  5. Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Jordi Palacin

    2011-11-01

    Full Text Available This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV. The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.

  6. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  7. A positional estimation technique for an autonomous land vehicle in an unstructured environment

    Science.gov (United States)

    Talluri, Raj; Aggarwal, J. K.

    1990-01-01

    This paper presents a solution to the positional estimation problem of an autonomous land vehicle navigating in an unstructured mountainous terrain. A Digital Elevation Map (DEM) of the area in which the robot is to navigate is assumed to be given. It is also assumed that the robot is equipped with a camera that can be panned and tilted, and a device to measure the elevation of the robot above the ground surface. No recognizable landmarks are assumed to be present in the environment in which the robot is to navigate. The solution presented makes use of the DEM information, and structures the problem as a heuristic search in the DEM for the possible robot location. The shape and position of the horizon line in the image plane and the known camera geometry of the perspective projection are used as parameters to search the DEM. Various heuristics drawn from the geometric constraints are used to prune the search space significantly. The algorithm is made robust to errors in the imaging process by accounting for the worst care errors. The approach is tested using DEM data of areas in Colorado and Texas. The method is suitable for use in outdoor mobile robots and planetary rovers.

  8. Thruster fault identification method for autonomous underwater vehicle using peak region energy and least square grey relational grade

    OpenAIRE

    Mingjun Zhang; Baoji Yin; Xing Liu; Jia Guo

    2015-01-01

    A novel thruster fault identification method for autonomous underwater vehicle is presented in this article. It uses the proposed peak region energy method to extract fault feature and uses the proposed least square grey relational grade method to estimate fault degree. The peak region energy method is developed from fusion feature modulus maximum method. It applies the fusion feature modulus maximum method to get fusion feature and then regards the maximum of peak region energy in the convol...

  9. USE OF A LONG ENDURANCE SOLAR POWERED AUTONOMOUS UNDERWATER VEHICLE (SAUV II) TO MEASURE DISSOLVED OXYGEN CONCENTRATIONS IN GREENWICH BAY, RHODE ISLAND, USA

    Science.gov (United States)

    As hypoxic water masses increase worldwide in duration and extent due to coastal eutrophication, advanced technology water quality monitoring by autonomous vehicles can increase our capability to document and respond to these environmental perturbations. We evaluated the use of a...

  10. Investigation into legislative action needed to accommodate the future safe operation of autonomous vehicles in the state of Louisiana [tech summary].

    Science.gov (United States)

    2016-10-01

    The objective of this study is to review the status quo in the development of autonomous vehicles and determine : what regulatory action needs to be taken that will permit their safe introduction in : Louisiana while not stifling innovation and devel...

  11. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  12. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  13. A Small Autonomous Unmanned Aerial Vehicle, Ant-Plane 4, for aeromagnetic survey

    Science.gov (United States)

    Funaki, M.; Tanabe, S.; Project, A.

    2007-05-01

    Autonomous unmanned aerial vehicles (UAV) are expected to use in Antarctica for geophysical research due to economy and safety operations. We have developed the technology of small UAVwith autonomous navigation referred to GPS and onboard magnetometer, meteorolgical devices and digital camera under the Ant-Plane project. The UAV focuses on operation for use in the summer season at coastal area in Antarctica; higher temperature than -15C under calm wind. In case of Ant-Plane 4, it can fly continuously more than 500 km, probably more than 1000 km, although the flight in Antarcitca has not succeeded The UAV of FRP is pusher type drone consisting of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 86cc gasoline engine (7.2 HP) navigated. The maximum takeoff weight is 25kg including 1kg of payload. Cruising distance 500 km at speed of 130 km/h using 10 litter of fuel. The UAV is controlled by radio telemeter within 5km from a ground station and autonomous navigation referred to GPS latitude and longitude, pitot tube speed and barometer altitude. The magnetometer system consists of a 3-component magneto-resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time are recorded every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. We succeeded in long distant flight to 500km with magnetometer by Ant-Plane 4 collaborated with Geoscience Australia, in March 2006. The survey was performed in the area 10kmx10km at Kalgoorlie, Western Australia. The magnetic data are obtained from 41 courses (250m in interval) of EW direction. The altitude of the flight was 900m from sea level and 500m from the runway. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane

  14. Under-Ice Science in the Polar Regions with Autonomous Underwater Vehicles

    Science.gov (United States)

    Kunz, C.; Murphy, C.; Singh, H.; Das, S. B.; Jackson, R. H.; Kukulya, A.; Littlefield, R.; Maksym, T. L.; Plueddemann, A. J.; Sohn, R. A.; Straneo, F.; Wilkinson, J.

    2012-12-01

    Developments in autonomous underwater vehicle (AUV) technology over the last decade have enabled scientists to study areas of the ocean at high latitude that were previously unapproachable. In particular, advances in acoustic communications, robotic autonomy and navigation, and compact sensor technology allow AUVs to work in close proximity to sea ice, glacial fronts, and the sea floor under multi-year pack ice. We describe the technology that enabled several expeditions to both polar regions that have used Seabed-class AUVs as the primary platform for making scientific measurements. We also describe current and upcoming missions using the smaller Seabed-100 and REMUS-100 AUVs for shallow-water work near glacial fronts. Several problems must be solved in order to successfully use robots under ice. Acoustic communications must be robust enough for operators on the surface to inform the AUV of changing conditions so that the vehicle can safely return to open water on the surface - during the AGAVE and IceBell expeditions, we experienced sea ice drift rates of tens of centimeters per second, and moving ice floes that constrained the availability of open water. AUV navigation must be flexible enough for the robot to switch reference frames during a mission depending on the conditions and on the scientific objective. During a single deployment during the IceBell expedition, it was typical for the robot to switch from ship-relative (using acoustic transponders), to ice-relative (using a doppler velocity log), to ice-relative (using a distinct set of acoustic transponders), and back again; an AUV may also need to navigate relative to the sea floor (as during the AGAVE expedition). Making ice-relative measurements also requires taking ice floe rotation into account, and on-board navigation relative to a rotating frame may be necessary. Finally, specialized scenarios such as when navigating near a glacial front require navigation relative to vertical, rather than horizontal

  15. Lightweight Autonomous Underwater Vehicles (AUVs) performing coastal survey operations in REP 10A

    Science.gov (United States)

    Incze, Michael L.

    2011-11-01

    Lightweight Autonomous Underwater Vehicles (AUVs) were developed for Naval Special Warfare (NSW) Group 4 search and survey missions from a commercial AUV baseline (Iver 2) through integration of commercial off-the-shelf (COTS) hardware components, and through software development for enhanced on-board Command and Control functions. The development period was 1 year under a project sponsored by the Office of Naval Research TechSolutions Program Office. Hardware integration was completed by the commercial AUV vendor, OceanServer Technology, Inc., and software development was conducted by the Naval Undersea Warfare Center, Naval Oceanographic Office, and U MASS Dartmouth, with support from hardware and software application providers (YSI, Inc., Imagenex Technology Corp., and CARIS). At the conclusion of the integration and development period, an at-sea performance evaluation was scheduled for the Lightweight NSW AUVs with NSWG-4 personnel. The venue for this evaluation was the NATO exercise Recognized Environmental Picture 10A (REP 10A), hosted by Marinha Portuguesa, and coordinated by the Faculdade de Engenharia-Universidade do Porto. REP 10A offered an opportunity to evaluate the performance of the new AUVs and to explore the Concept of Operations (CONOPS) for employing them in military survey operations in shallow coastal waters. Shore- and ship-launched scenarios with launch/recovery by a single operator in a one-to-many coordinated survey, on-scene data product generation and visualization, data push to Reach Back Cells for product integration and enhancement, and survey optimization to streamline survey effort and timelines were included in the CONOPS review. Opportunities to explore employment of hybrid AUV fleets in Combined Force scenarios were also utilized. The Naval Undersea Warfare Center, Marinha Portuguesa, the Faculdade de Engenharia-Universidade do Porto, and OceanServer Technology, Inc., were the primary participants bringing in-water resources to

  16. Autonomous soaring and surveillance in wind fields with an unmanned aerial vehicle

    Science.gov (United States)

    Gao, Chen

    Small unmanned aerial vehicles (UAVs) play an active role in developing a low-cost, low-altitude autonomous aerial surveillance platform. The success of the applications needs to address the challenge of limited on-board power plant that limits the endurance performance in surveillance mission. This thesis studies the mechanics of soaring flight, observed in nature where birds utilize various wind patterns to stay airborne without flapping their wings, and investigates its application to small UAVs in their surveillance missions. In a proposed integrated framework of soaring and surveillance, a bird-mimicking soaring maneuver extracts energy from surrounding wind environment that improves surveillance performance in terms of flight endurance, while the surveillance task not only covers the target area, but also detects energy sources within the area to allow for potential soaring flight. The interaction of soaring and surveillance further enables novel energy based, coverage optimal path planning. Two soaring and associated surveillance strategies are explored. In a so-called static soaring surveillance, the UAV identifies spatially-distributed thermal updrafts for soaring, while incremental surveillance is achieved through gliding flight to visit concentric expanding regions. A Gaussian-process-regression-based algorithm is developed to achieve computationally-efficient and smooth updraft estimation. In a so-called dynamic soaring surveillance, the UAV performs one cycle of dynamic soaring to harvest energy from the horizontal wind gradient to complete one surveillance task by visiting from one target to the next one. A Dubins-path-based trajectory planning approach is proposed to maximize wind energy extraction and ensure smooth transition between surveillance tasks. Finally, a nonlinear trajectory tracking controller is designed for a full six-degree-of-freedom nonlinear UAV dynamics model and extensive simulations are carried to demonstrate the effectiveness of

  17. Improving the knowledge about dissolved oxygen and chlorophyll variability at ESTOC by using autonomous vehicles.

    Science.gov (United States)

    Cianca, A.; Caudet, E.; Vega, D.; Barrera, C.; Hernandez Brito, J.

