WorldWideScience

Sample records for autonomous vehicle guidance

  1. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  2. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  3. Guidance of Autonomous Amphibious Vehicles for Flood Rescue Support

    OpenAIRE

    Shankarachary Ragi; ChingSeong Tan; Chong, Edwin K. P.

    2013-01-01

    We develop a path-planning algorithm to guide autonomous amphibious vehicles (AAVs) for flood rescue support missions. Specifically, we develop an algorithm to control multiple AAVs to reach/rescue multiple victims (also called targets) in a flood scenario in 2D, where the flood water flows across the scene and the targets move (drifted by the flood water) along the flood stream. A target is said to be rescued if an AAV lies within a circular region of a certain radius around the target. The ...

  4. Guidance of Autonomous Amphibious Vehicles for Flood Rescue Support

    Directory of Open Access Journals (Sweden)

    Shankarachary Ragi

    2013-01-01

    Full Text Available We develop a path-planning algorithm to guide autonomous amphibious vehicles (AAVs for flood rescue support missions. Specifically, we develop an algorithm to control multiple AAVs to reach/rescue multiple victims (also called targets in a flood scenario in 2D, where the flood water flows across the scene and the targets move (drifted by the flood water along the flood stream. A target is said to be rescued if an AAV lies within a circular region of a certain radius around the target. The goal is to control the AAVs such that each target gets rescued while optimizing a certain performance objective. The algorithm design is based on the theory of partially observable Markov decision process (POMDP. In practice, POMDP problems are hard to solve exactly, so we use an approximation method called nominal belief-state optimization (NBO. We compare the performance of the NBO approach with a greedy approach.

  5. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... at a constant rate ignoring the spatial variability in weed, soil, and crop. Sensing with a guided vehicle allow cost effective mapping of field variability and inputs may be adjusted accordingly. Essential to such a vehicle is real-time localization. GPS allow precise absolute sensing but it is not practical...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...

  6. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...... is thus controlled by location relative to the local field while the actual path execution is carried out in absolute GPS coordinates. The solution is a system that fuse data from a relative and an absolute measurement system while ensuring accurate row operation at high work rates....

  7. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.

    Science.gov (United States)

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-08-20

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

  8. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2016-08-01

    Full Text Available The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF under-actuated autonomous underwater vehicle (AUV without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

  9. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.

    Science.gov (United States)

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-01-01

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route. PMID:27556465

  10. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance

    Science.gov (United States)

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-01-01

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route. PMID:27556465

  11. Applied Model-Based Analysis and Synthesis for the Dynamics, Guidance, and Control of an Autonomous Undersea Vehicle

    Directory of Open Access Journals (Sweden)

    Kangsoo Kim

    2010-01-01

    Full Text Available Model-based analysis and synthesis applied to the dynamics, guidance, and control of an autonomous undersea vehicle are presented. As the dynamic model for describing vehicle motion mathematically, the equations of motion are derived. The stability derivatives in the equations of motion are determined by a simulation-based technique using computational fluid dynamics analysis. The dynamic model is applied to the design of the low-level control systems, offering model-based synthetic approach in dynamics and control applications. As an intelligent navigational strategy for undersea vehicles, we present the optimal guidance in environmental disturbances. The optimal guidance aims at the minimum-time transit of a vehicle in an environmental flow disturbance. In this paper, a newly developed algorithm for obtaining the numerical solution of the optimal guidance law is presented. The algorithm is a globally working procedure deriving the optimal guidance in any deterministic environmental disturbance. As a fail-safe tactic in achieving the optimal navigation in environments of moderate uncertainty, we propose the quasi-optimal guidance. Performances of the optimal and the quasi-optimal guidances are demonstrated by the simulated navigations in a few environmental disturbances.

  12. Development of A Three-Dimensional Guidance System for Long-Range Maneuvering of A Miniature Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    Mansour ATAEI; Aghil YOUSEFI-KOMA

    2014-01-01

    The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle (AUV). The guidance system determines the best trajectory for the vehicle based on target behavior and vehicle capabilities. The dynamic model of this novel AUV is derived based on its special characteristics such as the horizontal posture and the independent diving mechanism. To design the guidance strategy, the main idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. By connecting the two with a straight line, this strategy helps the AUV move in a trajectory sufficiently close to this line. The adjacency of the trajectory to the line leads to reasonably short travelling distances and avoids unsafe areas. Autopilots are designed using sliding mode controller. Two different engagement geometries are considered to evaluate the strategy’s performance:stationary target and moving target. The simulation results show that the strategy can provide sufficiently fast and smooth trajectories in both target situations.

  13. Guidance and Control of an Autonomous Soaring Vehicle with Flight Test Results

    Science.gov (United States)

    Allen, Michael J.

    2007-01-01

    A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.

  14. VaMoRs-P: an advanced platform for visual autonomous road vehicle guidance

    Science.gov (United States)

    Maurer, Markus; Behringer, Reinhold; Dickmanns, Dirk; Hildebrandt, Thomas; Thomanek, Frank; Schiehlen, Joachim; Dickmanns, Ernst D.

    1995-01-01

    A sedan Mercedes 500 SEL has been equipped with active bifocal vision systems. Road and object recognition is performed both in a look-ahead and in a look-back region; this allows to servo-maintain an internal representation of the entire situation around in the vehicle using the 4D approach to dynamic machine vision. Obstacles are detected and tracked both in the forward and in the backward viewing range up to about 100 meters distance; up to 5 objects may be tracked in parallel in each hemisphere. A fixation type viewing direction control with the capability of saccadic shifts for attention focusing has been developed. The overall system comprises about 5 dozen transputers T-222 (16-bit, for image processing and communication) and T-800 (32-bit, for number crunching and knowledge processing) plus a PC as transputer host. A description of the parallel processing architecture is given allowing frequent data driven bottom-up and model driven top-down integration steps for efficient and robust object tracking (4D approach).

  15. Autonomous gliding entry guidance with geographic constraints

    Institute of Scientific and Technical Information of China (English)

    Guo Jie; Wu Xuzhong; Tang Shengjing

    2015-01-01

    This paper presents a novel three-dimensional autonomous entry guidance for relatively high lift-to-drag ratio vehicles satisfying geographic constraints and other path constraints. The guidance is composed of onboard trajectory planning and robust trajectory tracking. For trajectory planning, a longitudinal sub-planner is introduced to generate a feasible drag-versus-energy profile by using the interpolation between upper boundary and lower boundary of entry corridor to get the desired trajectory length. The associated magnitude of the bank angle can be specified by drag profile, while the sign of bank angle is determined by lateral sub-planner. Two-reverse mode is utilized to satisfy waypoint constraints and dynamic heading error corridor is utilized to satisfy no-fly zone constraints. The longitudinal and lateral sub-planners are iteratively employed until all of the path constraints are satisfied. For trajectory tracking, a novel tracking law based on the active disturbance rejection control is introduced. Finally, adaptability tests and Monte Carlo simulations of the entry guidance approach are performed. Results show that the proposed entry guidance approach can adapt to different entry missions and is able to make the vehicle reach the prescribed target point precisely in spite of geographic constraints.

  16. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple....... The central element of the architecture is the ‘global database’ that serves several purposes, such as storing system parameters, making signals available for data logging and inter-process communication. Standard software components are used to a large extent, OS-9 as real-time operating system, a custom...

  17. Non-cable vehicle guidance

    Energy Technology Data Exchange (ETDEWEB)

    Daugela, G.C.; Willott, A.M.; Chopiuk, R.G.; Thornton, S.E.

    1988-06-01

    The purpose is to determine the most promising driverless mine vehicle guidance systems that are not dependent on buried cables, and to plan their development. The project is presented in two phases: a preliminary study and literature review to determine whether suitable technologies exist to justify further work; and an in-depth assessment and selection of technologies for vehicle guidance. A large number of guidance elements are involved in a completely automated vehicle. The technologies that hold the best potential for development of guidance systems for mine vehicles are ultrasonics, radar, lasers, dead reckoning, and guidance algorithms. The best approach to adaptation of these technologies is on a step by step basis. Guidance modules that are complete in themselves and are designed to be integrated with other modules can provide short term benefits. Two modules are selected for development: the dragline operations monitor and automated machine control for optimized mining (AMCOM). 99 refs., 20 figs., 40 tabs.

  18. Prototype design for autonomous vehicle

    OpenAIRE

    Lehander, Jacob; Persson, Joel

    2015-01-01

    This thesis describes the mechanical design of a prototype vehicle developed for a company located in California. The project was based on an earlier vehicle located at KTH, Transport Labs, and investigated if the existing concept for the vehicle would work as a concept for an autonomous prototype, with focus on component layout and increased forces. The design of the vehicle is based on a concept with a carbon fiber bottom plate, two separate suspension modules with electric hub motors and s...

  19. Design of Autonomous Underwater Vehicle

    OpenAIRE

    Tadahiro Hyakudome

    2011-01-01

    There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle) were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. Whe...

  20. Enhanced mission performance from autonomous instrument guidance

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Jørgensen, Peter Siegbjørn; Betto, Maurizio;

    2006-01-01

    During the last decade improvements in electronics, on-board processing power and software design has lead to significant advances in the development of autonomous instrumentation for spacecraft use. The Advanced Stellar Compass (ASC) and the newly developed micro-ASC (mu ASC) are excellent...... and power consumption makes the mu ASC an ideal instrument for small, high yielding satellite missions. The ASC has hitherto been used by the satellite AOCS and the high accuracy scientific instrument for attitude recovery (among others onboard ORSTED, CHAMP, and GRACE), and satellite high accuracy target...... acquisition and pointing (PROBA). Here three applications of the mu ASC as an autonomous onboard precision guide for precision vector instrumentation are presented. These are autonomous onboard antenna guidance, telescope guidance and tracking and high accuracy and wide range laser rangers....

  1. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  2. Insurance for autonomous underwater vehicles

    OpenAIRE

    Griffiths, G; N Bose; Ferguson, J.; Blidberg, D.R.

    2007-01-01

    The background and practice of insurance for autonomous underwater vehicles (AUVs) are examined. Key topics include: relationships between clients, brokers and underwriters; contract wording to provide appropriate coverage; and actions to take when an incident occurs. Factors that affect cost of insurance are discussed, including level of autonomy, team experience and operating environment. Four case studies from industry and academia illustrate how AUV insurance has worked in practice. The p...

  3. Navigation of an Autonomous Underwater Vehicle in a Mobile Network

    OpenAIRE

    Nuno Santos; Anibal Matos; Nuno Cruz

    2008-01-01

    This work addresses the implementation of the navigation, guidance and control of autonomous underwater vehicles on mobile acoustic networks. After a theoretical discussion of the algorithms required for such operation, we present results from simulation and real experiments that validate the proposed solutions.

  4. Test and Evaluation of Autonomous Ground Vehicles

    OpenAIRE

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  5. Autonomous vehicle control systems for safe crossroads

    OpenAIRE

    Alonso Ruiz, Javier; Milanés Montero, Vicente; Pérez, Joshué; Onieva Caracuel, Enrique; González Fernández-Vallejo, Carlos; Pedro Lucio, María Teresa de

    2011-01-01

    This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without th...

  6. Decentralized Coordination of Autonomous Vehicles at intersections

    OpenAIRE

    Makarem, Laleh; Gillet, Denis

    2011-01-01

    In this paper, the decentralized coordination of point-mass autonomous vehicles at intersections using navigation functions is considered. As main contribution, the inertia of the vehicles is taken into account to enable on-board energy optimization for crossing. In such a way, heavier vehicles that need more energy and time for acceleration or breaking are given an indirect priority at intersections. The proposed decentralized coordination scheme of autonomous vehicles at intersection is com...

  7. Autonomous vehicle development for vertical submarine observation

    OpenAIRE

    Gomáriz Castro, Spartacus; Prat Tasias, Jordi; Arbós, Alejandro; Viñolo Monzoncillo, Carlos; Pallares, Oriol

    2009-01-01

    This work proposes the development of an ocean observation vehicle. This vehicle, a hybrid between Autonomous Underwater Vehicles (AUV) and Autonomous Surface Vehicles (ASV) moves on the surface of the sea and makes vertical immersions to obtain the profiles of a water column according to a pre-established plan. Its design provides lower production cost and higher efficiency. GPS navigation allows the platform to move along the surface of the water while a radio-modem provid...

  8. Guidance and Control of an Autonomous Soaring UAV

    Science.gov (United States)

    Allen, Michael J.; Lin, Victor

    2007-01-01

    Thermals caused by convection in the lower atmosphere are commonly used by birds and glider pilots to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited Aerial Vehicles (UAVs) can also increase performance and reduce energy consumption by exploiting atmospheric convection. An autonomous soaring research project was conducted at the NASA Dryden Flight Research Center to evaluate the concept through flight test of an electric-powered motorglider with a wingspan of 4.27 m (14 ft). The UAV's commercial autopilot software was modified to include outer-loop soaring guidance and control. The aircraft total energy state was used to detect and soar within thermals. Estimated thermal size and position were used to calculate guidance commands for soaring flight. Results from a total of 23 thermal encounters show good performance of the guidance and control algorithms to autonomously detect and exploit thermals. The UAV had an average climb of 172 m (567 ft) during these encounters.

  9. Path planning strategies for autonomous ground vehicles

    Science.gov (United States)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A

  10. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  11. Semi-Autonomous Vehicle Project

    Science.gov (United States)

    Stewart, Christopher

    2016-01-01

    The primary objective this summer is "evaluating standards for wireless architecture for the internet of things". The Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network connectivity which enables these objects to collect and exchange data and make decisions based on said data. This was accomplished by creating a semi-autonomous vehicle that takes advantage of multiple sensors, cameras, and onboard computers and combined them with a mesh network which enabled communication across large distances with little to no interruption. The mesh network took advantage of what is known as DTN - Disruption Tolerant Networking which according to NASA is the new communications protocol that is "the first step towards interplanetary internet." The use of DTN comes from the fact that it will store information if an interruption in communications is detected and even forward that information via other relays within range so that the data is not lost. This translates well into the project because as the car moves further away from whatever is sending it commands (in this case a joystick), the information can still be forwarded to the car with little to no loss of information thanks to the mesh nodes around the driving area.

  12. Omnidirectional Stereo Vision for Autonomous Vehicles

    OpenAIRE

    Schönbein, Miriam

    2014-01-01

    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications.

  13. Visual navigation for an autonomous mobile vehicle

    OpenAIRE

    Peterson, Kevin Robert

    1992-01-01

    Approved for public release; distribution is unlimited Image understanding for a mobile robotic vehicle is an important and complex task for ensuring safe navigation and extended autonomous operations. The goal of this work is to implement a working vision-based navigation control mechanism within a known environment onboard the autonomous mobile vehicle Yamabico-II. Although installing a working hardware system was not accomplished, the image processing, model description, pattern match...

  14. Control of the MARES Autonomous Underwater Vehicle

    OpenAIRE

    Bruno Ferreira; Miguel Pinto; Anibal Matos; Nuno Cruz

    2009-01-01

    This paper focuses the control problem of a nonholonomic autonomous underwater vehicle, moving in the tridimensional space. The dynamic of a body in submarine environments is strongly nonlinear. This implies that classical linear controllers are often inadequate whereby Lyapunov theory is here considered. Methods based in this theory are promising tools to design controllers and are applied to the case of MARES, a small-sized autonomous underwater vehicle. Several controllers based only on Ly...

  15. An adaptive guidance algorithm for aerospace vehicles

    Science.gov (United States)

    Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.

    The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.

  16. Feasible Path Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Vu Trieu Minh

    2014-01-01

    Full Text Available The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an automatic control for autonomous vehicles.

  17. Interception and Rendezvous Between Autonomous Vehicles

    OpenAIRE

    Crispin, Yechiel J.

    2008-01-01

    The interception and rendezvous problems between two autonomous vehicles moving in an underwater environment has been treated using an optimal control formulation with terminal constraints. The vehicles have a constant thrust propulsion system and use the direction of the thrust vector for steering and control. We use a genetic algorithm to determine directly the control history of the vehicle by evolving populations of possible solutions of initial value problems. In order to fulfill the fin...

  18. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  19. Tethered operation of autonomous aerial vehicles to provide extended field of view for autonomous ground vehicles

    OpenAIRE

    Phang, Nyit Sin

    2006-01-01

    This thesis was part of the ongoing research conducted at the Naval Postgraduate School to achieve greater collaboration between heterogeneous autonomous vehicles. The research addresses optimal control issues in the collaboration between an Unmanned Aerial Vehicle (UAV) and Autonomous Ground Vehicles (AGV). The scenario revolves around using the camera onboard the UAV to extend the effective field of view of the AGV. For military operations, this could be helpful in improving security for co...

  20. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  1. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  2. Integrated Entry Guidance for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    NING Guo-dong; ZHANG Shu-guang; FANG Zhen-ping

    2007-01-01

    A method for the implementation of integrated three-degree-of-freedom constrained entry guidance for reusable launch vehicle is presented. Given any feasible entry conditions, terminal area energy management interface conditions, and the reference trajectory generated onboard then, the method can generate a longitudinal guidance profile rapidly, featuring linear quadratic regular method and a proportional-integral-derivative tracking law with time-varying gains, which satisfies all the entry corridor constraints and meets the requirements with high precision. Afterwards, by utilizing special features of crossrange parameter, establishing bank-reversal corridor,and determining bank-reversals according to dynamically adjusted method, the algorithm enables the lateral entry guidance system to fly a wide range of missions and provides reliable and good performance in the presence of significant aerodynamic modeling uncertainty.Fast trajectory guidance profiles and simulations with a reusable launch vehicle model for various missions and aerodynamic uncertainties are presented to demonstrate the capacity and reliability of this method.

  3. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  4. A Primer on Autonomous Aerial Vehicle Design

    Science.gov (United States)

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  5. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  6. A Primer on Autonomous Aerial Vehicle Design

    Directory of Open Access Journals (Sweden)

    Hugo H. G. Coppejans

    2015-12-01

    Full Text Available There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV, such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  7. SOLON: An autonomous vehicle mission planner

    Science.gov (United States)

    Dudziak, M. J.

    1987-01-01

    The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.

  8. Development of a control system for an autonomous underwater vehicle

    OpenAIRE

    Masmitjà Rusiñol, Ivan; Masmitja Rusinyol, Gerard; González Agudelo, Julián; Shariat Panahi, Shahram; Gomáriz Castro, Spartacus

    2010-01-01

    This work proposes the development of a control system for an autonomous underwater vehicle dedicated to the observation of the oceans. The vehicle, a hybrid between Autonomous Underwater Vehicles (AUVs) and Autonomous Surface Vehicles (ASV), moves on the surface of the sea and makes vertical immersions to obtain profiles of a water column, according to a pre-established plan. The displacement of the vehicle on the surface allows the navigation through GPS and telemetr...

  9. Autonomous vehicle platforms from modular robotic components

    Science.gov (United States)

    Schonlau, William J.

    2004-09-01

    A brief survey of current autonomous vehicle (AV) projects is presented with intent to find common infrastructure or subsystems that can be configured from commercially available modular robotic components, thereby providing developers with greatly reduced timelines and costs and encouraging focus on the selected problem domain. The Modular Manipulator System (MMS) robotic system, based on single degree of freedom rotary and linear modules, is introduced and some approaches to autonomous vehicle configuration and deployment are examined. The modules may be configured to provide articulated suspensions for very rugged terrain and fall recovery, articulated sensors and tooling plus a limited capacity for self repair and self reconfiguration. The MMS on-board visually programmed control software (Model Manager) supports experimentation with novel physical configurations and behavior algorithms via real-time 3D graphics for operations simulation and provides useful subsystems for vision, learning and planning to host intelligent behavior.

  10. Developments and challenges for autonomous unmanned vehicles

    CERN Document Server

    Finn, Anthony

    2010-01-01

    It is widely anticipated that autonomous vehicles will have a transformational impact on military forces and will play a key role in many future force structures. As a result, many tasks have already been identified that unmanned systems could undertake more readily than humans. However, for this to occur, such systems will need to be agile, versatile, persistent, reliable, survivable and lethal. This will require many of the vehicles 'cognitive' or higher order functions to be more fully developed, whereas to date only the 'component' or physical functions have been successfully automated and

  11. Modelling tunnel thrusters for autonomous underwater vehicles

    OpenAIRE

    Palmer, A.; Hearn, G.E.; Stevenson, P

    2008-01-01

    With 900 Autonomous Underwater Vehicles (AUVs) required over the next decade (Newman et al., 2007) existing survey-style AUVs need improved utilization factors. Additional control devices to extend operational capability need consideration together with the interchange between AUV control approaches. This paper considers supplementary through-body tunnel thruster control during the transition from survey operation to low-speed manoeuvring. Modified manoeuvring equations permit investigation o...

  12. Model Predictive Control of Autonomous Vehicles

    OpenAIRE

    Zanon, Mario; Frasch, Janick V.; Vukov, Milan; Sager, Sebastian; Diehl, Moritz

    2014-01-01

    International audience The control of autonomous vehicles is a challenging task that requires advanced control schemes. Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) are optimization-based control and estimation techniques that are able to deal with highly nonlinear, constrained, unstable and fast dynamic systems. In this chapter, these techniques are detailed, a descriptive nonlinear model is derived and the performance of the proposed control scheme is dem...

  13. Impact of autonomous vehicles on urban mobility

    OpenAIRE

    Azmat, Muhammad

    2015-01-01

    The urban population is growing at an exponential rate throughout the world leading to the problems related to swift and speedy mobility or issues caused by convectional mobility options. This study illustrates and explores the new ways to transport people specially taking into account the self-driving cars concept and discusses the concept of mobility 4.0 (smart / intelligent mobility) and briefly highlights the technological aspects of autonomous vehicles, adaptation advantages and progress...

  14. Autonomous Underwater Vehicle „ABYSS“

    OpenAIRE

    Linke, Peter; Lackschewitz, Klas

    2016-01-01

    The Autonomous Underwater Vehicle (AUV) „ABYSS“ is a modular AUV designed to survey the ocean combining geophysical studies of the seafloor with oceanographic investigations of the overlying water column. The basic mission of ABYSS is deep-sea exploration, specifically in volcanically and tectonically active parts, such as mid-ocean ridges. With a maximum mission depth of 6000 meters, the AUV uses several technologies to map the seafloor accurately and determine its geological ...

  15. Autonomous Underwater Vehicle „ABYSS“

    OpenAIRE

    Linke, Peter; Lackschewitz, Klas

    2016-01-01

    The Autonomous Underwater Vehicle (AUV) „ABYSS“ is a modular AUV designed to survey the ocean combining geophysical studies of the seafloor with oceanographic investigations of the overlying water column. The basic mission of ABYSS is deep-sea exploration, specifically in volcanically and tectonically active parts, such as mid-ocean ridges. With a maximum mission depth of 6000 meters, the AUV uses several technologies to map the seafloor accurately and determine its geological structure with ...

  16. Sharing the road: the economics of autonomous vehicles

    OpenAIRE

    Lamotte, Raphaël; De Palma, André; GEROLIMINIS, Nikolas

    2016-01-01

    Automated cars are likely to change mobility substantially in the coming years. Much research is developed in engineering, about legal and behavioral issues, but the economics of autonomous vehicle remains an open area. In this paper, we consider a single-bottleneck situation, in which the capacity of the freeway is divided between conventional and autonomous vehicles. Users of conventional vehicles freely choose their departure time from home, while users of autonomous vehicles collaborate w...

  17. Autonomous Navigation, Guidance and Control of Small Electric Helicopter

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-01-01

    Full Text Available In this study, we design an autonomous navigation, guidance and control system for a small electric helicopter. Only small, light‐weight, and inaccurate sensors can be used for the control of small helicopters because of the payload limitation. To overcome the problem of inaccurate sensors, a composite navigation system is designed. The designed navigation system enables us to precisely obtain the position and velocity of the helicopter. A guidance and control system is designed for stabilizing the helicopter at an arbitrary point in three‐dimensional space. In particular, a novel and simple guidance system is designed using the combination of optimal control theory and quaternion kinematics. The designs of the study are validated experimentally, and the experimental results verify the efficiency of our navigation, guidance and control system for a small electric helicopter.

  18. Kinodynamic Motion Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Jiwung Choi

    2014-06-01

    Full Text Available This article proposes a computationally effective motion planning algorithm for autonomous ground vehicles operating in a semi-structured environment with a mission specified by waypoints, corridor widths and obstacles. The algorithm switches between two kinds of planners, (i static planners and (ii moving obstacle avoidance manoeuvre planners, depending on the mobility of any detected obstacles. While the first is broken down into a path planner and a controller, the second generates a sequence of controls without global path planning. Each subsystem is implemented as follows. The path planner produces an optimal piecewise linear path by applying a variant of cell decomposition and dynamic programming. The piecewise linear path is smoothed by Bézier curves such that the maximum curvatures of the curves are minimized. The controller calculates the highest allowable velocity profile along the path, consistent with the limits on both tangential and radial acceleration and the steering command for the vehicle to track the trajectory using a pure pursuit method. The moving obstacle avoidance manoeuvre produces a sequence of time-optimal local velocities, by minimizing the cost as determined by the safety of the current velocity against obstacles in the velocity obstacle paradigm and the deviation of the current velocity relative to the desired velocity, to satisfy the waypoint constraint. The algorithms are shown to be robust and computationally efficient, and to demonstrate a viable methodology for autonomous vehicle control in the presence of unknown obstacles.

  19. Fault Diagnosis of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2013-04-01

    Full Text Available In this study, we propose the least disturbance algorithm adding scale factor and shift factor. The dynamic learning ratio can be calculated to minimize the scale factor and shift factor of wavelet function and the variation of net weights and the algorithm improve the stability and the convergence of wavelet neural network. It was applied to build the dynamical model of autonomous underwater vehicles and the residuals are generated by comparing the outputs of the dynamical model with the real state values in the condition of thruster fault. Fault detection rules are distilled by residual analysis to execute thruster fault diagnosis. The results of simulation prove the effectiveness.

  20. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a

  1. A Proposed Standardized Testing Procedure for Autonomous Ground Vehicles

    OpenAIRE

    Alberi, Thomas James

    2008-01-01

    Development of unmanned vehicles will increase as the need to save lives rises. In both military and civilian applications, humans can be taken out of the loop through the implementation of safe and intelligent autonomous vehicles. Although hardware and software development continue to play a large role in the autonomous vehicle industry, validation of these systems will always be necessary. The ability to test these vehicles thoroughly and efficiently will ensure their proper and flawless...

  2. Integrated Simulation for Rapid Development of Autonomous Underwater Vehicles

    OpenAIRE

    Brutzman, Donald P.; Kanayama, Yutaka; Zyda, Michael J.

    1992-01-01

    The article of record may be found at http://dx.doi.org/10.1109/AUV.1992.225199 Autonomous Underwater Vehicle Technology, 1992. AUV '92., Proceedings of the 1992 Symposium on The autonomous underwater vehicle (AUV) integrated simulator has been designed to support complete scientific visualization of AUV vehicle performance. High-resolution 3D graphics workstations can provide real-time representations of vehicle dynamics, control system behavior, mission execution, sonar processing and...

  3. NONLINEAR ESTIMATION METHODS FOR AUTONOMOUS TRACKED VEHICLE WITH SLIP

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo; HAN Jianda

    2007-01-01

    In order to achieve precise, robust autonomous guidance and control of a tracked vehicle, a kinematic model with longitudinal and lateral slip is established. Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly. The first filter is the well-known extended Kalman filter. The second filter is an unscented version of the Kalman filter. The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution. The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies. The four different approaches have different complexities, behavior and advantages that are surveyed and compared.

  4. General outstanding considerations on legal issues applied to autonomous vehicles

    OpenAIRE

    Martinesco, Andrea; Etgens, Victor H.

    2015-01-01

    International audience Even if there are many differences between the autonomous vehicles and aviation, we have tried to show that the long history of automation in airplanes can be a source of inspiration to understand some legal aspects necessary to allow autonomous cars on the streets. Independent on the technological evolution, the premise of this work is to ask the questions that must be faced if a fatal accident involving an autonomous vehicle occurs. In this sense, criminal issues w...

  5. The social dilemma of autonomous vehicles.

    Science.gov (United States)

    Bonnefon, Jean-François; Shariff, Azim; Rahwan, Iyad

    2016-06-24

    Autonomous vehicles (AVs) should reduce traffic accidents, but they will sometimes have to choose between two evils, such as running over pedestrians or sacrificing themselves and their passenger to save the pedestrians. Defining the algorithms that will help AVs make these moral decisions is a formidable challenge. We found that participants in six Amazon Mechanical Turk studies approved of utilitarian AVs (that is, AVs that sacrifice their passengers for the greater good) and would like others to buy them, but they would themselves prefer to ride in AVs that protect their passengers at all costs. The study participants disapprove of enforcing utilitarian regulations for AVs and would be less willing to buy such an AV. Accordingly, regulating for utilitarian algorithms may paradoxically increase casualties by postponing the adoption of a safer technology. PMID:27339987

  6. Adaptive Surveying and Early Treatment of Crops with a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Bisgaard, Morten; Garcia-Ruiz, Francisco;

    2011-01-01

    The ASETA project (acronym for Adaptive Surveying and Early treatment of crops with a Team of Autonomous vehicles) is a multi-disciplinary project combining cooperating airborne and ground-based vehicles with advanced sensors and automated analysis to implement a smart treatment of weeds in agric......The ASETA project (acronym for Adaptive Surveying and Early treatment of crops with a Team of Autonomous vehicles) is a multi-disciplinary project combining cooperating airborne and ground-based vehicles with advanced sensors and automated analysis to implement a smart treatment of weeds...... system (UAS) and unmanned ground vehicles (UGV) with advanced vision sensors for 3D and multispectral imaging. This paper presents the scientific and technological challenges in the project, which include multivehicle estimation and guidance, heterogeneous multi-agent systems, task generation...

  7. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  8. Cartography For Cooperative Manoeuvres With Autonomous Land Vehicles

    OpenAIRE

    González Fernández-Vallejo, Carlos; Pedro Lucio, María Teresa de; Alonso Ruiz, Javier; Milanés Montero, Vicente; Onieva Caracuel, Enrique; Pérez, Joshué

    2011-01-01

    International audience This article presents a cartographic system to facilitate cooperative manoeuvres among autonomous vehicles in a well-known environment. The main objective is to design an extended cartographic system to help in the navigation of autonomous vehicles. This system has to allow the vehicles not only to access the reference points needed for navigation, but also noticeable information such as the location and type of traffic signals, the proximity to a crossing, the stree...

