WorldWideScience

Sample records for automotive materials

  1. Advanced Materials for Automotive Application

    International Nuclear Information System (INIS)

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  2. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  3. Advancing Material Models for Automotive Forming Simulations

    Science.gov (United States)

    Vegter, H.; An, Y.; ten Horn, C. H. L. J.; Atzema, E. H.; Roelofsen, M. E.

    2005-08-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path. The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary. Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials. Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations

  4. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  5. NICKEL AS AN ALTERNATIVE AUTOMOTIVE BODY MATERIAL

    Directory of Open Access Journals (Sweden)

    T. Joseph Sahaya Anand

    2012-06-01

    Full Text Available The study of the thermal, chemical and mechanical properties of pure nickel as an alternative automotive body material is presented in this paper. Current automotive components mainly use steel as the body material. Due to the increasing demand for high performance and related issues, interest is moving towards alternative materials to steel. The hardness values of both heat-treated and non-heat treated pure nickel do not change after annealing; the hardness values are in the range of 118 to 123 HV. As the annealing temperature increases, the ultimate tensile strength, yield strength and Young’s modulus decrease, which indicates that the ductility increases. The highest ultimate tensile strength of pure nickel at 300 °C annealed temperature is 758.78 MPa. X-ray diffraction (XRD studies confirmed pure nickel as a face centred cubic (FCC structure with a lattice constant measured as 0.3492 nm for the unannealed sample, which increases to 0.3512 nm for the annealed samples. The corrosion rate of both annealed and non-heat treated pure nickel is in the range of 0.0266 to 0.048 mm/year.

  6. Joining Technology of Dissimilar Materials for Automotive Components(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Meung Ho Rhee; Jong Ho Song; Woo Young Chung; Young Myoung Kim

    2004-01-01

    Joining techniques of dissimilar materials for lightweight multi-material automotive body structure were discussed. The joining of 1 .4 mm thickness steel and 2 mm thickness of Al were performed by the new method that is hybrid laser welding system. After aluminum and steel were welded by laser hybrid welding process, the micro-structure investment and the micro-hardness test were carried out. Hybrid laser welding promises a bright future in joining technology of dissimilar materials for automotive components.

  7. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  8. Multifunctional Materials Used in Automotive Industry: A Critical Review

    Science.gov (United States)

    Salonitis, Konstantinos; Pandremenos, John; Paralikas, John; Chryssolouris, George

    Nowadays, advanced materials and related processes in the automotive industry, are more widely used, leading to an effort towards reducing weight and fuel consumption. The use of such advanced materials and technologies tends to increase the cost. Multifunctional materials (MFMs) and related processing technologies aim at overcoming this increase of cost by exploiting the high level of functional integration. MFMs are designed so as to meet specific requirements through tailored properties. The use of such materials, in the automotive body construction, can help reduce produced parts, lightweight design, high level of integration of functionalities, advancements in mechanical properties of structures etc. In the current study, there is a clear definition of MFMs, and a critical view of such materials used both in the automotive body construction and in other industrial applications.

  9. DOE Automotive Composite Materials Research: Present and Future Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  10. Impact of novel thermoelectric materials on automotive applications

    Science.gov (United States)

    Brignone, Mauro; Ziggiotti, Alessandro

    2012-06-01

    Despite the fact that thermoelectric (TE) devices are compact, quiet, rugged, stable and very reliable, thermoelectrics have found only niche applications because they are also inefficient (less that 5% conversion efficiency is typical) and costly. The key to more widespread acceptance of thermoelectric is the development of materials that are capable of higher conversion efficiency, but other fundamental materials parameters play a role not less important to open to large applications and markets. In particular the automotive sector requires low materials density, materials made from widely-available pure elements with very large supply chains, non-toxicity of elements and potential compliance with REACH and RoHS obligations and low raw material cost combined with low manufacturing costs. The impact of novel TE materials on automotive application will be described focusing on promising nano magnesium silicide and skutterudites.

  11. Advantages and challenges of dissimilar materials in automotive lightweight construction

    Science.gov (United States)

    Weberpals, Jan-Philipp; Schmidt, Philipp A.; Böhm, Daniel; Müller, Steffen

    2015-03-01

    The core of future automotive lightweight materials is the joining technology of various material mixes. The type of joining will be essential, particularly in electrified propulsion systems, especially as an improved electrical energy transmission leads to a higher total efficiency of the vehicle. The most evident parts to start the optimization process are the traction battery, the electrical performance modules and the engines. Consequently aluminum plays a very central role for lightweight construction applications. However, the physical-technical requirements of components often require the combination with other materials. Thus the joining of mixed material connections is an essential key technology for many of the current developments, for example in the areas E-Mobility, solar energy and lightweight construction. Due to these advantages mixed material joints are already established in the automotive industry and laser beam remote welding is now a focus technology for mixed material connections. The secret of the laser welding process with mixed materials lies within the different areas of the melting phase diagram depending on the mixing ratio and the cooling down rate. According to that areas with unwanted, prim, intermetallic phases arise in the fusion zone. Therefore, laser welding of mixed material connections can currently only be used with additional filler in the automotive industry.

  12. Investigation of thermal management materials for automotive electronic control units

    International Nuclear Information System (INIS)

    Today's electronics packages are smaller and more powerful than ever before. This leads to ever increasing thermal challenges for the systems designer. The automotive electronic control unit (ECU) package faces the same challenge of thermal management as the industry in general. This is coupled with the latest European Union legislation (Euro 6 standard) which forced the ECU manufacturers to completely re-design their ECU platform with improved hardware and software capability. This will result in increased power densities and therefore, the ability to dissipate heat will be a key factor. A higher thermal conductivity (TC) material for the ECU housing (than the currently used Aluminium) could improve heat dissipation from the ECU. This paper critically reviews the state-of-the-art in thermal management materials which may be applicable to an automotive ECU. This review shows that of the different materials currently available, the Al/SiC composites in particular have very good potential for automotive ECU application. In terms of metal composites processing, the liquid metal infiltration process is recommended as it has a lower processing cost and it also has the ability to produce near net-shape materials.

  13. Cubic Silicon Carbide: a promising material for automotive application

    OpenAIRE

    Attolini, Giovanni; Bosi, Matteo; Rossi, Francesca; Watts, Bernard Enrico; Salviati, Giancarlo

    2008-01-01

    carbide is a material that possesses properties that make it desirable in electronic, structural and sensor applications. As a wide band gap semiconductor it can be used in high power, high temperature electronics and harsh environments. Its hardness, wear resistance, chemical inertness, and thermal conductivity find uses ranging from disc brakes to micron scale sensors and actuators. The automotive industry faces some important challenges since it has obligations to manufacture safe, clean, ...

  14. Automotive Friction Materials: from Experience to Science

    Institute of Scientific and Technical Information of China (English)

    Yafei Lu

    2000-01-01

    An optimizing friction material formulation technique based on Golden Section and Relational Grade Analysis was developed. Approach 2 of this technique was tested by using 7 ingredients including 2 fibers, 4 fillers and 1 binder as raw materials. By doing 19 formulations, an optimizing one (BU18)was obtained with stableμ and averageμ = 0.451 and wear = 3.46 wt %.

  15. Application of smart materials in automotive structures

    Science.gov (United States)

    Manz, Holger; Breitbach, Elmar J.

    2001-06-01

    The demand in the automobile sector for greater comfort in the vehicle is of a high importance alongside the requirements for a low emission of pollutants. With regard to a higher comfort the reduction of the interior noise level is mostly associated with a higher structural weight. It is for this reason that the application of so-called intelligent materials is appropriate since these can be used to realize an overall adaptive system. The materials under discussion are pizeceramic foils and fibers which can easily be fitted to thin-walled structures like a roof panel or a dash-board. Investigations have shown that the knowledge of the dynamic structural behavior is vital at the design of an adaptive system. Mostly this knowledge can only be gained by using sophisticated numerical models associated with a great effort of computing time. In order not to expand the computing time a model has been developed which allows a fast assessment of the dynamic behavior of a structure with integrated smart materials. The results of this model are presented for a flat steel plate with bonded piezoceramic foils. The accuracy of this model is being proved by the presentation of experimental results.

  16. Parametric assessment of climate change impacts of automotive material substitution.

    Science.gov (United States)

    Geyer, Roland

    2008-09-15

    Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction. PMID:18853818

  17. Automotive Fuels Survey. Part 1. Raw materials and conversion

    Energy Technology Data Exchange (ETDEWEB)

    Elam, N. [ed.

    1996-12-01

    The purpose of the title survey is to present an overview of important aspects of raw materials and their conversion to automotive fuels. In combination with Part 2 (Distribution and use of conventional and alternative automotive fuels) it considers the complete well to wheel chain of various fuels. Part 3 (to be published in 1998) will present a direct comparison of the well to wheel chains of the various fuels under consideration. In this part of the IEA/AFIS Annual Report a number of key aspects of the various substances, which are, or have been, proposed as road transport fuels are discussed. The reviews of each type of raw material start with a presentation of the availability of the different energy sources. Next, the subjects of exploration, production and cultivation and harvesting of the various energy sources and the logistics of transporting them to factories where they must be converted into transport fuels are discussed, including the technology, costs and efficiency of the processing. figs., tabs., refs.

  18. Gas sensing using porous materials for automotive applications.

    Science.gov (United States)

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-01

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours. PMID:25982991

  19. Composite materials molding simulation for purpose of automotive industry

    Science.gov (United States)

    Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.

    2016-08-01

    Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from

  20. Automotive Lightweight Materials: the Roles of Nde in Bringing New Materials Into Production

    Science.gov (United States)

    Dasch, Cameron J.

    2008-02-01

    The automotive industry is in the midst of a time of tremendous change. There is an almost perfect storm of changing governmental and market requirements seeking much higher fuel economy, low or no carbon dioxide emissions, and much higher crash and safety performance. Moreover, this occurs in a globe-spanning market that has more low-cost manufacturers than ever before. This confluence of factors leads to new vehicles with many new types of powertrains having unprecedented power densities and highly-engineered body structures with many new materials and joining methods. These are being turned out with shorter lead times, higher quality requirements, and continuous cost pressures. This talk will review the role in NDE in bringing new materials and processes to market, some of the applications in production, and to highlight some of the current NDE needs driven by these forces on the automotive industry.

  1. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  2. Carbon Fiber Composite Materials in Modern Day Automotive Production Lines – A Case Study

    OpenAIRE

    Petersson, Håkan; Motte, Damien; Bjärnemo, Robert

    2014-01-01

    New and innovative production equipment can be developed by introducing lightweight materials in modern day automotive industry production lines. The properties of these new materials are expected to result in improved ergonomics, energy savings, increased flexibility and more robust equipment, which in the end will result in enhanced productivity. Carbon composite materials are one such alternative that has excellent material properties. These properties are well documented, and the market f...

  3. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  4. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  5. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2002-01-11

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percent of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.

  6. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  7. Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects; TOPICAL

    International Nuclear Information System (INIS)

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R and D projects were chosen for this pilot evaluation: Low-Cost, Continuous Cast Aluminum Sheet; Advanced Forming Technologies for Aluminum; and Manufacturing of Composite Automotive Structures. These projects were chosen because they represent a range of benefits evaluation situations. The first project resulted in an improved process that may be commercialized. The second project is on going and has two distinct components. The third project has yielded an improved technology that has been commercialized. This completed project also benefited from numerous complementary projects

  8. Pineapple leaf fiber as reinforce in composite materials, an alternative for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Rejane Daniela de; Seo, Emilia Satoshi Miyamaru, E-mail: rejanedaniela@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The composites appear as an extremely favorable alternative for different industries, due to the fact that it combines the best mechanical properties with the best physic-chemical properties of two or more materials. Nowadays, in the evaluation of materials, besides criteria such as economic viability and performance, the environmental criterion was included in this evaluation. Part of the environmental criteria is the use of biodegradable materials and/or recycled materials. In this sense, researches focused on vegetal fibers, as reinforcement in composites are growing considerably and positive results for its performance were achieved. Moreover, the environmental-friendly approach not only is the unique advantage on usage of vegetal fibers, but also it has an economical advantage, because of the low cost and good performance due to low density. The fiber extracted from the pineapple leaf (PALF) is a new alternative for automotive industry as cellulose-based fiber composite. In this sense, the present paper aims to present the characterization of the pineapple leaf fiber for manufacturing the automotive composite materials. Milled pineapple fibers extracted, in two different ways and submitted to mercerisation treatments, were characterized by mechanical and thermal properties; density; morphology; FTIR spectroscopy, EDX and X-ray diffraction. It is important to characterize the fibers, in order to obtain appropriate mechanical properties of composite. (author)

  9. Evaluating knowledge benefits of automotive lightweighting materials R&D projects.

    Science.gov (United States)

    Peretz, Jean H; Das, Sujit; Tonn, Bruce E

    2009-08-01

    This paper presents a set of metrics used to evaluate short-run knowledge benefits that accrued from research and development (R&D) projects funded in fiscal years 2000-2004 by automotive lightweighting materials (ALM) of the U.S. Department of Energy (DOE). Although DOE presents to Congress energy, environmental, and security benefits and costs of its R&D efforts under the Government Performance and Results Act, DOE has yet to include knowledge benefits in that report [U.S. Department of Energy. (2007). Projected benefits of federal energy efficiency and renewable energy programs: FY2008 budget request. NREL/TP-640-41347 (March). Washington, DC: National Renewable Energy Laboratory for DOE Energy Efficiency and Renewable Energy. Retrieved February 12, 2007 from http://www1.eere.energy.gov/ba/pba/2008_benefits.html]. ALM focuses on development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost [U.S. Department of Energy. (2005a). Automotive lightweighting materials 2004 annual progress report. Washington, DC: DOE Energy Efficiency and Renewable Energy. Retrieved March 30, 2005 from http://www.eere.energy.gov/vehiclesandfuels/resources/fcvt_alm_fy04.shtml]. The ultimate goal of ALM to have lightweighter materials in vehicles hinges on many issues, including the (1) collaborative nature of ALMs R&D with the automobile industry and (2) manufacturing knowledge gained through the R&D effort. The ALM projects evaluated in this paper yielded numerous knowledge benefits in the short run. While these knowledge benefits are impressive, there remains uncertainty about whether the research will lead to incorporation of lightweight materials by the Big Three automakers into their manufacturing process and introduction of lightweight vehicles into the marketplace. The uncertainty illustrates a difference between (1) knowledge

  10. Effects of Rare Earths on Properties and Microstructure of Automotive Friction Materials

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Lu Liguo; Bai Jing

    2007-01-01

    Rare earth compounds as modifiers used widely in modern friction materials can enhance the interracial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction Coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced.

  11. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2003-01-23

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal

  12. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  13. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  14. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  15. A critical review on the tribological compatibility of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Highlights: • Biodiesel is creating tribology related new challenges world over. • Tribo-corrosion in biodiesel is yet to be studied in details. • Possible influencing factors for wear, corrosion and tribo-corrosion have been enlisted. • Auto-oxidation, moisture absorption, compositional instability, etc. are the major concerns. - Abstract: Although the compatibility of biodiesel with the key components of automobile engine such as cylinder, pistons, piston rings, connecting rods, bearings, etc. have posed a big challenge to tribologists, they have yet to come up with a solution to reduce tribological degradation of different metals as well as the used fuel. Some efforts have already been given to understand the corrosion and wear of automotive materials in diesel and biodiesel. It was found that though biodiesel is more corrosive than diesel, it provides better lubricity in terms of wear and friction. This finding has led us to the conclusion that the combined effect of wear and corrosion on materials and the consequent effect on biodiesel degradation could be crucial and yet to be investigated. The present study also highlighted some other relevant factors which showed notable implications on wear and corrosion in biodiesel. Those factors including auto-oxidation, moisture absorption, change in fuel properties (e.g. TAN number, viscosity, density, etc.) are found to have important influence for understanding the science behind tribology in biodiesel

  16. Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

    1997-04-01

    Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

  17. European Automotive Congress

    CERN Document Server

    Clenci, Adrian

    2016-01-01

    The volume includes selected and reviewed papers from the European Automotive Congress held in Bucharest, Romania, in November 2015. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in fuel economy and environment, automotive safety and comfort, automotive reliability and maintenance, new materials and technologies, traffic and road transport systems, advanced engineering methods and tools, as well as advanced powertrains and hybrid and electric drives.

  18. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow production rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.

  19. Tensile Properties with or without Heat Dispersion of Automotive Needlepunched Carpets Made up of Two Layers of Different Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunqing; GUO Zhiying; DONG Xianghuai; LI Dequn

    2008-01-01

    Tensile properties of automotive needlepunched carpets made up of two layers of different materials (a fabric layer and a foam layer) in their thermoforming temperatures ranges with or without heat dispersion were discussed. Effects of forming temperature, extensile speed and fiber orientation on the tensile properties were studied based on an orthogonal experiment design. The experimental results show that automotive carpets are rate-dependent anisotropic materials and more strongly depend on forming temperature than the extensile speed and fiber orientation. Furthermore,contributions of the fabric layer and the foam layer to the overall tensile performance were investigated by comparing the tensile results of single fabric layer with those of the overall carpet. Both the fabric layer and the foam layer show positive effects on the overall tensile strength which is the combination of the two layers' tensile strength and independent of temperature, extensile speed and fiber orientation.On the other hand, their influences on the overall deformation are relatively complicated.

  20. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  1. Methodology on Investigating the Influences of Automated Material Handling System in Automotive Assembly Process

    Science.gov (United States)

    Saffar, Seha; Azni Jafar, Fairul; Jamaludin, Zamberi

    2016-02-01

    A case study was selected as a method to collect data in actual industry situation. The study aimed to assess the influences of automated material handling system in automotive industry by proposing a new design of integration system through simulation, and analyze the significant effect and influence of the system. The method approach tool will be CAD Software (Delmia & Quest). The process of preliminary data gathering in phase 1 will collect all data related from actual industry situation. It is expected to produce a guideline and limitation in designing a new integration system later. In phase 2, an idea or concept of design will be done by using 10 principles of design consideration for manufacturing. A full factorial design will be used as design of experiment in order to analyze the performance measured of the integration system with the current system in case study. From the result of the experiment, an ANOVA analysis will be done to study the performance measured. Thus, it is expected that influences can be seen from the improvement made in the system.

  2. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  3. Feasibility study on a novel cooling technique using a phase change material in an automotive engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-bum; Choi, Kyung-wook; Kim, Young-jin; Lee, Ki-hyung [Department of Mechanical Engineering, Hanyang University, 1271 Sa 1-dong, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea); Lee, Kwan-soo [Department of Mechanical Engineering, Hanyang University, 17 Hangdang-dong, Sungdong-gu, Seoul, 133-070 (Korea)

    2010-01-15

    The size of a cooling inventory is generally designed based on which size can endure the excessive heat load situations that occur sporadically. As a result, cooling systems are often too large for most normal driving modes. There have been numerous efforts to downsize the automotive engine cooling system using novel concepts and strategies. Efficient cooling in automobiles is beneficial in reducing harmful emissions as well as improving fuel economy. A simulation was conducted to validate the feasibility of using a novel cooling strategy that utilized the heat load averaging capabilities of a phase change material (PCM). Three prototypes were designed: full-size, down-sized, and a down-sized prototype with a heat accumulator containing the PCM inside. When the full-size of the cooling inventory was down-sized by 30%, this smaller design failed to dissipate the peak heat load and consequently led to a significant increase in the coolant temperature, around 25 C greater than that in the full-size system. However, the peak heat load was successfully averaged out in the down-sized system with a heat accumulator. This novel cooling concept will contribute to a substantial reduction in the cooling system in terms of volume and hangover. (author)

  4. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Science.gov (United States)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  5. New Materials and New Technology in Automotive Stamping Field%汽车冲压领域的新材料及新工艺

    Institute of Scientific and Technical Information of China (English)

    汪文奇

    2012-01-01

    Introduced the application of new materials & new technology in automotive body production of automotive stamping field, and analyzed technical bottleneck of several kinds of new materials & new technology application.%介绍了汽车冲压领域的新材料、新工艺在汽车车身中的应用情况,并分析了几类新材料、新工艺应用的技术瓶颈。

  6. Toxicity and mutagenicity of low-metallic automotive brake pad materials.

    Science.gov (United States)

    Malachova, Katerina; Kukutschova, Jana; Rybkova, Zuzana; Sezimova, Hana; Placha, Daniela; Cabanova, Kristina; Filip, Peter

    2016-09-01

    Organic friction materials are standardly used in brakes of small planes, railroad vehicles, trucks and passenger cars. The growing transportation sector requires a better understanding of the negative impact related to the release of potentially hazardous materials into the environment. This includes brakes which can release enormous quantities of wear particulates. This paper addresses in vitro detection of toxic and mutagenic potency of one model and two commercially available low-metallic automotive brake pads used in passenger cars sold in the EU market. The model pad made in the laboratory was also subjected to a standardized brake dynamometer test and the generated non-airborne wear particles were also investigated. Qualitative "organic composition" was determined by GC/MS screening of dichloromethane extracts. Acute toxicity and mutagenicity of four investigated sample types were assessed in vitro by bioluminescence assay using marine bacteria Vibrio fischeri and by two bacterial bioassays i) Ames test on Salmonella typhimurium His(-) and ii) SOS Chromotest using Escherichia coli PQ37 strain. Screening of organic composition revealed a high variety of organic compounds present in the initial brake pads and also in the generated non-airborne wear debris. Several detected compounds are classified by IARC as possibly carcinogenic to humans, e. g. benzene derivatives. Acute toxicity bioassay revealed a response of bacterial cells after exposure to all samples used. Phenolic resin and wear debris were found to be acutely toxic; however in term of mutagenicity the response was negative. All non-friction exposed brake pad samples (a model pad and two commercial pad samples) were mutagenic with metabolic activation in vitro. PMID:27179608

  7. Automotive Corporate Strategy in CEE

    OpenAIRE

    Kadlecová, Petra

    2009-01-01

    The diploma thesis shows the status of the automotive industry in the Czech Republic. It shows the trends in the Czech automotive industry in short theoretical presentation. There is a trend of the future competition from developing countries, other problems are growing raw material prices or government's limits in CO2 production. The companies connected to the automotive industry are reacting. The relevant information about the status and reactions of the Czech automotive industry companies,...