    2016-02-01

    The European Station for Time Series in the Ocean, Canary Islands "ESTOC" is located in the Eastern Subtropical North Atlantic Gyre (29'10ºN, 15'30ºW). ESTOC started operations in 1994 based on a monthly ship-based sampling, in addition to hydrographic and sediment trap moorings. Since 2002, ESTOC is part of the European network for deep sea ocean observatories through several projects, among others ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), EuroSITES (European Ocean Observatory Network) and Fixed point Open Ocean Observatory network (FixO3). The main purpose of these projects was to improve the time-resolution of the biogeochemical measurements through moored biogeochemical sensors. Additionally, ESTOC is included in the Marine-Maritime observational network of the Macaronesian region, which is supported by the European overseas territories programs since 2009. This network aims to increase the quantity and quality of marine environmental observations. The goal is to understand phenomena which impact in the environment, and consequently at the socio-economy of the region to attempt their prediction. With this purpose, ESTOC has included the use of autonomous vehicles "glider" in order to increase the observational resolution and, by comparison with the parallel observational programs, to study the biogeochemical processes at different time scale resolutions. This study investigates the time variability of the dissolved oxygen and chlorophyll distributions in the water column focusing on the diel cycle, looking at the relevance of this variability in the already known seasonal distributions. Our interest is assessing net community production and remineralization rates through the use of oxygen variations, establishing the relationship between the DO anomalies values and those from the chlorophyll distribution in the water column.

  18. Marine self potential and CSEM measurements using an autonomous underwater vehicle

    Science.gov (United States)

    Constable, S.; Kowalczyk, P.; Bloomer, S.

    2017-12-01

    Marine self potential (SP) and controlled source EM (CSEM) measurements are commonly made using instruments towed close to the seafloor, which requires dedicated ship time, is limited to slow speeds, and is subject to navigation errors of 5 to 10 m. An alternative is to mount SP and CSEM sensors on an autonomous underwater vehicle (AUV). We tested this with a pilot study in the Iheya area of the Okinawa Trough, off Japan, using an ISE Explorer-class AUV operated by Fukada Salvage and Marine Works and equipped with a Scripps CSEM receiver system. Parts of this prospect have documented hydrothermal venting and seafloor massive sulfide (SMS) deposits. CSEM signals were generated by deploying battery-powered seafloor transmitters, which emitted 20 amps, alternately every 30 seconds on orthogonal, 10 m antennas. CSEM signals were recorded by 3-axis AC-coupled sensors on the AUV as it flew a pattern 70 m above the seafloor around the transmitters. By transmitting two slightly different frequencies, two or more transmitters can broadcast simultaneously. Measurements were made at the same time using DC-coupled electric field amplifiers, from which self potentials were estimated using regularized inversion, yielding negative anomalies of 10 to 25 mV. Modeling suggests that the anomalies are localized and close to the seafloor. Apparent conductivities as high as 30 S/m were fit to the CSEM data, which strongly suggests that SMS mineralization is associated with the SP anomalies, although it is possible the causative mechanism is at least partly due to hydrothermal venting. In either case, we have demonstrated that AUV-mounted instrument systems are an efficient, effective, and low noise means of collecting marine CSEM and SP data. The entire data set was collected in a single day on station with a 10-hour AUV deployment.

  19. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle.

    Science.gov (United States)

    Skomal, G B; Hoyos-Padilla, E M; Kukulya, A; Stokey, R

    2015-12-01

    In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± S.D. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± S.D. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals. © 2015 The Fisheries Society of the British Isles.

  20. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation

    Science.gov (United States)

    Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan

    2018-05-01

    This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.

  1. Vehicle-class Specific Route-guidance of Freeway Traffic by Model-predictive Control

    NARCIS (Netherlands)

    Schreiter, T.; Landman, R.L.; Van Lint, J.W.C.; Hegyi, A.; Hoogendoorn, S.P.

    2012-01-01

    Few Active Traffic Management measures proposed in the past consider the distinction of different vehicle classes. Examples of vehicle-class specific measures are truck lanes and high-occupancy/toll (HOT) lanes. We propose that the distinction of different vehicle classes, with different flow

  2. Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    Science.gov (United States)

    Sabatini, Roberto; Bartel, Celia; Kaharkar, Anish; Shaid, Tesheen

    2012-04-01

    In this paper we present a novel Navigation and Guidance System (NGS) for Unmanned Aerial Vehicles (UAVs) based on Vision Based Navigation (VBN) and other avionics sensors. The main objective of our research is to design a lowcost and low-weight/volume NGS capable of providing the required level of performance in all flight phases of modern small- to medium-size UAVs, with a special focus on automated precision approach and landing, where VBN techniques can be fully exploited in a multisensory integrated architecture. Various existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we address the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors and also the use of Aircraft Dynamics Models (ADMs) to provide additional information suitable to compensate for the shortcomings of VBN sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the platform in real-time. Two different integrated navigation system architectures are implemented. The first uses VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also includes the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes is performed in a significant portion of the Aerosonde UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture

  3. Design and Modeling of High Power Density Acoustic Transducer Materials for Autonomous Undersea Vehicles

    Science.gov (United States)

    Heitmann, Adam Arthur

    Advances in piezocrystal transducer materials technology has opened new avenues to impact the size, weight, and power consumption of sonar systems for deployment in autonomous undersea vehicles (AUVs). Although piezocrystals exhibit exceptional electromechanical properties, they have low ferroelectric Curie temperatures, small electrical coercivities, and exhibit temperature, electrical field, and/or stress induced phase transitions between ferroelectric phases with differing electromechanical properties. New piezocrystal materials are required that can provide the compositional tailoring capability needed to increase the Curie temperature and coercive field, ameliorate the deleterious effects of ferroelectric-ferroelectric phase transitions, and enable property optimization for specific transducer applications. Currently, new piezocrystal systems and compositions are selected almost exclusively by empirical 'make and measure' approaches guided by past experiences. These empirical processes can be time and labor intensive and as a result there exists only limited predictive capability for finding new piezocrystal compositions even in known piezocrystal systems. In this study we seek to develop a comprehensive phenomenological theory and a unified parameterization scheme applicable to binary and ternary ferroelectric solid solution systems in order to enable the accelerated development and characterization of new piezocrystal systems for optimized transducer performance. A modified form of the classical Ginzburg-Landau-Devonshire theory of weak first-order transitions is applied to perovskite-structured ferroelectric systems based on the ternary oxide compounds, barium titanate and lead titanate, which places special emphasis on the role played by the crystallographic anisotropy of polarization. It is shown that the theory produces excellent qualitative agreement with the experimentally measured phase diagram topologies, crystal lattice parameters, and

  4. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  5. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    Science.gov (United States)

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  6. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    Directory of Open Access Journals (Sweden)

    Jesús Conesa-Muñoz

    2015-03-01

    Full Text Available This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.

  7. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  8. Development and Testing of Optimized Autonomous and Connected Vehicle Trajectories at Signalized Intersections [summary

    Science.gov (United States)

    2017-12-01

    Visions of self-driving vehicles abound in popular science and entertainment. Many programs are at work to make a reality catch of this imagination. Vehicle automation has progressed rapidly in recent years, from simple driver assistance technologies...

  9. Path Planning Software and Graphics Interface for an Autonomous Vehicle, Accounting for Terrain Features

    National Research Council Canada - National Science Library

    Hurezeanu, Vlad

    2000-01-01

    .... This vehicle performs tasks to include surveying fields, laying mines, and teleoperation. The capability of the vehicle will be increased if its supporting software plans paths that take into account the terrain features...

  10. Optimal Wind Corrected Flight Path Planning for Autonomous Micro Air Vehicles

    National Research Council Canada - National Science Library

    Zollars, Michael D

    2007-01-01

    .... However, since the size of the vehicle does not allow for a gimbaled camera, only a slight perturbation to the attitude of the vehicle will cause the sensor footprint to be displaced dramatically...

  11. Research Institute for Autonomous Precision Guided Systems

    National Research Council Canada - National Science Library

    Rogacki, John R

    2007-01-01

    ... vehicles, cooperative flight of autonomous aerial vehicles using GPS and vision information, cooperative and sharing of information in search missions involving multiple autonomous agents, multi-scale...

  12. Vision-Based Autonomous Underwater Vehicle Navigation in Poor Visibility Conditions Using a Model-Free Robust Control

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Alcocer

    2016-01-01

    Full Text Available This paper presents a vision-based navigation system for an autonomous underwater vehicle in semistructured environments with poor visibility. In terrestrial and aerial applications, the use of visual systems mounted in robotic platforms as a control sensor feedback is commonplace. However, robotic vision-based tasks for underwater applications are still not widely considered as the images captured in this type of environments tend to be blurred and/or color depleted. To tackle this problem, we have adapted the lαβ color space to identify features of interest in underwater images even in extreme visibility conditions. To guarantee the stability of the vehicle at all times, a model-free robust control is used. We have validated the performance of our visual navigation system in real environments showing the feasibility of our approach.

  13. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    Science.gov (United States)

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).

  14. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    National Research Council Canada - National Science Library

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  15. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  16. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny

    2016-01-01

    to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  17. Development of a Semi-Autonomous Underwater Vehicle for Intervention Missions (SAUVIM Phase III-B)

    Science.gov (United States)

    2009-03-20

    and Intervention. White paper, NAVSEA- DIVNPT, Code 2501 [Bollinger89] Bollinger , J.G. and N.A. Duffie, Computer Control of Machines and Processes...Ikehara, S.K. Choi, M. Fujita, and J. Yuh, “Design of an Autonomous Underwater Robot: ODIN II,” World Automation Congress, Montpellier, France , May

  18. Development of a Semi-Autonomous Underwater Vehicle for Intervention Missions (SAUVIM Phase III-C)

    Science.gov (United States)

    2010-01-28

    paper, NAVSEA- DIVNPT, Code 2501 [Bollinger89] Bollinger , J.G. and N.A. Duffie, Computer Control of Machines and Processes, Reading, MA, Addison...M. Fujita, and J. Yuh, “Design of an Autonomous Underwater Robot: ODIN II,” World Automation Congress, Montpellier, France , May 1996

  19. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    Science.gov (United States)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  20. A control strategy for steering an autonomous surface sailing vehicle in a tacking maneuver

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    2009-01-01

    Sailing vessels such as sailboats but also landyachts are vehicles representing a real challenge for automation. However, the control aspects of such vehicles were hitherto very little studied. This paper presents a simplied dynamic model of a so-called landyacht allowing to capture the main...