  9. Autonomous mobile robots: Vehicles with cognitive control

    Energy Technology Data Exchange (ETDEWEB)

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  10. AUTONOMOUS UNDERWATER HYBRID VEHICLE FOR OCEAN SURVEILLANCE

    Directory of Open Access Journals (Sweden)

    KIRUBAKARAN.S,

    2011-05-01

    Full Text Available Coastal areas are among the most vulnerable of all regions to global climate change. Projected impacts from global warming include rising sea levels, intensification of tropical cyclones, larger storm surges, increasing sea-surface temperatures, and – as the oceans absorb more of the carbon dioxide human activities emit to theatmosphere – growing acidification of surface waters. With an estimated 50 per cent of the world’s population now living within 60km of the coast and 60 per cent of cities with population over 5 million located within 100 km of the coast, the Potential impacts of climate change on coastal development and infrastructure is considerable. On-going development has manifested in the form of urban centers, tourist resorts, ports and Industrial areas. The rising sea levels and larger storm surges caused by climate change Threaten to compound such risks. In order to understand the Ocean systems, continuous time series Observation is essential and development of innovative Autonomous Underwater Vehicle (AUV with suite of sensors would be very useful.

  11. Autonomous Underwater Vehicle Thermoelectric Power Generation

    Science.gov (United States)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  12. Depth perception camera for autonomous vehicle applications

    Science.gov (United States)

    Kornreich, Philipp

    2013-05-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. Since it provides numeric information of the distance from the camera to all points in its field of view it is ideally suited for autonomous vehicle navigation and robotic vision. This eliminates the LIDAR conventionally used for range measurements. The light arriving at a pixel through a convex lens adds constructively only if it comes from the object point in focus at this pixel. The light from all other object points cancels. Thus, the lens selects the point on the object who's range is to be determined. The range measurement is accomplished by short light guides at each pixel. The light guides contain a p - n junction and a pair of contacts along its length. They, too, contain light sensing elements along the length. The device uses ambient light that is only coherent in spherical shell shaped light packets of thickness of one coherence length. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel.

  13. Dynamic formation control for autonomous underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    燕雪峰; 古锋; 宋琛; 胡晓琳; 潘毅

    2014-01-01

    Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles (AUVs) to collaborate with each other. In this work, a dynamic formation model was proposed, in which several algorithms were developed for the complex underwater environment. Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes. Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles. Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation. The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated. Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness, even with a concave obstacle. It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.

  14. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Gheorghe Polizu, no. 1, PC 011061, Sector 1, Bucharest (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Sector 6, Bucharest (Romania)

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  15. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    International Nuclear Information System (INIS)

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed

  16. Real-time scheduling and synchronization for the NPS Autonomous Underwater Vehicle

    OpenAIRE

    Makris, Dionysios

    1991-01-01

    The work described in this thesis is part of a multi-year research project to develop an Autonomous Underwater Vehicle (AUV-II), which is an intelligent robot submarine, carried out by the Departments of Mechanical Engineering, Computer Science, and Electrical and Computer Engineering of the Naval Postgraduate School. The AUV-II on-board computer must perform several different tasks such as navigation, autopilot, guidance, sonar processing and collision avoidance, etc., under strict timing c...

  17. Sensor Fault Detection and Diagnosis for autonomous vehicles

    OpenAIRE

    Realpe Miguel; Vintimilla Boris; Vlacic Ljubo

    2015-01-01

    In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed ar...

  18. Coordinated operation of autonomous underwater and surface vehicles

    OpenAIRE

    Anibal Matos; Nuno Cruz

    2007-01-01

    This work addresses the coordinated operation of an autonomous underwater vehicle and an autonomous surface vessel and its main goal is the development of an infrastructure that allows the surface vessel to dynamically position itself above the underwater vehicle while the later one is collecting data and navigating in long baseline mode using a set of beacons installed in the operation area. Besides a formal statement of the coordination problem, we present results both from real experiments...

  19. A Dynamic Manipulation Strategy for an Intervention Autonomous Underwater Vehicle

    OpenAIRE

    Ridolfi, Alessandro; Conti, Roberto; Costanzi, Riccardo; Fanelli, Francesco; Meli, Enrico

    2015-01-01

    This paper presents the modelling and the control architecture of an Autonomous Underwater Vehicle for Intervention (I-AUV). Autonomous underwater manipulation with free-floating base is still an open topic of research, far from reaching an industrial product. Dynamic manipulation tasks, where relevant vehicle velocities are required during manipulation, over an additional challenge. In this paper, the accurate modelling of an I-AUV is described, not neglecting the interaction wit...

  20. A real time autonomous underwater vehicle Dynamic Simulator

    OpenAIRE

    Jurewicz, Thomas A.

    1990-01-01

    The NPS Autonomous Underwater Vehicle Simulator is a joint project between the Naval Postgraduate School's Mechanical Engineering and Computer Science Departments. In order to test mission planning and execution software, an accurate vehicle dynamic model is required. Using dynamics based upon the Navy's Swimmer Delivery Vehicle (SDV), there is a need to continually update the hydrodynamic coefficients based upon actual vehicle-in-water testing. The NPS AUV Dynamic Simulator contains a full s...

  1. A guidance law for UAV autonomous aerial refueling based on the iterative computation method

    Directory of Open Access Journals (Sweden)

    Luo Delin

    2014-08-01

    Full Text Available The rendezvous and formation problem is a significant part for the unmanned aerial vehicle (UAV autonomous aerial refueling (AAR technique. It can be divided into two major phases: the long-range guidance phase and the formation phase. In this paper, an iterative computation guidance law (ICGL is proposed to compute a series of state variables to get the solution of a control variable for a UAV conducting rendezvous with a tanker in AAR. The proposed method can make the control variable converge to zero when the tanker and the UAV receiver come to a formation flight eventually. For the long-range guidance phase, the ICGL divides it into two sub-phases: the correction sub-phase and the guidance sub-phase. The two sub-phases share the same iterative process. As for the formation phase, a velocity coordinate system is created by which control accelerations are designed to make the speed of the UAV consistent with that of the tanker. The simulation results demonstrate that the proposed ICGL is effective and robust against wind disturbance.

  2. A guidance law for UAV autonomous aerial refueling based on the iterative computation method

    Institute of Scientific and Technical Information of China (English)

    Luo Delin; Xie Rongzeng; Duan Haibin

    2014-01-01

    The rendezvous and formation problem is a significant part for the unmanned aerial vehicle (UAV) autonomous aerial refueling (AAR) technique. It can be divided into two major phases: the long-range guidance phase and the formation phase. In this paper, an iterative computation guidance law (ICGL) is proposed to compute a series of state variables to get the solu-tion of a control variable for a UAV conducting rendezvous with a tanker in AAR. The proposed method can make the control variable converge to zero when the tanker and the UAV receiver come to a formation flight eventually. For the long-range guidance phase, the ICGL divides it into two sub-phases: the correction sub-phase and the guidance sub-phase. The two sub-phases share the same iterative process. As for the formation phase, a velocity coordinate system is created by which control accelerations are designed to make the speed of the UAV consistent with that of the tanker. The simulation results demonstrate that the proposed ICGL is effective and robust against wind disturbance.

  3. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    Science.gov (United States)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  4. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  5. A Conceptual Framework for Design of Embedded Systems and Data Communication for Autonomous Vehicles

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Bendtsen, Jan Dimon; Nielsen, Kirsten Mølgaard;

    2005-01-01

    This paper describes a conceptual framework for the development of a hierarchal control architecture for an autonomous vehicle. The concept is based on time/frequency and safety analysis on board the vehicle. The time/frequency analysis is used to structure the guidance, navigation and control...... systems in a set of time rings each demanding actions equal in time magnitude. The safety analysis can in an equal way structure the system in safety rings, each demanding fault and failure handling at the same level. The concept deals with the widely differing time demands at different control levels on......-board the vehicle, the integration of sensors and actuators using different communication protocols, integration of wireless communication to a base and payload data handling as well as control, reliability and safety issues. The system is implemented on an autonomous platform mapping spatial density of weed...

  6. Engineering students win autonomous vehicle competition for third year

    OpenAIRE

    Crumbley, Liz

    2006-01-01

    For the third year in a row, the Virginia Tech College of Engineering's Autonomous Vehicle Team swept the international Intelligent Ground Vehicle Competition (IGVC), winning best and second-best overall and placing first in the three top event categories. The team of mechanical engineering (ME) students also was awarded $15,000 in prize money.

  7. Coordinated control of networked vehicles: An autonomous underwater system

    OpenAIRE

    Pereira, FL; de Sousa, JB

    2004-01-01

    The specification and design of coordinated control strategies for networked vehicle systems are discussed. The discussion is illustrated with an example of the coordinated operation of two teams of autonomous underwater vehicles collecting data to find the local minimum of a given oceanographic scalar field.

  8. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  9. Analysis and innovation of key technologies for autonomous underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    高富东; 韩艳艳; 王海东; 徐男

    2015-01-01

    As the mission needs of the autonomous underwater vehicles (AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV’s key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.

  10. Aquatic flight inspired propulsion for autonomous underwater vehicles

    OpenAIRE

    Man, S.

    2015-01-01

    Modern Autonomous Underwater Vehicle (AUV) technology has a number of limitations and one of these is vehicle manoeuvrability. Conventional flight style AUVs generally have turning circle diameters of five or more vehicle lengths, but most marine animals can turn in under one body length. This shows there is merit in looking at marine animals for inspiration to improve the manoeuvrability of AUVs. Aquatic flight propulsion is one marine animal propulsion strategy that was identified early in ...

  11. Autonomous Underwater Vehicle (AUV) Propulsion System Analysis and Optimization

    OpenAIRE

    Schultz, James Allen

    2009-01-01

    One of the largest design considerations for autonomous underwater vehicles (AUVâ s) that have specific mission scenarios is the propulsive efficiency. The propulsive efficiency affects the amount of power storage required to achieve a specific mission. As the efficiency increases the volume of energy being stored decreases. The decrease in volume allows for a smaller vehicle, which results in a vehicle that requires less thrust to attain a specific speed. The process of selecting an eff...

  12. Autonomous intelligent vehicles theory, algorithms, and implementation

    CERN Document Server

    Cheng, Hong

    2011-01-01

    Here is the latest on intelligent vehicles, covering object and obstacle detection and recognition and vehicle motion control. Includes a navigation approach using global views; introduces algorithms for lateral and longitudinal motion control and more.

  13. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  14. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  15. Resource-Optimal Planning For An Autonomous Planetary Vehicle

    Directory of Open Access Journals (Sweden)

    Giuseppe Della Penna

    2010-07-01

    Full Text Available Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with a variety of sensors used to perform exploration and experiments on a planet’s surface. Rovers work in a partially unknown environment, with narrow energy/time/movement constraints and, typically, small computational resources that limit the complexity of on-line planning and scheduling, thus they represent a great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usually involve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the current planning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, for example for rovers that operate without a continuous Earth supervision, such planning is often performed on simplified models that are not completely realistic. In this paper we show how the UPMurphi model checking based planning tool can be used to generate resource-optimal plans to control the engine of an autonomous planetary vehicle, working directly on its hybrid model and taking into account several safety constraints, thus achieving very accurate results.

  16. Vision for Autonomous Vehicles and Probes (Dagstuhl Seminar 15461)

    OpenAIRE

    Bruhn, André; Imiya, Atsushi; Leonardis, Ales; Pajdla, Tomas

    2016-01-01

    The vision-based autonomous driving and navigation of vehicles has a long history. In 2013, Daimler succeeded autonomous driving on a public drive way. Today, the Curiosity mars rover is sending video views from Mars to Earth. Computer vision plays a key role in advanced driver assistance systems (ADAS) as well as in exploratory and service robotics. Continuing topics of interest in computer vision are scene and environmental understanding using single- and multiple-camera systems, which are ...

  17. Autonomous underwater vehicle control using reinforcement learning policy search methods

    OpenAIRE

    El-Fakdi Sencianes, Andrés; Carreras Pérez, Marc; Palomeras Rovira, Narcís; Ridao Rodríguez, Pere

    2005-01-01

    Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search...

  18. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  19. Study on a human guidance method for autonomous cruise of indoor robot

    Science.gov (United States)

    Jia, Bao-Zhi; Zhu, Ming

    2011-12-01

    This paper describes a method of human guidance for autonomous cruise of indoor robot. A low-cost robot follows a person in a room and notes the path for autonomous cruise using its monocular vision. A method of video-based object detection and tracking is taken to detect the target by the video received from the robot's camera. The validity of the human guidance method is proved by the experiment.

  20. Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis

    OpenAIRE

    Hevelke, Alexander; Nida-Rümelin, Julian

    2014-01-01

    A number of companies including Google and BMW are currently working on the development of autonomous cars. But if fully autonomous cars are going to drive on our roads, it must be decided who is to be held responsible in case of accidents. This involves not only legal questions, but also moral ones. The first question discussed is whether we should try to design the tort liability for car manufacturers in a way that will help along the development and improvement of autonomous vehicles. In p...

  1. Inertial Navigation and Mapping for Autonomous Vehicles

    OpenAIRE

    Skoglund, Martin

    2014-01-01

    Navigation and mapping in unknown environments is an important building block for increased autonomy of unmanned vehicles, since external positioning systems can be susceptible to interference or simply being inaccessible. Navigation and mapping require signal processing of vehicle sensor data to estimate motion relative to the surrounding environment and to simultaneously estimate various properties of the surrounding environment. Physical models of sensors, vehicle motion and external influ...

  2. Autonomous Navigation Apparatus With Neural Network for a Mobile Vehicle

    Science.gov (United States)

    Quraishi, Naveed (Inventor)

    1996-01-01

    An autonomous navigation system for a mobile vehicle arranged to move within an environment includes a plurality of sensors arranged on the vehicle and at least one neural network including an input layer coupled to the sensors, a hidden layer coupled to the input layer, and an output layer coupled to the hidden layer. The neural network produces output signals representing respective positions of the vehicle, such as the X coordinate, the Y coordinate, and the angular orientation of the vehicle. A plurality of patch locations within the environment are used to train the neural networks to produce the correct outputs in response to the distances sensed.

  3. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    OpenAIRE

    Tianhong Yan; Yan Liang; Shujing Zhang; Chao Li; Bo He; Hongjin Zhang

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespec...

  4. A Priori User Acceptance and the Perceived Driving Pleasure in Semi-autonomous and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Bjørner, Thomas

    The aim of this minor pilot study is, from a sociological user perspective, to explore a priori user acceptance and the perceived driving pleasure in semi- autonomous and autonomous vehicles. The methods used were 13 in-depth interviews while having participants watch video examples within four...... different scenarios. After each scenario, two different numerical rating scales were used. There was a tendency toward positive attitudes regarding semi- autonomous driving systems, especially the use of a parking assistant and while driving in city traffic congestion. However, there were also major...

  5. Trajectory generation for an on-road autonomous vehicle

    Science.gov (United States)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  6. Autonomous Vehicle Transportation Using Wireless Technology

    Directory of Open Access Journals (Sweden)

    M.Ragul

    2013-04-01

    Full Text Available This paper illustrates the use of a vehicle in several industries and is capable of reducing extra strenuous and/or time consuming activities of humans. The main concentration of this work was onvehicle navigation, tracking, obstacle detection, weight overload, battery power measuring and also be able to locate the respective service station goods. Vehicle navigation employs RFID technology. TheRFID reader is installed in the vehicle and reads the tags which are placed along its route. Whenever a vehicle reaches a service station it sends a message to the workers. Upon receiving a message, the workers can collect the respective service station goods using RFID. If the wrong goods are taken out of the vehicle, the buzzer gets activated. The obstacle detection can be done by ultrasonic sensors. If any obstacle in the route is detected, the message is sent to the control station of the industry using the GSM module. The load cell is used to indicate the weight overload to the workers. Two batteries have been together utilized to measure the required power by this developed vehicle. As soon as Battery1 becomes dry, the battery2 is made the main source of power and a message is sent to the control station through GSM. The control station having a GSM module receives the message and the result will be displayed in hyper terminal window on the PC (personal computer. The vehicle transportation uses PICmicrocontroller, sensors and wireless technology.

  7. A simplified guidance algorithm for lifting aeroassist orbital transfer vehicles

    Science.gov (United States)

    Cerimele, C. J.; Gamble, J. D.

    1985-01-01

    The derivation, logic, and performance of a simplified atmospheric guidance algorithm for aeroassist orbital-transfer vehicles (AOTVs) are presented. The algorithm was developed to meet the demands for an aerobraking trajectory guidance technique that was uncomplicated, easily integrated into existing trajectory programs, adaptable to a range of vehicle aerodynamic configurations, capable of performance equivalent to currently available guidance programs in compensating for dispersions in entry conditions, atmospheric conditions, and aerodynamic characteristics. The result was a hybrid lifting guidance algorithm combining the method of reference-profile generation with the method of predictor/corrector schemes. The resulting performance is good (less than 3 n.m. error from desired apogee despite uncertainties of + or - 50 percent atmospheric density, + or - 0.2 deg entry flight-path angle, or + or - 50 percent L/D. Combinations of these same dispersions with lesser magnitudes have also been successful, although performance with density 'pockets' within the atmosphere requires more analysis.

  8. Reactive Planning of Autonomous Vehicles for Traffic Scenarios

    OpenAIRE

    Rahul Kala; Kevin Warwick

    2015-01-01

    Autonomous vehicles operate in real time traffic scenarios and aim to reach their destination from their source in the most efficient manner possible. Research in mobile robotics provides a variety of sophisticated means with which to plan the path of these vehicles. Conversely professional human drivers usually drive using instinctive means, which enables them to reach their goal almost optimally whilst still obeying all traffic laws. In this paper we propose the use of fuzzy logic for novel...

  9. Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions

    OpenAIRE

    Marta Niccolini; Lorenzo Pollini; Mario Innocenti

    2014-01-01

    The paper presents a novel methodology for the control management of a swarm of autonomous vehicles. The vehicles, or agents, may have different skills, and be employed for different missions. The methodology is based on the definition of descriptor functions that model the capabilities of the single agent and each task or mission. The swarm motion is controlled by minimizing a suitable norm of the error between agents’ descriptor functions and other descriptor functions which models the enti...

  10. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  11. Autonomous underwater vehicles modeling, control design and simulation

    CERN Document Server

    Wadoo, Sabiha

    2010-01-01

    Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate. Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simula

  12. An Autonomous Navigation System for Unmanned Underwater Vehicle

    OpenAIRE

    Kim, Seong-Gon; Kim, Yong-Gi

    2009-01-01

    This paper designed a RVC intelligent system model that can be applied to various unmanned vehicles and the underwater vehicle's intelligent autonomous navigation system was designed consisting of a collision avoidance system, a navigation system and a collision risk computation based on a Virtual world system. During the development of the Virtual world system, several points such as the fusion of different techniques, preservation of system consistency, real time system processing etc. were...

  13. The control system of an autonomous underwater vehicle

    OpenAIRE

    Bjørn Jalving; Nils Størkersen

    1995-01-01

    This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV) developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  14. Contour tracking control for the REMUS autonomous underwater vehicle

    OpenAIRE

    Van Reet, Alan R.

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation. Use of a contour tracking control algorithm in lieu of preprogrammed waypoint navigation offers distinct advantages within new challenges. The difficult nature of this problem lies in the non-trivial connection between the necessary corrective action and the feedback error used in traditional co...

  15. Unified Trajectory Planning Algorithms for Autonomous Underwater Vehicle Navigation

    OpenAIRE

    Gal, Oren

    2013-01-01

    This paper presents two efficient methods for obstacle avoidance and path planning for Autonomous Underwater Vehicle (AUV). These methods take into account the dynamic constraints of the vehicle using advanced simulator of AUV considering low level control and stability effects. We present modified visibility graph local avoidance method and a spiral algorithm for obstacle avoidance. The algorithms were tested in challenged scenarios demonstrating safe trajectory planning.

  16. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle

    Science.gov (United States)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  17. Resource-Optimal Planning For An Autonomous Planetary Vehicle

    Directory of Open Access Journals (Sweden)

    Giuseppe Della Penna

    2010-07-01

    Full Text Available Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with avariety of sensors used to perform exploration and experiments on a planet’s surface. Rovers work in apartially unknown environment, with narrow energy/time/movement constraints and, typically, smallcomputational resources that limit the complexity of on-line planning and scheduling, thus they representa great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usuallyinvolve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the currentplanning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, forexample for rovers that operate without a continuous Earth supervision, such planning is often performedon simplified models that are not completely realistic. In this paper we show how the UPMurphi modelchecking based planning tool can be used to generate resource-optimal plans to control the engine of anautonomous planetary vehicle, working directly on its hybrid model and taking into account severalsafety constraints, thus achieving very accurate results.

  18. Feasible Path Planning for Autonomous Vehicles

    OpenAIRE

    Vu Trieu Minh; John Pumwa

    2014-01-01

    The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the d...

  19. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    Science.gov (United States)

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  20. Sensor Fault Detection and Diagnosis for autonomous vehicles

    Directory of Open Access Journals (Sweden)

    Realpe Miguel

    2015-01-01

    Full Text Available In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.

  1. GPS/DR Error Estimation for Autonomous Vehicle Localization

    Directory of Open Access Journals (Sweden)

    Byung-Hyun Lee

    2015-08-01

    Full Text Available Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  2. Three Anecdotes from the DARPA Autonomous Land Vehicle Project

    OpenAIRE

    Shapiro, Daniel G.; Institute for the Study of Learning and Expertise

    2008-01-01

    The DARPA Autonomous Land Vehicle was a 12’ tall, 8-wheeled robot with multiple sensors, tasked to go from point A to point B without human intervention in the hills outside of Denver in c. 1985. This was a large applied research effort that presented many opportunities for unusual experiences.

  3. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload. T

  4. Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis

    Science.gov (United States)

    Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful

    2016-02-01

    This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.

  5. Visual inspection of sea bottom structures by an autonomous underwater vehicle.

    Science.gov (United States)

    Foresti, G L

    2001-01-01

    This paper describes a vision-based system for inspections of underwater structures, e.g., pipelines, cables, etc., by an autonomous underwater vehicle (AUV). Usually underwater inspections are performed by remote operated vehicles (ROVs) driven by human operators placed in a support vessel. However, this task is often challenging, especially in conditions of poor visibility or in presence of strong currents. The system proposed allows the AUV to accomplish the task in autonomy. Moreover, the use of a three-dimensional (3-D) model of the environment and of an extended Kalman filter (EKF) allows the guidance and the control of the vehicle in real time. Experiments done on real underwater images have demonstrated the validity of the proposed method and its efficiency in the case of critical and complex situations.

  6. Visual inspection of sea bottom structures by an autonomous underwater vehicle.

    Science.gov (United States)

    Foresti, G L

    2001-01-01

    This paper describes a vision-based system for inspections of underwater structures, e.g., pipelines, cables, etc., by an autonomous underwater vehicle (AUV). Usually underwater inspections are performed by remote operated vehicles (ROVs) driven by human operators placed in a support vessel. However, this task is often challenging, especially in conditions of poor visibility or in presence of strong currents. The system proposed allows the AUV to accomplish the task in autonomy. Moreover, the use of a three-dimensional (3-D) model of the environment and of an extended Kalman filter (EKF) allows the guidance and the control of the vehicle in real time. Experiments done on real underwater images have demonstrated the validity of the proposed method and its efficiency in the case of critical and complex situations. PMID:18244834

  7. Autonomous Vehicle-to-Vehicle (V2V Decision Making in Roundabout using Game Theory

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2016-08-01

    Full Text Available Roundabout intersections promote a continuous flow of traffic. Roundabouts entry move traffic through an intersection more quickly, and with less congestion on approaching roads. With the introduction of smart vehicles and cooperative decision-making, roundabout management shortens the waiting time and leads to a more efficient traffic without breaking the traffic laws and earning penalties. This paper proposes a novel approach of cooperative behavior strategy in conflict situations between the autonomous vehicles in roundabout using game theory. The game theory presents a strategic decision-making technique between independent agents - players. Each individual player tends to achieve best payoff, by analyzing possible actions of other players and their influence on game outcome. The Prisoner's Dilemma game strategy is selected as approach to autonomous vehicle-to-vehicle (V2V decision making at roundabout test-bed, because the commonly known traffic laws dictate certain rules of vehicle's behavior at roundabout. It is shown that, by integrating non-zero-sum game theory in autonomous vehicle-to-vehicle (V2V decision making capabilities, the roundabout entry problem can be solved efficiently with shortened waiting times for individual autonomous vehicles.

  8. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  9. Development of an Autonomous Vehicle for Weed and Crop Registration

    DEFF Research Database (Denmark)

    Pedersen, Tom Søndergaard; Nielsen, Kirsten Mølgaard; Andersen, Palle;

    degree of autonomy. The vehicle is part of an autonomous information system for crop and weed registration in fields which is developed at Aalborg University and The Danish Institute of Agricultural Science. The system consists of the vehicle and a stationary base station as well as a wireless...... communication system between the two. The base station is the main interface to the farmer. Based on farmer information a route plan for data collection is created in the base station and send to the vehicle. The vehicle collects field data using two cameras one determinates the total weed pressure and one...... determinates individual species. The weed data are transmitted to the base station where weed maps are calculated. The route plan is based on a grid calculated from a priori weed spatial density knowledge. The route plan consists of a set of field coordinates; at each coordinate vehicle operations are defined...

  10. Design, implementation and testing of a common data model supporting autonomous vehicle compatibility and interoperability

    OpenAIRE

    Davis, Duane T.

    2006-01-01

    Current autonomous vehicle interoperability is limited by vehicle-specific data formats and support systems. Until a standardized approach to autonomous vehicle command and control is adopted, true interoperability will remain elusive. This work explores the applicability of a data model supporting arbitrary vehicles using the Extensible Markup Language (XML). An exemplar, the Autonomous Vehicle Command Language (AVCL), encapsulates behavior-scripted mission definition, goalbased mission de...

  11. Fault-Tolerant Vision for Vehicle Guidance in Agriculture

    DEFF Research Database (Denmark)

    Blas, Morten Rufus

    The emergence of widely available vision technologies is enabling for a wide range of automation tasks in industry and other areas. Agricultural vehicle guidance systems have benefitted from advances in 3D vision based on stereo camera technology. By automatically guiding vehicles along crops...... the field that is seen by the stereo camera, it is possible to support the guidance system by storing salient information about the environment. By tracking the motion of the vehicle, vision output can be fused over time to create more reliable and robust estimates of crop location. This thesis approaches...... and other field structures the operator’s stress levels can be reduced. High precision steering in sensitive crops can also be maintained for longer periods of time as the driver is less tired. Safety and availabilitymust be inherent in such systems in order to get widespread market acceptance. To tolerate...

  12. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    OpenAIRE

    Heddebaut, M.; Rioult, J.; GHYS, JP; GRANSART, C; AMBELLOUIS, S

    2005-01-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driv...

  13. Ant Colony Based Path Planning Algorithm for Autonomous Robotic Vehicles

    Directory of Open Access Journals (Sweden)

    Yogita Gigras

    2012-11-01

    Full Text Available The requirement of an autonomous robotic vehicles demand highly efficient algorithm as well as software. Today’s advanced computer hardware technology does not provide these types of extensive processing capabilities, so there is still a major space and time limitation for the technologies that are available for autonomous robotic applications. Now days, small to miniature mobile robots are required for investigation, surveillance and hazardous material detection for military and industrial applications. But these small sized robots have limited power capacity as well as memory and processing resources. A number of algorithms exist for producing optimal path for dynamically cost. This paper presents a new ant colony based approach which is helpful in solving path planning problem for autonomous robotic application. The experiment of simulation verified its validity of algorithm in terms of time.

  14. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  15. Design of an autonomous lunar construction utility vehicle

    Science.gov (United States)

    1990-01-01

    In order to prepare a site for a lunar base, an autonomously operated construction vehicle is necessary. Discussed here is a Lunar Construction Utility Vehicle (LCUV), which uses interchangeable construction implements. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device has been designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and a computer interface. A study of hydrogen-oxygen fuel cells produced estimates of reactant and product requirements and identified multilayer insulation needs. Research on the 100-kW heat rejection system determined that it is necessary to transport the radiator panel on a utility trailer. Extensive logistical support for the 720 hour use cycle requires further study.

  16. Design and Implementation of Autonomous Sonar Based Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Ansari

    2011-07-01

    Full Text Available Autonomous robots are intelligent machines that are capable of performing desired tasks by themselves, without explicit human control. This paper presents design and implementation of the ASVR (Autonomous Sonar Based Vehicle Robot. ASVR is a microcontroller based, programmable mobile robot that can sense and react to its environment and can work in partially known and unpredictable environments. A novel algorithm based on ultrasonic sensors and simple calculations for real-time obstacle detection and avoidance that is intended for mobile robots is also outlined. Also a novel technique is proposed and implemented for steering referencing of vehicle. The design is implemented in air using ultrasonic sensors but can be adapted using sonar to underwater environments where it has important applications such as deep sea maintenance and reconnaissance tasks. The paper also presents performance results of a prototype developed to prove the design concept.

  17. INS integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  18. Simulation platform of navigation system for autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Zheng; BIAN Xin-qian

    2006-01-01

    In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.

  19. JUSTINA: A platform for autonomous land vehicle research and development

    Science.gov (United States)

    Juhala, Matti

    A platform for autonomous land vehicle research and development was developed. The platform makes it possible to conduct tests in natural surroundings. The platform is based on a small car, which was modified and equipped for computer control. The car is equipped with a controller area network, which makes it possible to use parallel processing. The computer system and the modifications made are described. Programs for basic image processing were written and they are tested in a simple line following application. The programs allow different image processing tasks to be done on a desktop computer using either a recorded video signal or digitized images from natural scenes. Special attention was paid to the camera calibration procedure. A simple vehicle model was created for hardware in the loop testing of image processing and vehicle control algorithms. The model uses artificially produced road images. The vehicle is equipped with a differential Global Positioning System (GPS) navigation system, which was tested on an open field application. This platform is modular and can be easily adapted for different research purposes in autonomous land vehicle development.

  20. Autonomous guided vehicles applied to industrial engineering and management studies

    OpenAIRE

    Dias, André; Dias, Nuno; Campos, Daniela; Ferreira, Hugo

    2010-01-01

    This article presents a framework to an Industrial Engineering and Management Science course from School of Management and Industrial Studies using Autonomous Ground Vehicles (AGV) to supply materials to a production line as an experimental setup for the students to acquire knowledge in the production robotics area. The students must be capable to understand and put into good use several concepts that will be of utmost importance in their professional life such as critical decisions regard...

  1. Target representation on an autonomous vehicle with low level sensors

    OpenAIRE

    Bicho, E.; Mallet, Pierre; Schöner, Gregor

    2000-01-01

    How can low-level autonomous robots with only very simple sensor systems be endowed with cognitive capabilities? Specifically, we consider a system that uses seven infrared sensors and five microphones to avoid obstacles and acquire sound targets. The cognitive abilities of the vehicle consist of representing the direction in which a sound source lies. This representation supports target detection, estimation of target direction, selection of one out of multiple-detected targets, storage of t...