  8. 新材料在汽车工业中的应用%Application of New Materials on Automotive Industry

    Institute of Scientific and Technical Information of China (English)

    丁华; 严学华

    2001-01-01

    The artical introduces the application of the new structure materials、functional materials and composite materials in automotive industry. Through some examples,declare the applicative foregrounds of new material on automotive industry. In the 21century, automobile must meet the requirements of environmental protection and energy conservation. The new material is one of the important parts in development new style vehicle. So the new materials in vehicles must be more light,more strength and functional.%本文较细地讲述了新型结构材料、新型功能材料及复合材料在汽车工业中的应用及发展趋势。并结合国外的一些应用实例较直观地阐述了汽车材料的应用前景。21世纪的汽车必须是满足环保、节能、安全等几方面的要求。要实现这些目标,材料工业在其中起着不可替代的重要作用,这就提出了新型材料必须是重量更轻、强度更大同时还要实现必要的功能。

  9. Effects of strain rate and identification of material constants for three automotive steels

    Energy Technology Data Exchange (ETDEWEB)

    Larour, P.; Bleck, W. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Eisenhuettenkunde; Rusinek, A.; Klepaczko, J.R. [Metz Univ., 57 (France). Lab. de Physique et Technologie des Materiaux

    2007-04-15

    The main topic of this paper is an analysis of experimental results for three kinds of sheet steel: DP600, TRIP700 and H340LAD, which are used in the automotive industry. Such results were partly reported earlier. For comparison purposes the experimental results obtained at LPMM for an ES (DC05) mild steel have also been integrated in this paper. The tension tests were performed at room temperature in a relatively wide range of strain rates, that is from {proportional_to}3.0.10{sup -4}s{sup -1} up to {proportional_to}10{sup 3}s{sup -1}. Since at low and high strain rates two different specimen geometries were applied, detailed numerical analyses have been performed in order to estimate the geometry effects on the final true stress versus true strain characteristics at different strain rates. A relatively new constitutive relation of the form (anti {sigma}, anti {epsilon}{sup {rho}}, anti {epsilon}{sup {rho}},T) = O is applied. This constitutive relation in the form of the Mechanical Equation of State (MES), called also the RK relation, has been developed by Rusinek and Klepaczko. The main advantage introduced in the RK approach is the rate and temperature sensitivity of the strain hardening exponent, {eta}(anti {epsilon}{sup {rho}},T), a very important improvement in comparison to other constitutive formulations. It appears that introduction of the rate and temperature sensitivity of strain hardening is very important in all BCC and FCC micro-structures. In BCC structures the tangent modulus of anti {sigma}(anti {epsilon}{sup {rho}}) {sub anti} {sub {epsilon}}{sub ,T} may substantially decrease when strain rate increases. A special procedure was applied, according to Rusinek and Klepaczko, to determine the material constants for those three steels. An excellent fit to experimental data was obtained. Some FE calculations performed earlier on the energy absorbing profiles under impact with the RK constitutive relation have shown very good confirmation of experiment

  10. Work-Related Musculoskeletal Disorders among Workers' Performing Manual Material Handling Work in an Automotive Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Baba M. Deros

    2010-01-01

    Full Text Available Problem statement: The study investigated the prevalence of Musculoskeletal Disorders (MSD among workers who perform the Manual Material Handling (MMH task in an automotive manufacturing plant in Malaysia. A cross sectional study was carried out among the workers in an automotive manufacturing plant. Approach: Respondents were selected through random sampling. Then, a Body Parts Symptoms Survey (BPSS data sheets were given to the workers to obtain the prevalence of MSD among them. Later, a few workers were selected based on the In-House Clinic (IHC visitations data for interviews. Results: Five hundreds workers showed that the highest prevalence of MSD was Low Back Pain (LBP. It was found from interviews of 17 workers who had 3 or more visitation times to the IHC that the main reason of the ergonomic risk comes from the task that they perform. It was found that the highest prevalence of MSD was lower back pain, followed by pain at feet/ankle and pain at upper back regions. Almost one third of the study populations claimed to feel uncomfortable to their upper back and lower back. Conclusion: It was concluded that the back pain the workers are experiencing may be a result of their ignorance in the correct and ergonomic techniques in materials handling.

  11. Assessing Economic Modulation of Future Critical Materials Use: The Case of Automotive-Related Platinum Group Metals.

    Science.gov (United States)

    Zhang, Jingshu; Everson, Mark P; Wallington, Timothy J; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2016-07-19

    Platinum-group metals (PGMs) are technological and economic enablers of many industrial processes. This important role, coupled with their limited geographic availability, has led to PGMs being labeled as "critical materials". Studies of future PGM flows have focused on trends within material flows or macroeconomic indicators. We complement the previous work by introducing a novel technoeconomic model of substitution among PGMs within the automotive sector (the largest user of PGMs) reflecting the rational response of firms to changing prices. The results from the model support previous conclusions that PGM use is likely to grow, in some cases strongly, by 2030 (approximately 45% for Pd and 5% for Pt), driven by the increasing sales of automobiles. The model also indicates that PGM-demand growth will be significantly influenced by the future Pt-to-Pd price ratio, with swings of Pt and Pd demand of as much as 25% if the future price ratio shifts higher or lower even if it stays within the historic range. Fortunately, automotive catalysts are one of the more effectively recycled metals. As such, with proper policy support, recycling can serve to meet some of this growing demand. PMID:27285880

  12. 新材料在汽车轻量化技术中的应用%Applications of New Materials in Automotive Lightweighting Technologies

    Institute of Scientific and Technical Information of China (English)

    史莎莎; 刘晋丽

    2014-01-01

    Automotive material is developed with the features in lightweight, energy saving, high performance and many different functions. This paper introduces the future technical trend of the automotive lightweight materials in China and abroad. The current situations and major drawbacks of new automotive material development and application in China are also dealt with.%汽车材料正在向轻量化、节省资源、高性能和高功能方向发展。本文介绍了国内外汽车轻量化材料技术发展动向,简要的阐述了我国汽车新材料开发与应用现状、差距及存在的主要问题。

  13. 汽车内饰材料的阻燃性研究现状%Flame Retardancy Research Status of Automotive Interior Materials

    Institute of Scientific and Technical Information of China (English)

    陈俊洁; 何勇; 黄胜; 梁列峰

    2012-01-01

    介绍了阻燃理论和国内外汽车内饰材料的阻燃研究现状,概述了汽车内饰阻燃材料、阻燃整理剂开发和阻燃整理等技术措施,以及汽车内饰材料阻燃研究发展方向。%The theory of flame retardant and domestic and international flame retardant research status of automotive interior material were introduced. The automotive interior fire-retardant materials, development of flame retardant and flame retardant finishing were summarized, and the development trends of automotive interior materials flame retardant in the future were proposed.

  14. 单一材质可回用汽车内饰产品的开发%Development of Single Material Can be Reused in Automotive Interior Products

    Institute of Scientific and Technical Information of China (English)

    王益重

    2014-01-01

    汽车用纺织品按用途可分为装饰、功能、增强用材料三大类。而单一材质可回用汽车内饰产品,主要立足于汽车内饰纺织品材料,满足循环经济的发展模式。以低耗、低投入为特征,符合可持续发展科学理念。通过采用单一可回收的聚酯采用材料,开发出阻燃有色纤维,再加工复合成的无纺布汽车内饰材料,其性能指标测试结果表明,这种产品性能能满足汽车行业对纺织品的要求,且产品达到环保要求。%Automotive textiles can be divided according to purpose decorative, functional, reinforcing material three cat-egories. The single material can be reused automotive interior products, mainly based on the automotive interior textile ma-terials, to meet the development pattern of circular economy. With low consumption, low investment is characterized, in line with the scientific concept of sustainable development. By using single recycled polyester materials, the development of fla-me colored fibers, and then processed into nonwoven composite automotive interior materials, its performance test results show that the performance of this product can meet the requirements of the automotive industry for textiles, and the products meet environmental requirements.

  15. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  16. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    Science.gov (United States)

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis. PMID:25913215

  17. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  18. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  19. Automotive NVH technology

    CERN Document Server

    Nijman, Eugenius; Priebsch, Hans-Herwig

    2016-01-01

    This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.

  20. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    OpenAIRE

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    2012-01-01

    This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling of mechanical, electrical, thermal and metallurgical processes, which are essential for simulation of resistance welding process to predict the welding results and evaluate the weldability of materials. These f...

  1. The influence of high temperatures on the tribological properties of automotive friction materials

    Science.gov (United States)

    Savage, Luke

    Temperatures of over 800C can be generated at the frictional interface within the brake systems of large vehicles, such high temperatures result in severe wear at the frictional interface, and can also lead to a very dangerous condition known as brake fade, characterised by a sharp fall in the coefficient of friction between the pad and disc, resulting in a catastrophic loss of braking efficiency. Common friction materials are very specialised composites often containing up to 15 components bound together within a phenolic resin matrix. The high temperature behaviour of the various constituents of friction materials were investigated using thermogravimetric analysis, focusing in particular on the thermal decomposition of the phenolic resin matrix material, where it has been firmly established that the thermal decomposition products of phenolic resin are the primary cause of brake fade. This has lead to the development of a novel approach for reducing fade in conventional resin based friction materials, involving a partial carbonisation to 400C. The high temperature wear characteristics of both modified and conventional friction materials were examined using standard dynamometer tests, as well as a 'continuous drag' type test machine, equipped with a heating facility. During this study a number of factors were identified as the main influences on the overall wear behaviour of friction materials. These included test temperature, sample test history, and the various effects of friction films, which were the subject of a detailed analysis. The formation of friction films was found to be an important facet of a successful friction material, producing a reduction in wear at the frictional interface. Films were examined and analysed using EDX, SEM, and X-ray diffraction techniques, which revealed the presence of a high proportion of magnetite (Fe3O4), containing iron which originated from the disc surface. It was established that the incorporation of iron in friction

  2. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling...... and predicting welding process window, for weld planning with optimal welding parameter settings, and for modeling microstructures and hardness distribution after welding. Latest developments have been made on simulation of resistance welding with nonconductive materials for applications in weld bonding...

  3. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    Science.gov (United States)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  4. MODELING AND FATIGUE ANALYSIS OF AUTOMOTIVE WHEEL RIM WITH DIFFERENT MATERIALS

    Directory of Open Access Journals (Sweden)

    MERIGE PHANI SRUJAN

    2016-08-01

    Full Text Available In the design of automobile, the industry is exploringpolymericmaterial in order to obtain reduction of weight withoutsignificantdecrease in vehicle quality and reliability. Fuel consumption of the vehicle is directly proportional to the weight of the wheel rim. Thusin this project a standard wheel of four wheeler ischosenand analyzed by applying loads and using different materials .AluminumAlloy,Magnesium Alloy, PEEK,PEEK with 20% Glassfiber, PEEK with 30% GlassFiber are the materials chosen.The whole design is made by using SOLIDWORKS as per original equipment manufacturer(OEM’Srequirement. Analysis has been carried out using ANSYS todetermine deformation and fatigue life of the wheel. The whole analysisisdonebymeansofsoftwarethereforeresultandobservationsaretrustworthy and met ourexpectation.

  5. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    Science.gov (United States)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  6. Preliminary study on different technological tools and polymeric materials towards superhydrophobic surfaces for automotive applications

    Science.gov (United States)

    Pruna, A.; Ramiro, J.; Belforte, L.

    2013-11-01

    Nature-inspired fabrication of micro-structured superhydrophobic plastic film was aimed in this work in order to achieve smart materials with self-cleaning properties. Replicas of silicon masters were fabricated from different mixtures of base elements and by different processes. Corresponding microstructures were investigated by contact angle measurements, scanning electron microscopy and spectrophotometric analysis. Independently of the technology employed, the obtained films exhibited high contact angle value (larger than 150°), but while the acrylic polymers presented strong demoulding drawbacks, the polydimethylsiloxane (PDMS) films had good properties in terms of both contact angle and optical transparency. The results showed that most of the patterns realized by replica moulding and hot-embossing (on PDMS and polypropylene (PP), respectively) produced superhydrophobic self-cleaning surfaces.

  7. Scratch Resistance Research and Improvement of Automotive Polymer Materials%车用高分子材料耐刮擦性能研究与改善

    Institute of Scientific and Technical Information of China (English)

    李延垒; 张虽栓

    2014-01-01

    The compatibilizing agent, PP crystallinity, mineral fillers of material scratch resistance and the impact resistance of different scratch slip agents are analyzed. Scratch-resistant modified polypropylene (PP) is produced for automotive. The experimental results show that the PP after be modified strong scratch resistance. Its changes have a great relationship with reactive high silicone, small particle size of mineral filler and highly crystalline PP, then the automotive parts are formed and applied to automotive.%对材料耐刮擦性的增容剂、PP结晶度、矿物填料、不同耐刮擦滑爽剂等的影响性能进行分析,耐刮擦改性聚丙烯(PP)是为汽车所制备的。通过实验结果表明了改性之后的PP的耐刮擦性能很强,它的改变与反应型高聚硅氧、矿物填料的粒径较小、高结晶PP有很大的关系,所以就形成了汽车的零部件,完全可以应用到汽车中。

  8. Effect of ZrSiO4 on the Friction Performance of Automotive Brake Friction Materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested. Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820℃. Density of the final samples decreased with increasing the amount of reinforcing elements (ZrSiO4) before pre-sintering. However after sintering, there is no change in density of the samples including reinforcing elements (ZrSiO4). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed.However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0,5% reinforced ZrSiO4. The SEM images of the sample indicated that while bronze-based break lining material without ZrSiO4 showed abrasive wear behaviour, increasing the amount of ZrSiO4 resulted a change in abrasive to adhesive wear mechanism. All samples exhibited friction-wear values, which were within the values shown in SAE-J661 standard. With increasing the amount of reinforcing ZrSiO4, wear resistance of the samples was increased. However samples reinforced with 5% and 6% ZrSiO4 showed the best results.

  9. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Szanyi, Janos; Yi, Cheol-Woo W.; Mudiyanselage, Kumudu K.; Kwak, Ja Hun

    2013-11-01

    The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0\\hBaO\\30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (\\4 ML), BaO clusters (\\1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation

  10. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    Science.gov (United States)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  11. Systems thinking in designing automotive textiles

    OpenAIRE

    Sinha, Pammi; Muthu, Subramanian Senthilkannan; Taylor, Iain; Schulz, Rita; Beverley, Katharine J.; Day, Claire L.; Tipi, Nicoleta S.

    2015-01-01

    We present the complexities in terms of designing automotive exterior seating materials (seat coverings and interior linings) at Sage Automotive Interiors (UK), which is a division of a global international automotive textile supplier with headquarters in the US. Sustainability and innovation are emphasized in documents communicating the company’s vision. Using a case study approach, we consider the current design, development and manufacture process and examine it for the potential for feedb...

  12. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  13. Risks and factors influencing raw material availability and consequences for the development of future automotive power trains; Risiken und Faktoren der Rohstoffverfuegbarkeit und deren Folgen fuer die Entwicklung zukuenftiger Automobilantriebe

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, David; Finken, Thomas [Ricardo Deutschland GmbH, Schwaebisch Gmuend (Germany)

    2012-11-01

    This paper aims to explore key risks and extraneous factors influencing raw material availability and related consequences for the realization of future automotive power trains. Important raw materials for the electro mobility are presented followed by an evaluation of their future supply risk. A review of the current situation and a summary of expectations for future technological developments are presented. The current situation of political factors, access to resources and other important factors are then discussed, highlighting some of the major risks and their influence on up-take rates of alternative power train technologies. Specifically the specific relationships between demand and supply side for specific rare earth elements and their effects on price development is investigated and suggests how these factors might influence existing relationships within the automotive industry. The paper concludes with suggestions for alternative strategies for specific groups within the automotive value chain to mitigate those risks. (orig.)

  14. Automotive Aluminium Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gelas, B. des

    2000-07-01

    This paper aims at providing an overview on the contribution of aluminium recycling in the supply of new aluminium for automotive applications. Based on a presentation on how the global European automotive aluminium supply requirements are met, an analysis of the present and future contribution of automotive aluminium recycling is first presented. Current situation and future developments for automotive aluminium recycling practices are then commented, together with an outline on design principles for easier aluminium recycling. (orig.)

  15. Super High Strength Steel for automotive applications

    OpenAIRE

    CONFENTE, Mario; SCHNEIDER, Emmanuel; BOMONT, Olivier; LESCALIER, Christophe; BOMONT-ARZUR, Anne

    2008-01-01

    Intensive weight savings and out-sizing programs are developed in automotive industry and lead to increase the mechanical properties of the material of the automotive parts. ArcelorMittal has developed specific steel grades known as Super High Strength Steels which are designed for both high ductility and toughness and fatigue resistance. This paper investigates machinability for a drilling operation using an experimental methodology. One of the materials is a new low bainitic steel grade. Ex...

  16. Die and powder forging materials for automotive connecting rods; Schmiede- und Sinterschmiede-Werkstoffe fuer PKW-Pleuel

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Klaus; Kaufmann, Heinz [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany). Kompetenzcenter ' ' Bauteilgebundenes Werkstoffverhalten' '

    2011-05-15

    The increasingly higher demands on gasoline and diesel engines require their component materials to possess higher strength. Two processes, powder and die forging, compete with each other during the development of advanced materials for connecting rods. During the last few years, the development of higher strength materials for fracture splitting has advanced for both manufacturing processes. The Fraunhofer Institute for Structural Durability and System Reliability LBF has now carried out fatigue tests for both manufacturing processes and contrasted the performance of these connecting rod materials. (orig.)

  17. Evaluation of Measurement Uncertainty in Determination of Flammability of Automotive Interior Materials%汽车内饰材料燃烧特性的测量不确定度评定

    Institute of Scientific and Technical Information of China (English)

    金月华; 张亚红; 孙霞; 吴谦

    2015-01-01

    Flammability of automotive interior materials was determined according to the standard GB8410-2006. The source of uncertainty in the whole process of measurement was discussed. Each com-ponent of uncertainty was estimated and combined. It was showed that the main factors affecting determi-nation of flammability of automotive interior materials were the repeatability of the test process.%依据GB 8410-2006测量汽车内饰材料的水平燃烧特性,对整个测试过程中的不确定来源进行分析,并对不确定度各个分量进行评定、合成,最后得出影响水平燃烧特性的主要因素是测试过程的重复性。

  18. 汽车内饰材料燃烧特性试验中存在的问题与建议%Problems and Suggestions about Flammability Testing for Automotive Interior Decoration Materials

    Institute of Scientific and Technical Information of China (English)

    史瑞祥; 张凯庆; 陈杰

    2014-01-01

    Through the comparative analysis of domestic and foreign standards about automotive interior decoration materials flammability, the authors find out their disadvantages. Based on the abundant testing data, they summarize the existing problems about the flammability testing for automotive interior decoration materials, and analyze the un-clear description appeared in the testing. Last, they give out corresponding suggestions.%对比分析国内外汽车内饰材料阻燃标准,找出其不足之处。在大量试验基础上,总结国内汽车内饰材料燃烧特性试验中存在的问题,对不明确的地方进行详细地分析研究,并给出相应的建议。

  19. Automotive factory network renewal

    OpenAIRE

    Scicluna, Christopher

    2012-01-01

    The aim of this applied thesis was to plan, implement, and study the upgrading the network infrastructure in Valmet Automotive Oy, specifically in its Uusikaupunki factory. Valmet Automotive is a Finnish automotive service provider, focusing on premium vehicles, convertible roof systems and electric vehicles. The objective was to plan and implement a networking infrastructure that could support the load of a factory in full-scale production, while ensuring near-constant availability. T...