  1. Development of a fuzzy logic based intelligent system for autonomous guidance of post-stroke rehabilitation exercise.

    Science.gov (United States)

    Huq, Rajibul; Wang, Rosalie; Lu, Elaine; Hebert, Debbie; Lacheray, Hervé; Mihailidis, Alex

    2013-06-01

    This paper presents preliminary studies in developing a fuzzy logic based intelligent system for autonomous post-stroke upper-limb rehabilitation exercise. The intelligent system autonomously varies control parameters to generate different haptic effects on the robotic device. The robotic device is able to apply both resistive and assistive forces for guiding the patient during the exercise. The fuzzy logic based decision-making system estimates muscle fatigue of the patient using exercise performance and generates a combination of resistive and assistive forces so that the stroke survivor can exercise for longer durations with increasing control. The fuzzy logic based system is initially developed using a study with healthy subjects and preliminary results are also presented to validate the developed system with healthy subjects. The next stage of this work will collect data from stroke survivors for further development of the system.

  2. Target Trailing With Safe Navigation With Colregs for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Kuwata, Yoshiaki (Inventor); Wolf, Michael T. (Inventor); Zarzhitsky, Dimitri V. (Inventor); Aghazarian, Hrand (Inventor); Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor)

    2014-01-01

    Systems and methods for operating autonomous waterborne vessels in a safe manner. The systems include hardware for identifying the locations and motions of other vessels, as well as the locations of stationary objects that represent navigation hazards. By applying a computational method that uses a maritime navigation algorithm for avoiding hazards and obeying COLREGS using Velocity Obstacles to the data obtained, the autonomous vessel computes a safe and effective path to be followed in order to accomplish a desired navigational end result, while operating in a manner so as to avoid hazards and to maintain compliance with standard navigational procedures defined by international agreement. The systems and methods have been successfully demonstrated on water with radar and stereo cameras as the perception sensors, and integrated with a higher level planner for trailing a maneuvering target.

  3. Integrated synoptic surveys using an autonomous underwater vehicle and manned boats

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    Traditional surface-water surveys are being combined with autonomous technology to produce integrated surveys of bathymetry, water quality, and velocity in inland lakes and reservoirs. This new technology provides valuable, high-resolution, integrated data that allow a systems-based approach to understanding common environmental problems. This fact sheet presents several example applications of integrated surveys within inland lakes and coastal Lake Michigan and Lake Erie.

  4. An assessment of autonomous vehicles : traffic impacts and infrastructure needs : final report.

    Science.gov (United States)

    2017-03-01

    The project began by understanding the current state of practice and trends. NHTSAs four-level taxonomy for automated vehicles was used to classify smart driving technologies and infrastructure needs. The project used surveys to analyze and gain a...

  5. Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles

    Science.gov (United States)

    Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.

    2002-01-01

    This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

  6. Path Planning Software and Graphics Interface for an Autonomous Vehicle, Accounting for Terrain Features

    National Research Council Canada - National Science Library

    Hurezeanu, Vlad

    2000-01-01

    A Navigation Test Vehicle (NTV) is being developed at the Center for Intelligent Machines and Robots at the University of Florida under the sponsorship of the Air Force Research Laboratory at Tyndall Air Force Base...

  7. A Novel Relative Navigation Control Strategy Based on Relation Space Method for Autonomous Underground Articulated Vehicles

    Directory of Open Access Journals (Sweden)

    Fengqian Dou

    2016-01-01

    Full Text Available This paper proposes a novel relative navigation control strategy based on the relation space method (RSM for articulated underground trackless vehicles. In the RSM, a self-organizing, competitive neural network is used to identify the space around the vehicle, and the spatial geometric relationships of the identified space are used to determine the vehicle’s optimal driving direction. For driving control, the trajectories of the articulated vehicles are analyzed, and data-based steering and speed control modules are developed to reduce modeling complexity. Simulation shows that the proposed RSM can choose the correct directions for articulated vehicles in different tunnels. The effectiveness and feasibility of the resulting novel relative navigation control strategy are validated through experiments.

  8. SIMULATION OF ADAPTIVE BEHAVIOR IN THE CONTEXT OF SOLVING AN AUTONOMOUS ROBOTIC VEHICLE MOTION TASK ON TWO-DIMENSIONAL PLANE WITH OBSTACLES

    Directory of Open Access Journals (Sweden)

    R. A. Prakapovich

    2014-01-01

    Full Text Available An adaptive neurocontroller for autonomous robotic vehicle control, which is designed to generate control signals (according to preprogrammed motion algorithm and to develop individual reactions to some external impacts during functioning process, that allows the robot to adapt to external environment changes, is suggested. To debug and test the proposed neurocontroller a specially designed program, able to simulate the sensory and executive systems operation of the robotic vehicle, is used.

  9. Real-Time Identification of Wheel Terrain Interaction Models for Enhanced Autonomous Vehicle Mobility

    Science.gov (United States)

    2014-04-24

    capable instrumentation. • A system reliant on RTK GPS would not be very practical and we show it to be unnecessary. 7/6/2014 Vehicle - Ground...includes: – Moblility logs (post-processed RTK - GPS pose, wheel odometry) for 3 different terrain (grass, dirt, parking lot) on the LandTamer (6x6...Platform Retrofit 7/6/2014 Vehicle - Ground Model Identification 12 AVT GT1920C GigE Camera Pose System: Novatel OEMV-3 GPS Receiver + Honeywell

  10. Automated vehicle guidance using discrete reference markers. [road surface steering techniques

    Science.gov (United States)

    Johnston, A. R.; Assefi, T.; Lai, J. Y.

    1979-01-01

    Techniques for providing steering control for an automated vehicle using discrete reference markers fixed to the road surface are investigated analytically. Either optical or magnetic approaches can be used for the sensor, which generates a measurement of the lateral offset of the vehicle path at each marker to form the basic data for steering control. Possible mechanizations of sensor and controller are outlined. Techniques for handling certain anomalous conditions, such as a missing marker, or loss of acquisition, and special maneuvers, such as u-turns and switching, are briefly discussed. A general analysis of the vehicle dynamics and the discrete control system is presented using the state variable formulation. Noise in both the sensor measurement and in the steering servo are accounted for. An optimal controller is simulated on a general purpose computer, and the resulting plots of vehicle path are presented. Parameters representing a small multipassenger tram were selected, and the simulation runs show response to an erroneous sensor measurement and acquisition following large initial path errors.

  11. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  12. A Critical Review of the State-of-the-Art in Autonomous Land Vehicle Systems and Technology; TOPICAL

    International Nuclear Information System (INIS)

    DURRNAT-WHYTE, HUGH

    2001-01-01

    This report describes the current state-of-the-art in Autonomous Land Vehicle (ALV) systems and technology. Five functional technology areas are identified and addressed. For each a brief, subjective, preface is first provided which envisions the necessary technology for the deployment of an operational ALV system. Subsequently, a detailed literature review is provided to support and elaborate these views. It is further established how these five technology areas fit together as a functioning whole. The essential conclusion of this report is that the necessary sensors, algorithms and methods to develop and demonstrate an operationally viable all-terrain ALV already exist and could be readily deployed. A second conclusion is that the successful development of an operational ALV system will rely on an effective approach to systems engineering. In particular, a precise description of mission requirements and a clear definition of component functionality is essential

  13. Autonomous Vehicles Require Socio-Political Acceptance-An Empirical and Philosophical Perspective on the Problem of Moral Decision Making.

    Science.gov (United States)

    Bergmann, Lasse T; Schlicht, Larissa; Meixner, Carmen; König, Peter; Pipa, Gordon; Boshammer, Susanne; Stephan, Achim

    2018-01-01

    Autonomous vehicles, though having enormous potential, face a number of challenges. As a computer system interacting with society on a large scale and human beings in particular, they will encounter situations, which require moral assessment. What will count as right behavior in such situations depends on which factors are considered to be both morally justified and socially acceptable. In an empirical study we investigated what factors people recognize as relevant in driving situations. The study put subjects in several "dilemma" situations, which were designed to isolate different and potentially relevant factors. Subjects showed a surprisingly high willingness to sacrifice themselves to save others, took the age of potential victims in a crash into consideration and were willing to swerve onto a sidewalk if this saved more lives. The empirical insights are intended to provide a starting point for a discussion, ultimately yielding societal agreement whereby the empirical insights should be balanced with philosophical considerations.

  14. Autonomous Vehicles Require Socio-Political Acceptance—An Empirical and Philosophical Perspective on the Problem of Moral Decision Making

    Directory of Open Access Journals (Sweden)

    Lasse T. Bergmann

    2018-02-01

    Full Text Available Autonomous vehicles, though having enormous potential, face a number of challenges. As a computer system interacting with society on a large scale and human beings in particular, they will encounter situations, which require moral assessment. What will count as right behavior in such situations depends on which factors are considered to be both morally justified and socially acceptable. In an empirical study we investigated what factors people recognize as relevant in driving situations. The study put subjects in several “dilemma” situations, which were designed to isolate different and potentially relevant factors. Subjects showed a surprisingly high willingness to sacrifice themselves to save others, took the age of potential victims in a crash into consideration and were willing to swerve onto a sidewalk if this saved more lives. The empirical insights are intended to provide a starting point for a discussion, ultimately yielding societal agreement whereby the empirical insights should be balanced with philosophical considerations.

  15. Autonomous Vehicles Require Socio-Political Acceptance—An Empirical and Philosophical Perspective on the Problem of Moral Decision Making

    Science.gov (United States)

    Bergmann, Lasse T.; Schlicht, Larissa; Meixner, Carmen; König, Peter; Pipa, Gordon; Boshammer, Susanne; Stephan, Achim

    2018-01-01

    Autonomous vehicles, though having enormous potential, face a number of challenges. As a computer system interacting with society on a large scale and human beings in particular, they will encounter situations, which require moral assessment. What will count as right behavior in such situations depends on which factors are considered to be both morally justified and socially acceptable. In an empirical study we investigated what factors people recognize as relevant in driving situations. The study put subjects in several “dilemma” situations, which were designed to isolate different and potentially relevant factors. Subjects showed a surprisingly high willingness to sacrifice themselves to save others, took the age of potential victims in a crash into consideration and were willing to swerve onto a sidewalk if this saved more lives. The empirical insights are intended to provide a starting point for a discussion, ultimately yielding societal agreement whereby the empirical insights should be balanced with philosophical considerations. PMID:29541023

  16. An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment

    Directory of Open Access Journals (Sweden)

    Karam Hwang

    2017-03-01

    Full Text Available This paper proposes an autonomous coil alignment system (ACAS for electric vehicles (EVs with dynamic wireless charging (DWC to mitigate the reduction in received power caused by lateral misalignment between the source and load coils. The key component of the ACAS is a novel sensor coil design, which can detect the load coil’s left or right position relative to the source coil by observing the change in voltage phase. This allows the lateral misalignment to be estimated through the wireless power transfer (WPT system alone, which is a novel tracking method for vehicular applications. Once misalignment is detected, the vehicle’s lateral position is self-adjusted by an autonomous steering function. The feasibility of the overall operation of the ACAS was verified through simulation and experiments. In addition, an analysis based on experimental results was conducted, demonstrating that 26% more energy can be transferred during DWC with the ACAS, just by keeping the vehicle’s load coil aligned with the source coil.