  2. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  3. Caroline: An Autonomously Driving Vehicle for Urban Environments

    OpenAIRE

    Rauskolb, Fred W.; Berger, Kai; Lipski, Christian; Magnor, Marcus; Cornelsen, Karsten; Effertz, Jan; Form, Thomas; Graefe, Fabian; Ohl, Sebastian; Schumacher, Walter; Wille, Jörn Marten; Hecker, Peter; Nothdurft, Tobias; Doering, Michael; Homeier, Kai

    2014-01-01

    The 2007 DARPA Urban Challenge afforded the golden opportunity for the Technische Universit\\"at Braunschweig to demonstrate its abilities to develop an autonomously driving vehicle to compete with the world's best competitors. After several stages of qualification, our team CarOLO qualified early for the DARPA Urban Challenge Final Event and was among only eleven teams from initially 89 competitors to compete in the final. We had the ability to work together in a large group of experts, each ...

  4. 3D Road Scene Interpretation for Autonomous Vehicle Driving

    OpenAIRE

    Foresti, Gian Luca; Regazzoni, Carlo

    1999-01-01

    In this paper, the problem of 3D road scene interpretation for autonomous vehicle driving is addressed. In particular, the problems of road detection and obstacle avoidance in outdoor environments are investigated. A set of descriptive primitives (straight and circular line segments) is selected to describe 3D objects which commonly occur in road scenes, e.g., people, cars, trucks, houses, etc. First, these primitives are extracted directly from the input image of the scene, and then are grou...

  5. An Approach to Simulate Autonomous Vehicles in Urban Traffic Scenarios

    OpenAIRE

    figueiredo, mc; rossetti, rjf; braga, ram; reis, lp

    2009-01-01

    The most common cause of traffic accidents is arguably the driver error due to lack of attention. And it is very unlikely this is going to change soon thanks to increasingly cell-phone usage, in-car entertainment systems, and naturally the more frequent traffic jams in highly populated areas. Autonomous vehicles, such as driverless cars, are a promising approach to decrease traffic accidents, as well as congestions. To test this approach, simulations are a safer, more efficient, and cheaper w...

  6. On-line trajectory planning for autonomous spraying vehicles

    OpenAIRE

    Urcola, Pablo; Duckett, Tom; Cielniak, Grzegorz

    2014-01-01

    In this paper, we present a new application of on-line trajectory planning for autonomous sprayers. The current generation of these vehicles use automatic controllers to maintain the height of the spraying booms above the crop. However, such systems are typically based on ultrasonic sensors mounted directly on the booms, which limits the response of the controller to changes in the terrain, resulting in a suboptimal spraying process. To overcome these limitations, we propose to use 3D maps...

  7. Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses

    OpenAIRE

    Wurman, Peter R.; North Carolina State University; D'Andrea, Raffaello; ETH Zurich; Mountz, Mick; Kiva Systems

    2008-01-01

    The Kiva warehouse-management system creates a new paradigm for pick-pack-and-ship warehouses that significantly improves worker productivity. The Kiva system uses movable storage shelves that can be lifted by small, autonomous robots. By bringing the product to the worker, productivity is increased by a factor of two or more, while simultaneously improving accountability and flexibility. A Kiva installation for a large distribution center may require 500 or more vehicles. As such, the Kiva s...

  8. Fish telemetry and positioning from an autonomous underwater vehicle (AUV)

    OpenAIRE

    Thomas M. Grothues; Dobarro, Joseph A.

    2010-01-01

    We explored telemetry of transmitter tagged fishes from an autonomous underwater vehicle with a hydrophone/ datalogger processing code-division-multiple- access acoustic signals. Geolocation estimates used synthetic aperture and relative sound strength mapping. Signal reception patterns from tagged Atlantic sturgeon were similar to that of moored reference tags but those from tagged winter flounder were reduced in range due to burying behavior. Peer Reviewed

  9. Guidance and control for an autonomous soaring UAV

    Science.gov (United States)

    Allen, Michael J. (Inventor)

    2008-01-01

    The present invention provides a practical method for UAVs to take advantage of thermals in a manner similar to piloted aircrafts and soaring birds. In general, the invention is a method for a UAV to autonomously locate a thermal and be guided to the thermal to greatly improve range and endurance of the aircraft.

  10. Automated Search-Based Robustness Testing for Autonomous Vehicle Software

    Directory of Open Access Journals (Sweden)

    Kevin M. Betts

    2016-01-01

    Full Text Available Autonomous systems must successfully operate in complex time-varying spatial environments even when dealing with system faults that may occur during a mission. Consequently, evaluating the robustness, or ability to operate correctly under unexpected conditions, of autonomous vehicle control software is an increasingly important issue in software testing. New methods to automatically generate test cases for robustness testing of autonomous vehicle control software in closed-loop simulation are needed. Search-based testing techniques were used to automatically generate test cases, consisting of initial conditions and fault sequences, intended to challenge the control software more than test cases generated using current methods. Two different search-based testing methods, genetic algorithms and surrogate-based optimization, were used to generate test cases for a simulated unmanned aerial vehicle attempting to fly through an entryway. The effectiveness of the search-based methods in generating challenging test cases was compared to both a truth reference (full combinatorial testing and the method most commonly used today (Monte Carlo testing. The search-based testing techniques demonstrated better performance than Monte Carlo testing for both of the test case generation performance metrics: (1 finding the single most challenging test case and (2 finding the set of fifty test cases with the highest mean degree of challenge.

  11. Experience of the ARGO autonomous vehicle

    Science.gov (United States)

    Bertozzi, Massimo; Broggi, Alberto; Conte, Gianni; Fascioli, Alessandra

    1998-07-01

    This paper presents and discusses the first results obtained by the GOLD (Generic Obstacle and Lane Detection) system as an automatic driver of ARGO. ARGO is a Lancia Thema passenger car equipped with a vision-based system that allows to extract road and environmental information from the acquired scene. By means of stereo vision, obstacles on the road are detected and localized, while the processing of a single monocular image allows to extract the road geometry in front of the vehicle. The generality of the underlying approach allows to detect generic obstacles (without constraints on shape, color, or symmetry) and to detect lane markings even in dark and in strong shadow conditions. The hardware system consists of a PC Pentium 200 Mhz with MMX technology and a frame-grabber board able to acquire 3 b/w images simultaneously; the result of the processing (position of obstacles and geometry of the road) is used to drive an actuator on the steering wheel, while debug information are presented to the user on an on-board monitor and a led-based control panel.

  12. Introducing autonomous vehicles in logistics: a review from a broad perspective

    OpenAIRE

    Van Meldert, Bram; De Boeck, Liesje

    2016-01-01

    Vehicle automation technologies are rapidly developing and will be available soon. Businesses in the logistics industry can develop a competitive advantage when effectively adopting this new technology. However, only limited research exists about the impact of autonomous vehicles on the logistics industry. The aim of this paper is to provide a broad introduction to autonomous vehicles, after which the usage and potential consequences of autonomous vehicles in logistics is discusse...

  13. An algorithm for combining autonomous vehicles and controlled events in driving simulator experiments

    OpenAIRE

    Olstam, Johan; Espié, Stéphane; Mårdh, Selina; Jansson, Jonas; Lundgren, Jan

    2011-01-01

    Autonomous vehicles can be used to create realistic simulations of surrounding vehicles in driving simulators. However, the use of autonomous vehicles makes it difficult to ensure reproducibility between subjects. In this paper, an effort is made to solve the problem by combining autonomous vehicles and controlled events, denoted plays. The aim is to achieve the same initial play conditions for each subject, since the traffic situation around the subject will be dependant upon each subject's ...

  14. Autonomous underwater vehicles group control in the maritime search operations implementation

    OpenAIRE

    Блінцов, Сергій Володимирович; Тхи, Доан Фук

    2013-01-01

    The applied scientific problem of automated control of group motion of autonomous unmanned underwater vehicles during maritime search operations was considered in the paper. General principles of building the systems of automation control of a group of self-propelled autonomous underwater vehicles under the uncertainty of environment characteristics and non-stationarity of underwater vehicles parameters were given. The features of organization of autonomous underwater vehicles group operation...

  15. Motion Planning of Autonomous Vehicles on a Dual Carriageway without Speed Lanes

    OpenAIRE

    Rahul Kala; Kevin Warwick

    2015-01-01

    The problem of motion planning of an autonomous vehicle amidst other vehicles on a straight road is considered. Traffic in a number of countries is unorganized, where the vehicles do not move within predefined speed lanes. In this paper, we formulate a mechanism wherein an autonomous vehicle may travel on the “wrong” side in order to overtake a vehicle. Challenges include assessing a possible overtaking opportunity, cooperating with other vehicles, partial driving on the “wrong” side of the r...

  16. Global and local obstacle avoidance technique for an autonomous vehicle

    Science.gov (United States)

    Gray, Keith W.; Saunders, Kevin S.

    1999-07-01

    The Center for Self-Organizing and Intelligent Systems (CSOIS) is engaged in developing autonomous ground vehicles. A significant problem for such vehicles is obstacle detection and avoidance. After studying various methods of detection, a scanning laser system was chosen that can detect objects at a distance of up to thirty feet while traveling between five and ten miles per hour. Once an object is detected, the vehicle must avoid it. The project employs a mission-level path planner that predetermines the path of a vehicle. One avoidance scheme is to inform the path planner of the obstacle and then let it re-plan the path. This is the global approach to the problem, which allows the use of existing software for maneuvering the vehicle. However, replanning is time consuming and lacks knowledge of the entire obstacle. An alternative approach is to use local avoidance, whereby a vehicle determines how to get by an obstacle without help from the path planner. This approach offers faster response without requiring the computing resource of the path planner. The disadvantage is that during local avoidance the vehicle ignores the global map of known obstacles and does not know to turn control back to the path planner if mission efficiency is adversely affected. This paper will describe a method for combining the current global path planner with a local obstacle avoidance technique to efficiently complete required tasks in a partially unknown environment.

  17. Responsibility for crashes of autonomous vehicles: an ethical analysis.

    Science.gov (United States)

    Hevelke, Alexander; Nida-Rümelin, Julian

    2015-06-01

    A number of companies including Google and BMW are currently working on the development of autonomous cars. But if fully autonomous cars are going to drive on our roads, it must be decided who is to be held responsible in case of accidents. This involves not only legal questions, but also moral ones. The first question discussed is whether we should try to design the tort liability for car manufacturers in a way that will help along the development and improvement of autonomous vehicles. In particular, Patrick Lin's concern that any security gain derived from the introduction of autonomous cars would constitute a trade-off in human lives will be addressed. The second question is whether it would be morally permissible to impose liability on the user based on a duty to pay attention to the road and traffic and to intervene when necessary to avoid accidents. Doubts about the moral legitimacy of such a scheme are based on the notion that it is a form of defamation if a person is held to blame for causing the death of another by his inattention if he never had a real chance to intervene. Therefore, the legitimacy of such an approach would depend on the user having an actual chance to do so. The last option discussed in this paper is a system in which a person using an autonomous vehicle has no duty (and possibly no way) of interfering, but is still held (financially, not criminally) responsible for possible accidents. Two ways of doing so are discussed, but only one is judged morally feasible. PMID:25027859

  18. Responsibility for crashes of autonomous vehicles: an ethical analysis.

    Science.gov (United States)

    Hevelke, Alexander; Nida-Rümelin, Julian

    2015-06-01

    A number of companies including Google and BMW are currently working on the development of autonomous cars. But if fully autonomous cars are going to drive on our roads, it must be decided who is to be held responsible in case of accidents. This involves not only legal questions, but also moral ones. The first question discussed is whether we should try to design the tort liability for car manufacturers in a way that will help along the development and improvement of autonomous vehicles. In particular, Patrick Lin's concern that any security gain derived from the introduction of autonomous cars would constitute a trade-off in human lives will be addressed. The second question is whether it would be morally permissible to impose liability on the user based on a duty to pay attention to the road and traffic and to intervene when necessary to avoid accidents. Doubts about the moral legitimacy of such a scheme are based on the notion that it is a form of defamation if a person is held to blame for causing the death of another by his inattention if he never had a real chance to intervene. Therefore, the legitimacy of such an approach would depend on the user having an actual chance to do so. The last option discussed in this paper is a system in which a person using an autonomous vehicle has no duty (and possibly no way) of interfering, but is still held (financially, not criminally) responsible for possible accidents. Two ways of doing so are discussed, but only one is judged morally feasible.

  19. Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model

    Science.gov (United States)

    Khaghani, M.; Skaloud, J.

    2016-03-01

    This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.

  20. Development of an Autonomous Vehicle for Weed and Crop Registration

    DEFF Research Database (Denmark)

    Pedersen, Tom Søndergaard; Nielsen, Kirsten Mølgaard; Andersen, Palle;

    be a solution but at present the image analysis technology does not have the capability for online analysis. An alternative way is to construct a weed map prior to the spraying. In order to avoid damage to the soil a light weight vehicle carrying a camera is an obvious choice. To minimize damage to the crop......The extension of information technology and computers on farming tools results in new possibilities for crop/weed handling. In this paper a system using an autonomous field robot (vehicle) able to make images in the field is described. In the recent farming has come to rely on intensive use...... the free height of the vehicle being developed in this work has been set to 0.5 m. The size and weight of the vehicle implies a power consumption of max 1.5 kW making electrical motors suitable for propulsion and steering. To make the operation affordable the vehicle should be unmanned requiring a high...

  1. Control of Open Contour Formations of Autonomous Underwater Vehicles

    OpenAIRE

    Uwe Zimmer; Shahab Kalantar

    2008-01-01

    In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end p...

  2. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Uwe Zimmer

    2008-11-01

    Full Text Available In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end points using general curve evolution theory but will also propose appropriate motions for the end robots of an open chain.

  3. 3D Track-keeping Method for Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; Bian Xin-Qian; Chang Zong-Hu

    2002-01-01

    In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.

  4. Ant Colony Based Path Planning Algorithm for Autonomous Robotic Vehicles

    Directory of Open Access Journals (Sweden)

    Yogita Gigras

    2012-12-01

    Full Text Available The requirement of an autonomous robotic vehicles demand highly efficient algorithm as well as software.Today’s advanced computer hardware technology does not provide these types of extensive processingcapabilities, so there is still a major space and time limitation for the technologies that are available forautonomous robotic applications. Now days, small to miniature mobile robots are required forinvestigation, surveillance and hazardous material detection for military and industrial applications. Butthese small sized robots have limited power capacity as well as memory and processing resources

  5. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  6. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM. PMID:22346682

  7. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM. PMID:22346682

  8. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Directory of Open Access Journals (Sweden)

    Tianhong Yan

    2011-11-01

    Full Text Available This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM, and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China. Weak links in the information matrix in an extended information filter (EIF can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM. All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  9. Fuzzy Logic of Speed and Steering Control System for Three Dimensional Line Following of an Autonomous Vehicle

    CERN Document Server

    Shukla, Shailja

    2010-01-01

    ... This paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic [8] [9] approach for steering and speed control [37], a FL approach for ultrasound sensing and an overall expert system for guidance. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test bed has been constructed in university of Cincinnati using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised through a multi-axis motion controller. The obstacle avoidance system is based on a microcontroller interfaced with ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends distance information back to the fuzzy logic controller via the serial ...

  10. GROVER: An autonomous vehicle for ice sheet research

    Science.gov (United States)

    Trisca, G. O.; Robertson, M. E.; Marshall, H.; Koenig, L.; Comberiate, M. A.

    2013-12-01

    The Goddard Remotely Operated Vehicle for Exploration and Research or Greenland Rover (GROVER) is a science enabling autonomous robot specifically designed to carry a low-power, large bandwidth radar for snow accumulation mapping over the Greenland Ice Sheet. This new and evolving technology enables reduced cost and increased safety for polar research. GROVER was field tested at Summit, Greenland in May 2013. The robot traveled over 30 km and was controlled both by line of sight wireless and completely autonomously with commands and telemetry via the Iridium Satellite Network, from Summit as well as remotely from Boise, Idaho. Here we describe GROVER's unique abilities and design. The software stack features a modular design that can be adapted for any application that requires autonomous behavior, reliable communications using different technologies and low level control of peripherals. The modules are built to communicate using the publisher-subscriber design pattern to maximize data-reuse and allow for graceful failures at the software level, along with the ability to be loaded or unloaded on-the-fly, enabling the software to adopt different behaviors based on power constraints or specific processing needs. These modules can also be loaded or unloaded remotely for servicing and telemetry can be configured to contain any kind of information being generated by the sensors or scientific instruments. The hardware design protects the electronic components and the control system can change functional parameters based on sensor input. Power failure modes built into the hardware prevent the vehicle from running out of energy permanently by monitoring voltage levels and triggering software reboots when the levels match pre-established conditions. This guarantees that the control software will be operational as soon as there is enough charge to sustain it, giving the vehicle increased longevity in case of a temporary power loss. GROVER demonstrates that autonomous rovers

  11. PRIMUS: autonomous navigation in open terrain with a tracked vehicle

    Science.gov (United States)

    Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph

    2004-09-01

    The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.

  12. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  13. MULTIAGENT PLANNING OF INTERSECTION PASSAGE BY AUTONOMOUS VEHICLES

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2016-09-01

    Full Text Available We propose a traffic management system for autonomous vehicles that are agents at the intersection. In contrast to the known solutions based on the usage of semiautonomous control systems in assembly with the control unit, this algorithm is based on the principles of decentralized multiagent control. The best travel plan for intersection passage is produced by means of optimization methods jointly by all agents belonging to a dynamic collaboration of autonomous vehicles. The order of road intersection optimal for a given criterion is determined by the agents in the process of information exchange about themselves and environment. Our experiments show that this protocol can reduce significantly the traffic density as compared to the traditional systems of traffic management. Moreover, the effectiveness of the proposed algorithm increases with increasing density of road traffic. In addition, the absence of the critical object, that is the control unit, in the control system, reduces significantly the effectiveness of possible failures and hacker attacks on the intersection control system.

  14. A small autonomous surface vehicle for ocean color remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Maurya, P.; Pereira, A.; Pascoal, A.M.; Desai, R.G.P.; Mascarenhas, A.A.M.Q.; Desa, E.; Madhan, R.; Matondkar, S.G.P.; Navelkar, G.S.; Prabhudesai, S.; Afzulpurkar, S.

    who can in- struct it to execute a mission control (MC) program (Sections V and VI). A vehicle model is derived from open-loop responses, and used in the simulation and in setting the gains of the heading autopilot (Section VII). GPS...-assisted navigation and guidance using a conventional line-of-sight (LOS) strategy has been implemented on ROSS for different geometrical patterns of mission tracks. ROSS was then used at sea where it executed a square maneuver while measuring surface chlorophyll. A...

  15. SotonAUV: the design and development of a small, manoeuvrable autonomous underwater vehicle

    OpenAIRE

    Akhtman, J.; Furlong, M.; Palmer, A.; Phillips, A.; Sharkh, S.M.; Turnock, S.R.

    2008-01-01

    The University of Southampton's entry into the Student Autonomous Underwater Challenge-Europe (SAUC-E) 2007 was a custom designed and built autonomous underwater vehicle (AUV) named 'SotonAUV'. Originally developed for SAUC-E 2006, the vehicle was significantly upgraded for the 2007 competition. The mechanical design of the vehicle is described, and an overview of the autonomy and control approaches employed is provided. The updated vehicle successfully competed in SAUC-E 2007, winning first ...

  16. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    Science.gov (United States)

    Heddebaut, M.; Rioult, J.; Ghys, J. P.; Gransart, Ch; Ambellouis, S.

    2005-06-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driving solution, car drivers use information about speed and position of preceding and following vehicles. This information is essentially perceived using the driver's eyes, binocular stereoscopic vision performed through the windscreens and rear-view mirrors. Furthermore, within a line of vehicles, the frontal road perception of the first vehicle is very particular and highly significant. Currently, all these available data remain strictly on-board the vehicle that has captured the perception information and performed these measurements. To get the maximum effectiveness of all these approaches, we propose that this information be shared in real time with the following vehicles, within the convoy. On the basis of these considerations, this paper technically explores a cost-effective solution to extend the basic ACC sensor function in order to simultaneously provide a vehicle-to-vehicle radio link. This millimetre wave radio link transmits relevant broadband perception data (video, localization...) to following vehicles, along the line of vehicles. The propagation path between the vehicles uses essentially grazing angles of incidence of signals over the road surface including millimetre wave paths beneath the cars.

  17. Lighter than Air Robots Guidance and Control of Autonomous Airships

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2012-01-01

    An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The sec...

  18. Online Trajectory Reshaping for a Launch Vehicle to Minimize the Final Error Caused by Navigation and Guidance

    Directory of Open Access Journals (Sweden)

    Tessy Thomas

    2013-05-01

    Full Text Available Autonomous launch vehicles, once lifted off from the launch pad, equipped with an onboard intelligence which aids in achieving the mission objectives with high accuracy. The accuracy of the mission depends basically on navigation and guidance errors caused at burnout condition, after which the vehicle follows an elliptical path upto impact. The paper describes how to handle the final impact and injection error caused by these navigation and guidance errors. In the current work the initial burnout conditions are tuned and corrected such that the terminal impact point is achieved within the desired tolerance bounds. A two point boundary value problem is solved using the gradient method, for determining the impact errors. The algorithm is validated by simulation studies for various burnout conditions.

  19. A mission executor for an autonomous underwater vehicle

    Science.gov (United States)

    Lee, Yuh-Jeng; Wilkinson, Paul

    1991-01-01

    The Naval Postgraduate School has been conducting research into the design and testing of an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software architecture and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a Mission Executor is being constructed using CLIPS (C Language Integrated Production System) version 5.0. The Mission Executor is an expert system designed to oversee progress from the AUV launch point to a goal area and back to the origin. It is expected that the executor will make informed decisions about the mission, taking into account the navigational path, the vehicle subsystem health, and the sea environment, as well as the specific mission profile which is downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language (COOL) embedded in CLIPS 5.0. Also, truth maintenance is applied to the knowledge base to keep configurations updated.

  20. Environmental modeling and recognition for an autonomous land vehicle

    Science.gov (United States)

    Lawton, D. T.; Levitt, T. S.; Mcconnell, C. C.; Nelson, P. C.

    1987-01-01

    An architecture for object modeling and recognition for an autonomous land vehicle is presented. Examples of objects of interest include terrain features, fields, roads, horizon features, trees, etc. The architecture is organized around a set of data bases for generic object models and perceptual structures, temporary memory for the instantiation of object and relational hypotheses, and a long term memory for storing stable hypotheses that are affixed to the terrain representation. Multiple inference processes operate over these databases. Researchers describe these particular components: the perceptual structure database, the grouping processes that operate over this, schemas, and the long term terrain database. A processing example that matches predictions from the long term terrain model to imagery, extracts significant perceptual structures for consideration as potential landmarks, and extracts a relational structure to update the long term terrain database is given.

  1. Human vs autonomous control of planetary roving vehicles

    Science.gov (United States)

    Whitney, W. M.

    1974-01-01

    Supervisory or semiautonomous control has some compelling advantages over step-by-step human command and verification for the operation of roving vehicles on remote planetary surfaces. There are also disadvantages in relation to the complex system that must be mobilized and the chain of events that must be enacted to conduct a mission. Which of the two control methods is better on technical grounds may not be the deciding factor in its acceptance or rejection. Some of the issues that affect changes in spacecraft design and operation are summarized. To accelerate the movement toward more autonomous machines, it will be necessary to understand and to address the problems that such autonomy will create for other elements of the control system and for the control process.

  2. Autonomous guided vehicles methods and models for optimal path planning

    CERN Document Server

    Fazlollahtabar, Hamed

    2015-01-01

      This book provides readers with extensive information on path planning optimization for both single and multiple Autonomous Guided Vehicles (AGVs), and discusses practical issues involved in advanced industrial applications of AGVs. After discussing previously published research in the field and highlighting the current gaps, it introduces new models developed by the authors with the goal of reducing costs and increasing productivity and effectiveness in the manufacturing industry. The new models address the increasing complexity of manufacturing networks, due for example to the adoption of flexible manufacturing systems that involve automated material handling systems, robots, numerically controlled machine tools, and automated inspection stations, while also considering the uncertainty and stochastic nature of automated equipment such as AGVs. The book discusses and provides solutions to important issues concerning the use of AGVs in the manufacturing industry, including material flow optimization with A...

  3. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  4. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to powr an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for TItan Moon as alternative to Pu-238 for NASA.

  5. Fuzzy Adaptive Control for Trajectory Tracking of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Saeed Nakhkoob

    2014-01-01

    Full Text Available In this paper, the problem of the position and attitude tracking of an autonomous underwater vehicle (AUV in the horizontal plane, under the presence of ocean current disturbances is discussed. The effect of the gradual variation of the parameters is taken into account. The effectiveness of the adaptive controller is compared with a feedback linearization method and fuzzy gain control approach. The proposed strategy has been tested through simulations. Also, the performance of the propos-ed method is compared with other strategies given in some other studies. The boundedness and asymptotic converge-nce properties of the control algorithm and its semi-global stability are analytically proven using Lyapunov stability theory and Barbalat’s lemma.

  6. Stability Analysis on Speed Control System of Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    LI Ye; PANG Yong-jie; WAN Lei; WANG Fang; LIAO Yu-lei

    2009-01-01

    The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle (AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov' s direct method is proposed in this paper.After decoupling the six degree-of-freedom (DOF) motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.

  7. Expert S-surface control for autonomous underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; PANG Yong-jie; SU Yu-min; ZHAO Fu-long; QIN Zai-bai

    2008-01-01

    S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles (AUV). However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents. Thus an intelligent integral was introduced to improve precision. An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge. To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base. Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.

  8. Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.

    2013-01-01

    This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.

  9. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  10. Pilot Study of Systems to Drive Autonomous Vehicles on Test Tracks

    OpenAIRE

    Agardt, Erik; Löfgren, Markus

    2008-01-01

    This Master’s thesis is a pilot study that investigates different systems to drive autonomous and non-autonomous vehicles simultaneously on test tracks. The thesis includes studies of communication, positioning, collision avoidance, and techniques for surveillance of vehicles which are suitable for implementation. The investigation results in a suggested system outline. Differential GPS combined with laser scanner vision is used for vehicle state estimation (position, heading, velocity, etc.)...

  11. Delphin2: an over actuated autonomous underwater vehicle for manoeuvring research

    OpenAIRE

    Philips, A.B.; Steenson, L.V.; Rogers, E.; Turnock, S.R.; Harris, C A; Furlong, M.

    2013-01-01

    Delphin2 is a hover capable torpedo style Autonomous Underwater Vehicle (AUV), developed at the University of Southampton to provide a test bed for research in marine robotics, primarily to enhance the manoeuvring capability of AUVs. This paper describes the mechanical design of the vehicle and its software architecture. The performance of the vehicle is presented as well as preliminary findings from the vehicle’s first fully autonomous video survey issions in Lough Erne, Northern Ireland. I...

  12. Heading Lock Maneuver Testing of Autonomous Underwater Vehicle

    CERN Document Server

    Muljowidodo, K

    2008-01-01

    In recent years, Autonomous Underwater Vehicle (UAV) research and development at Bandung Institute of Technology in Indonesia has achieved the testing stage in the field. This testing was still being classified as the early testing, since some of the preliminary tests were carried out in the scale of the laboratory. The paper would discuss the laboratory test and several tests that were done in the field. Discussions were stressed in the procedure and the aim that will be achieved, along with several early results. The testing was carried out in the lake with the area around 8300 Ha and the maximum depth of 50 meters. The location of the testing was chosen with consideration of minimizing the effect of the current and the wave, as well as the location that was not too far from the Laboratory. The type of testing that will be discussed in paper was Heading Lock Maneuver Testing. The vehicle was tested to move with a certain cruising speed, afterwards it was commanded by an arbitrarily selected heading directio...

  13. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    Science.gov (United States)

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009.

  14. Obstacle Avoidance And Navigational Sensing For An Autonomous Underwater Vehicle

    Science.gov (United States)

    Chande, A. M.; Noon, K. M.

    1987-02-01

    This paper addresses the critical issues of sense acquisition and sense analysis, using multiple Obstacle Avoidance (OA) sensors, for Autonomous Underwater Vehicles (AUVs). Currently, an AUV research and development testbed is being engineered at Martin Marietta Baltimore Aerospace, and the pertinent research on OA sensing that may be applied to such a testbed is presented. The complexities of relevant and conventional navigation systems for undersea vehicles are also discussed. Using a multitude of sensors and the Zonal-Spot Environmental Analysis (ZSEA) sensing technique, the spatial scenarios are characterized cogently by amalgamating the sensor information to form a description of the external world, which in turn are preserved in a world model database. The ZSEA sensing strategy performs sensor-level processes to recognize obstacles with certain levels of surety, based on apriori semantic data, and thereby provides safer and more efficient path planning capabilities to the AUV. Furthermore, the ZSEA sensing strategy ameliorates sensory deprivation and paves the way for the incremental enhancement of the control process at the higher levels without having to modify the lower servocontrol levels.

  15. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    Science.gov (United States)

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009. PMID:20731790

  16. Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles

    OpenAIRE

    Kendoul, Farid; Fantoni, Isabelle; Nonami, Kenzo

    2009-01-01

    International audience; The problem considered in this paper involves the design of a vision-based autopilot for small and micro Unmanned Aerial Vehicles (UAVs). The proposed autopilot is based on an optic flow-based vision system for autonomous localization and scene mapping, and a nonlinear control system for flight control and guidance. This paper focusses on the development of a real-time 3D vision algorithm for estimating optic flow, aircraft self-motion and depth map, using a low-resolu...

  17. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    Science.gov (United States)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  18. Development of a Power System and Analysis of Inertial System Calibration for a Small Autonomous Underwater Vehicle

    OpenAIRE

    Seely, William Forrester

    2004-01-01

    Compared to large vehicles acting individually, platoons of small, inexpensive autonomous underwater vehicles have the potential to perform some missions that are commonly conducted by larger vehicles faster, more efficiently, and at a reduced operational cost. This thesis describes the power system of a small, inexpensive autonomous underwater vehicle developed by the Autonomous Systems Controls Laboratory at Virginia Tech. Reduction in vehicle size and cost reduces the accuracy of navi...