  20. Automotive Insulation

    Science.gov (United States)

    1997-01-01

    Under a Space Act Agreement between Boeing North America and BSR Products, Space Shuttle Thermal Protection System (TPS) materials are now used to insulate race cars. BSR has created special TPS blanket insulation kits for use on autos that take part in NASCAR events, and other race cars through its nationwide catalog distribution system. Temperatures inside a race car's cockpit can soar to a sweltering 140 to 160 degrees, with the extreme heat coming through the engine firewall, transmission tunnel, and floor. It is common for NASCAR drivers to endure blisters and burns due to the excessive heat. Tests on a car insulated with the TPS material showed a temperature drop of some 50 degrees in the driver's cockpit. BSR-TPS Products, Inc. now manufactures insulation kits for distribution to race car teams around the world.

  1. A finite element approach for the implementation of magnetostrictive material terfenol-D in automotive CNG fuel injection actuation

    OpenAIRE

    Choadhury, Habibullah Amin

    2008-01-01

    Magnetostriction is the deformation that spontaneously occurs in ferromagnetic materials when an external magnetic field is applied. In applications broadly defined for actuation, magnetostrictive material Terfenol-D possesses intrinsic rapid response times while providing small and accurate displacements and high-energy efficiency, which are some of the essential parameters required for fast control of fuel injector valves for decreased engine emissions and lower fuel consumption compared wi...

  2. POTENTIAL USE OF MAGNESIUM ALLOYS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Kudret KANDEMİR

    2003-01-01

    Full Text Available Recently, there is a high interest in using lightweight materials for automotive applications where weight reduction and improvement in comfort are needed. Magnesium alloys with excellent specific strength and stiffness properties can be comparable with steel and aluminum alloys for applications in the automotive industry. For this reason, the properties of magnesium alloys are in the focus of research. This study aims at reviewing and evaluating the prospects of magnesium alloys use and applications in the automotive industry.

  3. Review of composite material applications in the automotive industry for the electric and hybrid vehicle. Annual report, November 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J.L.

    1979-07-01

    A comprehensive review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass will provide, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems to be overcome include the attainment of mass production techniques and the prevention of environmental hazards.

  4. Automotive Industry in Malaysia

    DEFF Research Database (Denmark)

    Wad, Peter; Govindaraju, V.G.R. Chandran

    2011-01-01

    This paper explains the evolution and assesses the development of the Malaysian automotive industry within the premise of infant industry and trade protection framework as well as extended arguments of infant industry using a global value chain perspective. The Malaysian automotive industry expan...

  5. Kentucky's Automotive Certification Program.

    Science.gov (United States)

    Kentucky State Dept. of Education, Frankfort. Office of Vocational Education.

    The state of Kentucky recognized a need to standardize automotive mechanics training throughout the state and to establish minimum guidelines for the quality of instruction in such programs. To meet these needs, the Office of Vocational Education selected the National Institute for Automotive Service Excellence (ASE) and began the certification…

  6. Automotive Technology Skill Standards

    Science.gov (United States)

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  7. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  8. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  9. Final report: U.S. competitive position in automotive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  10. Nanotechnology impact on the automotive industry.

    Science.gov (United States)

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands. PMID:25360613

  11. Techno-economic requirements for automotive composites

    Science.gov (United States)

    Arnold, Scot

    1993-01-01

    New technology generally serves two main goals of the automotive industry: one is to enable vehicles to comply with various governmental regulations and the other is to provide a competitive edge in the market. The latter goal can either be served through improved manufacturing and design capabilities, such as computer aided design and computer aided manufacturing, or through improved product performance, such as anti-lock braking (ABS). Although safety features are sometimes customer driven, such as the increasing use of airbags and ABS, most are determined by regulations as outlined by the Federal Motor Vehicle Safety Standards (FMVSS). Other standards, set by the Environmental Protection Agency, determine acceptable levels of emissions and fuel consumption. State governments, such as in California, are also setting precedent standards, such as requiring manufacturers to offer zero-emission vehicles as a certain fraction of their sales in the state. The drive to apply new materials in the automobile stems from the need to reduce weight and improve fuel efficiency. Topics discussed include: new lightweight materials; types of automotive materials; automotive composite applications; the role for composite materials in automotive applications; advantages and disadvantages of composite materials; material substitution economics; economic perspective; production economics; and composite materials production economics.

  12. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  13. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Barnes, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  14. Application of Carbon Fiber Composite Material in the Field of Automotive and Sports Goods%碳纤维复合材料在汽车、体育用品领域的应用

    Institute of Scientific and Technical Information of China (English)

    罗栋

    2016-01-01

    碳纤维复合材料不仅在航天航空及其他工业领域得到广泛应用,而且也是汽车、体育用品开发最好的材料之一。该文介绍了碳纤维主要产品种类、用途及应用形态、几种碳纤维复合材料性能比较以及碳纤维复合材料在汽车工业、体育休闲用品领域的应用。随着科技发展,在我国占碳纤维总消费量的80%~90%是汽车体育用品。%Carbon fiber composite material is not only widely used in aerospace,automotive and other industrial fields,but also one of the best material for the development of automotive sports products. The main products of car-bon fiber,application of carbon fiber,and the properties comparasion of carbon fiber composite materials were intro-duced. Application of carbon fiber composite material in the field of automobile industry and sports leisure products were also introduced. With the development of science and technology,China’s carbon fiber consumption structure of sports is in the first place,about the total consumption of 80% ~90%.

  15. National Automotive Center - NAC

    Data.gov (United States)

    Federal Laboratory Consortium — Encouraged by the advantages of collaboration, the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) worked with the Secretary of the...

  16. 铝在汽车材料中的运用及展望%The Application of Aluminum in Automotive Materials and its Prospect

    Institute of Scientific and Technical Information of China (English)

    祝珂

    2011-01-01

    In recent years, domestic and foreign scholars have made achievements in lightweight research, but there are still many problems, research method is still concentrated on some parts of car body replaced with low-density material, most of these methods are still rule of thumb design. Based on the basis of previous studies, a more systematic and in-depth research of automotive lightweight design is conducted. Under the premise of ensuring comprehensive performance of car, reduce weight of product itself as much as possible and the comprehensive index of weight loss energy and security is reached. The property of aluminum and the characteristics of aluminum alloy are introduced. And the examples of application of aluminum used in automobiles are illustrated. The development trend is proposed.%近年来国内外学者在汽车轻量化研究方面取得了诸多成果,但仍然存在较多问题,研究方法仍然集中在对汽车车身的一些零部件用低密度材料进行替换,这些方法大多数仍是凭经验设计,文章在前人的研究基础上,对汽车轻量化设计进行了较为系统和深入地研究,在确保汽车综合性能指标的前提下,尽可能地降低汽车产品自质量,达到减轻质量、降耗及安全的综合指标,并且介绍了铝的性质及铝合金的特点,同时列举了铝在汽车上应用的一些实例,同时也提出了发展趋势。

  17. 覆盖件冲压CAE分析材料模型的工程应用与发展%The engineering application and development of material model in CAE analysis of automotive panel forming

    Institute of Scientific and Technical Information of China (English)

    李玉强; 王勇; 董剑安; 郭水军; 须俊华; 崔永生

    2009-01-01

    Material model was a crucial factor that could severely influence the simulation ac-curacy of automotive panel forming. Through combining the theoretic researches and engi-neering applications home and aboard, theories, applications and experiments related to material models in the mainstream CAE softwares were compared in this paper. According to the new developments and applications in the automotive panel die enterprises, some sug-gestions were presented about the application of material model in CAE analysis.%材料模型是影响汽车覆盖件冲压CAE分析精确度的重要因素.将国内外理论研究和工程应用相结合,分析了目前主流CAE软件中的所应用的材料模型,并给出了相关的理论、应用状况以及与试验的对比.同时通过结合国内外最新技术发展和汽车覆盖件模具企业的实际应用情况,对冲压CAE分析中材料模型在企业中的应用给出了经验指导和建议.

  18. Automotive gear oil lubricant from soybean oil

    Science.gov (United States)

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  19. Advanced casting technologies for lightweight automotive applications

    Directory of Open Access Journals (Sweden)

    Alan A. Luo

    2010-11-01

    Full Text Available This paper provides an overview of alloy and process developments in aluminum and magnesium castings for lightweight automotive applications. Wear-resistant aluminum alloys, creep-resistant and high strength/ductility magnesium alloys have been developed for automotive applications. On the process front, vacuum-assisted die casting and high vacuum die casting technologies have been developed for high-integrity body and chassis applications. Thin-wall and hollow casting components are being produced by low-pressure die casting processes for structural applications. Overcasting technology is gaining traction and has enabled mixed material designs for automotive sub-systems such as engine cradles and instrument panel beams. Simulation tools developed to predict the interfacial interactions of the dissimilar components and the structural integrity of the overcast systems are being validated in the casting trials.

  20. High integrity automotive castings

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D. [Eck Industries Inc., St. Manitowoc, WI (United States)

    2007-07-01

    This paper described the High Integrity Magnesium Automotive Casting (HI-MAC) program, which was developed to ensure the widespread adoption of magnesium in structural castings. The program will encourage the use of low pressure permanent molds, squeeze casting, and electromagnetic pumping of magnesium into dies. The HI-MAC program is currently investigating new heat treatment methods, and is in the process of creating improved fluid flow and solidification modelling to produce high volume automotive components. In order to address key technology barriers, the program has been divided into 8 tasks: (1) squeeze casting process development; (2) low pressure casting technology; (3) thermal treatment; (4) microstructure control; (5) computer modelling and properties; (6) controlled molten metal transfer and filling; (7) emerging casting technologies; and (8) technology transfer throughout the automotive value chain. Technical challenges were outlined for each of the tasks. 1 ref., 3 tabs., 5 figs.

  1. Recycling glass fibre-reinforced plastics in the automotive sector

    OpenAIRE

    Regenfelder, M.; Faller, J; Dully, S.; Perthes, H.; Williams, I. D.; den Boer, E.; Obersteiner, G.; Scherhaufer, S.

    2014-01-01

    The automotive sector is facing the challenge to become more resource-efficient in the manufacture of cars and their components. One approach is to increase the share of recycled materials. This paper presents the results of a case study for the automotive sector of the EU-funded Zerowin project. A safety-relevant component of the braking system was selected for manufacture using a mechanically recycled composite plastic material (polyethylene terephthalate reinforced with short glas...

  2. TENDENCIES IN AUTOMOTIVE TRANSPORT DEVELOPMENT

    OpenAIRE

    U. D. Antushenay; T. R. Kisel

    2008-01-01

    The paper contains an analysis of export of transport services provided by the Republic automotive transport. Structure of expenses associated with operation of automotive transport facilities is presented in the paper. The paper cites directions pertaining to development of international automotive transportation.

  3. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  4. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  5. Automotive Emission Control.

    Science.gov (United States)

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  6. Automotive Power Trains.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the operation, maintenance, and troubleshooting of automotive power trains and certain auxiliary equipment. The course contains six study units covering basic power trains; clutch principles and operations; conventional…

  7. Bringing Excellence to Automotive

    Science.gov (United States)

    Večeřa, Pavel; Paulová, Iveta

    2012-12-01

    Market situation and development in recent years shows, that organization's ability to meet customer requirements is not enough. Successful organizations are able to exceed the expectations of all stakeholders. They are building their excellence systematically. Our contribution basically how the excellence in automotive is created using EFQM Excellence Model in Total Quality Management.

  8. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  9. 78 FR 14546 - Seagull Maritime Agencies Private Ltd. v. Gren Automotive, Inc., Centrus Automotive Distributors...

    Science.gov (United States)

    2013-03-06

    ... Seagull Maritime Agencies Private Ltd. v. Gren Automotive, Inc., Centrus Automotive Distributors Inc., and... Limited (``SMA''), hereinafter ``Complainant,'' against Gren Automotive, Inc. (``Gren''), Centrus Automotive Distributors Inc. (``Centrus'') and Mr. Liu Shao hereinafter ``Respondents.'' Complainant...

  10. 78 FR 58518 - Notification of Proposed Production Activity; Benteler Automotive Corporation (Automotive...

    Science.gov (United States)

    2013-09-24

    ... Foreign-Trade Zones Board Notification of Proposed Production Activity; Benteler Automotive Corporation (Automotive Suspension and Body Components); Duncan, South Carolina Benteler Automotive Corporation (Benteler... produce automotive suspension components and subassemblies using certain foreign-status components....

  11. Development of light metals automotive structural subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, A.A.; Sachdev, A.K. [General Motors Research and Development Center, Warren, MI (United States)

    2007-07-01

    Key technological developments in aluminum and magnesium alloys were reviewed in relation to the manufacturing processes that enable lightweight automotive structural subsystems. Examples included the materials and processes evolution of lightweight body structures, chassis systems, and instrument panel beams. New aluminum and magnesium alloys and manufacturing technologies used to reduce mass and improve performance in vehicle cradle structures were discussed. Hydroforming processes used to enable the use of lightweight aluminum alloy tubes in automotive body structures were also reviewed, in addition to body architectures enabled by different materials and manufacturing processes. The review noted that magnesium instrument panels are now being designed to provide significant performance improvement, reduced vibration, and enhanced crashworthiness in new automobiles. It was concluded that vehicles will incorporate more lightweight materials such as nanocomposites and aluminum and magnesium sheets. 9 refs., 10 figs.

  12. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2011-08-01

    Full Text Available Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.

  13. Determination of the NOx loading of an automotive lean NOx trap by directly monitoring the electrical properties of the catalyst material itself.

    Science.gov (United States)

    Fremerey, Peter; Reiss, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074

  14. POTENTIAL USE OF MAGNESIUM ALLOYS FOR THE AUTOMOTIVE INDUSTRY

    OpenAIRE

    KANDEMİR, Kudret; A. Çetin CAN

    2003-01-01

    Recently, there is a high interest in using lightweight materials for automotive applications where weight reduction and improvement in comfort are needed. Magnesium alloys with excellent specific strength and stiffness properties can be comparable with steel and aluminum alloys for applications in the automotive industry. For this reason, the properties of magnesium alloys are in the focus of research. This study aims at reviewing and evaluating the prospects of magnesium alloys use and appl...

  15. Randomized CFRTP tape piece laminates in structural automotive applications

    OpenAIRE

    Darvell, Magnus

    2015-01-01

    The automotive industry is facing big challenges in meeting the future environmental demands. To be able to meet these demands reduced vehicle weight is an important part. A thorough investigation was made to better get an idea of which demands the automotive industry makes in the question of lightweight materials and how far they have come in the matter. This thesis work has been performed on behalf of Oxeon AB to investigate the future for carbon fiber thermoplastics in big scale production...

  16. Cost and weight effective composite design of automotive body structures

    OpenAIRE

    Mårtensson, Per

    2014-01-01

    The automotive industry stands in front of a great challenge, to decrease its impact on the environment. One important part in succeeding with this is to decrease the structural weight of the body structure and by that the fuel consumption or the required battery power. Carbon fibre composites are by many seen as the only real option when traditional engineering materials are running out of potential for further weight reduction. However, the automotive industry lacks experience working with ...

  17. Rotordynamics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2015-01-01

    Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear character...

  18. FISITA 2012 World Automotive Congress

    CERN Document Server

    2013-01-01

    Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: •Automotive Reliability Technology •Lightweight Design Technology •Design for Recycling •Dynamic Modeling •Simulation and Experimental Validation •Virtual Design, Testing and Validation •Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book.   SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design a...

  19. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  20. TECHNOLOGICAL MEASURES TO IMPROVE AUTOMOTIVE PRODUCT QUALITY

    OpenAIRE

    Gladkov, V.; Kruglov, S.

    2010-01-01

    The paper examines the basic technological measures aimed at improving product quality in automotive industry. While paying due attention to solving organizational and technological problems, including the development of certification systems for production processes, it is also necessary to improve the technical standards of specific technologies, equipment and materials as they largely determine product quality. Special emphasis is given to the importance of improving the production of auto...

  1. Electrohydraulic Forming of Light Weight Automotive Panels

    OpenAIRE

    Mamutov, A. V.; Golovashchenko, S. F.; Bonnen, J. J.; Gillard, A. J.; Dawson, S. A.; Maison, L.

    2016-01-01

    This paper describes the results of development of the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology. EHF is an electro-dynamic process based upon high-voltage discharge of capacitors between two electrodes positioned in a fluid-filled chamber. This process is extremely fast, uses lowercost single-sided tooling, and potentially derives significantly increased formability from many sheet metal materials due to the elevated s...

  2. Research on Assessment of Energy Saving in Light-weight of Automotive Material Based on GREET Model%基于GREET模型的汽车材料轻量化能耗评价研究

    Institute of Scientific and Technical Information of China (English)

    李飞龙; 郭孔辉; 杨沿平; 陈轶嵩

    2013-01-01

    This paper analyzed the GREET model of USA Argonne national laboratories, which made energy consumption evaluation with the whole life cycle assessment theory for automotive lightweight. First the boundaries of energy evaluation system was confirmed, and the calculation model for the energy consumption of the main material for car model was established, and the method for the energy consumption calculation in the phase of use, assembly and scrap recovery was suggested. This paper selected Prius as the example, with the calculation model, using the GREET software, a comparative analysis of energy consumption and a sensitivity analysis for the whole life cycle of the lightweight Prius and a normal Prius were made, the results show that the automotive lightweight can effectively reduce energy consumption throughout the life cycle.%针对美国Argonne国家实验室开发的GREET模型,运用全生命周期评价理论对汽车轻量化进行能耗评价.首先确立了能耗评价系统的边界,然后建立了适用于汽车主要材料的能耗计算模型,并提出了汽车使用、组装以及报废回收阶段的能耗计算方法.选取丰田Prius车型作为实例,结合计算模型和GREET软件,对轻量化Prius及普通的Prius汽车车身进行全生命周期的能耗比较计算及敏感性分析.结果表明,汽车轻量化可有效降低汽车的整个生命周期能耗.

  3. SITUATION IN RUSSIAN AUTOMOTIVE INDUSTRY AND AUTOMOTIVE MARKET IN CRISIS

    OpenAIRE

    Starkova, Nadezhda; Tolstova, Alisa; Ubogova, Ekaterina

    2015-01-01

    Todays situation of Russian automotive industry and automotive market has been analyzed. Main factors influencing for their position have been revealed, short-term forecast of development has been presented. Directions for stabilization of situation in production and sales of cars in Russia have been formulated.

  4. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  5. Reliability in automotive ethernet networks

    DEFF Research Database (Denmark)

    Soares, Fabio L.; Campelo, Divanilson R.; Yan, Ying;

    2015-01-01

    This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular.......This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular....

  6. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  7. The automotive transmission book

    CERN Document Server

    Fischer, Robert; Jürgens, Gunter; Najork, Rolf; Pollak, Burkhard

    2015-01-01

    This book presents essential information on systems and interactions in automotive transmission technology and outlines the methodologies used to analyze and develop transmission concepts and designs. Functions of and interactions between components and subassemblies of transmissions are introduced, providing a basis for designing transmission systems and for determining their potentials and properties in vehicle-specific applications: passenger cars, trucks, buses, tractors, and motorcycles. With these fundamentals the presentation provides universal resources for both state-of-the-art and future transmission technologies, including systems for electric and hybrid electric vehicles.

  8. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  9. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  10. Lightweight Steel Solutions for Automotive Industry

    Science.gov (United States)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  11. Ultrahigh carbon steel for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K. [Lawrence Livermore National Lab., CA (United States); Sherby, O.D. [Stanford Univ., CA (United States)

    1995-12-04

    Ultrahigh carbon steels (UHCSs), which contain 1--2.1% carbon, have remarkable structural properties for automotive application when processed to achieve fine ferrite grains with fine spheroidized carbides. When processed for high room temperature ductility, UHCS can have good tensile ductility but significantly higher strength than current automotive high strength steels. The material can also be made superplastic at intermediate temperatures and exhibits excellent die fill capability. Furthermore, they can be made hard with high compression ductility. In wire form it is projected that UHCS can exhibit extremely high strengths (5,000 MPa) for tire cord applications. Examples of structural components that have been formed from fine-grained spheroidized UHCSs are illustrated.

  12. Compensating springback in the automotive practice using MASHAL

    NARCIS (Netherlands)

    Ohnimus, S.; Petzoldt, M.; Rietman, B.; Weiher, J.