  17. Large-scale assessment of benthic communities across multiple marine protected areas using an autonomous underwater vehicle.

    Science.gov (United States)

    Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D

    2018-01-01

    Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and

  18. Study the content relationship between science and technology documents: A compression of papers and patent in Autonomous Underwater Vehicle Dominos

    Directory of Open Access Journals (Sweden)

    Soraia Zolfaghari

    2016-08-01

    Full Text Available The current research aims at studying the conceptual relationship between the science and technology documents through the comparison of vocabularies that are used within the patents and the papers in the field of Autonomous Underwater Vehicles (AUV.  The research method is descriptive. To perform the research, the patents were retrieved from Google Patents and Lens websites, and the papers from IEEE Explore database. A hybrid keyword-class method was used to conduct the search. It means that the search query was consisted of "Autonomous Underwater Vehicle" keyword and “H” class. The titles and the abstracts of the patents and the papers were automatically indexed through a semi-automatic method. This resulted in 195 keywords for patents and 114 ones for papers. Co-occurrence matrices of these two sets of keywords were created through RavarMatrix software. The hierarchical maps of keywords were drawn by SPSS. Findings show that 65 percent of papers’ keywords are those that occurred within the patents but 23 percent of patents’ keywords are similar to the papers’.  The structural comparison of patents and papers clustering’s also revealed that the structural proximity between patents and papers vocabularies is equal to zero. The other finding showed that the similarity between the members of ego networks of prominent keywords is for two cases zero and for others fewer than 15 percent except for the keyword “data”. It may be concluded that the science is affected by technology in the field of AUV.

  19. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  20. Applications of Probabilistic Graphical Models to Diagnosis and Control of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Madsen, Anders L.; Kjærulff, Uffe Bro; Kalwa, Jörg

    2004-01-01

    We present the main elements of a distributed architecture supporting diagnosis and control of autonomous robots. The purpose of the architecture is to assist the operator or piloting system in managing fault detection, risk assessment, and recovery plans under uncertainty. The architecture is ge....... The architecture supports the use of multiple artificial intelligence techniques collaborating on the task of handling uncertainty....... is generic, open, and modular consisting of a set of interacting modules including a decision module (DM) and a set of intelligent modules (IMs). The DM communicates with the IMs to request and obtain diagnosis and recovery action proposals based on data obtained from the robot piloting module...

  1. Guidance in Reading Strategies: A First Step Towards Autonomous Learning in a Semi-Distance Education Program

    Directory of Open Access Journals (Sweden)

    Jahir Aguirre Morales

    2009-04-01

    Full Text Available This article aims at sharing the results of a research project focused on guiding students in the use of different reading strategies: reading non- text information, skimming and scanning, using contextual reference, predicting, and using true/false cognates as a first step towards autonomous learning. The project was conducted at a Colombian university with two groups of business administration students who belonged to a semi-distance education program. Informal talks with students, questionnaires, interviews and a teacher’s diary were used to collect the information in this action research study. Findings revealed that by knowing several reading strategies the students could reflect upon their learning; meta-cognition processes were enhanced and confidence for students to work by themselves was built up.

  2. Impact of Automation on Drivers' Performance in Agricultural Semi-Autonomous Vehicles.

    Science.gov (United States)

    Bashiri, B; Mann, D D

    2015-04-01

    Drivers' inadequate mental workload has been reported as one of the negative effects of driving assistant systems and in-vehicle automation. The increasing trend of automation in agricultural vehicles raises some concerns about drivers' mental workload in such vehicles. Thus, a human factors perspective is needed to identify the consequences of such automated systems. In this simulator study, the effects of vehicle steering task automation (VSTA) and implement control and monitoring task automation (ICMTA) were investigated using a tractor-air seeder system as a case study. Two performance parameters (reaction time and accuracy of actions) were measured to assess drivers' perceived mental workload. Experiments were conducted using the tractor driving simulator (TDS) located in the Agricultural Ergonomics Laboratory at the University of Manitoba. Study participants were university students with tractor driving experience. According to the results, reaction time and number of errors made by drivers both decreased as the automation level increased. Correlations were found among performance parameters and subjective mental workload reported by the drivers.

  3. Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles : On integration into the Airspace System

    NARCIS (Netherlands)

    Jenie, Y.I.

    2017-01-01

    In the last decade, the commercial values of Unmanned Aerial Vehicles (UAV), defined as devices that are capable of sustainable flights in the atmosphere that do not require to have a human (pilot) on-board, become widely recognized thanks to the advancement of technology in materials, sensors,

  4. Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles from theory to application

    CERN Document Server

    Zolghadri, Ali; Cieslak, Jerome; Efimov, Denis; Goupil, Philippe

    2014-01-01

    Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as improved flight performance, self-protection and extended life of structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of important electrical flight control system failures: the oscillatory failure case, runaway, and jamming. Advanced fault detection and diagnosis for linear and nonlinear systems are described. Lastly recovery strategies appropriate to remaining acuator/sensor/c...

  5. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.

    Science.gov (United States)

    Navarro, Pedro J; Fernández, Carlos; Borraz, Raúl; Alonso, Diego

    2016-12-23

    This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).

  6. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data

    Directory of Open Access Journals (Sweden)

    Pedro J. Navarro

    2016-12-01

    Full Text Available This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN, Naïve Bayes classifier (NBC, and Support Vector Machine (SVM. These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%, accuracy (96.2% and specificity (96.8%.

  7. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    Science.gov (United States)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  8. Ecient Parameter Estimation and Control Based on a Modified LOS Guidance System of an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Elías Revestido Herrero

    2017-12-01

    Full Text Available In this work, a methodology is proposed for the improvement of the parameter estimation effciency of a non-linear manoeuvring model of a torpedo shaped unmanned underwater vehicle. For this purpose, data from different tests, were carried out with the aforementioned vehicle at the facilities of the Canal de Experiencias Hidrodinámicas del Pardo, Madrid. In the proposed methodology, the following aspects are taken into account in order to improve the parameter estimation effciency: selection of the sampling period, smoothing of the data acquired in the tests considering a compromise between variance and bias of the smoothing filter to be applied, analysis of the classical linear regression model proposed in each trial, from the statistical point of view for the estimation of the parameters. Improvements in effciency are verified by graphical and statistical methods. In addition, a modification of the conventional LOS method is proposed which provides satisfactory results in the presence of ocean currents by performing a simple procedure.

  9. Distributed Data Logging and Intelligent Control Strategies for a Scaled Autonomous Vehicle

    Directory of Open Access Journals (Sweden)

    Tilman Happek

    2016-04-01

    Full Text Available In this paper we present an autonomous car with distributed data processing. The car is controlled by a multitude of independent sensors. For the lane detection, a camera is used, which detects the lane marks with a Hough transformation. Once the camera detects these, one of them is calculated to be followed by the car. This lane is verified by the other sensors of the car. These sensors check the route for obstructions or allow the car to scan a parking space and to park on the roadside if the gap is large enough. The car is built on a scale of 1:10 and shows excellent results on a test track.

  10. Localizing Ground Penetrating RADAR: A Step Towards Robust Autonomous Ground Vehicle Localization

    Science.gov (United States)

    2016-07-14

    over long- term operation and in a wide range of adverse weather and environmental conditions. GPS/INS (inertial navigation system) solutions, which are...driving vehicles must be robust to environmental conditions and related failures in order to be broadly useful and live up to their potential. Milford...our key find- ings is that such high resolutions can actually be detrimen- tal to the task of localization, as it increases the fragility of the map

  11. Autonomous docking based on infrared system for electric vehicle charging in urban areas

    OpenAIRE

    Pérez Rastelli, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    International audience; Electric vehicles are progressively introduced in urban areas because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative of the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we prese...

  12. An XML-Based Mission Command Language for Autonomous Underwater Vehicles (AUVs)

    Science.gov (United States)

    2003-06-01

    mines include their covertness and surprise, their psychological effect on an enemy, and their ability to act as a force multiplier. In addition, the...problem, as the major concerns include available bandwidth, range, and covertness . However, communications among multiple vehicles operating together... VRML ) file in a program using Java3D. “However, Xj3D is currently under development, so not all of the X3D nodes are integrated in Xj3D (Billboard

  13. An MPC Algorithm with Combined Speed and Steering Control for Obstacle Avoidance in Autonomous Ground Vehicles

    Science.gov (United States)

    2015-04-24

    generated at the front axle and the rear axle, respectively. They are predicted using the the pure-slip Pacejka Magic Formula tire model [20], and are...simulations with a 14 DoF vehicle model [22] that includes suspension dynamics [22], nonlinear tire dynamics [20], powertrain dynamics [23] [24], and brake...of the international class VI truck”, SAE Technical Paper, No. 2000-01-0288, 2000. [24] T. Ersal, M. Brudnak, A. Salvi, J. L. Stein, Z. Filipi, and H

  14. Indoor Autonomous Control of a Two-Wheeled Inverted Pendulum Vehicle Using Ultra Wide Band Technology.

    Science.gov (United States)

    Xia, Dunzhu; Yao, Yanhong; Cheng, Limei

    2017-06-15

    In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.