  19. Design of a Hybrid Controller for Autonomous Vehicles Driving on Automated Highways

    OpenAIRE

    Girault, Alain

    2001-01-01

    In this paper we address the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not communicate with each other nor with the infrastructure. Two problems have to be dealt with: A vehicle driving in a single-lane highway must never collide with its leading vehicle; and a vehicle entering the highway at a designated entry junction mustb e able to merge from the merging lane to the main lane, again without any collision. To sol...

  20. Target location by self-organizing autonomous air vehicles

    Science.gov (United States)

    Brown, Kim; Bowyer, Richard S.; Koks, Don

    2002-08-01

    Target location is a problem where the application of multiple sensors that are geographically distributed can determine or improve the location estimate of a target. If these sensors are capable of cooperative behaviour then the information from each sensor can be autonomously fused to provide an estimate of the target position. The individual sensors may be quite unsophisticated, yet the observation system that is created through cooperation and adaptive networking of these sensors provides sufficient process gain to achieve target location accuracies similar to those of expensive centralized sensor systems. The accuracy of target location estimates depends heavily on the separation distance between the sensors. Large baseline geometry takes advantage of many seemingly unsophisticated bearing measurements that are organised into a coordinated observation system to locate a target. Team formation is one method to address coordination of distributed sensors, data fusion, sensor resource and energy management, and communication link control based on the concept of cooperating machines1,2,3. We apply an algorithm for agent team formation4 inspired by the self-organising behaviour observed in colonies of ants, to the problem of integrating the sensors of a group of networked mini-Autonomous Air Vehicles (AAVs). The mini-AAVs are tasked to locate targets within a region of interest. The challenge we address is to make the location estimation system adaptive to a dynamic environment and robust to failure. Simulation results are presented which address issues in distributed data fusion, sensor resource and energy management, and communication link control, for a group of mini-AAVs.

  1. Search and Classification Using Multiple Autonomous Vehicles Decision-Making and Sensor Management

    CERN Document Server

    Wang, Yue

    2012-01-01

    Search and Classification Using Multiple Autonomous Vehicles provides a comprehensive study of decision-making strategies for domain search and object classification using multiple autonomous vehicles (MAV) under both deterministic and probabilistic frameworks. It serves as a first discussion of the problem of effective resource allocation using MAV with sensing limitations, i.e., for search and classification missions over large-scale domains, or when there are far more objects to be found and classified than there are autonomous vehicles available. Under such scenarios, search and classification compete for limited sensing resources. This is because search requires vehicle mobility while classification restricts the vehicles to the vicinity of any objects found. The authors develop decision-making strategies to choose between these competing tasks and vehicle-motion-control laws to achieve the proposed management scheme. Deterministic Lyapunov-based, probabilistic Bayesian-based, and risk-based decision-mak...

  2. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  3. Aided strapdown inertial navigation for autonomous underwater vehicles

    Science.gov (United States)

    Liu, Yu; Li, X. Rong

    2010-04-01

    This paper presents a navigation algorithm based on aided strapdown inertial navigation (INS) for an underwater autonomous underwater vehicle (AUV). The AUV is equipped with a long baseline (LBL) acoustic positioning system, acoustic Doppler current profiler (ADCP) and a depth sensor to aid the INS. They have, however, much slower data rates than that of the INS. A linearized, quaternion-based dynamic model and measurement model of the INS output errors are presented. Data from different sensors are fused by applying the extended Kalman filer (EKF) to estimate and correct the errors. Due to the difficulty of generating realistic simulation scenario, real data (raw INS measurement) collected from AUV field experiments are processed to test the algorithm. Without knowing the ground truth, however, performance evaluation becomes much more complicated and needs further research. In this paper, the problem is circumvented by considering the post-processed real data as the "ground truth" and noisy raw measurements are generated from this "ground truth" to feed the algorithm. The simulation results demonstrate the algorithm applicability and show that by incorporating readings from the ADCP and the depth sensor, the (horizontal) position errors still increase but with a significant lower rate than the case of stand-alone operation. If the LBL sensor is further included, the navigation errors can be constrained within a certain bound.

  4. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-09-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains.

  5. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-09-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10-50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains.

  6. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    Science.gov (United States)

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  7. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques. PMID:23306274

  8. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    Science.gov (United States)

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated. PMID:16477997

  9. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Longcai, Zhang, E-mail: zhlcai2000@163.com

    2014-07-15

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  10. Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving)

    OpenAIRE

    Girbés Juan, Vicent

    2016-01-01

    [EN] Nowadays, there are many electronic products that incorporate elements and features coming from the research in the field of mobile robotics. For instance, the well-known vacuum cleaning robot Roomba by iRobot, which belongs to the field of service robotics, one of the most active within the sector. There are also numerous autonomous robotic systems in industrial warehouses and plants. It is the case of Autonomous Guided Vehicles (AGVs), which are able to drive completely autonomously in...

  11. AFSC/ABL: Autonomous underwater vehicle for tracking acoustically-tagged fish 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous underwater vehicles (AUVs) are increasingly being used to collect physical, chemical, and biological information in the marine environment. Recent...

  12. An Autonomous Underwater Vehicle Simulation Using Linear Quadratic Servo Based on Open Control Platform

    OpenAIRE

    Nanang Syahroni; Jae Weon Choi

    2012-01-01

    This paper presents an optimal regulator for depth control simulation of an autonomous underwater vehicle (AUV) using a new approach of decentralized system environment called open control platform (OCP). Simulation results are presented to demonstrate performance of the proposed method.

  13. Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly: Analysis and Experimentation

    Directory of Open Access Journals (Sweden)

    Riccardo Bevilacqua

    2011-01-01

    Full Text Available This work introduces theoretical developments and experimental verification for Guidance, Navigation, and Control of autonomous multiple spacecraft assembly. We here address the in-plane orbital assembly case, where two translational and one rotational degrees of freedom are considered. Each spacecraft involved in the assembly is both chaser and target at the same time. The guidance and control strategies are LQR-based, designed to take into account the evolving shape and mass properties of the assembling spacecraft. Each spacecraft runs symmetric algorithms. The relative navigation is based on augmenting the target's state vector by introducing, as extra state components, the target's control inputs. By using the proposed navigation method, a chaser spacecraft can estimate the relative position, the attitude and the control inputs of a target spacecraft, flying in its proximity. The proposed approaches are successfully validated via hardware-in-the-loop experimentation, using four autonomous three-degree-of-freedom robotic spacecraft simulators, floating on a flat floor.

  14. Editorial for special issue on Perception and Navigation for Autonomous Vehicles

    OpenAIRE

    Laugier, Christian; Philippe, Martinet; Urbano, Nunes

    2014-01-01

    International audience; This Special Issue of the IEEE Robotics and Automation Magazine has been prepared in the scope of the activities of the Technical Committee on "Autonomous Ground Vehicle and Intelligent Transportation System" (AGV-ITS) (http://www.ieee-ras.org/autonomous-groundvehicles- and-intelligent-transportation-systems) of the IEEE Robotics and Automation Society (IEEE RAS).

  15. InfoRank: Information-Centric Autonomous Identification of Popular Smart Vehicles

    OpenAIRE

    Khan, Junaid Ahmed; Ghamri-Doudane, Yacine; Botvich, Dmitri

    2015-01-01

    International audience —Modern cars are transforming towards autonomous cars capable to make intelligent decisions to facilitate our travel comfort and safety. Such " Smart Vehicles " are equipped with various sensor platforms and cameras to collect, store and share tremendous amount of heterogeneous data from urban streets. This paper addresses the efficient collection and distribution of such massive data by allowing a popular Smart Vehicle to autonomously decide its user relevant import...

  16. Active Disturbance Rejection Fuzzy Controller for Roll Stabilization of Autonomous Underwater Vehicle under Wave Disturbance

    OpenAIRE

    Lin-Lin Wang; Hong-Jian Wang; Li-Xin Pan; Jun-Xi Guo

    2015-01-01

    Considering the case of autonomous underwater vehicle navigating with low speed near water surface, a new method for designing of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance under different sea conditions. Active disturbance rejection fuzzy control is applied, which is based on nonlinear motion model of autonomous underwater vehicle and the principle of zero-speed fin stabilizer. Extended state observer is used...

  17. Design of and Decentralized Path Planning for Platoons of Miniature Autonomous Underwater Vehicles

    OpenAIRE

    Sylvester, Caleb Allen

    2004-01-01

    Many successful control schemes for land-based or air-based groups, or platoons, of autonomous vehicles cannot be implemented in underwater applications because of their dependence upon high-bandwidth communication. In current strategies for controlling groups of autonomous underwater vehicles (AUVs), platoon size remains limited by communication bandwidth requirements. So, there is great need for advances in low-bandwidth control techniques for arbitrarily large platoons of AUVs. This t...

  18. Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles

    Science.gov (United States)

    Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick

    2012-01-01

    Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.

  19. Mechanical Design of a Trawl-Resistant Self-Mooring Autonomous Underwater Vehicle

    OpenAIRE

    Wilson, Taylor Boyde

    2016-01-01

    The Virginia Tech Trawl-Resistant Self-Mooring Autonomous Underwater Vehicle (TRSMAUV) is designed to reside on the seafloor for extended periods of time. The TRSMAUV shape allows for deployment in areas where trawl fisheries are conducted. TRSMAUV is a two stage vehicle. The ingress vehicle is the delivery device, and it is constructed from two symmetric halves. The top half contains the ingress vehicle propulsion system and control surfaces. The bottom half is the trawl-resistant moori...

  20. Application of Icelandic Tort Law to Autonomous Vehicles: Analysis of Legal Challenges and Practical Problems under the current regulatory framework

    OpenAIRE

    Rúnarsson, Bjarni Freyr

    2015-01-01

    In recent years, autonomous vehicles have attracted much attention. While such vehicles will have an immense potential in increasing traffic safety, they will be involved in traffic accidents. In Chapter 2, the term autonomous vehicle is defined, positively and negatively. Further, it is sought to shed light on the social impact of autonomous vehicles. Also, some challenges that they will pose are discussed, particularly some profound legal problems in various areas of the law. In Chapter 3...

  1. New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles

    Science.gov (United States)

    Young, Larry A.; Aiken, E. W.; Johnson, J. L.; Demblewski, R.; Andrews, J.; Aiken, Irwin W. (Technical Monitor)

    2001-01-01

    A key part of the strategic vision for rotorcraft research as identified by senior technologists within the Army/NASA Rotorcraft Division at NASA Ames Research Center is the development and use of small autonomous rotorcraft. Small autonomous rotorcraft are defined for the purposes of this paper to be a class of vehicles that range in size from rotary-wing micro air vehicles (MAVs) to larger, more conventionally sized, rotorcraft uninhabited aerial vehicles (UAVs) - i.e. vehicle gross weights ranging from hundreds of grams to thousands of kilograms. The development of small autonomous rotorcraft represents both a technology challenge and a potential new vehicle class that will have substantial societal impact for: national security, personal transport, planetary science, and public service.

  2. A Framework for Analysing Driver Interactions with Semi-Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Siraj Shaikh

    2012-12-01

    Full Text Available Semi-autonomous vehicles are increasingly serving critical functions in various settings from mining to logistics to defence. A key characteristic of such systems is the presence of the human (drivers in the control loop. To ensure safety, both the driver needs to be aware of the autonomous aspects of the vehicle and the automated features of the vehicle built to enable safer control. In this paper we propose a framework to combine empirical models describing human behaviour with the environment and system models. We then analyse, via model checking, interaction between the models for desired safety properties. The aim is to analyse the design for safe vehicle-driver interaction. We demonstrate the applicability of our approach using a case study involving semi-autonomous vehicles where the driver fatigue are factors critical to a safe journey.

  3. 78 FR 17660 - Draft Guidance for E85 Flexible Fuel Vehicle Weighting Factor for Model Years 2016-2019 Vehicles...

    Science.gov (United States)

    2013-03-22

    ...EPA is requesting comment on draft EPA guidance to auto manufacturers for weighting the greenhouse gas (GHG) emissions of a flexible fuel vehicle operating on E85 with the GHG emissions of the vehicle operating on conventional gasoline, when calculating the compliance value to use for EPA's GHG emissions standards. EPA also invites comment on the analysis used by EPA to determine the weighting......

  4. Tracking Object Existence From an Autonomous Patrol Vehicle

    Science.gov (United States)

    Wolf, Michael; Scharenbroich, Lucas

    2011-01-01

    An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the

  5. Intelligent Autonomous Aerial Vehicles in the National Airspace Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS) and, in particular, intelligent, autonomous aircraft operating in the National Airspace (NAS) have the potential to significantly...

  6. Working together on automated vehicle guidance AVG : preliminary business plan, abridged version.

    NARCIS (Netherlands)

    Awareness (ed.)

    1998-01-01

    This plan describes the questions which will have to be answered in the short term, and the action which need to be taken in a phased and structured manner to gain insight into the potential of automated vehicle guidance (AVG).

  7. A Vision System for Real Time Road and Object Recognition for Vehicle Guidance

    Science.gov (United States)

    Jackson, T. A.; Samuelsen, G. S.

    1987-02-01

    One crucial component of a control system for autonomous vehicle guidance is real time image analysis. This system part is burdened by the maximum flow of information. To overcome the high demands in computation power a combination of knowledge based scene analysis and special hardware has been developed. The use of knowledge based image analysis supports real time processing not by schematically evaluating all parts of the image, but only evaluating those which contain relevant information. This is due to the fact that in many practical problems the relevant information is very unevenly distributed over the image. Preknowledge of the problem or the aim of the mission and expectations or predictions about the scene sustantially reduce the amount of information to be processed. The operations during such an analysis may be divided into two classes - simple processes, e.g. filters, correlation, contour processing and simple search strategies - complex search and control strategy This classification supplied the concept for a special hardware. The complex tasks are performed by a universal processor 80286 while the remaining tasks are executed by a special coprocessor (including image memory). This combination permits the use of filter masks with a arbitrary geometry together with a powerful search strategy. A number of these basic modules may be configured into a multiprocessor system. The universal processor is programmed in a high level language. To support the coprocessor a set of software tools has been built. They permit interactive graphical manipulation of filtermasks, generation of simple search strategies and non real time simulation. Also the real data structures that control the function of the coprocessor are generated by this software package. The system is used within our autonomous vehicle project. One set of algorithms tracks the border lines of the road even if they are broken or disturbed by dirt. Also shadows of bridges crossing the road are

  8. A high speed telemetry data link for an autonomous roving vehicle

    Science.gov (United States)

    Cipolle, D. J.

    1980-01-01

    A data link system used on a prototype autonomous roving vehicle is described. This system provides a means of acquiring, formatting, and transmitting information on board the vehicle to a controlling computer. Included is a statement of requirements and the design philosophy. Additionally, interfacing with the rover systems is discussed, along with the overall performance of the telemetry link.

  9. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  10. CMAC neural network architecture for control of an autonomous undersea vehicle

    Science.gov (United States)

    Comoglio, Rick F.; Pandya, Abhijit S.

    1992-09-01

    The design of an autonomous undersea vehicle (AUV) control system is a significant challenge in light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This paper describes a neural network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an autonomous underwater vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six output parameters; forward velocity, vertical velocity, pitch angle, side velocity, roll angle, and yaw angle. Properties of CMAC and results of computer simulations for identification and control of the AUV model are presented.

  11. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed.

  12. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    International Nuclear Information System (INIS)

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed

  13. Priority-based coordination of autonomous and legacy vehicles at intersection

    OpenAIRE

    Qian, Xiangjun; Gregoire, Jean; Moutarde, Fabien; De La Fortelle, Arnaud

    2014-01-01

    International audience Recently, researchers have proposed various intersection management techniques that enable autonomous vehicles to cross the intersection without traffic lights or stop signs. In particular, a priority-based coordination system with provable collision-free and deadlock-free features has been presented. In this paper, we extend the priority-based approach to support legacy vehicles without compromising above-mentioned features. We make the hypothesis that legacy vehicl...

  14. Model Predictive Control of a Hybrid Autonomous Underwater Vehicle with Experimental Verification

    OpenAIRE

    Steenson, L.V.; Turnock, S.R.; Phillips, A.B.; Harris, C.; Furlong, M.E.; Rogers, E.; Wang, L.; Bodles, K.; Evans, D. W.

    2014-01-01

    In this work model predictive control is used to provide transit and hover capabilities for an autonomous underwater vehicle where the description of the system dynamics used include terms measured experimentally. The resulting controller manoeuvres the vehicle in the presence of constraints on the actuators and results obtained from the deployment of the vehicle in an inland lake for the study of the Zebra mussel, an invasive species, are also given.

  15. Design, Simulation and Experimental Results of Taipan 300, a New Autonomous Underwater Vehicle Prototype

    OpenAIRE

    Creuze, Vincent; Parodi, Olivier; Xiang, Xianbo

    2009-01-01

    International audience In this paper we present a new small Autonomous Underwater Vehicle (AUV) called Taipan 300. First, we detail its technical features. Then, we explain how the particular hardware design of this vehicle makes its recovery easier in case of software or hardware failure. In fact this prototype offers enhanced safety measures in order to detect computer failure and to facilitate vehicle localization after it has resurfaced. In a third part, we describe the sliding control...

  16. Online Detection of Mixed Layer Depth for Autonomous Underwater Vehicles

    Science.gov (United States)

    Chu, S.; Estlin, T.; Castano, R.; Woodward, G.; Gierach, M. M.; Thompson, A. F.; Schaffer, S.

    2015-12-01

    The accurate determination of the mixed layer depth (MLD) plays a crucial role in studying ocean dynamics and climate change. Various methods to estimate MLD have been proposed [1, 2]. However there is no current consensus on the best model, which leads to large uncertainty in the estimation. The variability, coupled with the complexity of physical, chemical and biological processes involved and the uncertainty and instabilities of the upper ocean surface, makes estimating MLD a challenging task. MLD varies significantly, even across a small spatial area (autonomous underwater vehicle (AUV). Using an online method permits a more adaptive approach to estimating MLD. Our proposed algorithm is based on an ensemble approach, which includes data mining techniques for real-time peak and change detection, learned seasonal variability profile, combined with MLD estimation criteria in [1]. In this study, we analyze measurements using glider data collected from the OSMOSIS (Ocean Surface Mixing, Ocean Submesoscale Interaction Study) project, concatenated into a year-long time series [3]. The glider data consists of nine full-depth moorings, which were deployed in a 15 km by 15 km box at the Porcupine Abyssal Plain in the northeast Atlantic, centered at 16.2°W, 48.7°N. Our algorithm utilizes direct measurements of salinity, temperature, depth and time and the design is based on the spatial and temporal variability of MLD learned. We will present our initial work on tracking the MLD based on real-time simulations using the OSMOSIS glider data and discussed for the case of deploying on a single AUV. Using an online algorithm for estimating MLD in-situ enables the system to rapidly adapt to the variability in a real-world environment and also allows for the intelligent operation of the limited sampling resources available on an AUV. We will discuss the autonomy architecture and algorithm design for implementing this methodology and present results from our initial

  17. Detection of Water Hazards for Autonomous Robotic Vehicles

    Science.gov (United States)

    Matthes, Larry; Belluta, Paolo; McHenry, Michael

    2006-01-01

    Four methods of detection of bodies of water are under development as means to enable autonomous robotic ground vehicles to avoid water hazards when traversing off-road terrain. The methods involve processing of digitized outputs of optoelectronic sensors aboard the vehicles. It is planned to implement these methods in hardware and software that would operate in conjunction with the hardware and software for navigation and for avoidance of solid terrain obstacles and hazards. The first method, intended for use during the day, is based on the observation that, under most off-road conditions, reflections of sky from water are easily discriminated from the adjacent terrain by their color and brightness, regardless of the weather and of the state of surface waves on the water. Accordingly, this method involves collection of color imagery by a video camera and processing of the image data by an algorithm that classifies each pixel as soil, water, or vegetation according to its color and brightness values (see figure). Among the issues that arise is the fact that in the presence of reflections of objects on the opposite shore, it is difficult to distinguish water by color and brightness alone. Another issue is that once a body of water has been identified by means of color and brightness, its boundary must be mapped for use in navigation. Techniques for addressing these issues are under investigation. The second method, which is not limited by time of day, is based on the observation that ladar returns from bodies of water are usually too weak to be detected. In this method, ladar scans of the terrain are analyzed for returns and the absence thereof. In appropriate regions, the presence of water can be inferred from the absence of returns. Under some conditions in which reflections from the bottom are detectable, ladar returns could, in principle, be used to determine depth. The third method involves the recognition of bodies of water as dark areas in short

  18. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids.

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    Full Text Available Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP. Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm.

  19. Vision-based bio-inspired guidance law for small aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    Wang Zhengjie; Huang Weilin; Yan Yonghong

    2015-01-01

    During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aer-ial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical sim-ulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker, but the performance of it can be better than that of the proportional guidance law.

  20. Vision-based bio-inspired guidance law for small aerial vehicle

    Directory of Open Access Journals (Sweden)

    Wang Zhengjie

    2015-02-01

    Full Text Available During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aerial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical simulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker, but the performance of it can be better than that of the proportional guidance law.

  1. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-01-01

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902

  2. Levitation and Guidance Stabilization of Superconducting Maglev Vehicle using LSM Currents

    OpenAIRE

    Sakamoto, Tetsuzo; Nakayama, Masaki

    2006-01-01

    Abstract—This paper shows the modeling and simulation ofsuperconducting maglev vehicles employing a levitation andguidance assist method we have proposed. The assist systemstabilizes and assists the vehicle running so that the vehicle doesnot need to depend on the mechanical wheels as much aspossible at a lower speed. The auxiliary levitation and guidanceforces are provided by controlling the LSM armature currents.The results show that the assist system produces appropriatelift and guidance f...

  3. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  4. Online learning-based robust visual tracking for autonomous landing of Unmanned Aerial Vehicles

    OpenAIRE

    Fu, Changhong; Carrio Fernández, Adrián; Olivares Méndez, Miguel Ángel; Campoy Cervera, Pascual

    2014-01-01

    Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking ...

  5. Active Disturbance Rejection Fuzzy Controller for Roll Stabilization of Autonomous Underwater Vehicle under Wave Disturbance

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-01-01

    Full Text Available Considering the case of autonomous underwater vehicle navigating with low speed near water surface, a new method for designing of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance under different sea conditions. Active disturbance rejection fuzzy control is applied, which is based on nonlinear motion model of autonomous underwater vehicle and the principle of zero-speed fin stabilizer. Extended state observer is used for estimation of roll motion state and unknown wave disturbance. Wave moment is counteracted by introducing compensation term into the roll control law which is founded on nonlinear feedback. Fuzzy reasoning is used for parameter adjustment of the controller online. Simulation experiments on roll motion are conducted under different sea conditions, and the results show better robustness improved by active disturbance rejection fuzzy controller of autonomous underwater vehicle navigating near water surface.

  6. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  7. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    Science.gov (United States)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  8. Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles

    Science.gov (United States)

    Greenblatt, Jeffery B.; Saxena, Samveg

    2015-09-01

    Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.

  9. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  10. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    Science.gov (United States)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.

  11. An Approach to Driverless Vehicles in Highways

    OpenAIRE

    Milanés, Vicente; Onieva, Enrique; Pérez Rastelli, Joshué; Godoy, Jorge; Villagra, Jorge

    2011-01-01

    International audience This paper presents AUTOPIA program results towards autonomous vehicles in highways. Based on our previous experience in automatic driving systems, a high-speed controller has been developed to perform vehicle's guidance autonomously. The map is generated in real time by the leading vehicle via vehicle-to-vehicle communications, permitting the vehicle equipped with the automatic system driving in any real circumstance in highways as can be lane-change maneuver. The s...

  12. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  13. Fuzzy Logic of Speed and Steering Control System for Three Dimensional Line Following of an Autonomous Vehicle

    Directory of Open Access Journals (Sweden)

    Dr. Shailja Shukla

    2010-03-01

    Full Text Available The major problem of robotics research today is that there is a huge barrier to entry into Robotics research due to system software complexity and need for a researcher to learn more about details, dependencies and intricacies of the complete system. This is because a robot system needs several different modules to communicate and execute in parallel. Today there are not much controlled comparisons of algorithms and solutions for a given task, which is the standard scientific method of other sciences. There is also very little sharing between groups and projects, requiring code to be written from scratch over and over again. This paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic [8] [9] approach for steering and speed control [37], a FL approach for ultrasound sensing and an overall expert system for guidance. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test bed has been constructed in university of Cincinnati using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised through a multi-axis motion controller. The obstacle avoidance system is based on a microcontroller interfaced with ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends distance information back to the fuzzy logic controller via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance has been accomplished with the use of CCD cameras judging the current position of the robot.[34] [35][36] It will be generating a good image for reducing an uncertain wrong command from ground

  14. A Localization Solution for an Autonomous Vehicle in an Urban Environment

    OpenAIRE

    Webster, Jonathan Michael

    2007-01-01

    Localization is an essential part of any autonomous vehicle. In a simple setting, the localization problem is almost trivial, and can be solved sufficiently using simple dead reckoning or an off-the-shelf GPS with differential corrections. However, as the surroundings become more complex, so does the localization problem. The urban environment is a prime example of a situation in which a vehicle's surroundings complicate the problem of position estimation. The urban setting is marked by t...

  15. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    OpenAIRE

    Xianbo Xiang; Bruno Jouvencel; Olivier Parodi

    2010-01-01

    International audience This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images f...

  16. Routing Autonomous Vehicles in Congested Transportation Networks: Structural Properties and Coordination Algorithms

    OpenAIRE

    Zhang, Rick; Rossi, Federico; Pavone, Marco

    2016-01-01

    This paper considers the problem of routing and rebalancing a shared fleet of autonomous (i.e., self-driving) vehicles providing on-demand mobility within a capacitated transportation network, where congestion might disrupt throughput. We model the problem within a network flow framework and show that under relatively mild assumptions the rebalancing vehicles, if properly coordinated, do not lead to an increase in congestion (in stark contrast to common belief). From an algorithmic standpoint...

  17. GRank -An Information-Centric Autonomous and Distributed Ranking of Popular Smart Vehicles

    OpenAIRE

    Khan, Junaid Ahmed; Ghamri-Doudane, Yacine; Botvich, Dmitri

    2015-01-01

    International audience Modern cars are transforming towards autonomous cars capable to make intelligent decisions to facilitate our travel comfort and safety. Such " Smart Vehicles " are equipped with various sensor platforms and cameras that are capable to constantly sense tremendous amount of heterogeneous data from urban streets. This paper aims to identify the appropriate vehicles, important to be selected as information hubs for the efficient collection, storage and distribution of su...

  18. Study of a Shared Autonomous Vehicles Based Mobility Solution in Stockholm

    OpenAIRE

    Rigole, Pierre-Jean

    2014-01-01

    The aim of this report is to provide an analysis of potential benefits of a fleet of Shared Autonomous Vehicles (SAV) providing a taxi service to replace private car commuter trips in a metropolitan area. We develop a framework for dynamic allocation of SAVs to passenger trips, empty-vehicle routing and multi-criteria evaluation with regard to passenger waiting time, trip time and fleet size. Using a representation of current private trip demand for the Stockholm metropolitan area and a detai...

  19. DESIGN AND OPTIMIZATION OF BACKSTEPPING CONTROLLER FOR AN UNDERACTUATED AUTONOMOUS QUADROTOR UNMANNED AERIAL VEHICLE

    OpenAIRE

    Mohd Basri, Mohd Ariffanan; Danapalasingam, Kumeresan A.; Husain, Abdul Rashid

    2014-01-01

    The development of a high performance controller for a quadrotor unmanned aerial vehicle (UAV) is a challenging issue since a quadrotor is an underactuated and a highly unstable nonlinear system. In this paper, the contribution is focused on the design and optimization of a controller for an autonomous quadrotor UAV. Firstly, the dynamic model of the aerial vehicle is mathematically formulated. Then, an optimal backstepping controller (OBC) is proposed. Conventionally, control parameters of a...

  20. EFFECT OF HYDROPLANE PROFILE ON HYDRODYNAMIC COEFFICIENTS OF AN AUTONOMOUS UNDERWATER VEHICLE

    OpenAIRE

    Ahmad Hajivand; S. Hossein Mousavizadegan; Mohsen Sadeghian; Manochehr Fadavi

    2016-01-01

    AUVs are the most suitable tool for conduction survey concerning with global environmental problems. AUVs maneuverability should be carefully checked so as to improve energy efficiency of the vehicle and avoid unexpected motion. Oblique towing test (OTT) is simulated virtually in a computational fluid dynamic (CFD) environment to obtain hydrodynamic damping coefficients of a full-scale autonomous underwater vehicle. Simulations are performed for bare hull and hull equipped with four different...

  1. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    OpenAIRE

    Wei Peng Lin; Cheng Siong Chin; Leonard Chin Wai Looi; Jun Jie Lim; Elvin Min Ee Teh

    2015-01-01

    Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV) with a docking hoop (DH) to recover an autonomous underwater vehicle (AUV) named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and sim...

  2. Pipeline tracking for fully-actuated autonomous underwater vehicle using visual servo control

    OpenAIRE

    Krupinsky, Szymon; Allibert, Guillaume; Hua, Minh Duc; Hamel, Tarek

    2012-01-01

    International audience This paper describes a nonlinear image-based visual servo control algorithm for the pipeline tracking problem of a fully-actuated underwater vehicle. The dynamic model of a generic autonomous underwater vehicle (AUV), incorporating all significant forces and torques is developed and a generic velocity control strategy is proposed. The desired velocities in the plane orthogonal to the direction of the pipeline along with the yaw velocity are derived from the image seq...

  3. Design of Neural Network Control System for Controlling Trajectory of Autonomous Underwater Vehicles

    OpenAIRE

    İkbal Eski; Şahin Yıldırım

    2014-01-01

    A neural network based robust control system design for the trajectory of Autonomous Underwater Vehicles (AUVs) is presented in this paper. Two types of control structure were used to control prescribed trajectories of an AUV. The vehicle was tested with random disturbances while taxiing under water. The results of the simulation showed that the proposed neural network based robust control system has superior performance in adapting to large random disturbances such as underwater flow. It is ...

  4. Environmental Tracking and Formation Control for an Autonomous Underwater Vehicle Platoon with Limited Communication

    OpenAIRE

    Roberson, David Gray

    2008-01-01

    A platoon of autonomous underwater vehicles provides a compelling platform for studying many challenging issues in multi-agent cooperative control. These challenges include developing cooperative algorithms suitable to practical multi-vehicle applications. They also include addressing intervehicle communication issues, such as sharing information via limited bandwidth channels and selecting network architecture to facilitate control design. This work addresses problems in each of these areas....

  5. Navigation of autonomous underwater vehicle using extended kalman filter

    Digital Repository Service at National Institute of Oceanography (India)

    Ranjan, T.N.; Nherakkol, A.; Navelkar, G.S.

    position by calculating the distance travelled using its measured speed and time interval. The vehicle takes GPS fixes whenever available to reduce the position error and fuses the measurements for position estimation. The implementation of this algorithm...