    2005-01-01

    New materials are used in the automotive industry to reduce weight and to improve crash performance. These materials feature a higher ratio of yield stress to elastic modulus leading to increased springback after tool release. The resulting shape deviations and their efficient reduction is of major

  13. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  14. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  15. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications

  16. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  17. Automotive Mg Research and Development in North America

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Joseph A. [U.S. Department of Energy; Jackman, Jennifer [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Li, Naiyi [Ford Motor Company; Osborne, Richard J. [General Motors Corporation; Powell, Bob R. [General Motors Corporation; Sklad, Philip S [ORNL

    2006-01-01

    Expanding world economic prosperity and probable peaking of conventional petroleum production in the coming decades require efforts to increase the efficiency of, and the development of alternatives to, petroleum-based fuels used in automotive transportation. North America has been aggressively pursuing both approaches for over ten years. Mainly as a result of lower prices due to global sourcing, magnesium has recently emerged as a serious candidate for lightweighting, and thus increasing the fuel efficiency of, automotive transportation. Automotive vehicles produced in North America currently use more Mg than vehicles produced elsewhere in the world, but the amounts per vehicle are very small in comparison to other materials such as steel, aluminum and plastics. The reasons, besides price, are primarily a less-developed state of technology for Mg in automotive transportation applications and lack of familiarity by the vehicle manufacturers with the material. This paper reviews some publicly-known, recent, present and future North American research and development activities in Mg for automotive applications.

  18. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  19. 报废汽车材料的回收利用技术研究%Research on Recycling Technology of Abandoned Automotive Material

    Institute of Scientific and Technical Information of China (English)

    孙建亮; 郑乃金

    2012-01-01

    随着汽车工业的快速发展,汽车报废量也急剧增加,由此带来的资源回收利用的问题引起各国的重视.报废汽车中的金属材料和塑料、橡胶、玻璃等非金属材料具有回收再利用的价值,对这些材料进行回收利用有利于改善环境状况、节约资源、提高经济效益.综述了这些材料的回收利用技术,为我国报废汽车的回收利用提供参考.%With the rapid development of automobile industry, the end-of-life car also increased dramatically, the resulting resource recycling problem caused the attention of each country. Valuable materials from abandoned automobiles include metals, plastic, rubber, glasses, etc. Recycling of these valuable materials is conducive to environment improvement, saving resource and increasing economic benefit. A review on recycling technologies of these valuable materials, which can be a reference for recycling industry of abandoned automobiles in China, is provided.

  20. Automotive body panel containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  1. Dow Corning photonics: the silicon advantage in automotive photonics

    Science.gov (United States)

    Clapp, Terry V.; Paquet, Rene; Norris, Ann; Pettersen, Babette

    2005-02-01

    The Automotive Market offers several opportunities for Dow Corning to leverage the power of silicon-based materials. Dow Corning Photonics Solutions has a number of developments that may be attractive for the emergent photonics needs in automobiles, building on 40 years of experience as a leading Automotive supplier with a strong foundation of expertise and an extensive product offering- from encapsulents and highly reliable resins, adhesives, insulating materials and other products, ensuring that the advantage of silicones are already well-embedded in Automotive systems, modules and components. The recent development of LED encapsulants of exceptional clarity and stability has extended the potential for Dow Corning"s strength in Photonics to be deployed "in-car". Demonstration of board-level and back-plane solutions utilising siloxane waveguide technology offers new opportunities for systems designers to integrate optical components at low cost on diverse substrates. Coupled with work on simple waveguide technology for sensors and data communications applications this suite of materials and technology offerings is very potent in this sector. The harsh environment under hood and the very extreme thermal range that materials must sustain in vehicles due to both their engine and the climate is an applications specification that defines the siloxane advantage. For these passive optics applications the siloxanes very high clarity at the data-communications wavelengths coupled with extraordinary stability offers significant design advantage. The future development of Head-Up-Displays for instrumentation and data display will offer yet more opportunities to the siloxanes in Automotive Photonics.

  2. Support and promoter effects in automotive exhaust catalysis

    NARCIS (Netherlands)

    Lepage, M.

    2009-01-01

    Automotive catalysis being a mature technology, it can only be improved by the introduction of new breakthroughs. The ideas generating these technical advances in material science can be found thanks to the synthesis and study of model systems with controlled geometries, compositions, interactions a

  3. ENVIRONMENTALLY SAFE, NO VOC AUTOMOTIVE COATING - PHASE II

    Science.gov (United States)

    The EPA recognizes that volatile organic compounds (VOCs) must be eliminated from automotive coating formulations to improve worker safety and reduce environmental pollution. The phase I project resulted in the production of a polymer-based coating material that was clear, ...

  4. 汽车刹车片用铁铜基摩擦材料的研究%Study of Fe and Cu-based P/M friction materials for automotive brake pads

    Institute of Scientific and Technical Information of China (English)

    陈文革; 罗启文; 张剑; 崔婷婷

    2012-01-01

    A kind of iron-copper based fricition material for automotive brake pad was prepared by powder metallurgy technology; mixing of electrolytic copper powder with particle size of 53 -14祄 and iron, graphite, titanium, nickel, silica, aluminum oxide and vulcanized molybdenum powder, compaction forming at 450 - SSOMPa, hot pressing sintering at 1 000t and pressure of 2. 5 - 2. SMPa for 1 - 2h. The microstmcture consist of iron and copper, ceramic, carbide and additives, the density and hardness of the friction materials is 5.57 g/cm3 and 227HV, respectively. By the wear testing, the wear rate and friction factor of the friction materials is 0. 002 6 g/min and 0.45,respectively. The influence factor of the friction materials is normal presser and rotate speed, the failure mechansm is adhere wear at first and grinding compound wear mostly.%采用粉末冶金热压技术制备铁铜基刹车片材料,进行磨损试验和扫描电镜观察.结果表明:将粒度53~74 μ,m的电解Cu粉、Fe粉、石墨、Ti、Ni、SiO2、Al2O3 MoS2混合均匀,于450~550MPa的压制压力下模压成形,在1 000℃、2.5~2.8MPa压力下N2保护热压1~2h,可制备出汽车刹车片用铁铜基摩擦材料.其显微组织由粘结的基体Fe、Cu相,耐磨的陶瓷、碳化物相和一些润滑相所构成;所制备材料的密度为5.57 g/cm3,平均硬度是227HV.影响其摩擦性能的主要因素是法向压力和转速,与钢的磨损速率为0.002 6 g/min,摩擦系数0.45;磨损的失效机理是先期粘着磨损,随后转化为磨料磨损,但以磨料磨损为主.

  5. Automotive Sensors and MEMS Technology

    Science.gov (United States)

    Nonomura, Yutaka

    - Automotive sensors are used for emission gas purification, energy conservation, car kinematic performance, safety and ITS (intelligent transportation system). The comparison of the sensor characteristics was made for their application area. Many kinds of the principles are applied for the sensors. There are two types of sensors, such as physical and chemical one. Many of the automotive sensors are physical type such as mechanical sensors. And a gas sensor is a chemical type. The sensors have been remarkably developed with the advancement of the MEMS (Micro Electro Mechanical Systems) technology. In this paper, gas, pressure, combustion pressure, acceleration, magnetic, and angular rate sensors for automotive use are explained with their features. The sensors are key devices to control cars in the engine, power train, chassis and safety systems. The environment resistance, long term reliability, and low cost are required for the automotive sensors. They are very hard to be resolved. However, the sensor technology contributes greatly to improving global environment, energy conservation, and safety. The applications of automotive sensors will be expanded with the automobile developments.

  6. An automotive transmission for automotive gas turbine power plants

    Science.gov (United States)

    Polak, J. C.

    1980-01-01

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  7. Supplier Selection in the Thai Automotive Industry

    OpenAIRE

    Nopprach, Somsupa

    2006-01-01

    This paper uses agglomeration theory to analyze the impact of Thai government policies on the development of the Thai automotive industry and cluster formation in Central and Eastern Thailand. Using cross-section data on 162 auto-parts suppliers from the Thailand Automotive Directory 2003-2004, the paper examines the criteria of supplier selection in the Thai automotive industry. Using logit models and cross-section data on 162 auto-parts suppliers from the Thailand Automotive Directory 2003-...

  8. Action Handbook for Automotive Service Instruction.

    Science.gov (United States)

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The document is a handbook for a vocational automotive service education program which was formulated as a result of a four-day series of intensive workshops called the National Automotive Service Vocational Education Conference. The handbook discusses the major components of an automotive service vocational education program and aspects of their…

  9. Metodika hodnocení dodavatelů v DURA Automotive

    OpenAIRE

    Bednář, Petr

    2014-01-01

    This Bachelor thesis deals with evaluation methodology of suppliers of indirect material and services in a particular company, which operates in the automotive industry. The aim is to create a foundation for evaluating suppliers of indirect material and services for practical use. The theoretical part contains a summary of the theoretical basis of resources and a description of the methods. The practical part contains methods and documents necessary for the evaluation of supplier of indirect ...

  10. Automotive Electronics. Teacher Edition (Revised).

    Science.gov (United States)

    Mackert, Howard C.; Heiserman, Russell L.

    This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…

  11. Automotive Technologies. State Competency Profile.

    Science.gov (United States)

    Ohio Board of Regents, Columbus.

    This document, which lists the technical automotive technologies competencies identified by representatives from business, industry, and labor as well as technical educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through post-secondary…

  12. Human factors in automotive innovation

    NARCIS (Netherlands)

    Terken, J.; Ham, J.; Hoedemaeker, M.

    2011-01-01

    Many automotive innovations affect the driver's task and/or the driving experience. In this paper we argue that successful innovation in these cases requires that due attention is given to Human Factors issues in the course of the innovation process. We support this claim by examples from several re

  13. Innovative Technology in Automotive Technology

    Science.gov (United States)

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  14. Environmental sustainability: plastic's evolving role in the automotive life cycle

    International Nuclear Information System (INIS)

    One method of assessing the sustainability of manufactured products involves performing a life cycle analysis for a product and comparing it to alternative ones, or else examining if individual stages of the product can be modified. LCA applications are being used more extensively, especially in the automotive and related industries. Automotive plastics in particular are being scrutinized with much greater care. Plastic components have replaced metal ones in vehicle manufacturing to improve vehicle fuel efficiency and aesthetics. However, at the end of a vehicle's life, recycling rates for plastic are negligible when compared to those of steel. In order to gain the full environmental benefits of using plastic as a vehicle material, plastics must be recycled at the end of a vehicle's life, especially given their increasing use. While a variety of processes have been developed for the recycling of automotive plastics, the challenges of sorting, processing, and finally recycling a heterogeneous mixture of used plastics have yet to be effectively solved. A preliminary life cycle assessment of a plastic automotive fascia demonstrates the usefulness of this eco-balance technique in evaluating potential improvements to manufacturing and end-of-life processes. Improving the manufacturing process may reduce environmental burdens to a larger extent than just recycling the plastic. (author)

  15. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Douglas [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  16. Electromagnetic Forming of Longitudinal Strengthening Ribs in Roll Formed Automotive Profiles

    OpenAIRE

    Eguia, I.; Gutiérrez, Ma. A.; Iturbe, R.; Mangas, A.

    2010-01-01

    In the automotive industry, increasing ecological concerns and demands for higher performance have become lightweight construction a key aspect. Due to the gradual introduction of high strength materials on the one side, and greater consideration with regard to continuous manufacturing technologies on the other side, it is possible nowadays to address the demands that structural and complex automotive parts have to face, from the standpoint of lightweight manufacturing. Thickness, shape and i...

  17. Integration of polymer nanocomposites technologies for automotive applications: opportunities and environmental health challenges

    OpenAIRE

    Njuguna, James A. K.; I Peña; Zhu, H; Rocks, Sophie A.; Blazquez, Maria; S. A. Desai

    2008-01-01

    The concept of nanostructured materials design is gaining widespread importance among the automotive industry. Although employment of nanotechnology in current and future automotives will go long way in solving energy crises, it is necessary to understand both the hazards associated with nanomaterials and the levels of exposure that are likely to occur. The existing knowledge in these areas is quite limited and it will be necessary in the near future. This paper highlights t...

  18. Durability of Chopped FiberReinforced Polymeric Composites for use in Experimental Automotive Fuel Cells

    OpenAIRE

    Fazio, James A

    2003-01-01

    Recent interest in utilizing hydrogen fuel cell technology for automotive applications has lead to concerns regarding the durability of fiber reinforced polymer (FRP) composite materials. Automotive fuel cell power train systems must prove themselves as a reliable alternative to the combustion engines and automatic transmissions. The use of polymer composites in fuel cells to serve as manifolds is promising because of their high strength to weight ratio, and they do not corrode like metals ...

  19. Remanufacturing in automotive industry: Challenges and limitations

    Directory of Open Access Journals (Sweden)

    Paulina Golinska

    2011-10-01

    Full Text Available Purpose: The aim of this paper is to provide the framework for management of reverse flow of materials in automotive industry. The emphasis is placed on the remanufacturing activities. Materials management in such conditions is a real challenge. The cause for this is parallel use of raw materials and reused materials. Such hybrid flows of materials are characterized by increased level of uncertainty connected with amount, quality and timing. Design/methodology/approach: This paper presents a comprehensive review of remanufacturing and traditional manufacturing. The stabilization of reverse flows is crucial for continuity of remanufacturing operations. The simulation model and results are discussed regarding stabilization of the reverse flows. Findings: Authors identify main problems that appear in the area of combining at the production system forward and reverse flows of materials. The agent-based technology is applied for configuration and stabilization of reverse network. Research limitations/implications: Paper is case – oriented. Practical implications: Both logistician and IT researchers might benefit from authors approach. Originality/value: Authors provide an interdisciplinary approach combining operations management, logistics and information technology.

  20. GLOBAL PERSPECTIVES IN AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    NICOLETA ISAC

    2010-01-01

    Full Text Available The automotive sector is characterised by a relatively low trade/salesratio. While the production of most automotive producers in the world is spread over variouscountries in the value chain, the brands are still considered to reflect some national identity.Internationalisation strategies may change over the lifecycle of the product and automakerstend to pursue diametrically opposed strategies. In mature markets, it is about managing whatgoes on beneath a static surface; in emerging markets’ dynamic environments, companies muststrategically position themselves to benefit from growth opportunities. However, without theright strategy and execution in mature markets, it is clear that traditional OEMs cannot profitfrom emerging markets-the persistence of structural issues in mature market operationseventually will rob all but the most resilient competitors of the opportunity to compete inemerging markets.

  1. Visual comparison testing of automotive paint simulation

    Science.gov (United States)

    Meyer, Gary; Fan, Hua-Tzu; Seubert, Christopher; Evey, Curtis; Meseth, Jan; Schnackenberg, Ryan

    2015-03-01

    An experiment was performed to determine whether typical industrial automotive color paint comparisons made using real physical samples could also be carried out using a digital simulation displayed on a calibrated color television monitor. A special light booth, designed to facilitate evaluation of the car paint color with reflectance angle, was employed in both the real and virtual color comparisons. Paint samples were measured using a multi-angle spectrophotometer and were simulated using a commercially available software package. Subjects performed the test quicker using the computer graphic simulation, and results indicate that there is only a small difference between the decisions made using the light booth and the computer monitor. This outcome demonstrates the potential of employing simulations to replace some of the time consuming work with real physical samples that still characterizes material appearance work in industry.

  2. Automotive Fuels Survey. Part 3. Comparison and selection

    Energy Technology Data Exchange (ETDEWEB)

    Elam, N.; Van Walwijk, M.; Bueckmann, M.; Troelstra, W.P.; Elam, N. [eds.

    1998-01-01

    A method is presented to compare automotive fuels, which enables answering strategic questions. Five comparisons are made, each covering one specific theme: oil dependency in chapter 2 (which fuels enable a considerable reduction of the oil dependency), ease of transition in chapter 3 (comparison of the ease of transition to alternative fuels), local environmental effects of road transport in chapter 4 (which fuels can result in a substantial improvement of local air quality), greenhouse effect in chapter 5 (which fuels can realize a substantial reduction of well to wheel greenhouse gas emissions), and finally, costs in chapter 6 (a comparison of well to wheel costs for all fuels). The fuels compared are gasoline or reformulated gasoline from crude oil, diesel oil and reformulated diesel oil from crude oil, LPG from refineries and associated gas, natural gas, methanol from natural gas or cellulosic material, ethanol from starch rich crops or sugar rich crops or from cellulosic material, biodiesel (esterified oil from oil containing crops), hydrogen from natural gas, biomass or by electrolysis of water, and dimethylether (DME) from natural gas or cellulosic material. In part 1 of the title survey an overview of important aspects of raw materials and their conversion to automotive fuels is presented, while part is concerned with distribution and use of conventional and alternative automotive fuels. figs., tabs., refs.

  3. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  4. Automotive stamped part fatigue design

    OpenAIRE

    Caudoux Mélanie; Facchinetti Matteo Luca; Raynal Renaud

    2014-01-01

    Fatigue design of automotive axle parts is of prior concern because of these are high safety parts and they are expected to drive the overall vehicle mass reduction. In this framework, the stamping process is widely used to form axle parts, before assembling them by welding. Consequently, the mechanical and physical characteristics of the blank sheet are modified, having a strong influence on the fatigue behavior. In this paper, we address the consequences of the stamped process on the fatigu...

  5. Noise Radiation from Automotive Turbochargers

    OpenAIRE

    Zhenrui, Wang

    2011-01-01

    Turbochargers are now commonly used in modern automotive engines, which increase the density of air entering the engine to produce more power. This device not only greatly improves the degree of engine efficiency, but also reduces the pollutant emissions. However, one of the important issues which must be considered is the noise from turbochargers. This noise can radiate either after propagation through the intake and exhaust ducts or via induced vibrations in the turbocharger housing. Here t...

  6. Applications of thin coatings in automotive industry

    Directory of Open Access Journals (Sweden)

    P. Louda

    2007-09-01

    Full Text Available Purpose: Use of thin coatings in automotive industry give economic and ecological savings. This is evoke by reducing of weight of used construction elements and currently by increasing of their service life and with that connected elevating of nanomaterials manufacture qualities.Design/methodology/approach: In the paper was disscussed the possibility of applications of thin coating in automotive industry.Findings: The paper shows the examples of thin coatings application in automotive industry.Practical implications: Through the assimilation, improvement, and generation of new technologies, the coating community, as a major supplier to the very large automotive industry, will continue to thrive, grow, and maintain its environmental stewardship in the global marketplace.Originality/value: Applications of thin coatings in automotive industry is and with nanotechnology together will be in centre of interest of automotive industry in near future.

  7. Simulation based design of automotive systems

    OpenAIRE

    Schiehlen, Werner

    1993-01-01

    The design of automotive systems using simulation tools features cost reduction and quality enhancement. This paper presents two basic approaches. The rust approach deals with the application of CAD data bases to the evaluation of input data for multibody system formalisms, most adequate for automotive system modeling. An object oriented data model for multibody systems is presented. The second approach covers the development of an integrated simulation tool for automotive vehicles and the co...

  8. Applications of thin coatings in automotive industry

    OpenAIRE

    P. Louda

    2007-01-01

    Purpose: Use of thin coatings in automotive industry give economic and ecological savings. This is evoke by reducing of weight of used construction elements and currently by increasing of their service life and with that connected elevating of nanomaterials manufacture qualities.Design/methodology/approach: In the paper was disscussed the possibility of applications of thin coating in automotive industry.Findings: The paper shows the examples of thin coatings application in automotive industr...

  9. Energy and Environmental Challenges for the Japanese Automotive Industry

    OpenAIRE

    Sperling, Daniel

    2000-01-01

    The turn of the century is proving to be a period of turmoil and uncertainty for the automotive industry. The industry confronts growing worldwide demands for greater environmental quality, but now benefits from an emerging technological revolution that provides them with the tools to respond effectively to those demands. Rapid innovation is occurring in lightweight materials, various ICE powertrain enhancements made possible by computer controls, energy conversion processes, energy storage, ...

  10. Multicriteria value analysis for polymer composites selection in automotive applications

    OpenAIRE

    Carod de Arriba, Xavier; González Benítez, María Margarita

    2015-01-01

    This study presents a tool for decision making called Multicriteria Value Analysis, used for selection of polymeric materials applied in automotive parts and components. The tool is built from the methodological framework of Analytical Hierarchy Process (AHP), to define a hierarchical structure of criteria based on the concept of value, and then establish the existing preferences among alternatives. Assuming that all possible alternatives should be polymers and composites which...