  15. Stereovision-based 3D field recognition for automatic guidance system of off-road vehicle

    Science.gov (United States)

    Zhang, Fangming; Ying, Yibin; Shen, Chuan; Jiang, Huanyu; Zhang, Qin

    2005-11-01

    A stereovision-based disparity evaluation algorithm was developed for rice crop field recognition. The gray level intensities and the correlation relation were integrated to produce the disparities of stereo-images. The surface of ground and rice were though as two rough planes, but their disparities waved in a narrow range. The cut/uncut edges of rice crops were first detected and track through the images. We used a step model to locate those edge positions. The points besides the edges were matched respectively to get disparity values using area correlation method. The 3D camera coordinates were computed based on those disparities. The vehicle coordinates were obtained by multiplying the 3D camera coordinates with a transform formula. It has been implemented on an agricultural robot and evaluated in rice crop field with straight rows. The results indicated that the developed stereovision navigation system is capable of reconstructing the field image.

  16. Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    Science.gov (United States)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1990-01-01

    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path

  17. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.

    Science.gov (United States)

    Petrenko, Valery A

    2017-12-01

    Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of 'addressed self-navigating drug-delivery vehicles,' in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of 'promiscuous' phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a 'hub and spoke' delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The 'self-navigating' drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text].

  18. Global and Local Path Planning Study in a ROS-Based Research Platform for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Marin-Plaza

    2018-01-01

    Full Text Available The aim of this work is to integrate and analyze the performance of a path planning method based on Time Elastic Bands (TEB in real research platform based on Ackermann model. Moreover, it will be proved that all modules related to the navigation can coexist and work together to achieve the goal point without any collision. The study is done by analyzing the trajectory generated from global and local planners. The software prototyping tool is Robot Operating System (ROS from Open Source Robotics Foundation and the research platform is the iCab (Intelligent Campus Automobile from University Carlos III. This work has been validated from a test inside the campus where the iCab has performed the navigation between the starting point and the goal point without any collision. During the experiment, we proved the low sensitivity of the TEB method to variations of the vehicle model configuration and constraints.

  19. Time-domain finite elements in optimal control with application to launch-vehicle guidance. PhD. Thesis

    Science.gov (United States)

    Bless, Robert R.

    1991-01-01

    A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.

  20. Thruster fault identification method for autonomous underwater vehicle using peak region energy and least square grey relational grade

    Directory of Open Access Journals (Sweden)

    Mingjun Zhang

    2015-12-01

    Full Text Available A novel thruster fault identification method for autonomous underwater vehicle is presented in this article. It uses the proposed peak region energy method to extract fault feature and uses the proposed least square grey relational grade method to estimate fault degree. The peak region energy method is developed from fusion feature modulus maximum method. It applies the fusion feature modulus maximum method to get fusion feature and then regards the maximum of peak region energy in the convolution operation results of fusion feature as fault feature. The least square grey relational grade method is developed from grey relational analysis algorithm. It determines the fault degree interval by the grey relational analysis algorithm and then estimates fault degree in the interval by least square algorithm. Pool experiments of the experimental prototype are conducted to verify the effectiveness of the proposed methods. The experimental results show that the fault feature extracted by the peak region energy method is monotonic to fault degree while the one extracted by the fusion feature modulus maximum method is not. The least square grey relational grade method can further get an estimation result between adjacent standard fault degrees while the estimation result of the grey relational analysis algorithm is just one of the standard fault degrees.

  1. Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications

    Directory of Open Access Journals (Sweden)

    Hazel Si Min Lim

    2018-04-01

    Full Text Available Amidst rapid urban development, sustainable transportation solutions are required to meet the increasing demands for mobility whilst mitigating the potentially negative social, economic, and environmental impacts. This study analyses autonomous vehicles (AVs as a potential transportation solution for smart and sustainable development. We identified privacy and cybersecurity risks of AVs as crucial to the development of smart and sustainable cities and examined the steps taken by governments around the world to address these risks. We highlight the literature that supports why AVs are essential for smart and sustainable development. We then identify the aspects of privacy and cybersecurity in AVs that are important for smart and sustainable development. Lastly, we review the efforts taken by federal governments in the US, the UK, China, Australia, Japan, Singapore, South Korea, Germany, France, and the EU, and by US state governments to address AV-related privacy and cybersecurity risks in-depth. Overall, the actions taken by governments to address privacy risks are mainly in the form of regulations or voluntary guidelines. To address cybersecurity risks, governments have mostly resorted to regulations that are not specific to AVs and are conducting research and fostering research collaborations with the private sector.

  2. An Obstacle Recognizing Mechanism for Autonomous Underwater Vehicles Powered by Fuzzy Domain Ontology and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhen-Shu Mi

    2014-01-01

    Full Text Available The autonomous underwater vehicle (AUV and the problems associated with its safe navigation have been studied for the last two decades. The real-time underwater obstacle recognition procedure still has many complications associated with it and the issue becomes worse with vague sensor data. These problems can be coped with the merger of a robust classification mechanism and a domain knowledge acquisition technique. In this paper, we introduce a hybrid mechanism to recognize underwater obstacles for AUV based on fuzzy domain ontology and support vector machine (SVM. SVM is an efficient algorithm that was developed for recognizing 3D object in recent years and is a new generation learning system based on recent advances in statistical learning theory. The amalgamation of fuzzy domain ontology with SVM boosts the performance of the obstacle recognition module by providing the timely semantic domain information of the surrounding circumstances. Also the reasoning ability of the fuzzy domain ontology can expedite the obstacle avoidance process. In order to evaluate the performance of the system, we developed a prototype simulator based on OpenGL and VC++. We compared the outcomes of our proposed technique with backpropagation algorithm and classic SVM based techniques.

  3. Human Decisions in Moral Dilemmas are Largely Described by Utilitarianism: Virtual Car Driving Study Provides Guidelines for Autonomous Driving Vehicles.

    Science.gov (United States)

    Faulhaber, Anja K; Dittmer, Anke; Blind, Felix; Wächter, Maximilian A; Timm, Silja; Sütfeld, Leon R; Stephan, Achim; Pipa, Gordon; König, Peter

    2018-01-22

    Ethical thought experiments such as the trolley dilemma have been investigated extensively in the past, showing that humans act in utilitarian ways, trying to cause as little overall damage as possible. These trolley dilemmas have gained renewed attention over the past few years, especially due to the necessity of implementing moral decisions in autonomous driving vehicles (ADVs). We conducted a set of experiments in which participants experienced modified trolley dilemmas as drivers in virtual reality environments. Participants had to make decisions between driving in one of two lanes where different obstacles came into view. Eventually, the participants had to decide which of the objects they would crash into. Obstacles included a variety of human-like avatars of different ages and group sizes. Furthermore, the influence of sidewalks as potential safe harbors and a condition implicating self-sacrifice were tested. Results showed that participants, in general, decided in a utilitarian manner, sparing the highest number of avatars possible with a limited influence by the other variables. Derived from these findings, which are in line with the utilitarian approach in moral decision making, it will be argued for an obligatory ethics setting implemented in ADVs.

  4. Proposing an International Collaboration on Lightweight Autonomous Vehicles to Conduct Scientific Traverses and Surveys over Antarctica and the Surrounding Sea Ice

    Science.gov (United States)

    Carsey, Frank; Behar, Alberto

    2004-01-01

    We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.

  5. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.

    Science.gov (United States)

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-11-18

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.

  6. TurtleCam: A “Smart” Autonomous Underwater Vehicle for Investigating Behaviors and Habitats of Sea Turtles

    Directory of Open Access Journals (Sweden)

    Kara L. Dodge

    2018-03-01

    Full Text Available Sea turtles inhabiting coastal environments routinely encounter anthropogenic hazards, including fisheries, vessel traffic, pollution, dredging, and drilling. To support mitigation of potential threats, it is important to understand fine-scale sea turtle behaviors in a variety of habitats. Recent advancements in autonomous underwater vehicles (AUVs now make it possible to directly observe and study the subsurface behaviors and habitats of marine megafauna, including sea turtles. Here, we describe a “smart” AUV capability developed to study free-swimming marine animals, and demonstrate the utility of this technology in a pilot study investigating the behaviors and habitat of leatherback turtles (Dermochelys coriacea. We used a Remote Environmental Monitoring UnitS (REMUS-100 AUV, designated “TurtleCam,” that was modified to locate, follow and film tagged turtles for up to 8 h while simultaneously collecting environmental data. The TurtleCam system consists of a 100-m depth rated vehicle outfitted with a circular Ultra-Short BaseLine receiver array for omni-directional tracking of a tagged animal via a custom transponder tag that we attached to the turtle with two suction cups. The AUV collects video with six high-definition cameras (five mounted in the vehicle nose and one mounted aft and we added a camera to the animal-borne transponder tag to record behavior from the turtle's perspective. Since behavior is likely a response to habitat factors, we collected concurrent in situ oceanographic data (bathymetry, temperature, salinity, chlorophyll-a, turbidity, currents along the turtle's track. We tested the TurtleCam system during 2016 and 2017 in a densely populated coastal region off Cape Cod, Massachusetts, USA, where foraging leatherbacks overlap with fixed fishing gear and concentrated commercial and recreational vessel traffic. Here we present example data from one leatherback turtle to demonstrate the utility of TurtleCam. The

  7. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  8. Occupant Kinematics in Simulated Autonomous Driving Vehicle Collisions: Influence of Seating Position, Direction and Angle.

    Science.gov (United States)

    Kitagawa, Yuichi; Hayashi, Shigeki; Yamada, Katsunori; Gotoh, Mitsuaki

    2017-11-01

    This two-part study analyzed occupant kinematics in simulated collisions of future automated driving vehicles in terms of seating configuration. In part one, a frontal collision was simulated with four occupants with the front seats reversed. The left front seat occupant was unbelted while the others were belted. In part two of the study, occupant restraint was examined in various seating configurations using a single seat model with a three-point seatbelt. The seat direction with respect to impact was considered as forward, rearward, and lateral facing in 45 degree increments. The effect of seat recline was also studied in the forward-facing and rear-facing cases by assuming three positions: driving position, resting position and relaxed position. Occupants were represented by human body finite element models. The results of part one showed that the front seat (rear-facing) occupants were restrained by the seatback, resulting in T1 forward displacement less than 100 mm; the rear seat occupants were restrained by the seatbelt resulting larger T1 forward displacement more than 500 mm. The results of the part two showed the directional dependence of occupant restraint. Greater T1 displacements were observed when the occupant faced lateral or front oblique. However, the seatbelt provided some restraint in all directions considered. The seatback generated contact force to the occupant when it was in the impact direction, including the lateral directions. The relaxed position allowed increased excursion compared to the driving position when the occupant faced rearward, but the magnitude of this increase was lower with lower impact speed.