  6. Visual Odometry and Mapping for Underwater Autonomous Vehicles

    OpenAIRE

    Botelho, Silvia; Oliveira, Gabriel; Drews, Paulo; Figueiredo, Monica; Haffele, Celina

    2010-01-01

    This work proposed a new approach to visual odometry and mapping of a underwater robot using only online visual information. This system can be used either in autonomous inspection tasks or in control assistance of robot closed-loop, in case of a human remote operator. A set of tests were performed under different underwater conditions. The effectiveness of our proposal was evaluated inside a set of real scenario, with different levels of turbidity, snow marine, non-uniform illumination and n...

  7. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  8. Model Reference Adaptive Backstepping Control of an Autonomous Ground Vehicle

    OpenAIRE

    Quaiyum, Labiba

    2016-01-01

    With an increased push for commercial autonomous cars, the demand of high speed systems capable of performing in unstructured driving environments is growing. In this thesis, the behavior of a bio-inspired predator prey model is considered to stimulate a more organic response to obstacles and a moving target than existing algorithms. However, the current predator prey model has a disconnect between the desired velocities commanded and the torque signals provided to the motors due the dynamics...

  9. Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network

    Institute of Scientific and Technical Information of China (English)

    孙玉山; 李岳明; 张国成; 张英浩; 吴海波

    2016-01-01

    Autonomous underwater vehicles (AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model (estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.

  10. Cascade Architecture for Lateral Control in Autonomous Vehicles

    OpenAIRE

    Pérez Rastelli, Joshué; Milanés, Vicente; Onieva, Enrique

    2011-01-01

    International audience Research on intelligent transport systems (ITSs) is steadily leading to safer and more comfortable control for vehicles. Systems that permit longitudinal control have already been implemented in commercial vehicles, acting on throttle and brake. Nevertheless, lateral control applications are less common in the market. Since a too-sudden turn of the steering wheel can cause an accident in a few seconds, good speed and position control of the steering wheel is essentia...

  11. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    International Nuclear Information System (INIS)

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity

  12. U.S. Marine Corps to use autonomous vehicles built by Virginia Tech engineering students

    OpenAIRE

    Nystrom, Lynn A.

    2010-01-01

    Four unmanned autonomous vehicles designed and built by a team of engineering students at Virginia Tech using the TORC Robotic Building Blocks product line, are headed to Hawaii to participate in the 2010 Rim of the Pacific (RIMPAC) war games in July.

  13. Location Estimation for an Autonomously Guided Vehicle using an Augmented Kalman Filter to Autocalibrate the Odometry

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Bak, Martin; Andersen, Nils Axel;

    1998-01-01

    A Kalman filter using encoder readings as inputs and vision measurements as observations is designed as a location estimator for an autonomously guided vehicle (AGV). To reduce the effect of modelling errors an augmented filter that estimates the true system parameters is designed. The traditional...

  14. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard;

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer coordi...

  15. An Autonomous Underwater Vehicle Simulation Using Linear Quadratic Servo Based on Open Control Platform

    Directory of Open Access Journals (Sweden)

    Nanang Syahroni

    2012-01-01

    Full Text Available This paper presents an optimal regulator for depth control simulation of an autonomous underwater vehicle (AUV using a new approach of decentralized system environment called open control platform (OCP. Simulation results are presented to demonstrate performance of the proposed method.

  16. Autonomous underwater vehicle pursuit of biological specimens in the open ocean

    OpenAIRE

    Blanco, Max; Wilson, P.A.

    2010-01-01

    The pursuit equations in two-dimensional space are examined, and then parametrised in terms of relative velocity and initial range. Several inferences about the behaviour of these equations are drawn. The burst speed of several fish species are tabulated, along with several types of Autonomous Underwater Vehicle. An example pursuit calculation is described.

  17. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Austin Brown, Brittany Repac, Jeff Gonder

    2013-07-15

    Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine many of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.

  18. Automated driving and autonomous functions on road vehicles

    Science.gov (United States)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  19. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  20. Structuring automated vehicle guidance knowledge in The Netherlands

    NARCIS (Netherlands)

    Hoedemaeker, M.; Bastiaensen, E.G.H.J.; Zwaneveld, P.J.

    2000-01-01

    This paper describes the set-up of a AVG knowledge database from the AVV Transport Research Centre from the Dutch Ministry of Transport, Public Works and Water Management. The database provides a categorised overview of all research performed in The Netherlands in the area of Automatic Vehicle Guida

  1. Task and Motion Planning for Selective Weed Conrol using a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; la Cour-Harbo, Anders; Hansen, Karl Damkjær

    2014-01-01

    with the right amount. In this article, a task and motion planning for a team of autonomous vehicles to reduce chemicals in farming is presented. Field data are collected by small unmanned helicopters equipped with a range of sensors, including multispectral and thermal cameras. Data collected are transmitted...... to a ground station to be analyzed and triggers aerial and ground-based vehicles to start close inspection and/or plant/weed treatment in specified areas. A complete trajectory is generated to enable ground-based vehicle to visit infested areas and start chemical/mechanical weed treatment....

  2. Autonomous navigation vehicle system based on robot vision and multi-sensor fusion

    Science.gov (United States)

    Wu, Lihong; Chen, Yingsong; Cui, Zhouping

    2011-12-01

    The architecture of autonomous navigation vehicle based on robot vision and multi-sensor fusion technology is expatiated in this paper. In order to acquire more intelligence and robustness, accurate real-time collection and processing of information are realized by using this technology. The method to achieve robot vision and multi-sensor fusion is discussed in detail. The results simulated in several operating modes show that this intelligent vehicle has better effects in barrier identification and avoidance and path planning. And this can provide higher reliability during vehicle running.

  3. On-line identification of the speed, steering and diving response parameters of an autonomous underwater vehicle from experimental data

    OpenAIRE

    Bahrke, Fredric G.

    1992-01-01

    Approved for public release; distribution is unlimited. The experimental response data from autonomous maneuvering using the NPS AUV II vehicle has been analyzed with a view to defining Kalman filters to provide on-line estimates of system parameters and their variability. Kalman filters, designed for parameter estimation are expected to be the first step in the development of autonomous fault detection systems for underwater vehicles. Secondly, extraction of vehicle hydrodynamic coefficie...

  4. Modeling the Turning Speed and Car Following Behaviors of Autonomous Vehicles in a Virtual World

    Directory of Open Access Journals (Sweden)

    Carrillo-González José Gerardo

    2015-07-01

    Full Text Available This article deals with mathematical models for controlling vehicles behavior in a virtual world, where two behaviors are considered: 1 curve turning and 2 car following situations, in this last is essential to provide a safety distance between the leader and the follower and at the same time keep the follower not delayed with respect to the leader, and in a curve turning the complexity is to provide a safety speed inside the curve and keep the car inside the lane. Using basic information as vehicles position, mathematical models can be developed for explaining the heading angle and the autonomous vehicles speed on curves, i.e. the controlled by the models. A model that predicts the autonomous vehicle speed on curves is developed considering previous data in other curves. Two models that control the acceleration/deceleration behavior of autonomous vehicles in a car following situation are proposed. In the first model, the parameters are calibrated with a proposed algorithm which enables accuracy in order to imitate the human behavior for accelerating and braking, and the second model provides a safety distance between the follower and the leader at sudden stops of the latter and employs the acceleration/deceleration top capabilities to follow the leader car similar to the human behavior.

  5. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    Science.gov (United States)

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)]. PMID:26723332

  6. EFFECT OF HYDROPLANE PROFILE ON HYDRODYNAMIC COEFFICIENTS OF AN AUTONOMOUS UNDERWATER VEHICLE

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2016-03-01

    Full Text Available AUVs are the most suitable tool for conduction survey concerning with global environmental problems. AUVs maneuverability should be carefully checked so as to improve energy efficiency of the vehicle and avoid unexpected motion. Oblique towing test (OTT is simulated virtually in a computational fluid dynamic (CFD environment to obtain hydrodynamic damping coefficients of a full-scale autonomous underwater vehicle. Simulations are performed for bare hull and hull equipped with four different hydroplanes. The hydrodynamic forces and moment are obtained to calculate hydrodynamic coefficients. Nonlinear damping coefficients are also obtained by using suitable curve fitting. Experiments of resistance and OTT are carried out in specific condition, for validation purpose. Following the extracting numerical results a mathematical model is developed to calculate hydrodynamic force for different sail type in order to predict autonomous underwater vehicle (AUV maneuverability. The results shows good agreement between theory and experiment.

  7. Fully autonomous navigation for the NASA cargo transfer vehicle

    Science.gov (United States)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  8. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  9. Autonomous Navigation of Unmanned Vehicles: A Fuzzy Logic Perspective

    OpenAIRE

    Tsourveloudis, Nikos C.; Doitsidis, Lefteris; Valavanis, Kimon P.

    2005-01-01

    The technology of unmanned vehicles, in all its aspects, is an exciting one, especially since it holds the promise of saving human lives by letting machines do dull, dirty or dangerous missions into high-threat environments or just unknown environments

  10. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle

    Directory of Open Access Journals (Sweden)

    Miroslaw Gerigk

    2015-12-01

    Full Text Available In the paper the aim of an interdisciplinary research is presented. The research method is introduced. An object the unmanned autonomous maritime vehicle is briefly described. The key research problem concerns a combined model of the vehicle motion including the loads of lift and hydrodynamic nature. The model takes into account the gravity and displacement forces, resistance and thrust forces, lift and other hydrodynamic forces. One of the major research tasks is to precisely predict the position of the vehicle. To do that an integrated model of acquiring, analyzing and processing the signals is necessary. The processed signals may then be used for the precise steering of the vehicle. The vehicle should be equipped with a stabilization system. Some information on an integrated steering, positioning and stabilization system of the vehicle is briefly presented in the paper. Such the system enables to obtain a fully autonomous vehicle. Some information on the propulsion and underwater energy supply systems are presented in the paper, too.

  11. Simulating an underwater vehicle self-correcting guidance system with Simulink

    Institute of Scientific and Technical Information of China (English)

    FAN Hui; ZHANGYu-wen; LI Wen-zhe

    2008-01-01

    Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next,steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.

  12. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    Science.gov (United States)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  13. Diagnosis for Control and Decision Support for Autonomous Vehicles

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren; Rufus Blas, Morten

    2016-01-01

    with complex and nonlinear systems have matured and even though there are many unsolved problems, methodology and associated tools have become available in the form of theory and software for design. Genuine industrial cases have also become available. Analysis of system topology, referred to as structural...... analysis, has proven to be unique and simple in use and a recent extension to active structural techniques have made fault isolation possible in a wide range of systems. Following residual generation using these topology-based methods, deterministic and statistical change detection has proven very useful...... in practise. Yet they are also affordable due to the use of fault-tolerant philosophies and tools that make engineering efforts minimal for their implementation. The chapter includes examples for an autonomous aircraft and a baling system for agriculture to illustrate the generic design procedures and real...

  14. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  15. Onboard assessment of XRF spectra using genetic algorithms for decision making on an autonomous underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Jeremy [Tasmanian Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart, TAS (Australia); School of Computing and Information Systems, University of Tasmania, Hobart, TAS (Australia); Souza, P. de, E-mail: paulo.desouza@csiro.au [Tasmanian Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart, TAS (Australia); Timms, G.P. [Tasmanian Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart, TAS (Australia); Ollington, R. [School of Computing and Information Systems, University of Tasmania, Hobart, TAS (Australia)

    2011-06-15

    In order to optimise use of the limited resources (time, power) of an autonomous underwater vehicle (AUV) with a miniaturised X-ray fluorescence (XRF) spectrometer on board to carry out in situ autonomous chemical mapping of the surface of sediments with desired resolution, a genetic algorithm for rapid curve fitting is reported in this paper. This method quickly converges and provides an accurate in situ assessment of metals present, which helps the control system of the AUV to decide on future sampling locations. More thorough analysis of the available data could be performed once the AUV has returned to the base (laboratory).

  16. Design and evaluation of a hierarchical control architecture for an autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    BIAN Xin-qian; QIN Zheng; YAN Zhe-ping

    2008-01-01

    This paper researches on a kind of control architecture for autonomous underwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture. The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.

  17. Acoustic inversion with self noise of an autonomous underwater vehicle to measure sound speed in marine sediments

    NARCIS (Netherlands)

    A.V. van Leijen; L.J.M. Rothkranz; F.C.A. Groen

    2009-01-01

    This work reports on an experiment from the Maritime Rapid Environmental Assessment sea trials in 2007, where autonomous underwater vehicles were deployed for environmental assessment. Even though these underwater vehicles are very quiet platforms, this work investigates the potential of vehicle sel

  18. Application of Closed Loop Optimal Guidance for a Constant Thrust Space Vehicle

    Science.gov (United States)

    Rezaei Darestani, Mahdy; Abbasi Mahale, Mahdi

    2016-01-01

    This research presents derivation and implementation of the explicit guidance problem to steer a space vehicle into exo atmospheric phase of flight to develop three-dimensional optimal trajectory. The proposed guidance algorithm is in association with continuous powered flight of the space vehicle in ascent manoeuvre. Stability, accuracy and simplicity of this approach are the improved developments in comparison with the IGM approach. This algorithm uses the calculus of variation method for the two boundary-value injection problem to generate an optimal trajectory of space vehicle with online generation of steering command to inject to any desired orbit. Here the end conditions have been determined as the orbital height, inclination and eccentricity where the initial conditions are fixed. The simulation results are considered which shows the accuracy and simplicity of this method to reach to the desired orbit in minimum fuel.

  19. Closed Loop Guidance with Multiple Constraints for Low Orbit Vehicle Trajectory Optimization

    Science.gov (United States)

    Zhang, Rufei; Zhao, Shifan

    Low orbit has features of strong invisibility and penetration, but needs more shutdown energy comparable to high orbit under the same range, which strongly requires studying the problem of delivery capacity optimization for multi-stage launch vehicles. Based on remnant apparent velocity and constraints models, multi-constraint closed-loop guidance with constraints of trajectory maximum height and azimuth was proposed, which adopted elliptical orbit theory and Newton iteration algorithm to optimize trajectory and thrust direction, reached to take full advantage of multi-stage launch vehicle propellant, and guided low orbit vehicle to enter maximum range trajectory. Theory deduction and numerical example demonstrate that the proposed guidance method could extend range and achieve precise control for orbit maximum height and azimuth.

  20. Computer system evolution requirements for autonomous checkout of exploration vehicles

    Science.gov (United States)

    Davis, Tom; Sklar, Mike

    1991-01-01

    This study, now in its third year, has had the overall objective and challenge of determining the needed hooks and scars in the initial Space Station Freedom (SSF) system to assure that on-orbit assembly and refurbishment of lunar and Mars spacecraft can be accomplished with the maximum use of automation. In this study automation is all encompassing and includes physical tasks such as parts mating, tool operation, and human visual inspection, as well as non-physical tasks such as monitoring and diagnosis, planning and scheduling, and autonomous visual inspection. Potential tasks for automation include both extravehicular activity (EVA) and intravehicular activity (IVA) events. A number of specific techniques and tools have been developed to determine the ideal tasks to be automated, and the resulting timelines, changes in labor requirements and resources required. The Mars/Phobos exploratory mission developed in FY89, and the Lunar Assembly/Refurbishment mission developed in FY90 and depicted in the 90 Day Study as Option 5, have been analyzed in detailed in recent years. The complete methodology and results are presented in FY89 and FY90 final reports.

  1. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    Science.gov (United States)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  2. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    Science.gov (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  3. Autonomous Control Reconfiguration of Aerospace Vehicle Based on Control Effectiveness Estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Future aerospace vehicles (ASV) are designed to fly in both inner and extra atrmospheric fields, which requires autonomous adaptability to the uncertainties emanated from abrupt faults and continuously time-varying environments. An autonomous control reconfiguration scheme is presented for ASV to deal with the uncertainties on the base of control effectiveness estimation. The on-line estimation methods for the time-varying control effectiveness of linear control system are investigated. Some sufficient conditions for the estimable system are given for different cases. There are proposed corresponding on-line estimation algorithms which are proved to be convergent and robust to noise using the least-square-based methods. On the ground of fuzzy logic and linear programming, the control allocation algorithms, which are able to implement the autonomous control reconfiguration through the redundant actuators, are put forward. Finally, an integrated system is developed to verify the scheme and algorithms by way of numerical simulation and analysis.

  4. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  5. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles.

    Science.gov (United States)

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-01-01

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194

  6. Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner.

    Science.gov (United States)

    An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai

    2016-01-01

    There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation. PMID:27447640

  7. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles.

    Science.gov (United States)

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-08-13

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  8. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Bo He

    2015-08-01

    Full Text Available In this paper, a novel iterative sparse extended information filter (ISEIF was proposed to solve the simultaneous localization and mapping problem (SLAM, which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF, standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  9. Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner

    Science.gov (United States)

    An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai

    2016-01-01

    There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation. PMID:27447640

  10. Autonomous Coil Alignment System Using Fuzzy Steering Control for Electric Vehicles with Dynamic Wireless Charging

    Directory of Open Access Journals (Sweden)

    Karam Hwang

    2015-01-01

    Full Text Available An autonomous coil alignment system (ACAS using fuzzy steering control is proposed for vehicles with dynamic wireless charging. The misalignment between the power receiver coil and power transmitter coil is determined based on the voltage difference between two coils installed on the front-left/front-right of the power receiver coil and is corrected through autonomous steering using fuzzy control. The fuzzy control is chosen over other control methods for implementation in ACAS due to the nonlinear characteristic between voltage difference and lateral misalignment distance, as well as the imprecise and constantly varying voltage readings from sensors. The operational validity and feasibility of the ACAS are verified through simulation, where the vehicle equipped with ACAS is able to align with the power transmitter in the road majority of the time during operation, which also implies achieving better wireless power delivery.

  11. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  12. Path Following of Autonomous Vehicle in 2D Space Using Multivariable Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Daxiong Ji

    2014-01-01

    Full Text Available A solution to the path following problem for underactuated autonomous vehicles in the presence of possibly large modeling parametric uncertainty is proposed. For a general class of vehicles moving in 2D space, we demonstrated a path following control law based on multiple variable sliding mode that yields global boundedness and convergence of the position tracking error to a small neighborhood and robustness to parametric modeling uncertainty. An error integration element is added into the “tanh” function of the traditional sliding mode control. We illustrated our results in the context of the vehicle control applications that an underwater vehicle moves along with the desired paths in 2D space. Simulations show that the control objectives were accomplished.

  13. Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Thor Inge Fossen

    1988-10-01

    Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.

  14. Planning the Minimum Time and Optimal Survey Trajectory for Autonomous Underwater Vehicles in Uncertain Current

    Directory of Open Access Journals (Sweden)

    Michael A. Hurni

    2015-12-01

    Full Text Available The authors develop an approach to a “best” time path for Autonomous Underwater Vehicles conducting oceanographic measurements under uncertain current flows. The numerical optimization tool DIDO is used to compute hybrid minimum time and optimal survey paths for a sample of currents between ebb and flow. A simulated meta-experiment is performed where the vehicle traverses the resulting paths under different current strengths per run. The fastest elapsed time emerges from a payoff table. A multi-objective function is then used to weigh the time to complete a mission versus measurement inaccuracy due to deviation from the desired survey path.

  15. Design of Neural Network Control System for Controlling Trajectory of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    İkbal Eski

    2014-01-01

    Full Text Available A neural network based robust control system design for the trajectory of Autonomous Underwater Vehicles (AUVs is presented in this paper. Two types of control structure were used to control prescribed trajectories of an AUV. The vehicle was tested with random disturbances while taxiing under water. The results of the simulation showed that the proposed neural network based robust control system has superior performance in adapting to large random disturbances such as underwater flow. It is proved that this kind of neural predictor could be used in real-time AUV applications.

  16. Autonomous Planning and Replanning for Mine-Sweeping Unmanned Underwater Vehicles

    Science.gov (United States)

    Gaines, Daniel M.

    2010-01-01

    This software generates high-quality plans for carrying out mine-sweeping activities under resource constraints. The autonomous planning and replanning system for unmanned underwater vehicles (UUVs) takes as input a set of prioritized mine-sweep regions, and a specification of available UUV resources including available battery energy, data storage, and time available for accomplishing the mission. Mine-sweep areas vary in location, size of area to be swept, and importance of the region. The planner also works with a model of the UUV, as well as a model of the power consumption of the vehicle when idle and when moving.

  17. A practical receding horizon control framework for path planning and control of autonomous vtol vehicles

    Science.gov (United States)

    Liu, C.; Chen, W.-H.

    2013-12-01

    This paper describes an integrated path planning and tracking control framework for autonomous vertical-take-off-and-landing (VTOL) vehicles, particularly quadrotors. The path planning adopts a receding horizon strategy to repeatedly plan a local trajectory that satisfies both the vehicle dynamics and obstacle-free requirement. A tracking controller is then designed to track the planned path. The differential flatness property of the quadrotor is exploited in both path planner and tracking controller designs. The proposed framework is verified by real-time simulations incorporating online optimization.

  18. Computing energy-optimal trajectories for an autonomous underwater vehicle using direct shooting

    Directory of Open Access Journals (Sweden)

    Inge Spangelo

    1992-07-01

    Full Text Available Energy-optimal trajectories for an autonomous underwater vehicle can be computed using a numerical solution of the optimal control problem. The vehicle is modeled with the six dimensional nonlinear and coupled equations of motion, controlled with DC-motors in all degrees of freedom. The actuators are modeled and controlled with velocity loops. The dissipated energy is expressed in terms of the control variables as a nonquadratic function. Direct shooting methods, including control vector parameterization (CVP arc used in this study. Numerical calculations are performed and good results are achieved.

  19. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    Science.gov (United States)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  20. Case Studies on an Approach to Multiple Autonomous Vehicle Motion Coordination

    Institute of Scientific and Technical Information of China (English)

    D.K. Liu; X. Wu; G. Paul; G. Dissanayake

    2006-01-01

    This paper conducts a series of case studies on a novel Simultaneous Path and Motion Planning (SiPaMoP) approach[1] to multiple autonomous or Automated Guided Vehicle (AGV) motion coordination in bidirectional networks. The SiPaMoP approach plans collision-free paths for vehicles based on the principle of shortest path by dynamically changing the vehicles' paths, traveling speeds or waiting times, whichever gives the shortest traveling time. It integrates path planning, collision avoidance and motion planning into a comprehensive model and optimizes the vehicles' path and motion to minimize the completion time of a set of tasks. Five case studies, i.e., head-on collision avoidance,catching-up collision avoidance, buffer node generation and collision avoidance, prioritybased motion coordination, and safety distance based planning, are presented. The results demonstrated that the method can effectively plan the path and motion for a team of autonomous vehicles or AGVs, and solve the problems of traffic congestion and collision under various conditions.

  1. Coordination of Multiple Biomimetic Autonomous Underwater Vehicles Using Strategies Based on the Schooling Behaviour of Fish

    Directory of Open Access Journals (Sweden)

    Jonathan McColgan

    2016-01-01

    Full Text Available Biomimetic Autonomous Underwater Vehicles (BAUVs are Autonomous Underwater Vehicles (AUVs that employ similar propulsion and steering principles as real fish. While the real life applicability of these vehicles has yet to be fully investigated, laboratory investigations have demonstrated that at low speeds, the propulsive mechanism of these vehicles is more efficient when compared with propeller based AUVs. Furthermore, these vehicles have also demonstrated superior manoeuvrability characteristics when compared with conventional AUVs and Underwater Glider Systems (UGSs. Further performance benefits can be achieved through coordination of multiple BAUVs swimming in formation. In this study, the coordination strategy is based on the schooling behaviour of fish, which is a decentralized approach that allows multiple AUVs to be self-organizing. Such a strategy can be effectively utilized for large spatiotemporal data collection for oceanic monitoring and surveillance purposes. A validated mathematical model of the BAUV developed at the University of Glasgow, RoboSalmon, is used to represent the agents within a school formation. The performance of the coordination algorithm is assessed through simulation where system identification techniques are employed to improve simulation run time while ensuring accuracy is maintained. The simulation results demonstrate the effectiveness of implementing coordination algorithms based on the behavioural mechanisms of fish to allow a group of BAUVs to be considered self-organizing.

  2. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  3. Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle

    OpenAIRE

    Nicholls, K.W.; Abrahamsen, E.P.; Buck, J.J.H.; P. A. Dodd; Goldblatt, C.; Griffiths, G; K. J. Heywood; Hughes, N.E.; Kaletzky, A.; Lane-Serff, G.F.; McPhail, S.D.; Millard, N. W.; Oliver, K. I. C.; Perrett, J; Price, M. R.

    2006-01-01

    The cavities beneath Antarctic ice shelves are among the least studied regions of the World Ocean, yet they are sites of globally important water mass transformations. Here we report results from a mission beneath Fimbul Ice Shelf of an autonomous underwater vehicle. The data reveal a spatially complex oceanographic environment, an ice base with widely varying roughness, and a cavity periodically exposed to water with a temperature significantly above the surface freezing point. The result...

  4. Surveillance of Marine Resources by use of Stationary Platforms and Autonomous Underwater Vehicle (AUVS)

    OpenAIRE

    Patel, Ruben

    2007-01-01

    In this thesis I investigate, describe and demonstrate new platform technology and its application in fisheries research. The first task was to prepare an Autonomous Underwater Vehicle (AUV) for payload integration (Paper 1). The instrument to be integrated into the AUV was a SIMRAD EK60 scientific echo sounder. Space limitations of the AUV demanded physical modifications. The EK60 software was designed for manual operation. To overcome the associated problem for remote control in accordance ...

  5. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles

    OpenAIRE

    Bo He; Yang Liu; Diya Dong; Yue Shen; Tianhong Yan; Rui Nian

    2015-01-01

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land ...

  6. Real Time SLAM Using Compressed Occupancy Grids For a Low Cost Autonomous Underwater Vehicle

    OpenAIRE

    Cain, Christopher Hawthorn

    2014-01-01

    The research presented in this dissertation pertains to the development of a real time SLAM solution that can be performed by a low cost autonomous underwater vehicle equipped with low cost and memory constrained computing resources. The design of a custom rangefinder for underwater applications is presented. The rangefinder makes use of two laser line generators and a camera to measure the unknown distance to objects in an underwater environment. A visual odometry algorithm is...

  7. Depth Control for Micro-autonomous Underwater Vehicles (μAUVs): Simulation and Experimentation

    OpenAIRE

    Watson, Simon A.; Green, Peter N.

    2014-01-01

    Swarms of micro-autonomous underwater vehicles (μAUVs) are an attractive solution to the problem of nuclear storage pond monitoring. Independent movement in the horizontal and vertical planes is necessary to maximize manoeuvrability. This paper presents a comparison of different control strategies for independent depth control using both simulations and real experimental results. PID, sliding mode and a simplification of sliding mode (called 'bounded PD') are simulated using a MATLAB/SIMULINK...

  8. Navigation Behaviors Based on Fuzzy ArtMap Neural Networks for Intelligent Autonomous Vehicles

    OpenAIRE

    Amine Chohra; Ouahiba Azouaoui

    2011-01-01

    The use of hybrid intelligent systems (HISs) is necessary to bring the behavior of intelligent autonomous vehicles (IAVs) near the human one in recognition, learning, adaptation, generalization, decision making, and action. First, the necessity of HIS and some navigation approaches based on fuzzy ArtMap neural networks (FAMNNs) are discussed. Indeed, such approaches can provide IAV with more autonomy, intelligence, and real-time processing capabilities. Second, an FAMNN-based navigation appro...

  9. A behavior-based scheme using reinforcement learning for autonomous underwater vehicles

    OpenAIRE

    Carreras Pérez, Marc; Yuh, Junku; Batlle i Grabulosa, Joan; Ridao Rodríguez, Pere

    2005-01-01

    This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with...

  10. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle.

    Science.gov (United States)

    Gebbie, John; Siderius, Martin; Allen, John S

    2012-11-01

    This paper presents an analysis of the acoustic emissions emitted by an underway REMUS-100 autonomous underwater vehicle (AUV) that were obtained near Honolulu Harbor, HI using a fixed, bottom-mounted horizontal line array (HLA). Spectral analysis, beamforming, and cross-correlation facilitate identification of independent sources of noise originating from the AUV. Fusion of navigational records from the AUV with acoustic data from the HLA allows for an aspect-dependent presentation of calculated source levels of the strongest propulsion tone.

  11. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle

    OpenAIRE

    Milligan, R. J.; Morris, K. J.; Bett, B. J.; Durden, J. M.; Jones, D. O. B.; Robert, K; Ruhl, H. A.; Bailey, D. M.

    2016-01-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing...

  12. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle

    OpenAIRE

    Milligan, R. J.; Morris, K. J.; Bett, B. J.; Durden, J. M.; Jones, D. O. B.; Robert, K; Ruhl, H. A.; Bailey, D. M.

    2016-01-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850?m water depth) encompassing...

  13. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV)

    OpenAIRE

    Singh, S. N.; Mani, S.

    2005-01-01

    The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic) autonomous underwater vehicles (BAUVs). Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control...

  14. Geostatistical Prediction of Ocean Outfall Plume Characteristics Based on an Autonomous Underwater Vehicle

    OpenAIRE

    Patrícia Alexandra Gregório Ramos

    2013-01-01

    Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfal...

  15. Cross body thruster control and modeling of a body of revolution Autonomous Underwater Vehicle

    OpenAIRE

    Doherty, Sean Michael.

    2011-01-01

    Approved for public release; distribution is unlimited. Cross body thrusters permit a body of revolution Autonomous Underwater Vehicle to retain the energy efficiency of forward travel while increasing the ability to maneuver in confined areas such as harbors and piers. This maneuverability also permits more deliberate underwater surveys using a fixed, mounted forward and downward looking sonar. This work develops the necessary hydrodynamic coefficients, using methods applied to earlier ve...

  16. Acoustic underwater navigation of the Phoenix Autonomous Underwater Vehicle using the DiveTracker system

    OpenAIRE

    Scrivener, Arthur W.

    1996-01-01

    Autonomous Underwater Vehicles (AUVs) require a navigation system in order to conduct useful functions. This research was an experimental investigation of the commercial DiveTracker underwater acoustic navigation system used onboard the NPS Phoenix AUV. Tests conducted with the DiveTracker system proved that the system could be used successfully in AUV navigation while submerged and revealed that more precise positioning could be obtained through postconditioning of the DiveTracker output ran...

  17. Object Orientated Programmable Integrated Circuit (OOPIC) upgrade and evaluation for Autonomous Ground Vehicle (AGV)

    OpenAIRE

    Hoffman, Andrew J.