  11. 8th DFO Automotive conference - European automotive coating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The present CD-ROM of the DFO Conference ''European Automotive Coating'' held on the 14th and 15th May 2001 in Dresden, Germany, contents the following contributions: Contents (1) Plenary Lecture-Car Body Painting in the Digital Factory (2) Off-line painting of a smc Oe tailgate in topcoat colour; (3) Twincure UV - New Concepts for the Surface Treatment of Glass-Fiber-Reinforced; Plastics; (4) New Concepts for Exterior Coating - ''Funktionsschicht 3'' First Experiences and the ''Ludwigsfelde Concept''; (5) Application techniques in the light of new automation concepts in automotive painting; (6) Automatic Management System for Car Body Pretreatment; (7) Surface Inspection on Bodies in White in Automotive Industry; (8) Online Measurement and Control of E-coat Bath Parameters in a Car Body Paint Shop - Development until Maturity for Manufacturing - Practical Experiences; (9) Automated Process Diagnosis; (10) Wavescan DOI Oe Challenge or Data Overkill; (11) Robot Aided Online Metrology for Quality Assurance and Process Control of Coated Surfaces; (12) Physical Simulation of Film Thickness Distribution and Transfer Efficiency in the Electrostatically Supported Painting process; (13) Offline Simulation of the Coating Process with High-Speed Bell and Pneumatic Atomizers; (14) Top coat simulation - First applications and results; (15) Virtual color design. (AKF) (orig.) [German] Die vorliegende zweisprachige (Deutsch/Englisch) CD-ROM der DFO-Tagung ''European Automotive Coating'' vom 14. und 15. Mai 2001 beinhaltet die folgenden Beitraegen: Inhaltsverzeichnis (1) Leitvortrag ''Die Automobillackierung in der digitalen Fabrik''; (2) Off-line Lackierung von SMC-Heckklappen in Decklackfarbe; (3) Hybrid UV-Haertung - Neue Konzepte zur Oberflaechenveredelung von glasfaserverstaerkten Duroplasten; (4) Neue Konzepte fuer die Aussenhautlackierung - Fukntionsschicht 3 - Erste

  12. Intern materialhanteringsutveckling på Kongsberg Automotive AB

    OpenAIRE

    Sandstedt, Mattias

    2008-01-01

    This examination report is a part of a program for Industrial organisation and Economics with specialization in Logistics and Management at Jönköping University. The report contains an analysis of the internal material handling at Kongsberg Automotive, and also an improvement proposal for a new material handling system. The aim with the report is to find a better material handling system and also make an analyse of the existing system. The goal is to shorten the distance for the operators whe...

  13. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    Science.gov (United States)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  14. 78 FR 36633 - National Automotive Sampling System

    Science.gov (United States)

    2013-06-18

    ... crash data files are made available to the public; and Examine using new data collection methods and... National Highway Traffic Safety Administration National Automotive Sampling System AGENCY: National Highway... Automotive Sampling System (NASS) or Data Modernization (DataMod). NHTSA announces that it will hold a...

  15. A comprehensive framework for automotive sustainability assessment

    OpenAIRE

    Jasinski, D.; Meredith, J.; Kirwan, K.

    2016-01-01

    Business efficiency, stakeholder pressure and the need for legislative compliance compel the automotive sector to design and manufacture fuel-efficient, low-impact, environmentally responsible and sustainable vehicles. Managing and responding to these multiple and sometimes conflicting interests requires the measurement of economic, environmental and societal performance. Although a number of automotive sustainability measures are mentioned within the literature, there is no singl...

  16. 77 FR 37471 - National Automotive Sampling System

    Science.gov (United States)

    2012-06-21

    ... complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78) or you... National Highway Traffic Safety Administration National Automotive Sampling System AGENCY: National Highway... comments. SUMMARY: The NHTSA is conducting a comprehensive review of the National Automotive...

  17. Using Technology to Enhance an Automotive Program

    Science.gov (United States)

    Ashton, Denis

    2009-01-01

    Denis Ashton uses technology in his automotive technology program at East Valley Institute of Technology (EVIT) to positively impact student outcomes. Ashton, the department chair for the automotive programs at EVIT, in Mesa, Arizona, says that using an interactive PowerPoint curriculum makes learning fun for students and provides immediate…

  18. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W

    2001-08-24

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.

  19. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria

  20. Nano-crystalline P/M aluminium for automotive applications

    Science.gov (United States)

    Hummert, K.; Schattevoy, R.; Broda, M.; Knappe, M.; Beiss, P.; Klubberg, F.; Schubert, T. H.; Leuschner, R.

    2009-01-01

    The reduction of total vehicle weight and lowering of moving masses within the engine are key elements to overcome future emission challenges of the automotive industry. Within a German BMBF funded project the melt spinning technology will be driven to a series production status. The very fast cooling condition of the melt leads to a nano-structure of the aluminium material. This results in new material properties of known alloys. The strength increases dramatically without lowered forming behaviour. With this process the freedom of designing complex alloys is very flexible. Different alloys have been investigated for several applications, where high strength at room and elevated temperatures and/or high wear resistance is required. This paper presents some results regarding the processing, microstructure and mechanical properties of a developed Al-Ni-Fe alloy. This joined research project with partners from the automotive industry as well as automotive suppliers and universities is funded by the German BMBF "NanoMobile" Program under Project number 03X3008.

  1. REUSE OF AUTOMOTIVE COMPONENTS FROM DISMANTLED END OF LIFE VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr NOWAKOWSKI

    2013-12-01

    Full Text Available The problem of recycling end of life automotive vehicles is serious worldwide. It is one of the most important streams of waste in developed countries. It has big importance as recycling potential of raw materials content in automotive vehicles is valuable. Different parts and assemblies after dismantling can also be reused in vehicles where replacement of specific component is necessary. Reuse of the components should be taken into consideration in selecting the vehicles dismantling strategy. It also complies with European Union policy concerning end of life vehicles (ELV. In the paper it is presented systematic approach to dismantling strategies including disassembly oriented on further reuse of components. It is focused on decision making and possible benefits calculation from economic and environmental point of view.

  2. 4th International Conference on Sustainable Automotive Technologies

    CERN Document Server

    Wellnitz, Jörg; Leary, Martin; Koopmans, Lucien

    2012-01-01

    The book on Sustainable Automotive Technologies aims to draw special attention to the research and practice focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. In particular, the book features incremental and radical technical advancements that are able to meet social, economic and environmental targets in both local and global contexts. These include original solutions to the problems of pollution and congestion, vehicle and public safety, sustainable vehicle design and manufacture, new structures and materials, new power-train technologies and vehicle concepts. In addition to vehicle technologies, the book is also concerned with the broader systemic issues such as sustainable supply chain systems, integrated logistics and telematics, and end-of-life vehicle management. It captures selected peer reviewed papers accepted for presentation at the 4th International Conference on Sustainable Automotive Technologies, ICSAT2012, held at the RMIT, Melbourne, Australi...

  3. Design Analysis of an Automotive Composite Drive Shaft

    Directory of Open Access Journals (Sweden)

    R.A. Hossain

    2010-04-01

    Full Text Available Automotive drive Shaft is a very important components of vehicle. The present paper focuses on the design of such an automotive drive shat by composite materials. Now a days two pieces steel shaft are used as drive shaft. However, the main advantages of the present design is;only one piece of composite drive shat is possible that fulfil allthe requirements of drive shaft. Two different designs are proposed, one is purely from Graphite/Epoxy lamina and other is using Aluminum with Graphite/Epoxy. The basic requirements considered here are torsional strength, torsional buckling and bending natural frequency. An optimum design of the draft shaft is done, which is cheapest and lightest but meets all of the above load requirements. Progressive failure analysis of the selected design is also done.

  4. Vibration reduction on automotive shafts using piezoceramics

    Science.gov (United States)

    Kunze, Holger; Riedel, Mathias; Schmidt, Knut; Bianchini, Emanuele

    2003-08-01

    This paper reports an experimental study on active vibration reduction for automotive shafts with the use of piezoelectric material. The work focuses on an axle of an Audi A2. The demand in the automobile sector for higher comfort in the vehicle is of a great importance alongside the requirements of lighter weight and low fuel consumption. These requirements are typically in conflict with each other. One solution is the use of intelligent materials instead of viscoelastic materials and proof mass absorbers. These solutions are quite heavy especially at low frequencies. Active vibration control and piezoelectric devices are advantageous in this application due to their low mass to performance ratio. Our research study explores the use of such piezoelectric devices for an axle. In conjunction with electronics it will reduce vibrations in the first natural bending mode of the axle. Laboratory tests simulated the condition present in the road. At first a stationary set up was used, then a simulated disturbance was input at the attachment points of the shaft. Finally, a test with rotating shaft was performed. Piezoelectric devices (custom QuickPacks from ACX, a Division of Cymer) were used as sensors and as actuators to properly control the axle during the different operating conditions. The power consumption of each actuator pair was less than 20W. The work described here details the test setup, the control strategy, the hardware implementation as well as the test results obtained.

  5. Electrorheology for smart automotive suspensions

    Science.gov (United States)

    Lou, Z.; Winkler, C. B.; Ervin, R. D.; Filisko, F. E.; Venhovens, P. J.

    1994-06-01

    The purpose of the work reported was to demonstrate the suitability of electrorheological (ER) technology for adaptive control of suspension forces on tracked and wheeled vehicles. The mechanical shear strength properties of ER fluids change in response to the application of an electric field. The change is very rapid and fully reversible. This property was used to create an automotive suspension damper whose resistive force is readily controlled by an external electrical signal. The device was applied in a semiactive suspension system for the Army's high mobility multipurpose wheeled vehicle (HMMWV). The work reported covers a range of development tasks including definition of the semiactive control algorithm, ER fluid formulation, design and fabrication of an ER damper, design of an electrical control circuit, creation of a quarter-HMMWV test stand for the simulation of ride vibrations, laboratory measurement of the ER-damped performance characteristics over a range of physically simulated operating conditions, and computer simulation of the quarter-HMMWV system. The research demonstrated that an ER damper and appropriate control circuits could out-perform the conventional hydraulic shock absorber, but that various complexities tend to impede broad application of electrorheology in automotive devices.

  6. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  7. Automotive stamped part fatigue design

    Directory of Open Access Journals (Sweden)

    Caudoux Mélanie

    2014-06-01

    Full Text Available Fatigue design of automotive axle parts is of prior concern because of these are high safety parts and they are expected to drive the overall vehicle mass reduction. In this framework, the stamping process is widely used to form axle parts, before assembling them by welding. Consequently, the mechanical and physical characteristics of the blank sheet are modified, having a strong influence on the fatigue behavior. In this paper, we address the consequences of the stamped process on the fatigue design and how they may be effectively taken into account in the automotive industry. Actually, the coupling between the stamping process and the fatigue design is under development at PSA Peugeot Citroën Company since several years. Such an analysis deals with some major topics: thickness variation, plastic hardening and deformation, and residual stress. All of these ingredients result in fatigue criteria evolutions: it is important to stress that the stamping process can have advantageous or disadvantageous consequences on the fatigue design. This is here highlighted on some examples, dealing with front and rear axles.

  8. Stock Control in Automotive Industry with Simulation Utilization

    Directory of Open Access Journals (Sweden)

    Petra Vegnerová

    2008-10-01

    Full Text Available At this time in economic environment there is the big trend of coming logistical chain, supply chain and supply chain management (SCM. SCM deals with material and information flows control, inventory management, demand forecast, production plan optimalization, distribution management etc. Nowadays for effective purchase, production and distribution plan and control in companies are utilized the simulation and simulation programmes. This paper deals with the simulation programme Witness and its utilization for finding of results real problems simulation utilization for stocks solution in automotive industry. The model can be used for the determination of new delivery system of materials and for stocks reduction.

  9. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  10. Application of Electron Beam Surface Technologies in the Automotive Industry

    Institute of Scientific and Technical Information of China (English)

    Rolf Zenker; Anja Buchwalder

    2004-01-01

    Progress in the beam deflection technique opens up new possibilities for the application of electron beam (EB)surface and welding technologies in the automotive industry. This development is based on three-dimensional high-speed beam deflection and fully automatic online process control. So, in the EB surface treatment three-dimensional energy transfer fields can be realised which take into account the contour of a component, the conditions of heat conduction and the load conditions. High flexibility, precision and reproducibility are typical characteristics. High productivity is achieved by the simultaneous interaction of the EB in several processing areas or by carrying out several processes simultaneously. EB surface treatment is becoming more and more attractive and important especially in the automotive industry, and also in comparison to laser technologies. This paper deals with different EB surface technologies, for example hardening,remelting, surface alloying, dispersing or cladding of different materials such as steel, cast iron and different alloys of Al,Mg and Ti. Examples of applications in the automotive industry, especially engine components, will be discussed.

  11. MSc degree in color technology for the automotive sector

    Science.gov (United States)

    Martinez-Verdu, F.; Perales, E.; Chorro, E.; Viqueira, V.; Gilabert, E.

    2014-07-01

    Nowadays, the measurement and management of color quality of the gonio-apparent materials is complex, but highly demanded in many industrial sectors, as automotive, cosmetics, plastics for consumer electronics, printing inks, architectural coatings, etc. It is necessary to control complex instrumentation and to do visual assessments of texture and color differences to get, for instance, a visual harmony in car bodies; and a profound knowledge of physics and chemistry of special-effect pigments for their optical formulation to obtain attractive visual effects in coatings, plastics, etc, combining among them and with solid pigments. From University of Alicante, for the academic year 2013-14, we are organizing the first MSc degree in Color Technology for the Automotive Sector, with a design of contents embracing CIE colorimetry and visual perception, included the AUDI2000 color difference formula, instrumentation and color management software, fundamentals of coatings and plastics in the automotive sector, and, optical formulation of pigments. The MSc syllabus, with 60 ECTS, is designed to be taught in two semesters: from September to February with on classroom theoretical and practical activities, and, from March to June at virtual level, with internships of training in some companies. Therefore, the MSc Thesis would be the performance report during the internship in companies or research institutions. Some multinational companies, both as car makers and coatings and plastics providers, from European and non-European countries have already shown their support and interest in welcoming students for specific training, even some job offers when the first MSc edition finishes.

  12. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.;

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding ageing...

  13. Technology Transfer in the Global Automotive Value Chain. Lessons from the Turkish Automotive Industry

    OpenAIRE

    M. Teoman Pamukçu; Alper Sönmez

    2011-01-01

    The automotive industry is one of the main contributors to value added, employment and exports of the Turkish economy and it has undergone major changes since the mid-nineties. Most of the automotive manufacturers in Turkey are either joint ventures or wholly-owned affiliates of multinational companies. Literature on global value chains point to the possibility of technology transfer occurring through backward linkages from automotive manufacturers to their suppliers. We test for the existenc...

  14. Analysis of the potential for new automotive uses of wrought magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  15. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  16. Fatal exit the automotive black box debate

    CERN Document Server

    Kowalick, Tom

    2005-01-01

    "Fatal Exit: The Automotive Black Box Debate cuts through thirty years of political wrangling and institutional biases to provide an argument for the Motor Vehicle Event Data Recorder (MVEDR). This automotive equivalent of an airplane's flight recorder or black box is intended to solve the mysteries of car crashes and improve the safety of our roads. The reader is taken inside the automotive industry and the government highway safety establishment to foster an understanding of the politics and the positions on all sides of this safety debate. The author takes an unbiased approach, chronologically presenting each argument and uncovering the agendas and mandates of each of the stakeholders." "This publication is essential reading for all consumers who need to have their voices heard on this critical issue, as well as for attorneys, public safety advocates, public policy administrators, engineers, automotive professionals, journalists, and insurance executives."--Jacket.

  17. Nonlinear estimation and control of automotive drivetrains

    CERN Document Server

    Chen, Hong

    2014-01-01

    Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...

  18. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304) during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    OpenAIRE

    Reddy Sreenivasulu

    2014-01-01

    Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial ...

  19. Sound field control in the automotive environment

    OpenAIRE

    Cheer, Jordan; Elliott, Stephen; Jung, Woomin

    2015-01-01

    Active control of engine and road noise in the automotive environment has been investigated within the automotive industry for around 20 years. This interest is due to both the potential to reduce vehicle noise, and the ability to remove passive noise control treatments and, therefore, improve fuel efficiency. The most successful commercial systems have generally used the loudspeakers of the car audio system to globally control engine or road noise at low frequencies. It is also possible to u...

  20. Virtual Tryout Technologies for Preparing Automotive Manufacturing

    OpenAIRE

    Takahashi, Susumu

    2012-01-01

    It is important to reduce the weight of the automotive and to shorten the development period for reduction of CO2 discharge. For these purpose, virtual tryout technologies have been introduced automotive industry. Every process from stamping to assembly for car development has introduced CAD design and numerical simulation such as forming simulation, dimensional accuracy simulation such as forming simulation, dimensional accuracy simulation and so on. In this paper, sheet metal forming simula...

  1. Multidisciplinary Design Optimization of Automotive Structures

    OpenAIRE

    Domeij Bäckryd, Rebecka

    2013-01-01

    Multidisciplinary design optimization (MDO) can be used as an effective tool to improve the design of automotive structures. Large-scale MDO problems typically involve several groups who must work concurrently and autonomously for reasons of efficiency. When performing MDO, a large number of designs need to be rated. Detailed simulation models used to assess automotive design proposals are often computationally expensive to evaluate. A useful MDO process must distribute work to the groups inv...

  2. INFLUENCE OF AUTOMOTIVE CLUSTERS IN REGIONAL DEVELOPMENT

    OpenAIRE

    Constantin BORDEI

    2014-01-01

    This paper proposes an overview of the evolution in the automotive sector in the process of regional development. The fundamental changes made by the component supplier sector improved the regional development and manufacturing process. Automotive industry is one of the modern sectors in many countries that benefits of a high technology impact and creates jobs that reduces unemployment across Europe. The auto industry changed cities, regions and countries into poles of development and it beco...

  3. SELECTION METHOD FOR AUTOMOTIVE PARTS RECONDITIONING

    Directory of Open Access Journals (Sweden)

    Dan Florin NITOI

    2015-05-01

    Full Text Available Paper presents technological methods for metal deposition, costs calculation and clasification for the main process that helps in automotive technologies to repair or to increase pieces properties. Paper was constructed based on many technological experiments that starts from practicans and returns to them. The main aim is to help young engineers or practicians engineers to choose the proper reconditioning process with the best information in repairing pieces from automotive industry.

  4. Operationalising luxury in the premium automotive industry

    OpenAIRE

    Bridle, Bernadette

    2010-01-01

    This thesis presents an Action Research project investigating the use of customers’ perceptions of premium and luxury cars within the premium automotive industry. The research was sponsored by Jaguar Land Rover (JLR), a UK-based automotive manufacturer. An inductive, phenomenological approach was adopted in which JLR’s Premiumness Research Programme (PRP) was used as a case study to build an understanding of the consumer’s perception of luxury, to discover how to communic...

  5. Comparative Advantage in the Asian Automotive Industry

    OpenAIRE

    Somsupa Nopprach

    2010-01-01

    This paper seeks to analyze determinants of Asian countries' comparative advantage in the automotive industry. The effects of supporting industries, factor availability, factor intensity, transportation costs, and of the scale of foreign investment in the industry on the level of countries' comparative advantage are on focus. The results highlight the importance of strong supporting industries in raising a country's comparative advantage in the automotive industry. Furthermore, it is found th...

  6. Acoustics of automotive catalytic converter assemblies

    Science.gov (United States)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  7. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  8. Carbon footprint of automotive ignition coil

    Science.gov (United States)

    Chang, Huey-Ling; Chen, Chih-Ming; Sun, Chin-Huang; Lin, Hung-Di

    2015-07-01

    In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissions during the life cycle of a product to lessen its impact on environment is an important topic in the industrial society. Furthermore, it is also of great significance to cut down the required energy so as to lower its production costs during the manufacturing process nowadays. This study presents the carbon footprint of an automotive ignition coil and its partial materials are defined to explore their carbon emissions and environmental impact. The model IPCC GWP100a calculates potential global greenhouse effect by converting them into CO2 equivalents. In this way, the overall carbon footprint of an ignition coil can be explored. By using IPCC GWP100a, the results display that the shell has the most carbon emissions. The results can help the industry reduce the carbon emissions of an ignition coil product.