  9. Agent Based Individual Traffic Guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen

    This thesis investigates the possibilities in applying Operations Research (OR) to autonomous vehicular traffic. The explicit difference to most other research today is that we presume that an agent is present in every vehicle - hence Agent Based Individual Traffic guidance (ABIT). The next...... evolutionary step for the in-vehicle route planners is the introduction of two-way communication. We presume that the agent is capable of exactly this. Based on this presumption we discuss the possibilities and define a taxonomy and use this to discuss the ABIT system. Based on a set of scenarios we conclude...... that the system can be divided into two separate constituents. The immediate dispersion, which is used for small areas and quick response, and the individual alleviation, which considers the longer distance decision support. Both of these require intrinsicate models and cost functions which at the beginning...

  10. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  11. Vision-based vehicle detection and tracking algorithm design

    Science.gov (United States)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  12. Autonomous, Safe Take-Off and Landing Operations for Unmanned Aerial Vehicles in the National Airspace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS's) and in particular intelligent, autonomous rotorcraft and fixed-wing aircraft have the potential to significantly impact modern...

  13. Evaluation of an Efficient Approach for Target Tracking from Acoustic Imagery for the Perception System of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Sebastián A. Villar

    2014-02-01

    Full Text Available This article describes the core algorithms of the perception system to be included within an autonomous underwater vehicle (AUV. This perception system is based on the acoustic data acquired from side scan sonar (SSS. These data should be processed in an efficient time, so that the perception system is able to detect and recognize a predefined target. This detection and recognition outcome is therefore an important piece of knowledge for the AUVs dynamic mission planner (DMP. Effectively, the DMP should propose different trajectories, navigation depths and other parameters that will change the robot's behaviour according to the perception system output. Hence, the time in which to make a decision is critical in order to assure safe robot operation and to acquire good quality data; consequently, the efficiency of the on-line image processing from acoustic data is a key issue. Current techniques for acoustic data processing are time and computationally intensive. Hence, it was decided to process data coming from a SSS using a technique that is used for radars, due to its efficiency and its amenability to on-line processing. The engineering problem to solve in this case was underwater pipeline tracking for routine inspections in the off-shore industry. Then, an automatic oil pipeline detection system was developed borrowing techniques from the processing of radar measurements. The radar technique is known as Cell Average – Constant False Alarm Rate (CA – CFAR. With a slight variation of the algorithms underlying this radar technique, which consisted of the previous accumulation of partial sums, a great improvement in computing time and effort was achieved. Finally, a comparison with previous approaches over images acquired with a SSS from a vessel in the Salvador de Bahia bay in Brazil showed the feasibility of using this on-board technique for AUV perception.

  14. Estimating the Total Heat Flux from the ASHES Hydrothermal Vent Field Using the Sentry Autonomous Underwater Vehicle

    Science.gov (United States)

    Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.

    2017-12-01

    Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.

  15. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.

    Science.gov (United States)

    Duan, Jingliang; Li, Renjie; Hou, Lian; Wang, Wenjun; Li, Guofa; Li, Shengbo Eben; Cheng, Bo; Gao, Hongbo

    2017-11-01

    Bicycling is one of the fundamental modes of transportation especially in developing countries. Because of the lack of effective protection for bicyclists, vehicle-bicycle (V-B) accident has become a primary contributor to traffic fatalities. Although AEB (Autonomous Emergency Braking) systems have been developed to avoid or mitigate collisions, they need to be further adapted in various conflict situations. This paper analyzes the driver's braking behavior in typical V-B conflicts of China to improve the performance of Bicyclist-AEB systems. Naturalistic driving data were collected, from which the top three scenarios of V-B accidents in China were extracted, including SCR (a bicycle crossing the road from right while a car is driving straight), SCL (a bicycle crossing the road from left while a car is driving straight) and SSR (a bicycle swerving in front of the car from right while a car is driving straight). For safety and data reliability, a driving simulator was employed to reconstruct these three scenarios and some 25 licensed drivers were recruited for braking behavior analysis. Results revealed that driver's braking behavior was significantly influenced by V-B conflict types. Pre-decelerating behaviors were found in SCL and SSR conflicts, whereas in SCR the subjects were less vigilant. The brake reaction time and brake severity in lateral V-B conflicts (SCR and SCL) was shorter and higher than that in longitudinal conflicts (SSR). The findings improve their applications in the Bicyclist-AEB and test protocol enactment to enhance the performance of Bicyclist-AEB systems in mixed traffic situations especially for developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle

    Science.gov (United States)

    Skarke, A. D.

    2017-12-01

    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  17. Oceanids command and control (C2) data system - Marine autonomous systems data for vehicle piloting, scientific data users, operational data assimilation, and big data

    Science.gov (United States)

    Buck, J. J. H.; Phillips, A.; Lorenzo, A.; Kokkinaki, A.; Hearn, M.; Gardner, T.; Thorne, K.

    2017-12-01

    The National Oceanography Centre (NOC) operate a fleet of approximately 36 autonomous marine platforms including submarine gliders, autonomous underwater vehicles, and autonomous surface vehicles. Each platform effectivity has the capability to observe the ocean and collect data akin to a small research vessel. This is creating a growth in data volumes and complexity while the amount of resource available to manage data remains static. The OceanIds Command and Control (C2) project aims to solve these issues by fully automating the data archival, processing and dissemination. The data architecture being implemented jointly by NOC and the Scottish Association for Marine Science (SAMS) includes a single Application Programming Interface (API) gateway to handle authentication, forwarding and delivery of both metadata and data. Technicians and principle investigators will enter expedition data prior to deployment of vehicles enabling automated data processing when vehicles are deployed. The system will support automated metadata acquisition from platforms as this technology moves towards operational implementation. The metadata exposure to the web builds on a prototype developed by the European Commission supported SenseOCEAN project and is via open standards including World Wide Web Consortium (W3C) RDF/XML and the use of the Semantic Sensor Network ontology and Open Geospatial Consortium (OGC) SensorML standard. Data will be delivered in the marine domain Everyone's Glider Observatory (EGO) format and OGC Observations and Measurements. Additional formats will be served by implementation of endpoints such as the NOAA ERDDAP tool. This standardised data delivery via the API gateway enables timely near-real-time data to be served to Oceanids users, BODC users, operational users and big data systems. The use of open standards will also enable web interfaces to be rapidly built on the API gateway and delivery to European research infrastructures that include aligned

  18. Calibration and Evaluation of Water Speed Indicator and Compass for the Small Autonomous Underwater Vehicle Navigation Filter

    National Research Council Canada - National Science Library

    Knapp, Randall

    1997-01-01

    There are three major thrusts to this thesis. The first was to design and build a device to measure ground speed for testing the position estimating capabilities of the Small Autonomous Navigation System (SANS) filter...

  19. USDOT Guidance Summary for Connected Vehicle Deployments : System Requirements and the CVRIA/Set-It Tool : Final Report

    Science.gov (United States)

    2016-07-01

    This document provides guidance material in regards to System Requirements for the CV Pilots Deployment Concept Development Phase. Methods for system engineering are discussed with definitions for the successful management of each aspect. Important r...

  20. Recent advances in remote coal mining machine sensing, guidance, and teleoperation

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, J.C.; Hainsworth, D.W.; Reid, D.C.; Anderson, D.L.; McPhee, R.J. [CSIRO Exploration & Minerals, Kenmore, Qld. (Australia)

    2001-10-01

    Some recent applications of sensing, guidance and telerobotic technology in the coal mining industry are presented. Of special interest is the development of semi or fully autonomous systems to provide remote guidance and communications for coal mining equipment. The use of radar and inertial based sensors are considered in an attempt to solve the horizontal and lateral guidance problems associated with mining equipment automation. Also described is a novel teleoperated robot vehicle with unique communications capabilities, called the Numbat, which is used in underground mine safety and reconnaissance missions.

  1. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  2. 77 FR 46640 - Hours of Service of Drivers of Commercial Motor Vehicles; Regulatory Guidance for Oil Field...

    Science.gov (United States)

    2012-08-06

    ... Embassy Suites Hotel, 550 Cherrington Parkway, Coraopolis, PA 15108. The Agency will provide details on... submitted on behalf of an association, business, labor union, etc.). You may review the DOT's complete... comments online. FOR FURTHER INFORMATION CONTACT: For the regulatory guidance issued on June 5, 2012...

  3. Autonomous, Safe Take-Off and Landing Operations for Unmanned Aerial Vehicles in the National Airspace, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS) have the potential to significantly impact modern society. While the technology for unmanned air vehicles operating day in and day out...

  4. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    Science.gov (United States)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  5. VisNAV 100: a robust, compact imaging sensor for enabling autonomous air-to-air refueling of aircraft and unmanned aerial vehicles

    Science.gov (United States)

    Katake, Anup; Choi, Heeyoul

    2010-01-01

    To enable autonomous air-to-refueling of manned and unmanned vehicles a robust high speed relative navigation sensor capable of proving high accuracy 3DOF information in diverse operating conditions is required. To help address this problem, StarVision Technologies Inc. has been developing a compact, high update rate (100Hz), wide field-of-view (90deg) direction and range estimation imaging sensor called VisNAV 100. The sensor is fully autonomous requiring no communication from the tanker aircraft and contains high reliability embedded avionics to provide range, azimuth, elevation (3 degrees of freedom solution 3DOF) and closing speed relative to the tanker aircraft. The sensor is capable of providing 3DOF with an error of 1% in range and 0.1deg in azimuth/elevation up to a range of 30m and 1 deg error in direction for ranges up to 200m at 100Hz update rates. In this paper we will discuss the algorithms that were developed in-house to enable robust beacon pattern detection, outlier rejection and 3DOF estimation in adverse conditions and present the results of several outdoor tests. Results from the long range single beacon detection tests will also be discussed.

  6. Modeling and simulation of a novel autonomous underwater vehicle with glider and flapping-foil propulsion capabilities

    Science.gov (United States)

    Tian, Wen-long; Song, Bao-wei; Du, Xiao-xu; Mao, Zhao-yong; Ding, Hao

    2012-12-01

    HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.