    2006-01-01

    A small, low-power Object-Oriented Programmable integrated circuit (OOPic) microcontroller was integrated and tested with the architecture for an autonomous ground vehicle (AGV). Sensors with the OOPic, and the XBee Wireless Suite were included in the integration. Tests were conducted, including range and time operation analysis for wireless communications for comparison with the legacy BL2000 microcontroller. Results demonstrated long battery life for the electronics of the robot, as well as...

  18. An optimal consensus tracking control algorithm for autonomous underwater vehicles with disturbances

    OpenAIRE

    Zhang, Jian Yuan Wen-Xia; Zhou, Zhou-Hai

    2012-01-01

    The optimal disturbance rejection control problem is considered for consensus tracking systems affected by external persistent disturbances and noise. Optimal estimated values of system states are obtained by recursive filtering for the multiple autonomous underwater vehicles modeled to multi-agent systems with Kalman filter. Then the feedforward-feedback optimal control law is deduced by solving the Riccati equations and matrix equations. The existence and uniqueness condition of feedforward...

  19. Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle

    OpenAIRE

    Portner, Stephen Michael

    2014-01-01

    A methodology for the design of small autonomous underwater vehicle propulsion systems has been developed and applied to the Virginia Tech 690 AUV. The methodology is novel in that it incorporates fast design level codes capable of predicting the viscous effects of low Reynolds number flow that is experienced by small, slow turning propellers. The methodology consists of determining the minimum induced loss lift distribution for the propeller via lifting line theory, efficient airfoil section...

  20. Design and Implementation of GPS Vehicle Navigation and Guidance System

    Institute of Scientific and Technical Information of China (English)

    Bing-zhong REN; Wen-huan KONG

    2010-01-01

    -The urban traffic infomation management has become an important way of solving traffic jam of cities.With the wider use of the third generation of mobile communication(3G)networks,urban information management based on 3G will be a central issue of application.The paper designs a framework of Global Positioning System(GPS)vehicle navigating and guiding system using 3G mobile network and Global Information System(CIS)electronic map according to moving objects.It discusses moving object' s time-space attributes which will be described by a five-field and a directed graph.It analyzes the GPS mobile appararus's software functions and hardware And it improves the function of GPS mobile apparatus which provide the guiding function utilizing the shared information of traffic.The navigation based on the shortest path algorithm is been advanced to one based on the real-time traffic flow of moving objects,which help people travelling on roads mote convenietly.

  1. Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle

    Science.gov (United States)

    Murphy, Michael G.

    1993-01-01

    The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.

  2. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    Science.gov (United States)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  3. Toward autonomous avian-inspired grasping for micro aerial vehicles

    International Nuclear Information System (INIS)

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. (papers)

  4. Inexpensive semi-autonomous ground vehicles for defusing IEDs

    Science.gov (United States)

    Davenport, Chris; Lodmell, James; Womble, Phillip C.; Barzilov, Alexander; Paschal, Jon; Hernandez, Robert; Moss, Kyle T.; Hopper, Lindsay

    2008-04-01

    Improvised explosive devices (IEDs) are an important concern to coalition forces during the conflicts in the Middle East. These devices are responsible for many casualties to American armed forces in the Middle East. These explosives are particularly dangerous because they are improvised with materials readily available to the designer, and there is no systematic way of explosive ordinance disposal. IEDs can be made from things such as standard military ammunition and can be detonated with common electronic devices such as cell phones and garage door openers. There is a great need for a low cost solution to neutralize these IEDs. At the Applied Physics Institute we are building a single function disrupter robot whose sole purpose is to neutralize these IEDs. We are modifying a toy remote control car to control it either wirelessly using WI-FI (IEEE 802.11) or wired by tethering the vehicle with an Ethernet cable (IEEE 802.3). The robot will be equipped with a high velocity fuze disrupter to neutralize the IED as well as a video camera for inspection and aiming purposes. This robot utilizes commercial-off-the-shelf (COTS) components which keeps the cost relatively low. Currently, similar robot systems have been deployed in Iraq and elsewhere but their method of operation is such that it is impractical to use in non-combat situations. We will discuss our design and possible deployment scenarios.

  5. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    Science.gov (United States)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. PMID:24852023

  6. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    Science.gov (United States)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  7. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    Science.gov (United States)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  8. Online trajectory planning and guidance for reusable launch vehicles in the terminal area

    Science.gov (United States)

    Lan, Xue-Jing; Liu, Lei; Wang, Yong-Ji

    2016-01-01

    A guidance scheme has been proposed based on a new online trajectory planning algorithm for an unpowered reusable launch vehicle (RLV) in the terminal area energy management (TAEM) phase. The trajectory planning algorithm is able to rapidly generate a feasible path from the current state to a desired state at approach and landing interface (ALI) based on the dynamic pressure profile and new ground track geometry. Simple guidance laws are used to keep the RLV flying along the reference path which can be adjusted online by five related parameters. Then, the effectiveness and adaptability of the proposed TAEM guidance scheme is demonstrated by numerical trials with variations in the initial energy, position and aerodynamic performance.

  9. Data acquisition and path selection decision making for an autonomous roving vehicle

    Science.gov (United States)

    Frederick, D. K.; Shen, C. N.; Yerazunis, S. W.

    1976-01-01

    Problems related to the guidance of an autonomous rover for unmanned planetary exploration were investigated. Topics included in these studies were: simulation on an interactive graphics computer system of the Rapid Estimation Technique for detection of discrete obstacles; incorporation of a simultaneous Bayesian estimate of states and inputs in the Rapid Estimation Scheme; development of methods for estimating actual laser rangefinder errors and their application to date provided by Jet Propulsion Laboratory; and modification of a path selection system simulation computer code for evaluation of a hazard detection system based on laser rangefinder data.

  10. Autonomous control of roving vehicles for unmanned exploration of the planets

    Science.gov (United States)

    Yerazunis, S. W.

    1978-01-01

    The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.

  11. Real-time automated road, lane and car detection for autonomous driving

    OpenAIRE

    Birdal, Tolga; Erçil, Aytül; Ercil, Aytul

    2007-01-01

    In this paper, we discuss a vision based system for autonomous guidance of vehicles. An autonomous intelligent vehicle has to perform a number of functionalities. Segmentation of the road, determining the boundaries to drive in and recognizing the vehicles and obstacles around are the main tasks for vision guided vehicle navigation. In this article we propose a set of algorithms which lead to the solution of road and vehicle segmentation using data from a color camera. The algorithms descr...

  12. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  13. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    NARCIS (Netherlands)

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; Hoesel, van Lodewijk; Marron, Pedro J.; Lepley, Jason; Andres, de Eduardo

    2007-01-01

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  14. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  15. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-02-21

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  16. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  17. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    Directory of Open Access Journals (Sweden)

    Joshué Pérez

    2013-02-01

    Full Text Available Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  18. Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    CERN Document Server

    Sch"onhof, M; Kesting, A; Helbing, D; Sch\\"onhof, Martin; Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2006-01-01

    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-...

  19. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  20. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty

    Science.gov (United States)

    Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.

    2016-10-01

    A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.

  1. Description of the primary flight display and flight guidance system logic in the NASA B-737 transport systems research vehicle

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    A primary flight display format was integrated with the flight guidance and control system logic in support of various flight tests conducted with the NASA Transport Systems Research Vehicle B-737-100 airplane. The functional operation of the flight guidance mode control panel and the corresponding primary flight display formats are presented.

  2. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  3. High spatial resolution mapping of water quality and bathymetry with an autonomous underwater vehicle

    Science.gov (United States)

    Pampalone, Vincenzo; Milici, Barbara

    2015-12-01

    The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.

  4. 水下自航器的时变运动模型%Time-varying model for autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    施阳; 慕春棣

    2001-01-01

    A time-varying model is developed for long-distance and variable-velocity autonomous underwater vehicles (AUV) with high accuracy control and guidance. Geostatics and hydrokinetics are used to develop equations relating the variation of the mass, centroid and moment of inertia because of the fuel combustion, and the change of the propeller thrust as the AUV cruises. A complete mathematical model is presented for an AUV with variable mass and velocity. The mathematical model is described in concise matrix form and the physical meaning is explained in detail. The time-varying model for the AUV provides a foundation for designing high performance control and guidance laws.%为开发研制大航程、变速度的水下自航器,实现更精确的控制和导引,需建立水下自航器的时变运动模型。利用刚体分析动力学和理论流体力学的基本理论,研究水下自航器因燃料的消耗而引起的质量变化、质心位置和转动惯量的变化,导出描述其变化规律的方程; 研究因推力变化而引起速度的改变,导出推力变化方程。在此基础上,推导出水下自航器空间运动方程组,并将数学模型表达成简明的矩阵形式,为研究变质量、变速度水下自航器的运动性能和设计控制及导引律提供基础。

  5. A simulation study of a speed control system for autonomous on-road operation of automotive vehicles

    OpenAIRE

    Dolezal, Michael J.

    1987-01-01

    Approved for public release; distribution is unlimited The study of human driving of automotive vehicles is an important aid to the development of viable autonomous vehicle navigation and control techniques. Observation of human behavior during driving suggests that this activity involves two distinct levels, the conscious and the unconscious. The behavior of a driver while stopping his vehicle at a stop sign can be conscious or unconscious, depending on the driver's skill level and the ...

  6. Adaptive guidance law design based on characteristic model for reentry vehicles

    Institute of Scientific and Technical Information of China (English)

    YANG JunChun; HU Jun; NI MaoLin

    2008-01-01

    In this paper an adaptive guidance law based on the characteristic model is designed to track a reference drag acceleration for reentry vehicles like the Shuttle. The characteristic modeling method of linear constant systems is extended for single-input and single-output (SlSO) linear time-varying systems so that the characteristic model can be established for reentry vehicles. A new nonlinear differential golden-section adaptive control law is presented. When the coefficients belong to a bounded closed convex set and their rate of change meets some constraints, the uniformly asymptotic stability of the nonlinear differential golden-section adaptive control system is proved. The tracking control law, the nonlinear differential golden-section control law, and the revised logical integral control law are integrated to design an adaptive guidance law based on the characteristic model. This guidance law overcomes the disadvantage of the feedback linearization method which needs the precise model. Simulation results show that the proposed method has better performance of tracking the reference drag acceleration than the feedback linearization one.

  7. A Vision-Based Method for Autonomous Landing of a Rotor-Craft Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Z. Yuan

    2006-01-01

    Full Text Available This article introduces a real-time vision-based method for guided autonomous landing of a rotor-craft unmanned aerial vehicle. In the process of designing the pattern of landing target, we have fully considered how to make this easier for simplified identification and calibration. A linear algorithm was also applied using a three-dimensional structure estimation in real time. In addition, multiple-view vision technology is utilized to calibrate intrinsic parameters of camera online, so calibration prior to flight is unnecessary and the focus of camera can be changed freely in flight, thus upgrading the flexibility and practicality of the method.

  8. TWIST SPRINGBACK MEASUREMENT OF AUTONOMOUS UNDERWATER VEHICLE PROPELLER BLADE BASED ON PROFILE DEVIATION

    Directory of Open Access Journals (Sweden)

    Ahmad Baharuddin Abdullah

    2013-01-01

    Full Text Available Geometrical defects that are attributable to springback are among the major defects induced by the sheet metal forming process. Such defects are critical for sections with varying thickness, such as Autonomous Underwater Vehicle (AUV propeller blades. In this study, the springback in the twist-bending of an AA6061 propeller blade was quantified by comparing the targeted and manufactured profiles obtained using the commercial three-dimensional surface measurement technique. The results show that the twist springback becomes larger as the twist angle increases. Similarly, the twist springback increases with increasing deformation ratio.

  9. An optimal consensus tracking control algorithm for autonomous underwater vehicles with disturbances

    CERN Document Server

    Zhang, Jian Yuan Wen-Xia

    2012-01-01

    The optimal disturbance rejection control problem is considered for consensus tracking systems affected by external persistent disturbances and noise. Optimal estimated values of system states are obtained by recursive filtering for the multiple autonomous underwater vehicles modeled to multi-agent systems with Kalman filter. Then the feedforward-feedback optimal control law is deduced by solving the Riccati equations and matrix equations. The existence and uniqueness condition of feedforward-feedback optimal control law is proposed and the optimal control law algorithm is carried out. Lastly, simulations show the result is effectiveness with respect to external persistent disturbances and noise.

  10. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle.

    Science.gov (United States)

    Gebbie, John; Siderius, Martin; Allen, John S

    2012-11-01

    This paper presents an analysis of the acoustic emissions emitted by an underway REMUS-100 autonomous underwater vehicle (AUV) that were obtained near Honolulu Harbor, HI using a fixed, bottom-mounted horizontal line array (HLA). Spectral analysis, beamforming, and cross-correlation facilitate identification of independent sources of noise originating from the AUV. Fusion of navigational records from the AUV with acoustic data from the HLA allows for an aspect-dependent presentation of calculated source levels of the strongest propulsion tone. PMID:23145694

  11. The 19th Annual Intelligent Ground Vehicle Competition: student built autonomous ground vehicles

    Science.gov (United States)

    Theisen, Bernard L.

    2012-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 19 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from almost 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  12. 78 FR 41852 - Hours of Service for Commercial Motor Vehicle Drivers; Regulatory Guidance Concerning Off-Duty Time

    Science.gov (United States)

    2013-07-12

    ... commercial motor vehicle programs and safety regulation. Background On April 4, 1997 (62 FR 16370), the... FR 16422): Question 2: What conditions must be met for a Commercial Motor Vehicle (CMV) driver to... Drivers; Regulatory Guidance Concerning Off-Duty Time AGENCY: Federal Motor Carrier Safety...

  13. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. PMID:26506019

  14. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method.

  15. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  16. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    Directory of Open Access Journals (Sweden)

    Wei Peng Lin

    2015-12-01

    Full Text Available Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV with a docking hoop (DH to recover an autonomous underwater vehicle (AUV named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and simulation to testing in water. As shown in a three-dimensional simulation of an AUVDH model using MATLAB™/Simulink™ during the launch and recovery process, the control simulation of a sliding mode controller is able to control the positions and velocities under the external wave, current, and tether forces. In the water test using the proposed Python-based GUI platform, it shows that the AUVDH is capable to perform station-keeping under the external disturbances.

  17. Sonar-based iceberg-relative navigation for autonomous underwater vehicles

    Science.gov (United States)

    Kimball, Peter; Rock, Stephen

    2011-06-01

    Iceberg-relative navigation for autonomous underwater vehicles (AUVs) will enable a new mode of data collection for studies of free-floating icebergs. Compared to current data collection methods, autonomous underwater vehicles offer substantially expanded coverage area and continuous sampling. However, because icebergs translate and rotate through inertial space, standard vehicle navigation methods which rely on inertial sensors are unable to provide iceberg-relative position estimates. Presented here is a new iceberg-relative vehicle navigation technique which is an extension of existing work in terrain-relative navigation. The technique comprises a mapping step and localization step, each of which is modified here to account for the translation and the rotation of free-floating icebergs. In the mapping step, the AUV circumnavigates the iceberg at a sequence of constant depths, collecting multibeam sonar imagery of the iceberg's submerged surface. A map is then generated in post-processing by projecting these sonar data from their corresponding vehicle positions (accounting for iceberg motion) in a frame that is fixed to the iceberg. Overlapping sonar data from the beginning and end of a circumnavigation provide the information necessary to enforce self-consistency of the iceberg map. In the localization step, the AUV uses the previously generated map to determine its position and orientation with respect to the iceberg by correlating incoming sonar ranges with the map. The estimator works by maintaining explicit estimates not only of the vehicle position and orientation, but also of the iceberg translation and rotation rates through inertial space. Results from a proof-of-concept field demonstration of this new iceberg-relative AUV navigation technique prove the feasibility of both generating a self-consistent three-dimensional map of a moving iceberg and localizing a vehicle's position with respect to that iceberg. The data for the experiment were collected

  18. Simulation of autonomous vehicles in an urban environment : An investigation on how basic models can create a realistic result

    OpenAIRE

    Milger, Hannah; Gillgren, Sara

    2015-01-01

    Recently, much progress has been done towards making vehicles autonomous and to behave in certain ways when interacting with manned and unmanned traffic. Furthermore, autonomous driving is said to be revolutionary and have many benefits. Even though there still are plenty of unsolved issues, several projects have made it possible for groundbreaking steps in the development. This report will cover some of the recently held projects and tools of importance, and describe a conducted simulation o...

  19. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  20. A ’Cognitive Driving Framework’ for Collision Avoidance in Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Alan J. Hamlet

    2015-05-01

    Full Text Available The Cognitive Driving Framework is a novel method for forecasting the future states of a multi-agent system that takes into consideration both the intentions of the agents as well as their beliefs about the environment. This is partic-ularly useful for autonomous vehicles operating in an urban environment. The algorithm maintains a posterior probability distribution over agent intents and beliefs in order to more accurately forecast their future behavior. This allows an agent navigating the environment to recognize dangerous situations earlier and more accurately than competing algorithms, therefore allowing the agent take actions in order to prevent collisions. This paper presents the Cognitive Driving Framework in detail and describes its application to intersection navigation for au-tonomous vehicles. The effects of different parameter choices on the performance of the algorithm are analyzed and experiments are conducted demonstrating the ability of the algorithm to predict and prevent automobile collisions caused by human error in multiple intersection navigation scenarios. The results are compared to the performance of prevailing methods; namely reactionary planning and constant velocity forecasting.

  1. Designing autonomous emergency braking for commercial vehicles; Der Weg zur autonomen Notbremsung im Nutzfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, K.; Kitterer, H.; Dieckmann, T. [WABCO GmbH, Hannover (Germany); Ottenhues, T.; Seuss, J. [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2007-07-01

    In the last years driver assistance systems in commercial vehicles grew out of research projects and have been further developed to series products. But up to now the penetration rate of such systems stays behind all expectations. One of the main reasons for this effect can be located in the different demands to driver assistance systems in commercial vehicles in comparison to their use in passenger car. It is difficult to do a compelling cost benefit analysis on systems, which are mainly designed to increase driver comfort. Also today's systems do not fully take advantage in increasing active safety as it could be imagined by the use of environment sensing systems. When designing the next generation of driver assistance systems for series application the main focus is on their change from comfort to safety systems. Those systems not only will support the driver upon his demand but may also act autonomously to prevent accidents or mitigate their consequences at least. Besides the development of new functionalities this change of focus also causes the demand for more powerful environment sensors. In the following course the development from Adaptive Cruise Control (ACC), which represents the current state of art, to Autonomous Emergency Braking (AEB) will be shown. (orig.)

  2. 360-Degree Visual Detection and Target Tracking on an Autonomous Surface Vehicle

    Science.gov (United States)

    Wolf, Michael T; Assad, Christopher; Kuwata, Yoshiaki; Howard, Andrew; Aghazarian, Hrand; Zhu, David; Lu, Thomas; Trebi-Ollennu, Ashitey; Huntsberger, Terry

    2010-01-01

    This paper describes perception and planning systems of an autonomous sea surface vehicle (ASV) whose goal is to detect and track other vessels at medium to long ranges and execute responses to determine whether the vessel is adversarial. The Jet Propulsion Laboratory (JPL) has developed a tightly integrated system called CARACaS (Control Architecture for Robotic Agent Command and Sensing) that blends the sensing, planning, and behavior autonomy necessary for such missions. Two patrol scenarios are addressed here: one in which the ASV patrols a large harbor region and checks for vessels near a fixed asset on each pass and one in which the ASV circles a fixed asset and intercepts approaching vessels. This paper focuses on the ASV's central perception and situation awareness system, dubbed Surface Autonomous Visual Analysis and Tracking (SAVAnT), which receives images from an omnidirectional camera head, identifies objects of interest in these images, and probabilistically tracks the objects' presence over time, even as they may exist outside of the vehicle's sensor range. The integrated CARACaS/SAVAnT system has been implemented on U.S. Navy experimental ASVs and tested in on-water field demonstrations.

  3. Exploration of Teisi Knoll by Autonomous Underwater Vehicle "R-One Robot"

    Science.gov (United States)

    Ura, Tamaki; Obara, Takashi; Nagahashi, Kenji; Nakane, Kenji; Sakai, Shoji; Oyabu, Yuji; Sakamaki, Takashi; Takagawa, Shinichi; Kawano, Hiroshi; Gamo, Toshitaka; Takano, Michiaki; Doi, Takashi

    This paper outlines the exploration of Teisi Knoll by the autonomous underwater vehicle the R-One Robot, as carried out October 19-22, 2000, and presents images taken by the sidescan SONAR fitted to the bottom of the vehicle. The R-One Robot was launched from the R/V Kaiyo, started diving near the support ship, followed predetermined tracklines which were defined by waypoints, and finally came back to the destination where it was recovered by the support vessel. In order to minimize positioning error, which is determined by the inertial navigation system and Doppler SONAR, the robot ascended to the surface several times to ascertain its precise position using the global positioning system, the antenna of which is fitted on the vertical fin. Taking advantage of this positioning system, the robot followed the predetermined tracklines with an error of less than 40 meters in 30 minutes of continuous submerging. Disturbance to the robot is small enough compared to towed vehicles that its movement can be regarded as stable. This stability resulted in clear side scanning images of the knoll and surrounding sea floor. The robot stopped at the center of the knoll, and descended vertically into the crater. When the vehicle was in the crater, anomalous manganese ion concentrations were detected by the in situ trace metal micro-analyzer GAMOS, which was loaded in the payload bay at the front of the robot.

  4. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    Science.gov (United States)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  5. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  6. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    Science.gov (United States)

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  7. Detection and avoidance of simulated potholes in autonomous vehicle navigation in an unstructured environment

    Science.gov (United States)

    Karuppuswamy, Jaiganesh; Selvaraj, Vishnuvardhanaraj; Ganesh, Meyyappa M.; Hall, Ernest L.

    2000-10-01

    In the navigation of an autonomous vehicle, tracking and avoidance of the obstacles presents an interesting problem as this involves the integration of the vision and the motion systems. In an unstructured environment, the problem becomes much more severe as the obstacles have to be clearly recognized for any decisive action to be taken. In this paper, we discuss a solution to detection and avoidance of simulated potholes in the path of an autonomous vehicle operating in an unstructured environment. Pothole avoidance may be considered similar to other obstacle avoidance except that the potholes are depressions rather than extrusions form a surface. A non-contact vision approach has been taken since potholes usually are significantly different visually from a background surface. Large potholes more than 2 feet in diameter will be detected. Furthermore, only white potholes will be detected on a background of grass, asphalt, sand or green painted bridges. The signals from the environment are captured by the vehicle's vision systems and pre-processed appropriately. A histogram is used to determine a brightness threshold to determine if a pothole is within the field of view. Then, a binary image is formed. Regions are then detected in the binary image. Regions that have a diameter close to 2 feet and a ratio of circumference to diameter close to pi are considered potholes. The neuro-fuzzy logic controller where navigational strategies are evaluated uses these signals to decide a final course of navigation. The primary significance of the solution is that it is interfaced seamlessly into the existing central logic controller. The solution can also be easily extended to detect and avoid any two dimensional shape.

  8. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    Science.gov (United States)

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys. PMID:25137689

  9. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction.

  10. Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle

    Science.gov (United States)

    Allen, Michael J.

    2005-01-01

    A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.

  11. 3D Photo Mosaicing of Tagiri Shallow Vent Field by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao

    Although underwater visual observation is an ideal method for detailed survey of seafloors, it is currently a costly process that requires the use of Remotely Operated Vehicles (ROVs) or Human Occupied Vehicles (HOVs), and can cover only a limited area. This paper proposes an innovative method to navigate an autonomous underwater vehicle (AUV) to create both 2D and 3D photo mosaics of seafloors with high positioning accuracy without using any vision-based matching. The vehicle finds vertical pole-like acoustic reflectors to use as positioning landmarks using a profiling sonar based on a SLAM (Simultaneous Localization And Mapping) technique. These reflectors can be either artificial or natural objects, and so the method can be applied to shallow vent fields where conventional acoustic positioning is difficult, since bubble plumes can also be used as landmarks as well as artificial reflectors. Path-planning is performed in real-time based on the positions and types of landmarks so as to navigate safely and stably using landmarks of different types (artificial reflector or bubble plume) found at arbitrary times and locations. Terrain tracker switches control reference between depth and altitude from the seafloor based on a local map of hazardous area created in real-time using onboard perceptual sensors, in order to follow rugged terrains at an altitude of 1 to 2 meters, as this range is ideal for visual observation. The method was implemented in the AUV Tri-Dog 1 and experiments were carried out at Tagiri vent field, Kagoshima Bay in Japan. The AUV succeeded in fully autonomous observation for more than 160 minutes to create a photo mosaic with an area larger than 600 square meters, which revealed the spatial distribution of detailed features such as tube-worm colonies, bubble plumes and bacteria mats. A fine bathymetry of the same area was also created using a light-section ranging system mounted on the vehicle. Finally a 3 D representation of the environment was

  12. Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle

    Science.gov (United States)

    Khozhaev, I. V.; Gayvoronskiy, S. A.

    2016-04-01

    Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system.

  13. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  14. Navigation Behaviors Based on Fuzzy ArtMap Neural Networks for Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Amine Chohra

    2011-01-01

    Full Text Available The use of hybrid intelligent systems (HISs is necessary to bring the behavior of intelligent autonomous vehicles (IAVs near the human one in recognition, learning, adaptation, generalization, decision making, and action. First, the necessity of HIS and some navigation approaches based on fuzzy ArtMap neural networks (FAMNNs are discussed. Indeed, such approaches can provide IAV with more autonomy, intelligence, and real-time processing capabilities. Second, an FAMNN-based navigation approach is suggested. Indeed, this approach must provide vehicles with capability, after supervised fast stable learning: simplified fuzzy ArtMap (SFAM, to recognize both target-location and obstacle-avoidance situations using FAMNN1 and FAMNN2, respectively. Afterwards, the decision making and action consist of two association stages, carried out by reinforcement trial and error learning, and their coordination using NN3. Then, NN3 allows to decide among the five (05 actions to move towards 30∘, 60∘, 90∘, 120∘, and 150∘. Third, simulation results display the ability of the FAMNN-based approach to provide IAV with intelligent behaviors allowing to intelligently navigate in partially structured environments. Finally, a discussion, dealing with the suggested approach and how its robustness would be if implemented on real vehicle, is given.

  15. Motion Predicting of Autonomous Tracked Vehicles with Online Slip Model Identification

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2016-01-01

    Full Text Available Precise understanding of the mobility is essential for high performance autonomous tracked vehicles in challenging circumstances, though the complex track/terrain interaction is difficult to model. A slip model based on the instantaneous centers of rotation (ICRs of treads is presented and identified to predict the motion of the vehicle in a short term. Unlike many research studies estimating current ICRs locations using velocity measurements for feedback controllers, we focus on predicting the forward trajectories by estimating ICRs locations using position measurements. ICRs locations are parameterized over both tracks rolling speeds and the kinematic parameters are estimated in real time using an extended Kalman filter (EKF without requiring prior knowledge of terrain parameters. Simulation results verify that the proposed algorithm performs better than the traditional method when the pose measuring frequencies are low. Experiments are conducted on a tracked vehicle with a weight of 13.6 tons. Results demonstrate that the predicted position and heading errors are reduced by about 75% and the reduction of pose errors is over 24% in the absence of the real-time kinematic global positioning system (RTK GPS.

  16. Image Processing in Optical Guidance for Autonomous Landing of Lunar Probe

    CERN Document Server

    Meng, Ding; Qing-xian, Wu; Zhen, Zhang

    2008-01-01

    Because of the communication delay between earth and moon, the GNC technology of lunar probe is becoming more important than ever. Current navigation technology is not able to provide precise motion estimation for probe landing control system Computer vision offers a new approach to solve this problem. In this paper, author introduces an image process algorithm of computer vision navigation for autonomous landing of lunar probe. The purpose of the algorithm is to detect and track feature points which are factors of navigation. Firstly, fixation areas are detected as sub-images and matched. Secondly, feature points are extracted from sub-images and tracked. Computer simulation demonstrates the result of algorithm takes less computation and fulfils requests of navigation algorithm.

  17. Autonomous Underwater Vehicle Survey Design for Monitoring Carbon Capture and Storage Sites

    Science.gov (United States)

    Bull, J. M.; Cevatoglu, M.; Connelly, D.; Wright, I. C.; McPhail, S.; Shitashima, K.

    2013-12-01

    Long-term monitoring of sub-seabed Carbon Capture and Storage (CCS) sites will require systems that are flexible, independent, and have long-endurance. In this presentation we will discuss the utility of autonomous underwater vehicles equipped with different sensor packages in monitoring storage sites. We will present data collected using Autosub AUV, as part of the ECO2 project, from the Sleipner area of the North Sea. The Autosub AUV was equipped with sidescan sonar, an EM2000 multibeam systems, a Chirp sub-bottom profiler, and a variety of chemical sensors. Our presentation will focus on survey design, and the simultaneous use of multiple sensor packages in environmental monitoring on the continental shelf.

  18. Autonomous Navigation for Unmanned Aerial Vehicles Based on Chaotic Bionics Theory

    Institute of Scientific and Technical Information of China (English)

    Xiao-lei Yu; Yong-rong Sun; Jian-ye Liu; Bing-wen Chen

    2009-01-01

    In this paper a new reactive mechanism based on perception-action bionics for multi-sensory integration applied to Un-manned Aerial Vehicles (UAVs) navigation is proposed. The strategy is inspired by the olfactory bulb neural activity observed in rabbits subject to external stimuli. The new UAV navigation technique exploits the use of a muitiscroil chaotic system which i sable to be controlled in real-time towards less complex orbits, like periodic orbits or equilibrium points, considered as perceptive orbits. These are subject to real-time modifications on the basis of environment changes acquired through a Synthetic Aperture Radar (SAR) sensory system. The mathematical details of the approach are given including simulation results in a virtual en-vironment. The results demonstrate the capability of autonomous navigation for UAV based on chaotic bionics theory in com-plex spatial environments.

  19. A Design of fuzzy controller for Autonomous Navigation of Unmanned Vehicle

    Directory of Open Access Journals (Sweden)

    Vinod Kapse

    2010-10-01

    Full Text Available The design approach is proposed for fuzzy logic controller for autonomous navigation of a vehicle in an obstacle filled environment. The proposed fuzzy controller is composed obstacle avoidance layer, orientation control layer, passage detection module. Here the fuzzy controller for obstacle avoidance is proposed. It provides a model for multiple sensor input fusion and it is composed of eight individual controllers, each calculating a collision possibility in different directions of movement. By calculating value of collision possibility main controller that performs real-time collision avoidance. The operating frequency & logic cells requirements for different implementation techniques are find out. The designs have been carried out in the digital domain with VHDL using Altera Quartus-II software.