  9. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  10. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  11. Toughness of welded stainless steels sheets for automotive industry

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2011-01-01

    Full Text Available Purpose: In the automotive industry, more and more it is compulsory to develop new grades of stainless steels, such as high resistant Martensitic Stainless Steels (MA-SS and Ferritic Stainless Steels (FSS in order to realise certain or many complex deep drawn pieces. For these grades, resistance spot welding (RSW is the most widespread process used largely for many parts of the car body in the automotive industry. This paper aims to characterise mechanical behaviour (toughness of the different steel grades under dynamic test conditions.Design/methodology/approach: A special crash test device is used in different temperatures and the simulated crash tests are performed at a constant speed of 5.52 m/s.Findings: The specimen is submitted to impact tensile test at different temperatures. According to testing temperature, fracture mode varies: At low temperatures, brittle fracture occurs: due to stress concentration, fracture always occurs in the notched section. At high temperatures, the specimen fails by ductile fracture. Toughness of the steel sheets (base metals, BM or welded parts is well compared at different materials and test conditions.Research limitations/implications: Evaluation of welded thin sheets submitted to the dynamic loading in order to correlate in real service conditions in order to realize a useful correlation between the transition temperature and deep drawability can be used for evaluating of the welding conditions and also of the material characteristics. For detail study, this type of the test needs a standard formulation.Practical implications: This is a new conception of specimen and of the impact/crash machine. It is widely used in automotive industry for practical and economic reason to give rapid answers to designer and also steel makers for ranking the materials.Originality/value: New developed test called impact crash test for evaluating the toughness of thin welded joints (tailored blanks / mechanical assemblies in

  12. Composites on the way to structural automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H.; Kopp, J.; Stieg, J. [Volkswagen AG, Wolfsburg (Germany)

    2003-07-01

    Against the background of a steady increase of the standards on comfort, passive safety and driving performance of vehicles as well as the commitment to reduce fuel consumption and carbon dioxide emissions, the demand for lightweight construction attains paramount importance. The use of aluminum, magnesium or new steel alloys in the body structure can lead to significant weight reduction compared with conventional steel concepts. Furthermore, maximum weight reduction will require an intensive use of advanced composites in primary structures. The paper deals with the potentials and the challenges coming along with the introduction of advanced composites into automotive series production. Presently, liquid composite molding and compression molding of high-performance SMC are the most promising technologies to achieve demanding composite parts with high fiber volume fraction, good surface quality and controlled mechanical properties. The performance of specific automotive application processed in these techniques is presented and discussed. On principle, the cost/benefit aspect is of decisive importance for larger volume applications. Considerable efforts are necessary to reduce material and semi-finished product costs and to provide manufacturing technologies which are capable of allowing large-volume automotive production of composite components. Especially concepts are desirable which do not only provide a basic material substitution but rather an intelligent design based on component and functional integration as one of the most effective strategies to exploit the advantages of advanced composites. These aspects will be regarded and a brief summary on some other remaining challenges like recycling, crash simulation or joining and assembly technologies for mixed material concepts will be given. (orig.)

  13. NASA/DOE automotive Stirling engine project. Overview 1986

    Energy Technology Data Exchange (ETDEWEB)

    Beremand, D.G.; Shaltens, R.K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and midifications thereto, have accumulated over 15 000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  14. NASA/DOE automotive Stirling engine project: Overview 1986

    Science.gov (United States)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  15. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  16. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson, South Carolina. The notice was published in the Federal Register April 23, 2010 (75 FR 21356). The... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic...

  17. Automotive-adept: a lightweight assessment method for the automotive Irish software industry

    OpenAIRE

    Mc Caffery, Fergal; Richardson, Ita; Moller, Peter

    2007-01-01

    peer-reviewed In this paper we describe how a lightweight assessment method was developed to educate Irish software small-to-medium sized enterprises (SMEs)1 in relation to becoming automotive software suppliers. The main goal of this assessment method is to provide software SMEs with a SPI path to becoming automotive software suppliers.

  18. Global sustainability and key needs in future automotive design.

    Science.gov (United States)

    McAuley, John W

    2003-12-01

    The number of light vehicle registrations is forecast to increase worldwide by a factor of 3-5 over the next 50 years. This will dramatically increase environmental impacts worldwide of automobiles and light trucks. If light vehicles are to be environmentally sustainable globally, the automotive industry must implement fundamental changes in future automotive design. Important factors in assessing automobile design needs include fuel economy and reduced emissions. Many design parameters can impact vehicle air emissions and energy consumption including alternative fuel or engine technologies, rolling resistance, aerodynamics, drive train design, friction, and vehicle weight. Of these, vehicle weight is key and will translate into reduced energy demand across all energy distribution elements. A new class of vehicles is needed that combines ultra-light design with a likely hybrid or fuel cell engine technology. This could increase efficiency by a factor of 3-5 and reduce air emissions as well. Advanced lightweight materials, such as plastics or composites, will need to overtake the present metal-based infrastructure. Incorporating design features to facilitate end-of-life recycling and recovery is also important. The trend will be towards fewer materials and parts in vehicle design, combined with ease of disassembly. Mono-material construction can create vehicle design with improved recyclability as well as reduced numbers of parts and weight. PMID:14700327

  19. USE OF NANOTECHNOLOGY PRE-TREATMENT IN AUTOMOTIVE PAINTING LINE

    Directory of Open Access Journals (Sweden)

    Alberto Nei Carvalho Costa

    2012-09-01

    Full Text Available The current safety requirements, environmental impacts and performance have been ledding the automotive industry to search for new alternatives, not just for new car bodies materials, also for new sheet surface treatments as well, used in the painting process in order to fit simultaneous, environmental requirements and corrosion resistance maintenance, that are the key feature guarantees offered by automakers and are also vital to the durability of the vehicle. This fact is of great importance considering that, besides the various types of steels and their metalic coatings, another factor that directly influences the corrosion resistance is the painting system used. Within this context, the GMB, in partnership with CSN, has been performing several works by adding the knowledge of the supplier to automotive technology. An example of this partnership we have the present study, which aimed to, comparatively, evaluate the corrosion resistance of two systems of painted galvanized steel, the first one with pre-treatment based on a traditional phosphate, and the another one based on a nano-ceramic film. In this study, was found out that materials with pre-treatment based on results of nanotechnology showed similar corrosion resistance comparing the phosphatized materials in a traditional way.

  20. User discrimination in automotive systems

    Science.gov (United States)

    Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-03-01

    The recently developed dual-view touch screens, which are announced to be installed in cars in a near future, give rise to completely new challenges in human-machine interaction. The automotive system should be able to identify if the driver or the passenger is currently interacting with the touch screen to provide a correct response to the touch. The optical devices, due to availability, acceptance by the users and multifunctional usage, approved to be the most appropriate sensing technology for driver/passenger discrimination. In this work the prototypic optical user discrimination system is implemented in the car simulator and evaluated in the laboratory environment with entirely controlled illumination. Three tests were done for this research. One of them examined if the near-infrared illumination should be switched on around the clock, the second one if there is a difference in discrimination performance between day, twilight and night conditions, and the third one examined how the intensive directional lighting influences the performance of the implemented user discrimination algorithm. Despite the high error rates, the evaluation results show that very simple computer vision algorithms are able to solve complicated user discrimination task. The average error rate of 10.42% (daytime with near-infrared illumination) is a very promising result for optical systems.

  1. The Effect of Strain Rate on the Mechanical Properties of Automotive Steel Sheets

    Directory of Open Access Journals (Sweden)

    Miroslav Német

    2013-01-01

    Full Text Available The automotive industry is currently seeking detailed information about various types of materials and their behavior under dynamic loading. Dynamic tensile testing of sheet steels is growing in importance. The experimental dynamic tensile technique depends on the strain rate. Each type oftest serves for a specific range of strain rates, and provides specific types of information. This workdeals with the influence of the strain rate on the mechanical properties of automotive steel sheets.Three different types of steel: IF steel, DP steel, and micro-alloyed steel (S 460 were used to compare static and dynamic properties.

  2. Compression Strength Testing for Automotive Brake Pads Used in Earthquake Energy Dampers

    Directory of Open Access Journals (Sweden)

    Dragoş Voiculescu

    2010-01-01

    Full Text Available In order to calibrate a friction damper which uses automotive brake pads it is necessary to determine the compression behaviour of the friction material. This paper summarizes the experimental results obtained for a set of automotive brake pads made in Romania. These results are useful in order to determine the slip load level in a seismic energy dissipation mechanism which uses this type of friction pads. The paper presents the experimental set up and the compression behaviour curves obtained for a set of four commercial brake pads. The testing was performed by the author as a part of his research work, using a hydraulic compression press.

  3. Computational design of an automotive twist beam

    Directory of Open Access Journals (Sweden)

    Benki Aalae

    2016-07-01

    Full Text Available In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke׳s law. Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI algorithm coupling with a radial basis function (RBF metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

  4. Green competitiveness research on Chinese automotive enterprises

    Directory of Open Access Journals (Sweden)

    Yuanhui Li

    2014-05-01

    Full Text Available Purpose: More and more executives of automobileindustry in China start to recognize the concept of green competitiveness recently. However, relatively less research attention has been devoted to the consideration of measurement. This paper aims to find empirical approach to quantify green competitiveness for automotive enterprises. The connotation of green competitiveness is explored and one suite of evaluation index system has been proposed with four dimensions including environmental, resource, capability and knowledge.Design/methodology/approach: By introducing the factor analysis method, green competitiveness has been measured through an empirical analysis of 24 automotive enterprises within China.Findings: The results indicate that those elements, such as enterprise resource possession and utilization; environment, responsibility and knowledge; profitability; management efficiency, have significant effect on the green competitiveness for automotive enterprises. The further analysis also unveils the advantages and disadvantages of green competitiveness for each company and the direction for improvement.Research limitations/implications: Guide regulators and managers of automobile industry to take some measures to enhance their green competitive advantage.Practical implications: Provide practical methods to measure green competitiveness for automotive enterprises.Originality/value: This paper proposes an evaluation index system of green competitiveness for automotive enterprises. The suggestions of our research will be beneficial to enterprise executives and industry regulators.

  5. The Prospect of Mass Customisation in the Chinese Automotive Industry

    OpenAIRE

    Dong, Xihan

    2011-01-01

    The automotive industry is one of the largest manufacturing industries and the development of a country’s automotive industry can represent its economy to some extent. Because of the fierce competition in the automotive industry, customers have more choices and they cannot be satisfied with standard products any more. Therefore, some global automotive manufacturers implement mass customisation as their production strategy which aims to provide customised automobiles according to customers’ re...

  6. Innovation in the Automotive Sector of the Philippines

    OpenAIRE

    Quimba, Francis Mark A.; Rosellon, Maureen Ane D.

    2011-01-01

    The performance of the Philippine automotive industry has steadily improved after the Asian crisis. However, relative to the performance of the automotive industry in other countries, the automotive sector in the country has languished. To understand the challenges being faced by the automotive assemblers, as well as parts and components manufacturers, the innovation capability and activities of selected establishments are analyzed following the framework developed by Bessant. This paper find...

  7. Free automotive and heating fuels for home and farm

    International Nuclear Information System (INIS)

    This book is for farmers or any landowners with access to free materials, such as agricultural wastes, that can be converted with minimum expense to heating fuel of to ethanol for automotive use. Farmers can learn how to make and use stoves, furnaces or stills for processing their own free materials for their own use or their neighbors. If one is a good mechanic one can learn how to adjust carburetors, to start a business converting engines to burn ethanol. The book is intended to provide the information you need to make practical use of waste materials and to save money. The book contains five chapters: Ethanol feedstocks; Crops for burning; Conversion to fuel; Fuel Utilization; and Business Opportunities. These chapters have been processed separately for inclusion on the data base

  8. Concepts for particle foam based ultralight automotive interior parts

    Science.gov (United States)

    Trassl, C.; Altstädt, V.; Schreier, P.

    2014-05-01

    The described concepts for modern automotive interior parts are based on polypropylene (PP). These interior parts have a core of expanded polypropylene particle foam (EPP) and a decorative layer of a thermoplastic polyolefin elastomer (TPO) film. Compared with conventional solutions in the field of automotive interior parts, they are characterised mainly due to the avoidance of material mixtures so that they have better recycling properties and are significantly lighter in spite of comparable crash behaviour. Because of the optimized combination of positive component properties (specifically, the rigidity of the carrier, lower density combined with the better crash behaviour of the EPP foam core and good haptic and optical properties of the film), the multi-material system compensates the disadvantages of the individual components. In addition, the integration of all process steps into a new single-step manufacturing process combined with the elimination of an additional surface treatment means that the new ultra-light concept should lead to a significant reduction in the costs and cycle time.

  9. Optimization and optimal control in automotive systems

    CERN Document Server

    Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier  approaches, based on some degree of heuristics, to the use of  more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...

  10. My father’s automotive dream

    Institute of Scientific and Technical Information of China (English)

    Rain Chen

    2005-01-01

    <正>Memories of Changchun Changchun literally means ’Long Spring’. The city is located in northeast China’s Jilin province, which literally means ’Lucky Forest’. Since my father is an old worker of Changchun’s Yi Qi(the abbreviation of Changchun First Automotive Factory) plant - China’s earliest automotive plant, I have spent 60 years in the city, graduating from the well-established Jilin University and currently working for a periodical association. A friend from Beijing encouraged me to write my family’s history, and since my family’s story is really a story about the good name of Changchun, an automotive city and a college town, I couldn’t refuse.

  11. Automotive Radar Sensors in Silicon Technologies

    CERN Document Server

    Jain, Vipul

    2013-01-01

    This book presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors.  This book bridges an existing gap between information available on dependable system/architecture design and circuit design.  It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors.  System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.  Describes concepts and fundamentals of automotive rada...

  12. 16 CFR 306.5 - Automotive fuel rating.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Automotive fuel rating. 306.5 Section 306.5 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS AUTOMOTIVE FUEL RATINGS, CERTIFICATION AND POSTING Duties of Refiners, Importers and Producers § 306.5 Automotive...

  13. Best Practices in School-to-Careers: The Automotive Industry.

    Science.gov (United States)

    National Employer Leadership Council, Washington, DC.

    This document highlights the school-to-careers (STC) partnerships connecting workplace experiences to classroom learning to prepare students for successful employment in the automotive industry. First, the current state of the automotive industry is reviewed and the role of STC in addressing automotive service needs is explained. Next, the…

  14. Can Distance Learning Be Used to Teach Automotive Management Skills?

    Science.gov (United States)

    Noto, Teresa L.

    2011-01-01

    Today's automotive college students will shape the future of the automobile industry. The success of college-level automotive programs has long been dependent on the students' ability to participate in hands-on classroom based interactions. In this article, distance learning and how it can be used to teach automotive management skills, as well as…

  15. 25 CFR 117.10 - Purchase of automotive equipment.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  16. Electrohydraulic Forming of Near-Net Shape Automotive Panels

    Energy Technology Data Exchange (ETDEWEB)

    Golovaschenko, Sergey F.

    2013-09-26

    The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

  17. Six Sigma process improvements in automotive parts production

    Directory of Open Access Journals (Sweden)

    M. Soković

    2006-09-01

    Full Text Available Purpose: of this paper: In the paper is presented a Six Sigma project, undertaken within company for production automotive parts, which deals with identification and reduction of production cost in the deburring process for gravity die-castings and improvement of quality level of produced parts.Design/methodology/approach: The objectives are achieved by application of Six Sigma approach to quality improvement project in automotive industry. The applied Six Sigma approach includes team works through several phases: Define, Measure, Analyze, Improve, and Control (DMAIC.Findings: Systematic application of Six Sigma DMAIC tools and methodology within an automotive parts production results with several achievements such are reduction of tools expenses, cost of poor quality and labours expenses.It was shown that Six sigma is an effective way to find out where are the greatest process needs and which are the softest points of the process. Also, Six sigma provide measurable indicators and adequate data for analytical analysis.Research implications: The possibility of application of several Six Sigma tools such are thought process mapping, Pareto diagrams, process mapping, cause and effect matrix, and analysis of variation and capability studies.Practical implications: Improvements through reduced Production time, Control time, Material and Internal scrap have been yield significant financial. Furthermore, this pilot project enabled introduction of Six Sigma methodology in wider range of manufacturer activities.Originality/value: The paper researches the possibility of Six Sigma application within manufacturing process. This paper is of the value to researcher in the field of quality management and quality improvement, as well as to professionals in the manufacturing industry, wherever the quality improvement is an issue.

  18. Fatigue life of automotive rubber jounce bumper

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, R S [Automotive Engineering Unit, Institute of Advanced Technology, University Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia); Ali, Aidy, E-mail: aidy@eng.upm.edu.my [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor (Malaysia)

    2010-05-15

    It is evident that most rubber components in the automotive industry are subjected to repetitive loading. Vigorous research is needed towards improving the safety and reliability of the components. The study was done on an automotive rubber jounce bumper with a rubber hardness of 60 IRHD. The test was conducted in displacement-controlled environment under compressive load. The existing models by Kim, Harbour, Woo and Li were adopted to predict the fatigue life. The experimental results show strong similarities with the predicted models.

  19. Quartz angular rate sensor for automotive navigation

    Energy Technology Data Exchange (ETDEWEB)

    Nozoe, Toshiyuki; Ichinose, Toshihiko; Kawasaki, Syusaku; Hatanaka, Masakazu; Kuroda, Keisuke [Matsushita Electronic Components Co. Ltd. (Japan); Yamamoto, Kohji; Ogata, Motoki; Takeno, Shoichi [Fukui Matsushita Electric Co. Ltd. (Japan); Ishihara, Minoru; Ishii, Tadashi; Umeki, Mitoshi [Nihonn Denpa Kogyo Co. Ltd. (Japan)

    1999-07-01

    Many of the recent automotive navigation systems are introducing an angular rate sensor that detect vehicle yaw in their system due to the advantage of higher accuracy, in addition to a conventional GPS (Global Positioning System) and vehicle speed signals. Though there are a couple of other methods to get a vehicle direction information, the angular rate sensor is the most suitable device as a gyro in accuracy and reliability point of view. Matsushita developed a new compact angular rate sensor using quartz crystal for automotive navigation systems. The sensor's operation is based upon Coriolis force imposed on a vibrating quartz tuning fork. (orig.)

  20. Green innovation adoption in automotive supply chain

    DEFF Research Database (Denmark)

    Zailani, Suhaiza; Govindan, Kannan; Iranmanesh, Mohammad;

    2015-01-01

    Green innovation has currently been receiving a great deal of international attention because of the growing concern of consumers, governments, and the community as a whole with regard to the degradation of natural resources and environmental pollution. The automotive sector is one of the leading...... using the partial least squares technique. Environmental regulations, market demand, and firm internal initiatives have a positive effect on green innovation initiatives (GII), while GIIs have a positive effect on the three categories of sustainable performance (i.e., environmental, social, and economic......). These results have important implications for designing strategic plans for the Malaysian automotive industry....

  1. 19 CFR 10.84 - Automotive vehicles and articles for use as original equipment in the manufacture of automotive...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Automotive vehicles and articles for use as original equipment in the manufacture of automotive vehicles. 10.84 Section 10.84 Customs Duties U.S... CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Automotive Products § 10.84...

  2. 汽车物流浅谈%Automotive Logistics

    Institute of Scientific and Technical Information of China (English)

    刘大顺; 张迎杰; 赫立远

    2016-01-01

    With the improvement of people's living standards, more and more diversified way to travel, private cars as a way to travel in recent years, demand is also rising, showing a clear upward trend. In recent years through cooperating with imported brand car enterprises, coupled with the country strongly support, making own-brand car companies have significantly improved the technical level ,meanwhile gradually narrowing the gap with the joint ventures in terms of quality and performance etc. But an important issue can not be ignored is the cost control.We still can not effectively reduce production costs, resulting in own-brand car companies can not compete with the joint venture brand in the price, and automotive logistics cost is the most important part of the production costs.The so-called automotive logistics, refers to the entity flow process of the raw materials,components,vehicle and aftermarket parts in the various links on automotive supply chain.Generalized automotive logistics also include the recovery of part of the scrap cars. Automotive Logistics play a role of bridge and tie in the automotive industry chain. Automotive Logistics is the fundamental guarantee to achieve the smooth flow of the value of the automobile industry. So how can we effectively control the automotive logistics costs, has become an inevitable study subject of China's auto industry development process. The following, use the independent brand Brilliance Automotive as an example, and provide a detailed description of the automotive present development situation and logistics problems,provide appropriate referenced solutions.%随着人们生活水平的日益提高,出行方式也越来越多元化,私家车作为出行方式的一种,近年来需求量也水涨船高,呈现一个明显上升趋势。近些年自主品牌汽车通过与进口品牌车企的合作、再加上国家对自主品牌车企的大力扶持,使自主品牌车企技术水平有明显的提升,同时

  3. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  4. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  5. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  6. Plastic optical fibers for automotive applications

    Science.gov (United States)

    Suganuma, Heiroku; Matsunaga, Tadayo

    1991-12-01

    High heat resistant optical fibers (POFs) have been developed for various automotive applications. Plastic chips with POF light guide have been used in place of a clearance monitor lamp. POF cords and cables have been used in the car-audio system, car-navigation system, and other data communication systems. This paper describes the structures, properties, and reliabilities of POFs for these applications.

  7. Logistics supply chain in automotive production

    OpenAIRE

    MAŠKOVÁ, Markéta

    2014-01-01

    Work is focused on inventory management in the automotive industry. It summarizes the goals and objectives of inventory management and subsequently it pays attention on an individual systems in management. The work focuses on a particular firm and its problems with the optimization of inventory. It also brings a concrete solution of the problem for defined items.

  8. Aero and vibroacoustics of automotive turbochargers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH, Stuttgart (Germany)

    2013-02-01

    First book about the aeroacoustics of automotive turbochargers. Author of the book ''Rotordynamics of Automotive Turbochargers'', Springer, 2012. Written by an R and D expert in the turbocharger industry. Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.