  7. About the Territorial Potential of the Construction of Battery-Charging Stations for Autonomous Electric Motor Vehicles in the Regions

    Directory of Open Access Journals (Sweden)

    Shilova Lyubov

    2016-01-01

    Full Text Available The article describes the main current trends in the development of electric motor vehicles with "zero emission" as well as the battery-charging stations concerned. The study is based on a preliminary comparative analysis of the RF regions with respect to five indices (average per capita income, number of private cars in the region, air pollution level, provision of the region with power supply and the potential use of local renewable energy resources, and it gives some recommendations on the prospects of possible construction of battery-charging stations in the regions.

  8. Autonomous Intersection Management

    Science.gov (United States)

    2009-12-01

    and analyzing my algorithms for correctness and rigor. Third, Tarun Nimmagadda, for creating the first mixed simulation using my simulator. In addition...Agent Systems, 10(2):131–164, March 2005. [Beeson et al., 2008] Patrick Beeson, Jack O’Quin, Bartley Gillan, Tarun Nimma- gadda, Mickey Ristroph, David...autonomous vehicles at intersections. IEEE Intelligent Systems, 13(3):82–86, May 1998. [Nimmagadda, 2009] Tarun Nimmagadda. Building an autonomous ground

  9. How Can Autonomous and Connected Vehicles, Electromobility, BRT, Hyperloop, Shared Use Mobility and Mobility-As-A-Service Shape Transport Futures for the Context of Smart Cities?

    Directory of Open Access Journals (Sweden)

    Alexandros Nikitas

    2017-11-01

    Full Text Available A smarter transport system that caters for social, economic and environmental sustainability is arguably one of the most critical prerequisites for creating pathways to more livable urban futures. This paper aims to provide a state-of-the-art analysis of a selection of mobility initiatives that may dictate the future of urban transportation and make cities smarter. These are mechanisms either recently introduced with encouraging uptake so far and much greater potential to contribute in a shift to a better transport paradigm or still in an embryonic stage of their development and yet to be embraced as powerful mechanisms that could change travel behaviour norms. Autonomous and connected vehicles are set to revolutionise the urban landscape by allowing machines to take over driving that for over a century has been exclusively a human activity, while electrical vehicles are already helping decarbonising the transport sector. Bus rapid transit has been steadily reinventing and rebranding conventional bus services revitalising the use of the humblest form of public transport, while hyperloop is an entirely new, disruptive, and somewhat provocative, travel mode proposition based on the use of sealed tube systems through which pods could travel free of air resistance with speeds exceeding 1000 km/h. Shared use mobility mechanisms like car-sharing, ride-sharing, ride-sourcing and public bicycles can help establishing a culture for using mobility resources on an as-needed basis, while mobility-as-a-service will take this sharing culture a step further, offering tailored mobility and trip planning packages that could entirely replace the need for privately owned modes of transport.

  10. 3D photo mosaicing of Tagiri shallow vent field by an autonomous underwater vehicle (3rd report) - Mosaicing method based on navigation data and visual features -

    Science.gov (United States)

    Maki, Toshihiro; Ura, Tamaki; Singh, Hanumant; Sakamaki, Takashi

    Large-area seafloor imaging will bring significant benefits to various fields such as academics, resource survey, marine development, security, and search-and-rescue. The authors have proposed a navigation method of an autonomous underwater vehicle for seafloor imaging, and verified its performance through mapping tubeworm colonies with the area of 3,000 square meters using the AUV Tri-Dog 1 at Tagiri vent field, Kagoshima bay in Japan (Maki et al., 2008, 2009). This paper proposes a post-processing method to build a natural photo mosaic from a number of pictures taken by an underwater platform. The method firstly removes lens distortion, invariances of color and lighting from each image, and then ortho-rectification is performed based on camera pose and seafloor estimated by navigation data. The image alignment is based on both navigation data and visual characteristics, implemented as an expansion of the image based method (Pizarro et al., 2003). Using the two types of information realizes an image alignment that is consistent both globally and locally, as well as making the method applicable to data sets with little visual keys. The method was evaluated using a data set obtained by the AUV Tri-Dog 1 at the vent field in Sep. 2009. A seamless, uniformly illuminated photo mosaic covering the area of around 500 square meters was created from 391 pictures, which covers unique features of the field such as bacteria mats and tubeworm colonies.

  11. Remote sensing of deep hermatypic coral reefs in Puerto Rico and the U.S. Virgin Islands using the Seabed autonomous underwater vehicle

    Science.gov (United States)

    Armstrong, Roy A.; Singh, Hanumant

    2006-09-01

    Optical imaging of coral reefs and other benthic communities present below one attenuation depth, the limit of effective airborne and satellite remote sensing, requires the use of in situ platforms such as autonomous underwater vehicles (AUVs). The Seabed AUV, which was designed for high-resolution underwater optical and acoustic imaging, was used to characterize several deep insular shelf reefs of Puerto Rico and the US Virgin Islands using digital imagery. The digital photo transects obtained by the Seabed AUV provided quantitative data on living coral, sponge, gorgonian, and macroalgal cover as well as coral species richness and diversity. Rugosity, an index of structural complexity, was derived from the pencil-beam acoustic data. The AUV benthic assessments could provide the required information for selecting unique areas of high coral cover, biodiversity and structural complexity for habitat protection and ecosystem-based management. Data from Seabed sensors and related imaging technologies are being used to conduct multi-beam sonar surveys, 3-D image reconstruction from a single camera, photo mosaicking, image based navigation, and multi-sensor fusion of acoustic and optical data.

  12. Visual feedback navigation for cable tracking by autonomous underwater vehicles; Jiritsugata kaichu robot no gazo shori ni motozuku cable jido tsuiju

    Energy Technology Data Exchange (ETDEWEB)

    Takai, M.; Ura, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Balasuriya, B.; Lam, W. [The University of Tokyo, Tokyo (Japan); Kuroda, Y. [Meiji Univ., Tokyo (Japan)

    1997-08-01

    A vision processing unit was introduced into autonomous underwater vehicles (AUV) to judge the visual situation and to construct an environmental observation platform that can collect wide-range and high-precision measurement data. The cable optionally installed at the bottom of the sea was recognized by vision processing to propose automatic tracking technique. An estimator that compensates for the hough conversion or time delay and a PSA controller that is used as a target value set mechanism or lower-level controller were introduced as the factor technology required for automatic tracking. The feature of the automatic tracking is that a general-purpose platform which can observe the prescribed range environmentally in high precision and density can be constructed because the observation range required by the observer can be prescribed near the sea-bottom surface using a cable. The verification result off Omi Hachiman at Lake Biwa showed that AUV can be used for the high-precision environmental survey in the range prescribed near the sea-bottom surface using a cable. 8 refs., 8 figs., 1 tab.

  13. Integrated synoptic surveys of the hydrodynamics and water-quality distributions in two Lake Michigan rivermouth mixing zones using an autonomous underwater vehicle and a manned boat

    Science.gov (United States)

    Jackson, P. Ryan; Reneau, Paul C.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the National Monitoring Network for U.S. Coastal Waters and Tributaries, launched a pilot project in 2010 to determine the value of integrated synoptic surveys of rivermouths using autonomous underwater vehicle technology in response to a call for rivermouth research, which includes study domains that envelop both the fluvial and lacustrine boundaries of the rivermouth mixing zone. The pilot project was implemented at two Lake Michigan rivermouths with largely different scales, hydrodynamics, and settings, but employing primarily the same survey techniques and methods. The Milwaukee River Estuary Area of Concern (AOC) survey included measurements in the lower 2 to 3 miles of the Milwaukee, Menomonee, and Kinnickinnic Rivers and inner and outer Milwaukee Harbor. This estuary is situated in downtown Milwaukee, Wisconsin, and is the most populated basin that flows directly into Lake Michigan. In contrast, the Manitowoc rivermouth has a relatively small harbor separating the rivermouth from Lake Michigan, and the Manitowoc River Watershed is primarily agricultural. Both the Milwaukee and Manitowoc rivermouths are unregulated and allow free exchange of water with Lake Michigan. This pilot study of the Milwaukee River Estuary and Manitowoc rivermouth using an autonomous underwater vehicle (AUV) paired with a manned survey boat resulted in high spatial and temporal resolution datasets of basic water-quality parameter distributions and hydrodynamics. The AUV performed well in these environments and was found primarily well-suited for harbor and nearshore surveys of three-dimensional water-quality distributions. Both case studies revealed that the use of a manned boat equipped with an acoustic Doppler current profiler (ADCP) and multiparameter sonde (and an optional flow-through water-quality sampling system) was the best option for riverine surveys. To ensure that the most accurate and highest resolution velocity data

  14. Global Positioning System Synchronized Active Light Autonomous Docking System

    Science.gov (United States)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  15. Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance.

    Science.gov (United States)

    Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H; De La Torre, Pedro R; Nornes, Stein M; Singh, Hanumant; Sørensen, Asgeir J; Daase, Malin; Johnsen, Geir

    2018-01-01

    Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.

  16. Spatially complex distribution of dissolved manganese in a fjord as revealed by high-resolution in situ sensing using the autonomous underwater vehicle Autosub.

    Science.gov (United States)

    Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A

    2005-12-15

    Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.

  17. Safe and Autonomous Drones for Urban Flight

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2016-01-01

    Autonomous vehicles are no longer futuristic technology; in fact, there are already cars with self-driving features on the road. Over the next five years, the connected vehicles will disrupt the entire automotive and UAS ecosystems. The industry will undergo fundamental change as semi-autonomous driving and flying emerges, followed by an eventual shift to full autonomy.

  18. Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.

    Science.gov (United States)

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-15

    This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.

  19. Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving

    Science.gov (United States)

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-01

    This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203

  20. Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving

    Directory of Open Access Journals (Sweden)

    Mingbo Du

    2016-01-01

    Full Text Available This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.