  20. Pedestrian Tracking based on Camshift with Kalman Prediction for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Lie Guo

    2016-06-01

    Full Text Available Pedestrian detection and tracking is the key to autonomous vehicle navigation systems avoiding potentially dangerous situations. Firstly, the probability distribution of colour information is established after a pedestrian is located in an image. Then the detected results are utilized to initialize a Kalman filter to predict the possible position of the pedestrian centroid in the future frame. A Camshift tracking algorithm is used to track the pedestrian in the specific search window of the next frame based on the prediction results. The actual position of the pedestrian centroid is output from the Camshift tracking algorithm to update the gain and error covariance matrix of the Kalman filter. Experimental results in real traffic situations show the proposed pedestrian tracking algorithm can achieve good performance even when they are partly occluded in inconsistent illumination circumstances.

  1. Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations

    Science.gov (United States)

    Stevens, Laura A.; Straneo, Fiamma; Das, Sarah B.; Plueddemann, Albert J.; Kukulya, Amy L.; Morlighem, Mathieu

    2016-02-01

    Measurements of near-ice (autonomous underwater vehicle as close as 150 m from the ice-ocean interface of the Saqqarliup sermia-Sarqardleq Fjord system, West Greenland, with modeled and observed subglacial discharge locations and magnitudes. We find evidence of two main types of subsurface glacially modified water (GMW) with distinct properties and locations. The two GMW locations also align with modeled runoff discharged at separate locations along the grounded margin corresponding with two prominent subcatchments beneath Saqqarliup sermia. Thus, near-ice observations and subglacial discharge routing indicate that runoff from this glacier occurs primarily at two discrete locations and gives rise to two distinct glacially modified waters. Furthermore, we show that the location with the largest subglacial discharge is associated with the lighter, fresher glacially modified water mass. This is qualitatively consistent with results from an idealized plume model.

  2. Modifications of Control Loop to Improve the Depth Response of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Hsu

    2014-01-01

    Full Text Available During a constant depth maneuver of an autonomous underwater vehicle (AUV, its pitch attitude and stern plane deflections create forces and moments to achieve equilibrium in the vertical plane. If an AUV has a proportional controller only in its depth control loop, then different weights or centers of gravity will cause different steady-state depth errors at trimmed conditions. In general, a steady-state depth error can be eliminated by adding an integral controller in the depth control loop. However, an improper integrator may lead to a bad transient response, even though the steady-state depth error can finally be eliminated. To remove the steady-state depth error, this study proposes methods that adjust the depth command and add a switching integral controller in the depth control loop. Simulation results demonstrate that the steady-state depth error can be eliminated and the transient response can be improved.

  3. PARAMETRIC IDENTIFICATION AND SENSITIVITY ANALYSIS FOR AUTONOMOUS UNDERWATER VEHICLES IN DIVING PLANE

    Institute of Scientific and Technical Information of China (English)

    XU Feng; ZOU Zao-jian; YIN Jian-chuan; CAO Jian

    2012-01-01

    The inherent strongly nonlinear and coupling performance of the Autonomous Underwater Vehicles (AUV),maneuvering motion in the diving plane determines its difficulty in parametric identification.The motion parameters in diving plane are obtained by executing the Zigzag-like motion based on a mathematical model of maneuvering motion.A separate identification method is put forward for parametric identification by investigating the motion equations.Support vector machine is proposed to estimate the hydrodynamic derivatives by analyzing the data of surge,heave and pitch motions.Compared with the standard coefficients,the identified parameters show the validation of the proposed identification method.Sensitivity analysis based on numerical simulation demonstrates that poor sensitive derivative gives bad estimation results.Finally the motion simulation is implemented based on the dominant sensitive derivatives to verify the reconstructed model.

  4. Robust Control Based on Feedback Linearization for Roll Stabilizing of Autonomous Underwater Vehicle Under Wave Disturbances

    Institute of Scientific and Technical Information of China (English)

    PAN Li-xin; JIN Hong-zhang; WANG Lin-lin

    2011-01-01

    In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.

  5. Geostatistical Prediction of Ocean Outfall Plume Characteristics Based on an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Patrícia Alexandra Gregório Ramos

    2013-07-01

    Full Text Available Geostatistics has been successfully used to analyse and characterize the spatial variability of environmental properties. Besides providing estimated values at unsampled locations, geostatistics measures the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. This work uses universal block kriging to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign. The aim is to distinguish the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents, which are valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies may be very helpful in the future to validate dispersion models.

  6. Improved Line Tracking System for Autonomous Navigation of High-Speed Vehicle

    Directory of Open Access Journals (Sweden)

    Yahya Zare Khafri

    2012-07-01

    Full Text Available Line tracking navigation is one of the most widely techniques used in the robot navigation. In this paper, a customized line tracking system is proposed for autonomous navigation of high speed vehicles. In the presented system, auxiliary information -in addition to the road path- is added to the tracking lines such as locations of turn and intersections in the real roads. Moreover, the geometric position of line sensors is re-designed enables the high rate sensing with higher reliability. Finally, a light-weight navigation algorithm is proposed allow the high-speed movement using a reasonable processing power. This system is implemented on a MIPS-based embedded processor and experimental results with this embedded system show more than 98% accuracy at 200km/h with a 1GHz processor is viable.

  7. Implementation of Sliding Mode Observer Based Reconfiguration in an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    A. J. Mitchell

    2005-01-01

    Full Text Available This paper looks at the implementation of a Sliding Mode Observer (SMO based Reconfiguration algorithm to deal with sensor faults within the context of navigation controllers for Autonomous Underwater Vehicle (AUV. In this paper the reconfigurability aspects are considered for the heading controller. Simulation responses are used to illustrate that the Sliding Mode Observer is able to give state information to the controller when there is a fault in the AUV’s sensor package. Comparisons are made between the Sliding Mode Controller with and without reconfigurability for a number of different sensor failures, e.g. bias errors in or the complete loss of the heading data, and the robustness of the Sliding Mode Observer is investigated through the introduction of disturbances into the system. 

  8. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  9. A multimodal micro air vehicle for autonomous flight in near-earth environments

    Science.gov (United States)

    Green, William Edward

    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.

  10. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Science.gov (United States)

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  11. Three-Dimensional Path Planning Method for Autonomous Underwater Vehicle Based on Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2015-01-01

    Full Text Available Path planning is a classic optimization problem which can be solved by many optimization algorithms. The complexity of three-dimensional (3D path planning for autonomous underwater vehicles (AUVs requires the optimization algorithm to have a quick convergence speed. This work provides a new 3D path planning method for AUV using a modified firefly algorithm. In order to solve the problem of slow convergence of the basic firefly algorithm, an improved method was proposed. In the modified firefly algorithm, the parameters of the algorithm and the random movement steps can be adjusted according to the operating process. At the same time, an autonomous flight strategy is introduced to avoid instances of invalid flight. An excluding operator was used to improve the effect of obstacle avoidance, and a contracting operator was used to enhance the convergence speed and the smoothness of the path. The performance of the modified firefly algorithm and the effectiveness of the 3D path planning method were proved through a varied set of experiments.

  12. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    Science.gov (United States)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  13. Localization and Tracking of Submerged Phytoplankton Bloom Patches by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.

    2012-12-01

    Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in

  14. A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle

    Science.gov (United States)

    Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin

    1989-01-01

    A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.

  15. Mapping ocean outfall plumes and their mixing using autonomous underwater vehicles

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2012-07-01

    This paper reports on developing autonomous underwater vehicle (AUV) survey methods for ocean outfall discharge plumes and new insights gained on plume mixing. Unique to the study is mapping the discharge mixing using colored dissolved organic matter (CDOM) calibrated for effluent dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard temperature, salinity and optical sensors, and comparison of observational data to model results are presented for the Point Loma Ocean Outfall offshore of San Diego, CA. The results are expected to be applicable to the general theme of mixing of submerged buoyant discharges. In the near-field, the plume is found to mix to a height consistent with the predictions of buoyant jet engineering models. At the far-field, the fine spatial scales of the plume resolved by the vehicle suggests that shear instabilities caused by internal waves can enhance plume mixing and elevate the discharge plume above the predicted equilibrium rise height. These results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional physical oceanographic sensors, can accurately map the mixing of ocean outfall plumes at resolutions not possible with traditional boat-based techniques. Variations of oceanic conditions are found to influence the mixing and fate of the plume at time scales generally not considered in the design of these discharges.

  16. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Basam Musleh

    2016-09-01

    Full Text Available Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels and the vehicle environment (meters depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  17. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  18. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  19. A navigation and control system for an autonomous rescue vehicle in the space station environment

    Science.gov (United States)

    Merkel, Lawrence

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  20. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  1. Second Order Sliding Mode Control Scheme for an Autonomous Underwater Vehicle with Dynamic Region Concept

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2015-01-01

    Full Text Available The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC, gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.

  2. Samen werken aan Automatische VoertuigGeleiding: aanzet tot een businessplan [Working together on Automated Vehicle Guidance; Preliminary business plan

    NARCIS (Netherlands)

    Coemet, M.J.; Vos, A.P. de; Arem, B. van; Brookhuis, K.A.; Heijer, T.; Marchau, V.A.W.J.

    1998-01-01

    Automated Vehicle Guidance (AVG) systems are expected to have a major impact on traffic and transport. In order to reap the benefits and offset or avoid the disadvantages of AVG, correct and timely choices will have to be made. The Ministry of Transport, Public Works and Water Manage-ment, the Unive

  3. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  4. Classification of Water Masses and Targeted Sampling of Ocean Plankton Populations by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Zhang, Y.; Ryan, J. P.; Bellingham, J. G.; Harvey, J.; McEwen, R.; Chavez, F.; Scholin, C.

    2011-12-01

    Autonomous underwater vehicles (AUVs) are playing an increasingly active role in oceanographic surveys due to their mobility, efficiency, and growing intelligence. The Dorado AUV is equipped with a comprehensive suite of in situ sensors and ten 1.8-liter water samplers (called "gulpers"). During an October 2010 experiment in Monterey Bay, the AUV ran our autonomous peak-capture algorithm to acquire chlorophyll/backscatter peak samples from a phytoplankton bloom, allowing biologists to successfully monitor fluctuations in harmful microalgae (Psuedo-nitzschia spp.), the toxin they produce (domoic acid), and co-occurring zooplankton (invertebrate larvae and copepods) over space and time. For further investigations of the complex marine ecosystem in northern Monterey Bay, we set a more challenging goal: when the AUV flies from an upwelling shadow region (stratified water column) through an upwelling front into newly upwelled water, can it autonomously distinguish among water columns with different vertical structures and accordingly sample plankton populations on either side of, as well as within, the upwelling front? To achieve this goal, we have developed two new algorithms, one for distinguishing upwelling water columns from stratified water columns based on the vertical homogeneity of temperature, and the other for detecting an upwelling front based on the horizontal gradient of temperature. For acquiring targeted water samples, the 10 gulpers are appropriately allocated to the two distinct water columns and the front. Lockout time intervals between triggerings are set to prevent "dense triggerings". During our June 2011 experiment, the Dorado AUV flew westward from an upwelling shadow region (stratified water column) through an upwelling front, and into an upwelling water column. Three gulpers were allocated to the stratified water column, four to the front, and the remaining three to the upwelling water column. The AUV successfully detected and acquired targeted

  5. AUV自主导航航位推算算法的研究%Dead Reckoning Method for Autonomous Navigation of Autonomous Underwater Vehicles

    Institute of Scientific and Technical Information of China (English)

    冯子龙; 刘健; 刘开周

    2005-01-01

    对AUV (Autonomous Underwater Vehicle)自主导航的航位推算算法做了进一步研究并加以改进,以提高其自主导航精度.然后,利用AUV湖试所获得的数据,对本文提出的修正算法进行了验证.结果表明, AUV的自主导航精度得到很大提高,可以用于修正原来的自主导航算法.

  6. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  7. 无人机空中加油自主会合导引律研究%Study on guidance law for UAV autonomous rendezvous in aerial refueling

    Institute of Scientific and Technical Information of China (English)

    许萌; 杨朝星

    2014-01-01

    With the theory research of UAV autonomous guidance law for rendezvous in aerial refueling,the problem of homing guidance with impact final heading constraint is put forward.By redesigning the biased item in the 3D space and viewing the desired rendezvous point as the target and combing with pure tracking in the end of the guidance,the requirement for the terminal heading heading is achieved.Finllay,the guidance law given in the article is proved to be reasonable with a simulation example of air-tanker with constant speed and direction and with U motor,the UAV to select different initial position and heading.The simulation results show that the design of autonomous rendezvous guidance law is effective for UAV aerial refueling autonomous rendezvous, solves the existing class of autonomous rendezvous guidance law design complex, to be known in advance tankers trajectory and a large number of online programming calculation.%针对自主空中加油技术中的会和阶段的理论研究,提出一种带有终端偏航角约束的导引问题。通过对三维空间中重新设计偏置项,来同时约束俯仰与偏航角,将期望的会合点作为跟踪目标,并在制导末端结合纯追踪法,实现终端航向的控制。最后,以匀速直线运动和作U型机动的加油机为例,对无人机(UAV)选取不同的初始位置和航向来检验所提出的制导律实现会合的能力。仿真结果表明,所设计的自主会合制导律有效实现无人机空中加油自主会合,解决了现有一类自主会合制导律设计复杂、需预先已知加油机轨迹及大量在线规划计算的问题。

  8. Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Jordi Palacin

    2011-11-01

    Full Text Available This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV. The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.

  9. Observations of the frontal region of a buoyant river plume using an autonomous underwater vehicle

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Chen, Jialin

    2014-11-01

    To characterize the transitional region from the near-field to far-field of a river plume entering coastal waters, we conducted four surveys using an autonomous underwater vehicle (AUV) to target the outflow of the New River Inlet, North Carolina, during maximum ebb tide. The utilization of a mobile sensor to synoptically observe current velocity data in tandem with natural river plume tracers (e.g., colored dissolved organic matter, salinity) was essential in understanding the mechanisms driving the observed circulation and mixing patterns within these waters. We find that this region is regularly impacted by two primary processes: (1) the interaction of an old dredged channel plume with the main discharge and (2) the recirculation of the discharge plume by an eddy that persistently forms between the old channel and main discharge location. Wind-driven processes in the nearshore can enhance the interaction of these two plumes resulting in unstable regions where mixing of the merged plume with the receiving waters is accelerated. We also conduct comparisons between AUV velocity observations from two surveys and their corresponding velocity outputs from a parallelized quasi-3-D model. We conclude that the ability to observe the estuarine outflow transitional region at near-synoptic temporal scales and resolutions discussed in this paper is key in providing the mechanisms driving local circulation which is essential for proper parameterization of high-resolution numerical coastal models.

  10. Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.

    Science.gov (United States)

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.

  11. Integration of a Strapdown Gravimeter System in AN Autonomous Underwater Vehicle

    Science.gov (United States)

    Roussel, C.; Verdun, J.; Cali, J.; Maia, M.; d'EU, J. F.

    2015-04-01

    We present a new mobile instrument for measuring dynamically the gravity vector and its gradients in underwater environment, named GRAVIMOB. Our instrument is a strapdown sensor, consisted of electrostatic accelerometers installed in a waterproof sphere. It is designed to be embedded in an Autonomous Underwater Vehicle (AUV). Since the positioning of an AUV is approximate in underwater environment, the key issue raised here is to estimate the uncertainty in the gravity field resulting from the use of such position data. This paper focuses on the assessment of the system performances. The latter have been studied by simulation with reference data calculated from actual submarine geological structures, on which different noise models have been added. Results show that spatial evolutions of the gravity field and statistical properties of stochastic processes affecting the measurements have to be considered carefully in order the minimize the error. The Unscented Kalman Filter (UKF) has been favored to the Extended Kalman Filter (EKF) by its ease of implementation and its better robustness to non-linearities.

  12. An apparatus to estimate the hydrodynamic coefficients of autonomous underwater vehicles using water tunnel testing

    Science.gov (United States)

    Nouri, N. M.; Mostafapour, K.; Bahadori, R.

    2016-06-01

    Hydrodynamic coefficients or hydrodynamic derivatives of autonomous underwater vehicles (AUVs) play an important role in their development and maneuverability. The most popular way of estimating their coefficients is to implement captive model tests such as straight line tests and planar motion mechanism (PMM) tests in the towing tanks. This paper aims to develop an apparatus based on planar experiments of water tunnel in order to estimate hydrodynamic derivatives due to AUVs' acceleration and velocity. The capability of implementing straight line tests and PMM ones using mechanical oscillators located in the downstream flow of the model is considered in the design procedure of the system. The hydrodynamic derivatives that resulted from the acceleration and velocity of the AUV model were estimated using the apparatus that we developed. Static and dynamics test results were compared for the similar derivatives. The findings showed that the system provided the basis for conducting static tests, i.e., straight-line and dynamic tests that included pure pitch and pure heave. By conducting such tests in a water tunnel, we were able to eliminate errors related to the time limitation of the tests and the effects of surface waves in the towing tank on AUVs with applications in the deep sea.

  13. Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    Science.gov (United States)

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV. PMID:22247660

  14. The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays

    Science.gov (United States)

    Yu, Xuri; Dickey, Tommy; Bellingham, James; Manov, Derek; Streitlien, Knut

    2002-10-01

    An ODYSSEY autonomous underwater vehicle (AUV) was deployed in Massachusetts and Cape Cod Bays in September 1998 to collect chlorophyll fluorescence, optical backscattering (880 nm), and physical data. It sampled the region mainly in a sawtooth pattern with horizontal resolution between ˜120 m at the middle of the water column and with vertical resolution of 0.1 m. The data were used to quantify various features in both physical and bio-optical properties in the Bays. In particular, an upwelling front with enhanced chlorophyll fluorescence was found off the coast of Race Point. Chlorophyll patches with along-track spatial scales less than 3.6 km were found southeast of Plymouth and southwest of Race Point. Southeast of Plymouth, strong sediment re-suspension was also evident. In the early fall, the water column was characterized by three layers: warm and fresh surface water; cold and salty bottom water; and a transition (pycnocline) layer with sharp vertical temperature and salinity gradients. A relatively thin chlorophyll maximum layer was evident in the strong pycnocline. This work represents one of the first successful applications of AUVs for interdisciplinary coastal research. Our results demonstrate that AUVs can provide high-quality, concurrent measurements of physical and bio-optical properties in a very effective manner. Some future uses of AUVs are suggested.

  15. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    Science.gov (United States)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  16. Intelligent Autonomous Primary 3D Feature Extraction in Vehicle System Dynamics' Analysis: Theory and Application

    Directory of Open Access Journals (Sweden)

    Annamária R. Várkonyi-Kóczy

    2008-01-01

    Full Text Available 3D model reconstruction plays a very important role in computer vision as wellas in different engineering applications. The determination of the 3D model from multipleimages is of key importance. One of the most important difficulties in autonomous 3Dreconstruction is the (automatic selection of the ‘significant’ points which carryinformation about the shape of the 3D bodies i.e. are characteristic from the model point ofview. Another problem to be solved is the point correspondence matching in differentimages.In this paper a 3D reconstruction technique is introduced, which is capable to determinethe 3D model of a scene without any external (human intervention. The method is based onrecent results of image processing, epipolar geometry, and intelligent and soft techniques.Possible applications of the presented algorithm in vehicle system dynamics are alsopresented. The results can be applied advantageously at other engineering fields, like carcrashanalysis, robot guiding, object recognition, supervision of 3D scenes, etc,. as well.

  17. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle

    Science.gov (United States)

    Milligan, R. J.; Morris, K. J.; Bett, B. J.; Durden, J. M.; Jones, D. O. B.; Robert, K.; Ruhl, H. A.; Bailey, D. M.

    2016-05-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1-10 km2) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km-2 (95% CI: 601-844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km-2 respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed.

  18. Analysis of Parameter Sensitivity Using Robust Design Techniques for a Flatfish Type Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    M. Santhakumar

    2009-01-01

    Full Text Available Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUVs. The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modeling, and control of high-performance AUVs. In this paper, the sensitivity of hydrodynamic parameters on the control of a flatfish type AUV is analyzed using robust design techniques such as Taguchi's design method and statistical analysis tools such as Pareto-ANOVA. Since the pitch angle of an AUV is one of the crucial variables in the control applications, the sensitivity analysis of pitch angle variation is studied here. Eight prominent hydrodynamic coefficients are considered in the analysis. The results show that there are two critical hydrodynamic parameters, that is, hydrodynamic force and hydrodynamic pitching moment in the heave direction that influence the performance of a flatfish type AUV. A near-optimal combination of the parameters was identified and the simulation results have shown the effectiveness of the method in reducing the pitch error. These findings are significant for the design modifications as well as controller design of AUVs.

  19. Oscillatory Adaptive Yaw-Plane Control of Biorobotic Autonomous Underwater Vehicles Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Mugdha S. Naik

    2007-01-01

    Full Text Available This article considers the control of a biorobotic autonomous underwater vehicle (BAUV in the yaw plane using biologically inspired oscillatory pectoral-like fins of marine animals. The fins are assumed to be oscillating harmonically with a combined linear (sway and angular (yaw motion producing unsteady forces, which are used for fish-like control of BAUVs. Manoeuvring of the BAUV in the yaw plane is accomplished by altering the bias (mean angle of the angular motion of the fin. For the derivation of the adaptive control system, it is assumed that the physical parameters, the hydrodynamic coefficients, and the fin force and moment are not known. A direct adaptive sampled-data control system for the trajectory control of the yaw-angle using only yaw-angle measurement is derived. The parameter adaptation law is based on the normalised gradient scheme. Simulation results for the set point control, sinusoidal trajectory tracking and turning manoeuvres are presented, which show that the control system accomplishes precise trajectory control in spite of the parameter uncertainties.

  20. Using Autonomous Underwater Vehicles as Sensor Platforms for Ice-Monitoring

    Directory of Open Access Journals (Sweden)

    Petter Norgren

    2014-10-01

    Full Text Available Due to the receding sea-ice extent in the Arctic, and the potentially large undiscovered petroleum resources present north of the Arctic circle, offshore activities in ice-infested waters are increasing. Due to the presence of drifting sea-ice and icebergs, ice management (IM becomes an important part of the offshore operation, and an important part of an IM system is the ability to reliably monitor the ice conditions. An autonomous underwater vehicle (AUV has a unique capability of high underwater spatial and temporal coverage, making it suitable for monitoring applications. Since the first Arctic AUV deployment in 1972, AUV technology has matured and has been used in complex under-ice operations. This paper motivates the use of AUVs as an ice-monitoring sensor platform. It discusses relevant sensor capabilities and challenges related to communication and navigation. This paper also presents experiences from a field campaign that took place in Ny-Aalesund at Svalbard in January 2014, where a REMUS 100 AUV was used for sea-floor mapping and collection of oceanographic parameters. Based on this, we discuss the experiences related to using AUVs for ice-monitoring. We conclude that AUVs are highly applicable for ice-monitoring, but further research is needed.

  1. Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.

    Science.gov (United States)

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV. PMID:22247660

  2. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle.

    Science.gov (United States)

    Milligan, R J; Morris, K J; Bett, B J; Durden, J M; Jones, D O B; Robert, K; Ruhl, H A; Bailey, D M

    2016-01-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1-10 km(2)) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km(-2) (95% CI: 601-844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km(-2) respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed. PMID:27180728

  3. DISTRIBUTED CONTROL ARCHITECTURE OF AN OMNI-DIRECTIONAL AUTONOMOUS GUIDED VEHICLE

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Omni-directionality is the ability of a mobile robot to move instantaneously in any direction. This paper describes the wheel and controller designs of a Mecanumwheeled, autonomous guided vehicle (AGV for reconfigurable manufacturing systems. Mecanum wheels use slip developed between rollers and surface, surface and ground, to achieve omni-directionality. An advantage of omni-directional robotic platforms is that they are capable of performing tasks in congested environments such as those found in factory workshops, narrow aisles, warehouses, etc. Controller Area Network (CAN is implemented as a distributed controller to control motion and navigation tasks of the developed robot. The design of the distributed controller is described and its performance analyzed. This increases the reliability and functionality of the mobile robot.

    AFRIKAANSE OPSOMMING: Die artikel beskryf wiel - en beheerontwerpe van ‘n veelrigting mobiele robot. Die robot is ‘n selfstandigbeheerde voertuig vir gebruik by vervaardigingstelsels met veranderbare konfigurasie. Die ontwerp van die robot en bypassende beheerstelsel word beskryf en ontleed teen die agterground van bewegings – en navigeertake. Die betroubaarheid en funksionering van die sisteem word beoordeel.

  4. Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances

    Science.gov (United States)

    Kim, Minsung; Joe, Hangil; Kim, Jinwhan; Yu, Son-cheol

    2015-10-01

    We propose an integral sliding mode controller (ISMC) to stabilse an autonomous underwater vehicle (AUV) which is subject to modelling errors and often suffers from unknown environmental disturbances. The ISMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides and currents. The ISMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable. Numerical simulations were performed to validate the proposed control approach, and experimental tests using Cyclops AUV were carried out to demonstrate its practical feasibility.

  5. Modularity, adaptability and evolution in the AUTOPIA architecture for control of autonomous vehicles. Updating Mechatronics of Automatic Cars

    OpenAIRE

    Pérez Rastelli, Joshué; González, Carlos; Milanés, Vicente; Onieva, Enrique; Godoy, Jorge; Pedro, Teresa de

    2009-01-01

    International audience Computer systems to carry out control algorithms on autonomous vehicles have been developed in recent years. However, the advances in peripheral devices allow connecting the actuator controllers to the control system by means of standard communication links (USB, CAN, Ethernet ... ).The goal is to permit the use of standard computers. In this paper, we present the evolution of AUTOPIA architecture and its modularity and adaptability to move the old system based on IS...

  6. Design of the simulator of the motion of the unmanned autonomous underwater vehicle as a component of the simulation complex

    OpenAIRE

    Sirivchuk, Andriy S.

    2015-01-01

    The study of the automatic control system for the autonomous underwater vehicle is a complex and expensive process. Conducting experiments in test pools and open water may cause damage to expensive equipment. Therefore, the use of simulation complexes is a more efficient approach. The article aim is to describe the structure of the simulation complex designed for the study of the quality of the automatic control system. The main component of this complex is the simulator of the motion of the ...

  7. Robust and Real Time Detection of Curvy Lanes (Curves) with Desired Slopes for Driving Assistance and Autonomous Vehicles

    OpenAIRE

    Dubey, Amartansh; Bhurchandi, K. M.

    2015-01-01

    One of the biggest reasons for road accidents is curvy lanes and blind turns. Even one of the biggest hurdles for new autonomous vehicles is to detect curvy lanes, multiple lanes and lanes with a lot of discontinuity and noise. This paper presents very efficient and advanced algorithm for detecting curves having desired slopes (especially for detecting curvy lanes in real time) and detection of curves (lanes) with a lot of noise, discontinuity and disturbances. Overall aim is to develop robus...

  8. Robust and Real Time Detection of Curvy Lanes (Curves) Having Desired Slopes for Driving Assistance and Autonomous Vehicles

    OpenAIRE

    Amartansh Dubey; Bhurchandi, K. M.

    2015-01-01

    One of the biggest reasons for road accidents is cu rvy lanes and blind turns. Even one of the biggest hurdles for new autonomous vehicles is to d etect curvy lanes, multiple lanes and lanes with a lot of discontinuity and noise. This paper p resents very efficient and advanced algorithm for detecting curves having desired slopes (especia lly for detecting curvy lanes in real time) and detection of curves (lanes) with a lot of no...

  9. USE OF A LONG ENDURANCE SOLAR POWERED AUTONOMOUS UNDERWATER VEHICLE (SAUV II) TO MEASURE DISSOLVED OXYGEN CONCENTRATIONS IN GREENWICH BAY, RHODE ISLAND, USA

    Science.gov (United States)

    As hypoxic water masses increase worldwide in duration and extent due to coastal eutrophication, advanced technology water quality monitoring by autonomous vehicles can increase our capability to document and respond to these environmental perturbations. We evaluated the use of a...

  10. The use of autonomous unmanned vehicles for measuring the mean flow field in riverine environments

    Science.gov (United States)

    Tuggle, C.; Macmahan, J. H.; Brown, J.; Reniers, A. J.

    2010-12-01

    Autonomous unmanned vehicles (AUVs) are commonly used in oceanic, estuarine and, more recently, riverine environments because they are small, versatile, moving platforms equipped with a suite of instruments for measuring environmental conditions. However, moving vessel observations, particularly those associated acoustic Doppler current profiler (ADCP) observations, can be problematic owing to instrument noise, flow fluctuations, and spatial variability. As part of a riverine field experiment conducted in the Kootenai River, ID in August 2010, a spatial map of the mean horizontal and vertical velocity fields in a 200m wide, 8 m deep, and 0.5m/s meandering reach was obtained using two different AUV platforms: SeaRobotics unmanned surface vehicle (USV) and YSI/OceanServer Technology IVER-II unmanned underwater vehicle (UUV). The USV has dual-propellers navigating with GPS and was able to station-keep to within 1 m for 10 minutes at various locations within the reach in order to obtain the 3-D velocity field. Obtaining a statistically confident estimate of the mean velocity profile requires an appropriate time-interval to average instrument noise and environmental fluctuations. It has been previously proposed that 10 minutes is an adequate time interval when using an ADCP in a river. Preliminary results show that a shorter time interval is adequate, which would allow for increased spatial coverage. The UUV has a station-keeping capability when at the surface, but owing to its single propeller, it operates best by performing slow (0.2-0.35m/s) moving transects. Since the UUV is moving in a system that is spatially non-homogenous, additional errors in the mean velocity profile can be introduced due to spatial variability. An evaluation of the velocity profile quality, current measuring performance and minimum averaging time interval requirements are discussed for each platform, including the appropriate mission planning considerations for riverine observations. In

  11. Three-Dimensional Passive Source Localisation using the Flank Array of an Autonomous Underwater Vehicle in Shallow Water

    Directory of Open Access Journals (Sweden)

    Dexin Zhao

    2013-05-01

    Full Text Available Researchers have become interested in autonomous underwater vehicles equipped with various kinds of sonar systems that can perform many of underwater tasks, which is encouraged by the potential benefits of cost reduction and flexible deployment. This paper proposes an approach to three-dimensional passive source localisation with the flank array of an autonomous underwater vehicle in shallow water. The approach is developed based on matched-field processing for the likelihood of passive source localisation in the shallow water environment. Inter-position processing is also used for the improved localisation performance and the enhanced stability of the estimation process against the lack of spatial gain due to the small physical size of the flank array. The proposed approach is presented and validated through simulation and experimental data. The results illustrate the localisation performance at different signal-to-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the autonomous underwater vehicle cruises at a low speed along a straight line at a constant depth.