  9. A listening test system for automotive audio

    DEFF Research Database (Denmark)

    Christensen, Flemming; Geoff, Martin; Minnaar, Pauli;

    2005-01-01

    This paper describes a system for simulating automotive audio through headphones for the purposes of conducting listening experiments in the laboratory. The system is based on binaural technology and consists of a component for reproducing the sound of the audio system itself and a component...

  10. Recycle of mixed automotive plastics: A model study

    Science.gov (United States)

    Woramongconchai, Somsak

    This research investigated blends of virgin automotive plastics which were identified through market analysis. The intent was that this study could be used as a basis for further research in blends of automotive plastics recyclate. The effects of temperature, shear, time, and degree of mixing in a two-roll mill, a single-screw extruder, and a twin-screw extruder were investigated. Properties were evaluated in terms of melt flow, rigidity, strength, impact, heat resistance, electrical resistivity, color, and resistance to water and gasoline. Torque rheometry, dynamic mechanical analysis (DMA), optical and scanning electron microscopy were used to characterize the processability and morphology of major components of the blends. The two-roll mill was operated at high temperature, short time, and low roll speed to avoid discolored and degraded materials. The single-screw extruder and twin-screw extruder were operated at medium and high temperature and high screw speed, respectively, for optimizing head pressure, residence time, shear and degree of mixing of the materials. Melt index increased with extrusion temperature. Flexural modulus increased with the processing temperatures in milling or twin-screw extrusion, but decreased with the increasing single-screw extrusion temperature. Tensile modulus was also enhanced by increasing processing temperature. The tensile strengths for each process were similar and relatively low. The impact strength increased with temperature and roll speed in two-roll milling, was unaffected by the single-screw extrusion temperature and decreased with increasing twin-screw extrusion temperature. Heat resistance was always reduced by higher processing temperature. The volume resistivity increased, water absorption was unaffected and gasoline absorption altered by increased processing temperature. The latter increased somewhat with mill temperature, roll speed (two-roll mill) and higher extrusion temperature (single-screw extruder), but

  11. Damage tolerance reliability analysis of automotive spot-welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran; Ni Kan

    2003-07-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture.

  12. Implementation of 3D Optical Scanning Technology for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Abdil Kuş

    2009-03-01

    Full Text Available Reverse engineering (RE is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  13. Temperature-compensated miniature cylinder pressure sensor for automotive applications

    Science.gov (United States)

    Wlodarczyk, Marek T.

    2004-03-01

    The 1.7 mm diameter pressure sensor utilizes the principle of light intensity changes, transmitted by two optical fibers, upon reflection from a specially shaped, metal diaphragm deflecting under the effect of pressure. In an ultra low-cost and durable design suitable for automotive applications the sensor compensates for all major temperature effects encountered in combustion engines. The auto-referencing function performed by the sensor"s signal conditioner compensates for the temperature induced LED, photodiode, and fiber-to-opto-electronics coupling errors, sensor thermal drift, as well as fiber bending related light intensity changes. The direct bonding of optical fibers to the photodiode and LED chips results in minimum thermal errors and high part-to-part consistency. Sensor head materials and dimensions are optimized to compensate for the sensitivity changes associated with the diaphragm"s Young"s modulus temperature dependence. The miniature signal conditioner, based on an LED-photodiode transceiver and an ASIC, can be integrated within an automotive connector or a package small enough to fit inside the engine head. Over the signal conditioner temperature range of -40°C to 150°C and the sensor head continuous range of -40°C to 300°C a typical total accuracy of 1-2% is achieved.

  14. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    Science.gov (United States)

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  15. Property Criteria for Automotive Al-Mg-Si Sheet Alloys

    Directory of Open Access Journals (Sweden)

    Ramona Prillhofer

    2014-07-01

    Full Text Available In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented.

  16. Obtention, machining and wear of sintered alloys for automotive applications

    International Nuclear Information System (INIS)

    The aim of this work was the development of materials for automotive applications, in particular, valve seat inserts for gasoline combustion engines. The development involved the following activities: processing by powder metallurgy techniques, heat treatment, mechanical and microstructural characterization, machining and wear of materials. This work was undertaken aiming cost reduction of this component by the use of cheaper and less pollutant elements, eliminating the presence of Co and Pb due to their high cost and toxicological effects, respectively. The accomplishment of a thorough research into patents revealed that the materials studied here present particular compositions and were not yet produced. The results of hardness measurements and the transverse radial strength of the studied materials, after heat treatment, revealed superior properties than the commercial alloys applied at the moment. The machining tests of the material without heat treatment indicated a similar behaviour in comparison to the commercial alloy, suggesting that the new alloy chemistry composition was not deleterious in this sense. After heat treatment, the obtained alloys presented a cutting force increase in relation to the commercial alloy. Wear tests results of heat treated materials presented smaller friction coefficient and mass loss than the commercial alloy, in ali cases. This was especially achieved due to the advantages offered by heat treatment allied to the addition of NbC and Ti/W carbides. The materials obtained here showed to be potential candidates to substitute with advantages, valve seat inserts made of Fe-Co alloys for gasoline combustion engines. (author)

  17. Optimized Characterization of Thermoelectric Generators for Automotive Application

    Science.gov (United States)

    Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg

    2012-06-01

    New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.

  18. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  19. Automotive Stirling engine: Mod II design report

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  20. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  1. Innovation and Entrepreneurship in the Automotive Business

    DEFF Research Database (Denmark)

    2011-01-01

    The global automotive business is one of the most competitive environment you can imagine. As an independent inventor or as a small development company it is very challenging to be successful in implementing new ideas and components. In this mature and somewhat conservative technical environment...... invention have appropriate benefits. The timing of the dialog with a potential user or business partner is important when it comes to which issues that have highest priorities or are most frequently discussed in the organization of said user or business partner. If there exist a special issue that your idea...... address you will have a much better access the decision making process and get enough interest for a potential business deal. After 20 years as a supplier of engineering services to the automotive industry and 10 years as head of Global R&D at Scania CV AB, I have experienced pros and cons both from...

  2. Platform Based Design for Automotive Sensor Conditioning

    CERN Document Server

    Fanucci, L; Iozzi, F; Marino, C; Rocchi, A

    2011-01-01

    In this paper a general architecture suitable to interface several kinds of sensors for automotive applications is presented. A platform based design approach is pursued to improve system performance while minimizing time-to-market.. The platform is composed by an analog front-end and a digital section. The latter is based on a microcontroller core (8051 IP by Oregano) plus a set of dedicated hardware dedicated to the complex signal processing required for sensor conditioning. The microcontroller handles also the communication with external devices (as a PC) for data output and fast prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive applications. Measured performance results outperform current state-of-the-art commercial devices.

  3. Tribocharging behaviour of automotive powder coatings

    Science.gov (United States)

    Thomas, Aline; Saleh, Khashayar; Guigon, Pierre; Czechowski, Claire

    2008-12-01

    The aim of this work was to build a device allowing the measurement of tribocharging during the fluidization and pneumatic transport of automotive powder coatings. The experimental setup included a fluidization unit, a transport pipe and two 'Faraday cups' allowing continuous monitoring of particle charge. Two batches of industrial automotive powder primers, as well as several other types of powders were tested: alumina, silica... The experimental variables were the length of the conveying pipe and the air flow rate. The results showed that the net amount of acquired tribocharge increases with the length of conveying pipe. The experimental device and procedure allowed to well classify tested powders according to their rate of tribocharging and their maximum charge. More specially, this study pointed out a net difference between electrostatic properties of two powder primers, which behave very differently in the industrial application unit.

  4. International Forum on Advanced Microsystems for Automotive Application

    CERN Document Server

    Meyer, Gereon

    2014-01-01

    The automobile is going through the biggest transformation in its history. Automation and electrification of vehicles are expected to enable safer and cleaner mobility. The prospects and requirements of the future automobile affect innovations in major technology fields like driver assistance systems, vehicle networking and drivetrain development. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. It has been the mission of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for more than fifteen years to detect novel trends and to discuss the technological implications from early on. Therefore, the topic of the AMAA 2014 will be “Smart Systems for Safe, Clean, and Automated Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers w...

  5. Experimental Study of Castor Oil Based Lubricant for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Amit Suhane,

    2014-01-01

    Full Text Available Vegetable oils due to their better natural propertiescan be used as an alternative to reduce the dependency on the conventional lubricants. With the depletion of conventional resources at faster pace, need of hour is to approach the safer alternatives for ensuring the availability of such resources for longer periods with lesser harm to the mankind and sorroundings.This workevaluates the prospects of Castor oil based lubricant for automotive applications in contrast to the available commercial servo gear oil. Experimentation has been performed on four ball tester set up.Material used is carbon steel balls. Refined castor and mahua oils are blended in fixed ratios and subjected to friction and wear tests. Experimentation reveals that castor mahua oil blend possess immense potential in contrast to servo gear oil due to good wear reducing traits apart from environmental benefits.

  6. Analysis of automotive liftgate seals using finite element analysis

    Directory of Open Access Journals (Sweden)

    Rafael H. T Ueda

    2010-01-01

    Full Text Available Seals have wide application in automotive products. They are responsible for sealing the car in several parts such as the doors, the air intake cowl seal, and air intake lights seal. Strain and stress studies are very important in order to understand the behavior of polymeric materials, which are generally submitted to great workload variation and environmental influence. This study of EPDM rubber was carried out to define the strain, stress and yield stress. Tensile and compression tests were carried out on workpieces with 100 mm of length. The data were acquired using the Qmat software. A Finite Element Analysis using the MSC Marc MentatTM was conducted and compared with experimental tests. The results showed an increase of effort proportional to bulb thickness. The proportional increase of compression effort for different displacements was significant. Moreover, physical parameters such as length, thickness, and friction coefficient changed the strain and stress rate.

  7. Smarter–lighter–greener: research innovations for the automotive sector

    Science.gov (United States)

    Bhattacharyya, S. K.

    2015-01-01

    This paper reviews the changing nature of research underpinning the revolution in the automotive sector. Legislation controlling vehicle emissions has brought urgency to research, so we are now noticing a more rapid development of new technologies than at any time in the past century. The light-weighting of structures, the refinement of advanced propulsion systems, the advent of new smart materials, and greater in-vehicle intelligence and connectivity with transport infrastructure all require a fundamental rethink of established technologies used for many decades—defining a range of new multi-disciplinary research challenges. While meeting escalating emission penalties, cars must also fulfil the human desire for speed, reliability, beauty, refinement and elegance, qualities that mark out the truly great automobile. PMID:26345309

  8. 5th International Conference on Sustainable Automotive Technologies

    CERN Document Server

    Subic, Aleksandar; Trufin, Ramona

    2014-01-01

    This book captures selected peer reviewed papers presented at the 5th International Conference on Sustainable Automotive Technologies, ICSAT 2013, held in Ingolstadt, Germany. ICSAT is the state-of-the-art conference in the field of new technologies for transportation. The book brings together the work of international researchers and practitioners under the following interrelated headings: fuel transportation and storage, material recycling, manufacturing and management costs, engines and emission reduction. The book provides a very good overview of research and development activities focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. About the Editors: Prof. Dr. Jörg Wellnitz is the Dean of the Faculty of Mechanical Engineering, Technische Hochschule Ingolstadt, Germany. Prof. Dr. Aleksandar Subic is the Head of the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia. Ramona Trufin, M.A. is the coordinator of the Facul...

  9. Computer designing and test results of automotive thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Anatychuk, Lukyan Ivanovich; Kuz' , Roman Vasyl' ovych [National Academy of Sciences, Chernivtsi (Ukraine). Inst. of Thermoelectricity

    2011-07-01

    There are results of thermoelectric generator computer designing for automobile in different model approximations shown. The basic regularities of generator operation are determined: optimal thermal conditions, temperature distribution along the gas flow, heat current correlation on generator's input and on its output. Efficiency limiting values are determined. There are requirements for thermoelectric material determined. There is an effectiveness increase at the expense of FGM aplication considered. There are dynamic conditions of generator operation considered. Form-factors optimal values for European traffic condition are established. Block design schemes of generator constructions are studied ensuring the adaptation of generator operation to different engine powers under different loads. Thermoelectric modules for automotive generator are produced. Their characteristics are described including reliability and specific cost. Generator of 600W is developed on basis of computer analysis and designing. (orig.)

  10. Applications Of Laser Processing For Automotive Manufacturing In Japan

    Science.gov (United States)

    Ito, Masashi; Ueda, Katsuhiko; Takagi, Soya

    1986-11-01

    Recently in Japan, laser processing is increasingly being employed for production, so that laser cutting, laser welding and other laser material processing have begun to be used in various industries. As a result, the number of lasers sold has been increasing year by year in Japan. In the Japanese automotive industry, a number applications have been introduced in laboratories and production lines. In this paper, several current instances of such laser applications will be introduced. In the case of welding, studies have been conducted on applying laser welding to automatic transmission components, in place of electron beam welding. Another example of application, the combination of lasers and robots to form highly flexible manufacturing systems, has been adopted for trimming steel panel and plastic components.

  11. General Motors automotive fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  12. Visual configuration in automotive software product lines

    OpenAIRE

    Botterweck, Goetz; Thiel, Steffen; Crawley, Ciar??n; Nestor, Daren; PreuBner, Andr??

    2008-01-01

    peer-reviewed Software Product Line engineering has emerged as a viable and important software development paradigm in the automotive industry. It allows companies to realise significant improvements in time-to-market, cost, productivity, and system quality. One major difficulty with software product line engineering is related to the fact that a product line of industrial size can easily incorporate thousands of variation points. This scale of variability can become extremely com...

  13. Assembly-oriented design in automotive engineering

    OpenAIRE

    Vielhaber, Michael; Burr, Holger; Deubel, Till; Weber, Christian; Haasis, Siegmar

    2004-01-01

    To be competitive on the global market, carmakers have cut lead times in passenger car development to the bone. At the same time both the product complexity and the customer's demands with regard to quality are continuously rising. Various new strategies and tools are currently being explored to cope with these challenges: simultaneous/concurrent engineering, front-loaded development, and knowledge-/feature-based parametric design to name just a few. Current design processes in automotive eng...

  14. Brazilian automotive industry in the nineties

    OpenAIRE

    Cecchini, Kerlyng; Guilhoto, Joaquim José Martins; GEOFFREY J.D. HEWINGS; Chokri, Dridi

    2007-01-01

    This paper aims to carry out an analysis of fuzzy clusters in the Brazilian automotive industry to contribute to the analysis of the relative importance of these economic activities in the national productive structure and in their regional contexts. The intention is to assess whether, once they have been established in the structure of a determined region, the economic activities of the industry establish productive relationships similar to other industries to the point of leading an indust...

  15. Analysis of the automotive supplier industry

    OpenAIRE

    Fejtková Drgová, Michaela

    2014-01-01

    The subject of this thesis is "Analysis of suppliers in automotive industry“. The processes of purchasing department are analyzed from the supplier´s selection to his evaluation. The work is divided into the theoretical and the practical parts. The practical part is to define the basic concepts linked with the purchasing area. The part goals are executed in the practical part and the purchasing procedures of Keihin Company are deeply described. Outcome of this thesis is a proposal to effectiv...

  16. INNOVATION LEAN PRINCIPLES IN AUTOMOTIVE GREEN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Dušan Sabadka

    2014-12-01

    Full Text Available Today, industries such as automotive and manufacturing industries deal with a lot of environmental regulations. Lean is a production strategy whose fundamental principles drive the industry towards a more effective production of goods and services. The eco-efficiency concept is primary to sustainable development and intends to provide more value with less environmental impact. The aim of this study is to identify and explore the contributions of Lean to reduce environmental impacts that naturally result from industrial activity.

  17. Green competitiveness research on Chinese automotive enterprises

    OpenAIRE

    Yuanhui Li

    2014-01-01

    Purpose: More and more executives of automobileindustry in China start to recognize the concept of green competitiveness recently. However, relatively less research attention has been devoted to the consideration of measurement. This paper aims to find empirical approach to quantify green competitiveness for automotive enterprises. The connotation of green competitiveness is explored and one suite of evaluation index system has been proposed with four dimensions including environmental, resou...

  18. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    Science.gov (United States)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  19. Substrate contributions to automotive catalytic converter performance. The role of channel shape on catalyst efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.P. [Science and Technology Division, Corning Incorporated, Corning, New York (United States)

    1998-12-31

    The catalyst support plays an integral part in the performance of the automotive catalytic converter system. Although the precious metal catalyst is the primary contributor to the conversion efficiency, the substrate role is to properly distribute and support the washcoat and precious metal catalyst in order to utilize the properties of these components most fully. By optimizing the substrate properties as well as the precious metal and washcoat systems, optimum benefit from the catalyst system can be obtained. The automotive catalyst support is composed of the material and the structure. Previous papers have dealt with the materials. This paper will describe the structure of the catalyst support, specifically the channel shape, and present the structure-related heat transfer, mass transfer, and pressure drop properties for the laminar flow condition for various channel shapes. After these relationships have been established, a comparison will be made between the catalyst system performance of two of the channel shapes available commercially. 14 refs.

  20. The determinants of location choices of automotive producers in Turkey

    OpenAIRE

    Erdogan, Ersin

    2011-01-01

    Turkish automotive industry achieved a remarkable growth in the last two decades. This growth has been led by three closely located northwest cities of the country; namely Bursa, Kocaeli and Sakarya. The first purpose of this study is signposting the geographical concentration of automotive industry in Turkey. The second goal of the study is to find out the determinants of the location-choices of automotive producers in Turkey by using export of motor vehicles and related industry products fi...

  1. AUTOMOTIVE MARKET- FROM A GENERAL TO A MARKET SEGMENTATION APPROACH

    OpenAIRE

    Liviana Andreea Niminet

    2014-01-01

    Automotive market and its corresponding industry are undoubtedly of outmost importance and therefore proper market segmentation is crucial for market players, potential competitors and customers as well. Time has proved that market economic analysis often shown flaws in determining the relevant market, by using solely or mainly the geographic aspect and disregarding the importance of segments on the automotive market. For these reasons we propose a new approach of the automotive market provin...

  2. The role of software engineering in future automotive systems development

    OpenAIRE

    Clarke, Siobhán; Fitzgerald, Brian; Nixon, Paddy; Pohl, Klaus; Ryan, Kevin; Sinclair, David; Thiel, Steffen

    2008-01-01

    peer-reviewed The amount and complexity of software in automotive systems is constantly increasing. Today’s luxury cars include numerous electronic control units. A large part of the functionality of these units is driven by software. In the future even more software-intensive automotive systems are expected as automotive manufacturers and suppliers tend to integrate and combine applications on more powerful platforms. The increasing amount and complexity of software in these plat...

  3. Integrated Vehicle Health Management in the Automotive Industry

    OpenAIRE

    Holland, Steven

    2010-01-01

    The time has come to port integrated vehicle health management concepts originally pioneered in aerospace and other domains into the automotive industry. ï‚· The successful automotive manufacturer must remain highly customer-focused to ensure delivery of high value at an affordable price. ï‚· IVHM success will require partnering between the automotive manufacturer, its suppliers, as well as external technology providers located in private industry, academia and governmental labs ...on a globa...

  4. Ecological assessment of nano-enabled supercapacitors for automotive applications

    International Nuclear Information System (INIS)

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  5. Ecological assessment of nano-enabled supercapacitors for automotive applications

    Science.gov (United States)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  6. 40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.

    Science.gov (United States)

    2010-07-01

    ... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive...

  7. Impact of system parameter selection on radar sensor performance in automotive applications

    OpenAIRE

    Blöecher, H.-L.; Andres, M; C. Fischer; Sailer, A.; M. Goppelt; Dickmann, J.

    2012-01-01

    The paper deals with the investigation of relevant boundary conditions to be considered in order to operate 77/79 GHz narrow and ultra wide band automotive radar sensors in the automotive platform and the automotive environment.

  8. 75 FR 11938 - Meridian Automotive Systems, Grand Rapids, MI; Notice of Termination of Investigation

    Science.gov (United States)

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Meridian Automotive Systems, Grand Rapids, MI; Notice of Termination... Meridian Automotive Systems, Grand Rapids, Michigan (Meridian Automotive). The petitioning group of...

  9. Present Situation of Purification Technologies for Automotive Exhaust in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is presented that eliminating and controlling the current automotive exhaust emission should be important and urgent in China, and the Chinese state emission standards have been getting stricter and stricter. Also the present purification technologies for automotive exhaust are elucidated. It is indicated that the development and the commercialization of Rare Earth based on three way catalytic converters is pretty necessary and urgent to address the current harsh automotive exhaust emission problems in China. In addition, the future automotive exhaust purification technologies are prospected.