  1. See and avoidance behaviors for autonomous navigation

    Science.gov (United States)

    Lee, Dah-Jye; Beard, Randal W.; Merrell, Paul C.; Zhan, Pengcheng

    2004-12-01

    Recent advances in many multi-discipline technologies have allowed small, low-cost fixed wing unmanned air vehicles (UAV) or more complicated unmanned ground vehicles (UGV) to be a feasible solution in many scientific, civil and military applications. Cameras can be mounted on-board of the unmanned vehicles for the purpose of scientific data gathering, surveillance for law enforcement and homeland security, as well as to provide visual information to detect and avoid imminent collisions for autonomous navigation. However, most current computer vision algorithms are highly complex computationally and usually constitute the bottleneck of the guidance and control loop. In this paper, we present a novel computer vision algorithm for collision detection and time-to-impact calculation based on feature density distribution (FDD) analysis. It does not require accurate feature extraction, tracking, or estimation of focus of expansion (FOE). Under a few reasonable assumptions, by calculating the expansion rate of the FDD in space, time-to-impact can be accurately estimated. A sequence of monocular images is studied, and different features are used simultaneously in FDD analysis to show that our algorithm can achieve a fairly good accuracy in collision detection. In this paper we also discuss reactive path planning and trajectory generation techniques that can be accomplished without violating the velocity and heading rate constraints of the UAV.

  2. Autonomous driving technical, legal and social aspects

    CERN Document Server

    Gerdes, J; Lenz, Barbara; Winner, Hermann

    2016-01-01

    This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the auth...

  3. Guidance trajectories for aeroassisted orbital transfer

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Research on aerobraking guidance schemes is presented. The intent is to produce aerobraking guidance trajectories exhibiting many of the desirable characteristics of optimal aerobraking trajectories. Both one-control schemes and two-control schemes are studied. The research is in the interest of aeroassisted flight experiment vehicles (AFE) and aeroassisted orbital transfer (AOT) vehicles.

  4. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  5. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  6. Autonomic neuropathies

    Science.gov (United States)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  7. Autonomous houses. Autonomous house

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S. (Tokai University, Tokyo (Japan). Faculty of Engineering)

    1991-09-30

    Self-sufficiency type houses are outlined. On condition that people gain a certain amount of income in relation with the society, they self-suffice under the given environment, allowing themselves to accept a minimum of industrial products with small environmental load. Ordinary supply from outside of fossil energy and materials which depend on it is minimized. Types are classified into three: energy, energy materials and perfect self-sufficiency. A study project for environment symbiotic houses is progressing which is planned by the Ministry of Construction and Institute of Building Energy Conservation and is invested by a private company. Its target is making a house for halving an environmental load by CO{sub 2}, for the purpose of creating the environment symbiotic house which is nice to and in harmony with the global environment and human beings. As a part of the studies on energy-saving and resource conservation on houses, introduced is a plan of an autonomous house at Izu-Atagawa. The passive method and high thermal-insulation are used for air conditioning, and hot spring water for hot water supply. Electric power is generated by hydroelectric power generation using mountain streams and by solar cells. Staple food is purchased, while subsidiary food is sufficed. 17 refs., 4 figs., 1 tab.

  8. Vision based guidance and flight control in problems of aerial tracking

    Science.gov (United States)

    Stepanyan, Vahram

    The use of visual sensors in providing the necessary information for the autonomous guidance and navigation of the unmanned-air vehicles (UAV) or micro-air vehicles (MAV) applications is inspired by biological systems and is motivated first of all by the reduction of the navigational sensor cost. Also, visual sensors can be more advantageous in military operations since they are difficult to detect. However, the design of a reliable guidance, navigation and control system for aerial vehicles based only on visual information has many unsolved problems, ranging from hardware/software development to pure control-theoretical issues, which are even more complicated when applied to the tracking of maneuvering unknown targets. This dissertation describes guidance law design and implementation algorithms for autonomous tracking of a flying target, when the information about the target's current position is obtained via a monocular camera mounted on the tracking UAV (follower). The visual information is related to the target's relative position in the follower's body frame via the target's apparent size, which is assumed to be constant, but otherwise unknown to the follower. The formulation of the relative dynamics in the inertial frame requires the knowledge of the follower's orientation angles, which are assumed to be known. No information is assumed to be available about the target's dynamics. The follower's objective is to maintain a desired relative position irrespective of the target's motion. Two types of guidance laws are designed and implemented in the dissertation. The first one is a smooth guidance law that guarantees asymptotic tracking of a target, the velocity of which is viewed as a time-varying disturbance, the change in magnitude of which has a bounded integral. The second one is a smooth approximation of a discontinuous guidance law that guarantees bounded tracking with adjustable bounds when the target's acceleration is viewed as a bounded but otherwise

  9. Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems

    National Research Council Canada - National Science Library

    Dullerud, Geir E; Bullo, Francesco; Feron, Eric; Frazzoli, Emilio; Kumar, P. R; Lall, Sanjay; Liberzon, Daniel; Lynch, Nancy A; Mitchell, John C; Mitter, Sanjoy K

    2007-01-01

    ... and semi-autonomous air vehicles. The research is specifically aimed at the critical reliability and performance issues facing autonomous vehicle systems which operate in highly uncertain environments, and enables the vehicles...

  10. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón

    2013-01-01

    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  11. Fuzzy Logic Trajectory Design and Guidance for Terminal Area Energy Management

    Science.gov (United States)

    Burchett, Bradley

    2003-01-01

    The second generation reusable launch vehicle will leverage many new technologies to make flight to low earth orbit safer and more cost effective. One important capability will be completely autonomous flight during reentry and landing, thus making it unnecessary to man the vehicle for cargo missions with stringent weight constraints. Implementation of sophisticated new guidance and control methods will enable the vehicle to return to earth under less than favorable conditions. The return to earth consists of three phases--Entry, Terminal Area Energy Management (TAEM), and Approach and Landing. The Space Shuttle is programmed to fly all three phases of flight automatically, and under normal circumstances the astronaut-pilot takes manual control only during the Approach and Landing phase. The automatic control algorithms used in the Shuttle for TAEM and Approach and Landing have been developed over the past 30 years. They are computationally efficient, and based on careful study of the spacecraft's flight dynamics, and heuristic reasoning. The gliding return trajectory is planned prior to the mission, and only minor adjustments are made during flight for perturbations in the vehicle energy state. With the advent of the X-33 and X-34 technology demonstration vehicles, several authors investigated implementing advanced control methods to provide autonomous real-time design of gliding return trajectories thus enhancing the ability of the vehicle to adjust to unusual energy states. The bulk of work published to date deals primarily with the approach and landing phase of flight where changes in heading angle are small, and range to the runway is monotonically decreasing. These benign flight conditions allow for model simplification and fairly straightforward optimization. This project focuses on the TAEM phase of flight where mathematically precise methods have produced limited results. Fuzzy Logic methods are used to make onboard autonomous gliding return trajectory

  12. Implementing a Cloud Platform for Autonomous Driving

    OpenAIRE

    Liu, Shaoshan; Tang, Jie; Wang, Chao; Wang, Quan; Gaudiot, Jean-Luc

    2017-01-01

    Autonomous driving clouds provide essential services to support autonomous vehicles. Today these services include but not limited to distributed simulation tests for new algorithm deployment, offline deep learning model training, and High-Definition (HD) map generation. These services require infrastructure support including distributed computing, distributed storage, as well as heterogeneous computing. In this paper, we present the details of how we implement a unified autonomous driving clo...

  13. Adaptive Sampling in Autonomous Marine Sensor Networks

    National Research Council Canada - National Science Library

    Eickstedt, Donald P

    2006-01-01

    ... oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new...

  14. Undersea vehicles and national needs

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    .... Advances in guidance and control, communications, sensors, and other technologies for undersea vehicles can provide an opportunity to understand the oceans' influence on the energy and chemical...

  15. Agent Based Individual Traffic guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard

    2004-01-01

    can be obtained through cellular phone tracking or GPS systems. This information can then be used to provide individual traffic guidance as opposed to the mass information systems of today -- dynamic roadsigns and trafficradio. The goal is to achieve better usage of road and time. The main topic......When working with traffic planning or guidance it is common practice to view the vehicles as a combined mass. >From this models are employed to specify the vehicle supply and demand for each region. As the models are complex and the calculations are equally demanding the regions and the detail...

  16. An autonomous weeding robot for organic farming

    NARCIS (Netherlands)

    Bakker, T.; Asselt, van C.J.; Bontsema, J.; Müller, J.; Straten, van G.

    2006-01-01

    The objective of this research is the replacement of hand weeding in organic farming by a device working autonomously at ¯eld level. The autonomous weeding robot was designed using a structured design approach, giving a good overview of the total design. A vehicle was developed with a diesel engine,

  17. Autonomous search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Autonomous combinatorial search (AS) represents a new field in combinatorial problem solving. Its major standpoint and originality is that it considers that problem solvers must be capable of self-improvement operations. This is the first book dedicated to AS.

  18. Physics of Autonomous Driving based on Three-Phase Traffic Theory

    OpenAIRE

    Kerner, Boris S.

    2017-01-01

    We have revealed physical features of autonomous driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to autonomous driving for which an autonomous driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that autonomous driving in the framework of the three-phase traffic theory exhibits the following adv...

  19. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    Science.gov (United States)

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  20. SAMURAI: Polar AUV-Based Autonomous Dexterous Sampling

    Science.gov (United States)

    Akin, D. L.; Roberts, B. J.; Smith, W.; Roderick, S.; Reves-Sohn, R.; Singh, H.

    2006-12-01

    SAMURAI control system, and JAGUAR (with SAMURAI mounted to the lower forward hull) will return to the designated target areas. Once on site, vehicle control will be turned over to the SAMURAI controller, which will perform vision-based guidance to the sampling site and will then ground the AUV to the sea bottom for stability. The SAMURAI manipulator will collect samples, such as sessile biologicals, geological samples, and (potentially) vent fluids, and store the samples for the return trip. After several hours of sampling operations on one or several sites, JAGUAR control will be returned to the WHOI onboard controller for the return to the support ship. (Operational details of AUV operations on the Gakkel Ridge mission are presented in other papers at this conference.) Between sorties, SAMURAI end effectors can be changed out on the surface for specific targets, such as push cores or larger biologicals such as tube worms. In addition to the obvious challenges in autonomous vision-based manipulator control from a free-flying support vehicle, significant development challenges have been the design of a highly capable robotic arm within the mass limitations (both wet and dry) of the JAGUAR vehicle, the development of a highly robust manipulator with modular maintenance units for extended polar operations, and the creation of a robot-based sample collection and holding system for multiple heterogeneous samples on a single extended sortie.