  12. Three-Dimensional Passive Source Localisation using the Flank Array of an Autonomous Underwater Vehicle in Shallow Water

    Directory of Open Access Journals (Sweden)

    Dexin Zhao

    2013-05-01

    Full Text Available Researchers have become interested in autonomous underwater vehicles equipped with various kinds of sonar systems that can perform many of underwater tasks, which is encouraged by the potential benefits of cost reduction and flexible deployment. This paper proposes an approach to three-dimensional passive source localisation with the flank array of an autonomous underwater vehicle in shallow water. The approach is developed based on matched-field processing for the likelihood of passive source localisation in the shallow water environment. Inter-position processing is also used for the improved localisation performance and the enhanced stability of the estimation process against the lack of spatial gain due to the small physical size of the flank array. The proposed approach is presented and validated through simulation and experimental data. The results illustrate the localisation performance at different signal-to-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the autonomous underwater vehicle cruises at a low speed along a straight line at a constant depth.Defence Science Journal, 2013, 63(3, pp.323-330, DOI:http://dx.doi.org/10.14429/dsj.63.3011

  13. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  14. IEEE AUV 96 / Oceanic Engineering Society Institute of Electrical and Electronics Engineers Symposium on Autonomous Underwater Vehicle (AUV) Technology / June 2 -6, 1996 in Monterey, California

    OpenAIRE

    1996-01-01

    Oceanic Engineering Society Institute of Electrical and Electronics Engineers (IEEE) Symposium On Autonomous Underwater Vehicle (AUV) Technology June 2-6, 1996 Advance Program Hosted by the Naval Postgraduate School at the Hyatt Regency Hotel, Monterey California USA General Information, registration information, conference proceedings, accomodations, etc. on the IEEE AUV 96 Symposium on Autonomous Underwater Vehicle (AUV) Technology, June 2 - 6, 1996 Hosted by the Nav...

  15. A Small Autonomous Unmanned Aerial Vehicle, Ant-Plane 4, for aeromagnetic survey

    Science.gov (United States)

    Funaki, M.; Tanabe, S.; Project, A.

    2007-05-01

    Autonomous unmanned aerial vehicles (UAV) are expected to use in Antarctica for geophysical research due to economy and safety operations. We have developed the technology of small UAVwith autonomous navigation referred to GPS and onboard magnetometer, meteorolgical devices and digital camera under the Ant-Plane project. The UAV focuses on operation for use in the summer season at coastal area in Antarctica; higher temperature than -15C under calm wind. In case of Ant-Plane 4, it can fly continuously more than 500 km, probably more than 1000 km, although the flight in Antarcitca has not succeeded The UAV of FRP is pusher type drone consisting of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 86cc gasoline engine (7.2 HP) navigated. The maximum takeoff weight is 25kg including 1kg of payload. Cruising distance 500 km at speed of 130 km/h using 10 litter of fuel. The UAV is controlled by radio telemeter within 5km from a ground station and autonomous navigation referred to GPS latitude and longitude, pitot tube speed and barometer altitude. The magnetometer system consists of a 3-component magneto-resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time are recorded every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. We succeeded in long distant flight to 500km with magnetometer by Ant-Plane 4 collaborated with Geoscience Australia, in March 2006. The survey was performed in the area 10kmx10km at Kalgoorlie, Western Australia. The magnetic data are obtained from 41 courses (250m in interval) of EW direction. The altitude of the flight was 900m from sea level and 500m from the runway. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane

  16. Under-Ice Science in the Polar Regions with Autonomous Underwater Vehicles

    Science.gov (United States)

    Kunz, C.; Murphy, C.; Singh, H.; Das, S. B.; Jackson, R. H.; Kukulya, A.; Littlefield, R.; Maksym, T. L.; Plueddemann, A. J.; Sohn, R. A.; Straneo, F.; Wilkinson, J.

    2012-12-01

    Developments in autonomous underwater vehicle (AUV) technology over the last decade have enabled scientists to study areas of the ocean at high latitude that were previously unapproachable. In particular, advances in acoustic communications, robotic autonomy and navigation, and compact sensor technology allow AUVs to work in close proximity to sea ice, glacial fronts, and the sea floor under multi-year pack ice. We describe the technology that enabled several expeditions to both polar regions that have used Seabed-class AUVs as the primary platform for making scientific measurements. We also describe current and upcoming missions using the smaller Seabed-100 and REMUS-100 AUVs for shallow-water work near glacial fronts. Several problems must be solved in order to successfully use robots under ice. Acoustic communications must be robust enough for operators on the surface to inform the AUV of changing conditions so that the vehicle can safely return to open water on the surface - during the AGAVE and IceBell expeditions, we experienced sea ice drift rates of tens of centimeters per second, and moving ice floes that constrained the availability of open water. AUV navigation must be flexible enough for the robot to switch reference frames during a mission depending on the conditions and on the scientific objective. During a single deployment during the IceBell expedition, it was typical for the robot to switch from ship-relative (using acoustic transponders), to ice-relative (using a doppler velocity log), to ice-relative (using a distinct set of acoustic transponders), and back again; an AUV may also need to navigate relative to the sea floor (as during the AGAVE expedition). Making ice-relative measurements also requires taking ice floe rotation into account, and on-board navigation relative to a rotating frame may be necessary. Finally, specialized scenarios such as when navigating near a glacial front require navigation relative to vertical, rather than horizontal

  17. Clio: An Autonomous Vertical Sampling Vehicle for Global Ocean Biogeochemical Mapping

    Science.gov (United States)

    Jakuba, M.; Gomez-Ibanez, D.; Saito, M. A.; Dick, G.; Breier, J. A., Jr.

    2014-12-01

    We report the preliminary design of a fast vertical profiling autonomous underwater vehicle, called Clio, designed to cost-effectively improve the understanding of marine microorganism ecosystem dynamics on a global scale. The insights into biogeochemical cycles to be gained from illuminating the relationships between ocean life and chemistry have led to establishment of the GEOTRACES program. The nutrient and trace element profiles generated by GEOTRACES will provide insight into what is happening biogeochemically, but not how it is happening, i.e., what biochemical pathways are active? Advances in sequencing technology and in situ preservation have made it possible to study the genomics (DNA), transcriptomics (RNA), proteomics (proteins and enzymes), metabolomics (lipids and other metabolites), and metallomics (metals), associated with marine microorganisms; however, these techniques require sample collection. To this end, Clio will carry two to four SUspended Particle Rosette (SUPR) multi-samplers to depths of 6000 m. Clio is being designed specifically to complement the GEOTRACES program—to operate simultaneously and independently of the wire-based sampling protocols developed for GEOTRACES. At each GEOTRACES ocean transect sampling station, Clio will be deployed from the ship, transit vertically to the seafloor, and then ascend to, and stop at up to 32 sampling depths, where it will filter up to 150 l of seawater per sample. Filtered samples for RNA will be administered a dose of preservative (RNALater) in situ. Clio must efficiently hold station at multiple depths between the surface and 6000 m, but also move rapidly between sampling depths. It must be chemically clean and avoid disturbing the water column while sampling. Clio must be operationally friendly, requiring few personnel to operate, and have minimal impact on shipboard operations. We have selected a positively-buoyant thruster-driven design with a quasi-isopycnal construction. Our simulations

  18. Lightweight Autonomous Underwater Vehicles (AUVs) performing coastal survey operations in REP 10A

    Science.gov (United States)

    Incze, Michael L.

    2011-11-01

    Lightweight Autonomous Underwater Vehicles (AUVs) were developed for Naval Special Warfare (NSW) Group 4 search and survey missions from a commercial AUV baseline (Iver 2) through integration of commercial off-the-shelf (COTS) hardware components, and through software development for enhanced on-board Command and Control functions. The development period was 1 year under a project sponsored by the Office of Naval Research TechSolutions Program Office. Hardware integration was completed by the commercial AUV vendor, OceanServer Technology, Inc., and software development was conducted by the Naval Undersea Warfare Center, Naval Oceanographic Office, and U MASS Dartmouth, with support from hardware and software application providers (YSI, Inc., Imagenex Technology Corp., and CARIS). At the conclusion of the integration and development period, an at-sea performance evaluation was scheduled for the Lightweight NSW AUVs with NSWG-4 personnel. The venue for this evaluation was the NATO exercise Recognized Environmental Picture 10A (REP 10A), hosted by Marinha Portuguesa, and coordinated by the Faculdade de Engenharia-Universidade do Porto. REP 10A offered an opportunity to evaluate the performance of the new AUVs and to explore the Concept of Operations (CONOPS) for employing them in military survey operations in shallow coastal waters. Shore- and ship-launched scenarios with launch/recovery by a single operator in a one-to-many coordinated survey, on-scene data product generation and visualization, data push to Reach Back Cells for product integration and enhancement, and survey optimization to streamline survey effort and timelines were included in the CONOPS review. Opportunities to explore employment of hybrid AUV fleets in Combined Force scenarios were also utilized. The Naval Undersea Warfare Center, Marinha Portuguesa, the Faculdade de Engenharia-Universidade do Porto, and OceanServer Technology, Inc., were the primary participants bringing in-water resources to

  19. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  20. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle.

    Science.gov (United States)

    Skomal, G B; Hoyos-Padilla, E M; Kukulya, A; Stokey, R

    2015-12-01

    In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± S.D. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± S.D. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals.

  1. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle.

    Science.gov (United States)

    Skomal, G B; Hoyos-Padilla, E M; Kukulya, A; Stokey, R

    2015-12-01

    In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± S.D. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± S.D. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals. PMID:26709209

  2. Autonomous soaring and surveillance in wind fields with an unmanned aerial vehicle

    Science.gov (United States)

    Gao, Chen

    Small unmanned aerial vehicles (UAVs) play an active role in developing a low-cost, low-altitude autonomous aerial surveillance platform. The success of the applications needs to address the challenge of limited on-board power plant that limits the endurance performance in surveillance mission. This thesis studies the mechanics of soaring flight, observed in nature where birds utilize various wind patterns to stay airborne without flapping their wings, and investigates its application to small UAVs in their surveillance missions. In a proposed integrated framework of soaring and surveillance, a bird-mimicking soaring maneuver extracts energy from surrounding wind environment that improves surveillance performance in terms of flight endurance, while the surveillance task not only covers the target area, but also detects energy sources within the area to allow for potential soaring flight. The interaction of soaring and surveillance further enables novel energy based, coverage optimal path planning. Two soaring and associated surveillance strategies are explored. In a so-called static soaring surveillance, the UAV identifies spatially-distributed thermal updrafts for soaring, while incremental surveillance is achieved through gliding flight to visit concentric expanding regions. A Gaussian-process-regression-based algorithm is developed to achieve computationally-efficient and smooth updraft estimation. In a so-called dynamic soaring surveillance, the UAV performs one cycle of dynamic soaring to harvest energy from the horizontal wind gradient to complete one surveillance task by visiting from one target to the next one. A Dubins-path-based trajectory planning approach is proposed to maximize wind energy extraction and ensure smooth transition between surveillance tasks. Finally, a nonlinear trajectory tracking controller is designed for a full six-degree-of-freedom nonlinear UAV dynamics model and extensive simulations are carried to demonstrate the effectiveness of

  3. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    Science.gov (United States)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets

  4. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  5. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks.

    Science.gov (United States)

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  6. Development of an Underwater Gravity Measurement System Using Autonomous Underwater Vehicle

    Science.gov (United States)

    Shinohara, M.; Ishihara, T.; Yamada, T.; Araya, A.; Kanazawa, T.; Fujimoto, H.; Tsukioka, S.; Omika, S.; Uehira, K.; Iizasa, K.

    2015-12-01

    Gravity survey is one of powerful methods to obtain density structure in crust, especially for exploration of underground deposits. Recent technology of autonomous underwater vehicle (AUV) enables us measure gravity in underwater environment. Measurement of both gravity and gravity gradient is useful to estimate structure. From a model calculation, resolution of 0.1 mGal for gravity and 10 Etoves (E) for gradient measurement is needed for detection of seafloor deposits. From these objectives and specification, we have developed an underwater gravity measurement system for exploration below a seafloor using an AUV. For the gravimeter system, a gravimeter is mounted on a levelling mechanism to keep vertical. Depth rating of the system is 4,200 m. We confirmed that our gravity measurement system has an accuracy of less than 0.04 mGal on a land experiment. The gradiometer has two identical gravimeter aligned vertically 44 cm apart. Difference between two gravimeters is calculated for gravity gradient and a levelling system is also used to keep vertical. We estimate accuracy of 10 E from background noise spectra. We chose AUV Urashima belonging to JAMSTEC, because stable navigation is possible. All the power is supplied from the Urashima and acoustic communication system enables real-time monitoring of the system. The first observation was carried out in September 2012 in Sagami-Bay, Japan. The Urashima made round trip along a single profile. We succeeded in obtaining gravity data and other data for compensation. Information to measure gravity gradient is also obtained. After the data processing, our gravity system is estimated to have accuracy of 0.1 mGal. In August 2014, we carried out the second gravity survey using our system in Izena caldera, the middle Okinawa Trough, where seafloor deposits had been found. The Urashima was navigated on 15 profiles in the survey area at constant speed and depth. We obtained the data from both the gravimeter and gradiometer with

  7. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  8. The implementation and testing of a robotic arm on an autonomous vehicle

    OpenAIRE

    Jun, Hyun Il.

    2007-01-01

    An articulated arm with three degrees of freedom is implemented and tested on an autonomous robot. Kinematic equations of motion for the arm are modeled and tested. A communication architecture is successfully implemented for wireless manual control of the arm. Visual and thermal cues are realized with an onboard camera and a collocated thermal sensor. Future work suggests investigations for full autonomous arm control without manual operator intervention based on sensor cues and visual s...

  9. Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    Science.gov (United States)

    Sabatini, Roberto; Bartel, Celia; Kaharkar, Anish; Shaid, Tesheen

    2012-04-01

    In this paper we present a novel Navigation and Guidance System (NGS) for Unmanned Aerial Vehicles (UAVs) based on Vision Based Navigation (VBN) and other avionics sensors. The main objective of our research is to design a lowcost and low-weight/volume NGS capable of providing the required level of performance in all flight phases of modern small- to medium-size UAVs, with a special focus on automated precision approach and landing, where VBN techniques can be fully exploited in a multisensory integrated architecture. Various existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we address the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors and also the use of Aircraft Dynamics Models (ADMs) to provide additional information suitable to compensate for the shortcomings of VBN sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the platform in real-time. Two different integrated navigation system architectures are implemented. The first uses VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also includes the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes is performed in a significant portion of the Aerosonde UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture

  10. 多无人机自主编队协同制导技术的概念、设计和仿真%Autonomous Formation and Cooperative Guidance of Multi-UAV: Concept, Design and Simulation

    Institute of Scientific and Technical Information of China (English)

    刘星; 吴森堂; 穆晓敏; 彭琛; 唐积强

    2008-01-01

    现代防空技术的迅速发展使得制导武器的突防效果大大下降,多飞行器自主编队协同制导技术成为提高未来制导武器作战效能的关键技术之一.定义了高动态自主编队协同制导技术的概念体系;提供编队队形生成、队形保持和控制、协同导航与航路规划、目标协同捕捉与动态分配、协同末制导等关键技术的框架结构和设计方法:并设计了适用于自主编队协同制导技术的无线自组织网络结构和组网协议,实现高动态环境下信息的互联、互通和互操作,且节点具备自主管理能力和容错能力;通过所构建的多UAV自主编队协同制导验证演示系统验证表明,系统的框架结构和设计方法有效,系统性能满足技术指标要求.%The modern aerial defense systems have impaired the damage efficiency of guided weapons. Autonomous formation and cooperative guidance of muhi-unmanned air vehicle (UAV) become the direction of future precision-guided weapon system. The concept of autonomous formation and cooperative guidance of multi-UA V was defined. Several related key issues were analyzed respectively, including formation design, formation control strategy, cooperative navigation, path planning, target coordinated detection, target dynamic distribution and cooperative terminal guidance. Besides, a topological structure and a self-organization protocol were designed for wireless Ad Hoc networks which. established the interlink and intercommunication mechanism to support the pattern of interactions in dynamic environment and have capability of node management and fault-tolerance. The demonstration system indicates the effectiveness of the design methods.

  11. Design/Development of Mini/Micro Air Vehicles through Modelling and Simulation: Case of an Autonomous Quadrotor

    Directory of Open Access Journals (Sweden)

    Nitin K. Gupta

    2011-07-01

    Full Text Available Normal 0 MicrosoftInternetExplorer4 Design and development of an autonomous quadrotor micro aerial vehicle is undertaken following a systematic approach. A fairly detailed model was constructed and simulations were then carried out with the purpose of refining the baseline design, building a controller, and testing the flying qualities of the vehicle on a ground-based flight simulator. Following this, a smooth transition to rig and flight testing has been enabled in a cost- and time-effective manner, meeting all the design requirements.Defence Science Journal, 2011, 61(4, pp.337-345, DOI:http://dx.doi.org/10.14429/dsj.61.1086

  12. Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

    Science.gov (United States)

    Park, Jinmo; Kim, Nakwan

    2015-06-01

    In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

  13. Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

    Directory of Open Access Journals (Sweden)

    Park Jinmo

    2015-06-01

    Full Text Available In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

  14. Vision-Based Autonomous Underwater Vehicle Navigation in Poor Visibility Conditions Using a Model-Free Robust Control

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Alcocer

    2016-01-01

    Full Text Available This paper presents a vision-based navigation system for an autonomous underwater vehicle in semistructured environments with poor visibility. In terrestrial and aerial applications, the use of visual systems mounted in robotic platforms as a control sensor feedback is commonplace. However, robotic vision-based tasks for underwater applications are still not widely considered as the images captured in this type of environments tend to be blurred and/or color depleted. To tackle this problem, we have adapted the lαβ color space to identify features of interest in underwater images even in extreme visibility conditions. To guarantee the stability of the vehicle at all times, a model-free robust control is used. We have validated the performance of our visual navigation system in real environments showing the feasibility of our approach.

  15. CF-Pursuit: A Pursuit Method with a Clothoid Fitting and a Fuzzy Controller for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Yunxiao Shan

    2015-09-01

    Full Text Available Simple and efficient geometric controllers, like Pure-Pursuit, have been widely used in various types of autonomous vehicles to solve tracking problems. In this paper, we have developed a new pursuit method, named CFPursuit, which has been based on Pure-Pursuit but with certain differences. In CF-Pursuit, in order to reduce fitting errors, we used a clothoid C1 curve to replace the circle employed in Pure-Pursuit. This improvement to the fitting method helps the Pursuit method to decrease tracking errors. As regards the selection of look-ahead distance, we employed a fuzzy system to directly consider the path’s curvature. There are three input variables in this fuzzy system, 6mcurvature, 9mcurvature and 12mcurvature, calculated from the clothoid fit with the current position and the goal position on the defined path. A Sugeno fuzzy model was adapted to output a reasonable look-ahead distance using the experiences of human drivers as well as our own tests. Compared with some other geometric controllers, CF-Pursuit performs better in robustness, cross track errors and stability. The results from field tests have proven the CF-Pursuit is a practical and efficient geometric method for the path tracking problems of autonomous vehicles.

  16. Control vane guidance for a ducted-fan unmanned air vehicle

    OpenAIRE

    Moran, Patrick J.

    1993-01-01

    Approved for public release; distribution is unlimited Control of airborne vehicles was originally conceived to be done entirely by human pilots. Improvements in electronics in the last 50 years have allowed many flight control functions to become automated, with the pilot continuously monitoring flight parameters from within the vehicle cockpit. With the advent of small unmanned air vehicles (UAV's) which are limited in size and weight-carrying capacity, a pilot is now able to fly an airb...

  17. Autonomous underwater riser inspection tool

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, Claudio; Marnet, Robson [Petrobras SA, (Brazil); Freitas, Miguel; Von der Weid, Jean Pierre [CPTI/PUC-Rio, Rio de Janeiro, (Brazil); Artigas Lander, Ricardo [EngeMOVI, Curitiba, (Brazil)

    2010-07-01

    The detection of damage on the riser is a serious concern for pipeline companies. Visual examinations by remotely operated vehicle (ROV) are presently carried out to detect the defects but this process has limitations and is expensive. This paper presents the development of a new tool to ensure autonomous underwater riser inspection (AURI) that uses the riser itself for guidance. The AURI, which is autonomous in terms of control and power supply, is equipped with several cameras that perform a complete visual inspection of the riser with 100 % coverage of the external surface of the riser. The paper presents the detailed characteristics of the first AURI prototype, describes its launching procedure and provides the preliminary test results from pool testing. The results showed that the AURI is a viable system for autonomous riser inspection. Offshore tests on riser pipelines are scheduled to be performed shortly.

  18. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    Science.gov (United States)

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).

  19. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    Science.gov (United States)

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications). PMID:18626130

  20. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  1. 3D Path Planning for Autonomous Aerial Vehicles in Constrained Spaces

    DEFF Research Database (Denmark)

    Schøler, Flemming

    Determining how an autonomous Unmanned Aircraft System (UAS) should reach a goal position amidst obstacles is a challenging and difficult problem. This thesis treats the subject of path planning and trajectory generation for UAS, while utilizing the ability to move in all three spatial dimensions...

  2. A control strategy for steering an autonomous surface sailing vehicle in a tacking maneuver

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    2009-01-01

    Sailing vessels such as sailboats but also landyachts are vehicles representing a real challenge for automation. However, the control aspects of such vehicles were hitherto very little studied. This paper presents a simplied dynamic model of a so-called landyacht allowing to capture the main...

  3. A conceptual design study of a hovering system controller for an Autonomous Underwater Vehicle

    OpenAIRE

    Thompson, Chris A.

    1987-01-01

    Approved for public release; distribution is unlimited. Hovering, Stationkeeping, Underwater Vehicles, Control Systems, Configurations, Control, Horsepower, Oceans, Position (Location), Redundancy, Scenarios, Theses, Thrusters, Transitions Hovering, Stationkeeping, Underwater Vehicles, Control Systems, Configurations, Control, Horsepower, Oceans, Position (Location), Redundancy, Scenarios, Theses, Thrusters, Transitions http://archive.org/details/conceptualdesign00thom Lieutenant Com...

  4. Development of a fuzzy logic based intelligent system for autonomous guidance of post-stroke rehabilitation exercise.

    Science.gov (United States)

    Huq, Rajibul; Wang, Rosalie; Lu, Elaine; Hebert, Debbie; Lacheray, Hervé; Mihailidis, Alex

    2013-06-01

    This paper presents preliminary studies in developing a fuzzy logic based intelligent system for autonomous post-stroke upper-limb rehabilitation exercise. The intelligent system autonomously varies control parameters to generate different haptic effects on the robotic device. The robotic device is able to apply both resistive and assistive forces for guiding the patient during the exercise. The fuzzy logic based decision-making system estimates muscle fatigue of the patient using exercise performance and generates a combination of resistive and assistive forces so that the stroke survivor can exercise for longer durations with increasing control. The fuzzy logic based system is initially developed using a study with healthy subjects and preliminary results are also presented to validate the developed system with healthy subjects. The next stage of this work will collect data from stroke survivors for further development of the system.

  5. Guidance and navigation software architecture design for the Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) test bed

    OpenAIRE

    Eikenberry, Blake D.

    2006-01-01

    The Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) test bed examines the problem of multiple spacecraft interacting at close proximity. This thesis contributes to this on-going research by addressing the development of the software architecture for the AMPHIS spacecraft simulator robots and the implementation of a Light Detection and Ranging (LIDAR) unit to be used for state estimation and navigation of the prototype robot. The software modules developed include: user input...

  6. 76 FR 32886 - Control of Emissions From New Highway Vehicles and Engines; Guidance on EPA's Certification...

    Science.gov (United States)

    2011-06-07

    ... protection and infrastructure requirements, and requirements regarding unregulated pollutants. \\7\\ See 75 FR... final guidance. \\9\\ See 75 FR 39251 (July 8, 2010). Public comments received in response to the public... generally in liquid form, which is referred to in this document as DEF (``diesel exhaust fluid''). DEF...

  7. Target Trailing With Safe Navigation With Colregs for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Kuwata, Yoshiaki (Inventor); Wolf, Michael T. (Inventor); Zarzhitsky, Dimitri V. (Inventor); Aghazarian, Hrand (Inventor); Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor)

    2014-01-01

    Systems and methods for operating autonomous waterborne vessels in a safe manner. The systems include hardware for identifying the locations and motions of other vessels, as well as the locations of stationary objects that represent navigation hazards. By applying a computational method that uses a maritime navigation algorithm for avoiding hazards and obeying COLREGS using Velocity Obstacles to the data obtained, the autonomous vessel computes a safe and effective path to be followed in order to accomplish a desired navigational end result, while operating in a manner so as to avoid hazards and to maintain compliance with standard navigational procedures defined by international agreement. The systems and methods have been successfully demonstrated on water with radar and stereo cameras as the perception sensors, and integrated with a higher level planner for trailing a maneuvering target.

  8. Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles

    Science.gov (United States)

    Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.

    2002-01-01

    This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

  9. A Hybrid Controller for Vision-Based Navigation of Autonomous Vehicles in Urban Environments

    OpenAIRE

    Alves De Lima, Danilo; Corrêa Victorino, Alessandro

    2016-01-01

    International audience This paper presents a new hybrid control approach for vision-based navigation applied to autonomous robotic automobiles in urban environments. It is composed by a Visual Servoing (VS) for road lane following (as deliberative control) and a Dynamic Window Approach (DWA) for obstacle avoidance (as reactive control). Typically, VS applications do not change the velocities to stop the robot in dangerous situations or avoid obstacles while performing the navigation task. ...

  10. Integrated synoptic surveys using an autonomous underwater vehicle and manned boats

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    Traditional surface-water surveys are being combined with autonomous technology to produce integrated surveys of bathymetry, water quality, and velocity in inland lakes and reservoirs. This new technology provides valuable, high-resolution, integrated data that allow a systems-based approach to understanding common environmental problems. This fact sheet presents several example applications of integrated surveys within inland lakes and coastal Lake Michigan and Lake Erie.

  11. Robust Huber-Based Iterated Divided Difference Filtering with Application to Cooperative Localization of Autonomous Underwater Vehicles

    Science.gov (United States)

    Gao, Wei; Liu, Yalong; Xu, Bo

    2014-01-01

    A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results. PMID:25536004

  12. Robust Huber-based iterated divided difference filtering with application to cooperative localization of autonomous underwater vehicles.

    Science.gov (United States)

    Gao, Wei; Liu, Yalong; Xu, Bo

    2014-01-01

    A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results. PMID:25536004

  13. Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus

    Science.gov (United States)

    Easley, W. C.; Tanguy, J. S.

    1986-01-01

    An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.

  14. Influence of Critical Current Density on Guidance Force Decay of HTS Bulk Exposed to AC Magnetic Field Perturbation in a Maglev Vehicle System

    Science.gov (United States)

    Longcai, Zhang; Jianguo, Kong

    2012-07-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to AC external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, we studied the guidance force decay of the YBCO bulk over the NdFdB guideway used in the High-temperature superconducting maglev vehicle system with the application of the AC external magnetic field, and calculated the guidance force decay as a function of time based on an analytic model. In this paper, we investigated the influence of the critical current density on the guidance force decay of HTS bulk exposed to AC field perturbation in the maglev vehicle system and try to adopt a method to suppress the decay. From the results, it was found that the guidance force decay rate was higher for the bulk with lower critical current density. Therefore, we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by improving critical current density of the bulk.

  15. Application of Automated Guided Vehicle (AGV) Based on Inductive Guidance for Newsprint Rolls Transportation System

    Institute of Scientific and Technical Information of China (English)

    陈超; 王冰; 叶庆泰

    2004-01-01

    The paper presents the development and performance of a kinematics control scheme for the AGV based on inductive guidance in transporting newsprint rolls. The required error is pre-computed using a kinematics model of the AGV taking into account the effect of various factors that contribute to improve tracking performance of the AGV. Simulation and experimental results illustrate that the kinematics model performs well and the results of various factors contribute to tracking performance of the AGV.

  16. Entry vehicle performance analysis and atmospheric guidance algorithm for precision landing on Mars. M.S. Thesis - Massachusetts Inst. of Technology

    Science.gov (United States)

    Dieriam, Todd A.

    1990-01-01

    Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.

  17. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  18. Optimization of S-surface controller for autonomous underwater vehicle with immune-genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Ye; ZHANG Lei; WAN Lei; LIANG Xiao

    2008-01-01

    To deduce error and fussy work of manual adjustment of parameters for an S-surface controller in underwater vehicle motion control, the immune-genetic optimization of S-surface controller of an underwater vehicle was proposed. The ability of producing various antibodies for the immune algorithm, the self-adjustment of antibody density, and the antigen immune memory were used to realize the rapid convergence of S-surface controller parameters. It avoided loitering near the local peak value. Deduction of the S-surface controller was given. General process of the immune-genetic algorithm was described and immune-genetic optimization of S-surface controller parameters was discussed. Definitive results were obtained from many simulation experiments and lake experiments, which indicate that the algorithm can get good effect in optimizing the nonlinear motion controller parameters of an underwater vehicle.

  19. Applications of Probabilistic Graphical Models to Diagnosis and Control of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Madsen, Anders L.; Kjærulff, Uffe Bro; Kalwa, Jörg;

    2004-01-01

    We present the main elements of a distributed architecture supporting diagnosis and control of autonomous robots. The purpose of the architecture is to assist the operator or piloting system in managing fault detection, risk assessment, and recovery plans under uncertainty. The architecture is ge....... The architecture supports the use of multiple artificial intelligence techniques collaborating on the task of handling uncertainty....... is generic, open, and modular consisting of a set of interacting modules including a decision module (DM) and a set of intelligent modules (IMs). The DM communicates with the IMs to request and obtain diagnosis and recovery action proposals based on data obtained from the robot piloting module...

  20. Application of neural networks to autonomous rendezvous and docking of space vehicles

    Science.gov (United States)

    Dabney, Richard W.

    1992-01-01

    NASA-Marshall has investigated the feasibility of numerous autonomous rendezvous and docking (ARD) candidate techniques. Neural networks have been studied as a viable basis for such systems' implementation, due to their intrinsic representation of such nonlinear functions as those for which analytical solutions are either difficult or nonexistent. Neural networks are also able to recognize and adapt to changes in their dynamic environment, thereby enhancing redundancy and fault tolerance. Outstanding performance has been obtained from ARD azimuth, elevation, and roll networks of this type.