  10. AUTOMOTIVE MARKET- FROM A GENERAL TO A MARKET SEGMENTATION APPROACH

    Directory of Open Access Journals (Sweden)

    Liviana Andreea Niminet

    2014-01-01

    Full Text Available Automotive market and its corresponding industry are undoubtedly of outmost importance and therefore proper market segmentation is crucial for market players, potential competitors and customers as well. Time has proved that market economic analysis often shown flaws in determining the relevant market, by using solely or mainly the geographic aspect and disregarding the importance of segments on the automotive market. For these reasons we propose a new approach of the automotive market proving the importance of proper market segmentation and defining the strategic groups within the automotive market.

  11. Offshoring trends in the manufacturing process within the automotive industry

    DEFF Research Database (Denmark)

    Simplay, S.; Hansen, Zaza Nadja Lee

    2014-01-01

    consisting of original equipment manufacturers and engineering service providers. The findings indicated some offshoring trends in the automotive industry. Offshoring in this industry is moving from a manufacturing focus to incorporate large parts of the process, including high-level product development......This paper investigates offshoring trends in the automotive industry. The research approach consisted of combining empirical findings from case companies with latest research from the field. Empirical data was collected through case studies from 15 automotive organisations based in Europe...... with a focus on offshoring in the automotive industry and provides practitioners with information on a cutting-edge trend to the industry...

  12. Plastic behaviour and microstructure characterization high manganese aluminium alloyed steel for the automotive industry

    OpenAIRE

    D. Kuc; J. Cebulski

    2012-01-01

    Purpose: Automotive industry constantly demands high-strength steels which are characterized by the energy absorption possibilities during a collision. Such materials may, in the future, replace the currently used conventional steels. The groups of steels which meet these criteria are the austenitic steels and austenitic-ferritic steels with high manganese content (15-30%) and high aluminium content (1-9%). Design/methodology/approach: Susceptibility of steel to cracking at high temperatures ...

  13. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    OpenAIRE

    Avila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    The quality of machined components in the aerospace and automotive industries has become increasingly critical in the past years because of greater complexity of the workpieces, miniaturization, usage of new composite materials, and tighter tolerances. This trend has put continual pressure not only on improvements in machining operations, but also on the optimization of the cleanability of parts. The paper reviews recent work done in these areas at the University of California-Berkele...

  14. Automotive Vehicle Including a Security Arrangement Provided with an Inflatable Protective Bag

    OpenAIRE

    Chevroulet, Tristan; Béroud, Jean-Claude

    1996-01-01

    The invention concerns an automotive vehicle. This vehicle comprises a dashboard , steering control handles distanced from the dashboard, the dashboard comprising a compartment closed by a flap and in which is arranged a protective bag of supple material at least partially gas-tight, the bag being coupled to a gas source and one or more accelerometers for automatically releasing the gas source in response to abnormal behaviour of the vehicle, in that the bag spreads out, in the inflated state...

  15. Application oriented failure modeling and characterization for polymers in automotive pedestrian protection

    OpenAIRE

    Staack, Holger; Seibert, Dominic; Baier, Horst

    2015-01-01

    In the development process of automotive pedestrian protection (PedPro) for upper- and lower leg impact, the failure of polymer components plays an important role. To influence impact kinematics, fractures can either be advantageous or undesirable. Simulation based design is a challenge for material modeling and hence characterization, particularly for failure of polymer components. An application-oriented concept for failure modeling in FEM simulations of polymer components in pedestrian pro...

  16. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  18. 77 FR 19000 - Foreign-Trade Zone 99-Wilmington, DE: Application for Manufacturing Authority; Fisker Automotive...

    Science.gov (United States)

    2012-03-29

    ...; Fisker Automotive, Inc. (Electric Passenger Vehicles): Wilmington, DE An application has been submitted... FTZ 99, requesting manufacturing authority on behalf of Fisker Automotive, Inc. (Fisker),...

  19. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    Science.gov (United States)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers

  20. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  1. Investigating antennas as ignition aid for automotive HID lamps

    International Nuclear Information System (INIS)

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case. (paper)

  2. THE USE OF RECYCLED SOLID AUTOMOTIVE PAINT WASTES AS INGREDIENTS IN AUTOMOTIVE SEALANT PRODUCTS - PHASE II

    Science.gov (United States)

    About 75,000,000 lbs of paint sludge is generated by the U.S. automotive industry each year. This type of waste and (similar streams from other industries) make significant contributions to landfills. The solution proposed by ASTER, Inc., proven feasible during the Phase I of thi...

  3. THE USE OF RECYCLED SOLID AUTOMOTIVE PAINT WASTES AS INGREDIENTS IN AUTOMOTIVE SEALANT PRODUCTS - PHASE I

    Science.gov (United States)

    About 75,000,000 lbs. of paint sludge is generated by the U.S. automotive industry each year. This type of waste (and similar streams in other industries) make a significant contribution to landfills. A proposed solution is to recycle the paint sludge into compounding ingredients...

  4. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  5. 76 FR 40591 - Coordinating Policies on Automotive Communities and Workers

    Science.gov (United States)

    2011-07-11

    ... Policies on Automotive Communities and Workers By the authority vested in me as President by the.... Over the last decade, the United States has experienced a decline in employment in the automotive industry and among part suppliers. This decline accelerated dramatically from 2008 to 2009, with more...

  6. An Overview of NASA Automotive Component Reliability Studies

    Science.gov (United States)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  7. Nanofluids with CNTs for automotive applications

    Science.gov (United States)

    Srinivas, V.; Moorthy, Ch. V. K. N. S. N.; Dedeepya, V.; Manikanta, P. V.; Satish, V.

    2016-04-01

    This paper summarizes a recent work on anti-corrosive and enhanced heat transfer properties of carboxylated water based nanofluids. DI water mixed with Sebacic acid (C10H18O4) as carboxylate additive is dispersed with multi walled carbon nanotubes and tested for corrosion and heat transfer characteristics. Corrosion studies made as per ASTM D 1384 show that carboxylate water dispersed with MWCNTs is resistant to corrosion and hence suitable for automotive environment. In addition to MWCNTs, carboxylated water dispersed with nano sized silver, copper and Aluminium oxide are also tested for corrosion performance but found to be giving considerable corrosion in automotive environment. The stability of MWCNT based nanofluids in terms of zeta potential is found to be good with carboxylated water compared to DI water. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with MWCNTs. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as MWCNTs. The carboxylated water is dispersed with very low mass concentration of multi walled carbon nano tubes at 0.025, 0.05 and 0.1 % and tested for heat transfer performance. The heat transfer studies are made in Reynolds number range of 2500-6000 in the developing flow regime. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator maintained at 5, 10 and 15 m/s. The coolant side overall heat transfer coefficient and overall heat transfer coefficient have improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of overall heat transfer coefficient. Stanton number correlation for the entire data has been developed. It is found that the wall temperature gradients play an important role in the enhancement of heat transfer when nanofluids are

  8. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  9. Advanced sheet steels for automotive applications

    Science.gov (United States)

    Fekete, James R.; Strugala, Donald C.; Yao, Zhicong

    1992-01-01

    Vacuum degassing has recently been used by sheet steel producers to improve their products' ductility and strength. Carbon contents can be reduced by an order of magnitude to less than 0.0030 wt.%. Through careful alloying and processing, a range of new steel products has been developed for the automotive industry. These products include interstitial-free, deep-drawing-quality steels; formable, high-strength, interstitial-free steels; and bake-hardenable steels. This article summarizes the chemistry and processing needed to produce these products.

  10. Scrap automotive electronics: A mini-review of current management practices.

    Science.gov (United States)

    Cucchiella, Federica; D'Adamo, Idiano; Rosa, Paolo; Terzi, Sergio

    2016-01-01

    End-of-life vehicles, together with waste from electric and electronic equipment, are known as an important source of secondary raw materials. For many years, their recovery has allowed the restoring of great amounts of metals for new cars production. This article provides a comprehensive mini-review on the end-of-life vehicles recycling topic between 2000 and 2014, with a particular focus on automotive electronics recycling. In fact, in the last years, experts focused their attention on a better exploitation of automotive shredder residue fraction, but not sufficiently on eventual electronic scraps embedded in it. Hence, studies assessing the value embedded in these scraps are rarely available in literature, causing an important gap in both recycling policies and research. The fact that, at present, the management of electronic control units (the most valuable component among automotive electronic equipment) is, as yet, off the radar in both end-of-life vehicles and waste from electric and electronic equipment Directives demonstrates the theory. Of course, their recycling would not contribute in a relevant way to reach the weighted-based recycling and recovery targets characterising current regulations, but would be very important under a critical raw materials recovery view. Results coming from the literature analysis confirm these assumptions.

  11. WEAR FAILURE MECHANISM AND MULTI-IMPACT PROPERTY OF AUTOMOTIVE ENGINE CHAIN

    Institute of Scientific and Technical Information of China (English)

    Meng Fanzhong; Wang Shukun; Lan Hong; Xu Rongjin; Xu Hanxue

    2005-01-01

    The multi-impact characteristics and failure mechanism of two kinds of automotive engine chain made in China are studied through engine assembly and road-drive tests. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine chain is fatigue wear, and its failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. In addition, the material, hot-treatment method and shaping technique for roller have a great influence upon the resistance to multi-impact. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technique are the effective method to increase its resistance to multi-impact.

  12. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    CERN Document Server

    Meyer, Gereon

    2013-01-01

    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de.

  13. Numerical Effectiveness of the Simulation of an Automotive Body Part Stamping

    Directory of Open Access Journals (Sweden)

    Jacek Stadnicki

    2015-02-01

    Full Text Available The simulation of advanced high-strength steel sheet (AHSS stamping processes by means of dedicated computer-aided engineering (CAE software requires the use of appropriate material models, the use of complex FEM models, and the use of advanced methods for solving nonlinear problems of their analysis. In practice, the engineering design of automotive body parts often leads to the formulation of problems, the solution of which requires ample computer resources and is very time-consuming. The paper describes a methodology to simulate stamping on the example of a car body part, with special attention being paid to the numerical efficiency of the FEM model and methods of solving it. The simulations of stamping of a sample stamped part—the automotive body part—in DynaForm and AutoForm programs are compared, focusing on the numerical effectiveness and consistency of the simulation results with the reality.

  14. Survey of CFD studies on automotive buffeting

    International Nuclear Information System (INIS)

    In the current automobile market buffeting is one of the customer frequent complaints on luxury cars and SUVs. Buffeting is a low frequency but high level wind noise and makes people inside the vehicle uncomfortable if it lasts for a long period of time. The physical mechanism of buffeting is a complicated phenomenon of aeroacoustic resonance. The aeroacoustic characteristics of buffeting depend on vehicle features and operating conditions. In this paper, a survey of CFD studies on the automotive buffeting is presented. Firstly, several buffeting related concepts, such as Helmholtz resonator, flow over a cavity, shear layer instability and vortex shedding, are reviewed and relevant references are listed. Then, a historic survey of the buffeting investigation is made with emphasis on computational studies. As an example, the buffeting studies at DaimlerChrysler are selected to demonstrate the procedure of CFD simulation for automotive buffeting. The procedure is then validated by the correlation with wind tunnel testing. After that the validated procedure is applied to find solutions for buffeting reduction. Finally, some comments on buffeting studies are addressed. (author)

  15. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  16. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  17. Advanced microsystems for automotive applications 2008

    Energy Technology Data Exchange (ETDEWEB)

    Valldorf, J.; Gessner, W. (eds.) [VDI/VDE Innovation und Technik GmbH, Berlin (Germany)

    2008-07-01

    With the total number of vehicles steadily increasing and soon approaching one billion, the world is facing serious challenges in terms of both safety of road transport and sustainability. Consequently the two major persistent issues for the automotive industry are improved safety and reduced emissions. The integration of complex microsystems with enhanced intelligence has enabled an increase in efficiency of the previously 'dumb' internal combustion engine by an average 1% annually during the last 20 years. In the future, such smart systems may help to leverage novel powertrain concepts towards the zero emission vehicle. Particularly for electric cars, anticipatory power management and efficient driving assistance will be needed to overcome range limitations. Electrical in-wheel motors equipped with novel miniaturized functionalities will be required. Intelligent systems for tire monitoring and control deserve special attention as well, since insufficient tire pressure accounts for more than 3% of the efficiency losses in the car. The conference book in hand is a showroom of activities, the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been known for during the last 12 years: advanced sensors including one based on the giant magneto resistance (GMR) effect, several camera and radar systems making road traffic safer by assisting the driver in recognizing pedestrians and obstacles, and human-machine interfaces based on the recognition of hand gestures - a striking example of how smart systems will further enhance the usability of vehicles and the comfort of driving. (orig.)

  18. Graduate Automotive Technology Education (GATE) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  19. High Voltage Bidirectional Flyback Converter Driving DEAP Actuator for Automotive Applications

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.;

    2013-01-01

    voltage and high output voltage bidirectional converter for driving the DEAP actuator. The detailed design and implemented parameters have been summarized, especially for the high voltage transformer. The experiments have been performed to validate the design and implementation.......DEAP (Dielectric Electro Active Polymer) is a new type of smart material. The actuator based on DEAP material tends to be applied in a variety of occasions. It will have prosperous future when employed in automotive field. This paper is focused on the design and implementation of a low input...

  20. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  1. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Directory of Open Access Journals (Sweden)

    Lindsay Miller

    2014-08-01

    Full Text Available Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  2. Bosch automotive electrics and automotive electronics systems and components, networking and hybrid drive

    CERN Document Server

    2014-01-01

    The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the "Automotive Electric, Automotive Electronics" technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle. Content Electrical and electronical systems – Basic principles of networking - Examples of networked vehicles – Bus systems – Architecture of electronic systems – Mechatronics – Elektronics – Electronic control Units – Software – Sensors – Actuators – Hybrid drives – Vehicle electrical system – Start...

  3. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  4. Active Vibration Isolation Using an Induced Strain Actuator with Application to Automotive Seat Suspensions

    Directory of Open Access Journals (Sweden)

    Mark Malowicki

    2001-01-01

    Full Text Available Active vibration isolation of automotive seats requires actuators that achieve millimeter-range displacements and forces on the order of 300 N. Recent developments in piezoceramic actuator technology provide a means for achieving these force and displacement levels in a compact device. This work demonstrates that prestressed, curved piezoceramic actuators achieve the force and displacement levels required for active isolation of automotive seats. An estimate of the force and displacement requirements are obtained from numerical simulations on a four-degree-of-freedom car and seat model that utilize representive road accelerations as inputs. An actuator that meets these specifications is designed using piezoceramic materials. Free displacement of 4.4 mm and blocked force greater than 300 N are measured. The actuator is integrated within a dead mass setup that simulates the isolation characteristics of an automotive seat. Control experiments demonstrate that active vibration is achievable with realistic road disturbances. Feedback control is able to eliminate any amplification due to mechanical resonance and reduce the isolation frequency from 9.5 Hz to 2 Hz.

  5. 汽车用胶管的发展%Development of Automotive Hose

    Institute of Scientific and Technical Information of China (English)

    孙克俭

    2014-01-01

    介绍汽车液压制动胶管、汽车动力转向胶管和汽车制冷系统胶管等的主体材料、结构及其发展。DOT4和DOT5等新型制动液以及二氧化碳和HFO-1234yf等新型制冷剂的应用对胶管性能提出了更高的要求。随着汽车电子制动系统和电动转向系统的发展,汽车胶管在制动和转向这2个领域的应用将有所减少。%The development of materials and hose structure for automotive hydraulic brake hose, power steering hose and cooling system hose is presented in this paper. With the use of new brake lfuid DOT4 and DOT5, new refrigerant carbon dioxide and HFO-1234yf, the performance requirements on automotive hoses are raised. At the same time, as the increasing use of electronic braking system and electronic power steering system, the usage of automotive hose in the braking and steering systems would be reduced.

  6. Modeling supply chain costs in the automotive manufacturing industry: The case of Valmet Automotive

    OpenAIRE

    Koivula, Lauri

    2015-01-01

    This thesis examines mathematical modeling as a means to improve profitability. The research is focused on studying supply chain cost drivers and their potential in regard to cost reduction in the automotive manufacturing industry, where the role of supply chain management is significant because of the capital intensive, fast paced, and high volume nature of the business. Hence, supportive tools for decision making are highly valuable. Therefore, the objective of this study is to develop a to...

  7. Automotive supply chain through the "control tower"-model : case Valmet Automotive

    OpenAIRE

    Kolehmainen, Karolina

    2013-01-01

    The aim of this thesis was to create comprehensive understanding about the Supply Chain management in a world class external logistics service that was created to fulfill Valmet Automotive’s project D1. This thesis consists of a detailed process description of the inbound- and outbound logistics operations regarding the production of Daimler’s Mercedes Benz A-series, at Valmet Automotive factory in Uusikaupunki, Finland. The process description emphasizes the important role of the 3PL service...

  8. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  9. Advances in LEDs for automotive applications

    Science.gov (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  10. Automotive Technology Evolved by Electrical and Electronic Systems

    Science.gov (United States)

    Teratani, Tatsuo; Okuma, Shigeru

    Automotive electrical and electronic systems, e.g. EHV, FCV, future X-By-Wire, have recently been introduced or planned in place of mechanical systems. Drivers are demanding environmental performance (fuel consumption and weight reduction), safety and comfort. For general use of the new technologies, evolution of the automotive technology is required, including energy conversion efficiency improvement, size and weight reduction of components, cost reduction and high reliability. This paper discusses and summarizes the next generation power systems, the future vehicle image, power source combinations, and problems to be solved for development of automotive electronics.

  11. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  12. Identifying Lead Markets in the European Automotive Industry

    DEFF Research Database (Denmark)

    Cleff, Thomas; Grimpe, Christoph; Rammer, Christian

    2015-01-01

    This paper presents an indicator-based methodology to identify lead markets in the European automotive industry. The lead market approach tries to explain why certain countries are better positioned than others for developing and launching new products. While much research stresses the role...... from the automotive industry should exploit this diversity of market characteristics within Europe when developing and launching new products...... design. We use an indicator-based approach which has been successfully employed for individual products as well as for various industries in order to identify lead markets in the European automotive industry. Employing five lead market factors, our results show that the EU is by far no homogeneous market...

  13. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    Science.gov (United States)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  14. Predictive Process Optimization for Fracture Ductility in Automotive TRIP Steels

    Science.gov (United States)

    Gong, Jiadong

    In light of the emerging challenges in the automotive industry of meeting new energy-saving and environment-friendly requirements imposed by both the government and the society, the auto makers have been working relentlessly to reduce the weight of automobiles. While steel makers pushed out a variety of novel Advanced High Strength Steels (AHSS) to serve this market with new needs, TRIP (Transformation Induced Plasticity) steels is one of the most promising materials for auto-body due to its exceptional combination of strength and formability. However, current commercial automotive TRIP steels demonstrate relatively low hole-expansion (HE) capability, which is critical in stretch forming of various auto parts. This shortcoming on ductility has been causing fracture issues in the forming process and limits the wider applications of this steel. The kinetic theory of martensitic transformations and associated transformation plasticity is applied to the optimization of transformation stability for enhanced mechanical properties in a class of high strength galvannealed TRIP steel. This research leverages newly developed characterization and simulation capabilities, supporting computational design of high-performance steels exploiting optimized transformation plasticity for desired mechanical behaviors, especially for the hole-expansion ductility. The microstructure of the automotive TRIP sheet steels was investigated, using advanced tomographic characterization including nanoscale Local Electrode Atom Probe (LEAP) microanalysis. The microstructural basis of austenite stability, the austenite carbon concentration in particular, was quantified and correlated with measured fracture ductility through transformation plasticity constitutive laws. Plastic flow stability for enhanced local fracture ductility at high strength is sought to maintain high hole-expansion ductility, through quantifying the optimal stability and the heat-treatment process to achieve it. An additional

  15. Design of a magnetorheological automotive shock absorber

    Science.gov (United States)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  16. CRM Implementation in the Automotive Industry

    OpenAIRE

    Öner, Dila; Xhemali, Lorena

    2009-01-01

    Date:                  2009-05-27 Level:                 Master Thesis in International Business and Entrepreneurship, 15 ECTS Institution:        School of Sustainable Development of Society and Technology, Mälardalen University   Title:                  The Implementation of Customer Relationship Management (CRM) in the Automotive Industry   Supervisor:       Peter Ekman Research           Exploiting the stages of CRM implementation and looking into the obstacles faced Issue:               ...

  17. Improvement of Automotive Part Supplier Performance Evaluation

    Science.gov (United States)

    Kongmunee, Chalermkwan; Chutima, Parames

    2016-05-01

    This research investigates the problem of the part supplier performance evaluation in a major Japanese automotive plant in Thailand. Its current evaluation scheme is based on experiences and self-opinion of the evaluators. As a result, many poor performance suppliers are still considered as good suppliers and allow to supply parts to the plant without further improvement obligation. To alleviate this problem, the brainstorming session among stakeholders and evaluators are formally conducted. The result of which is the appropriate evaluation criteria and sub-criteria. The analytical hierarchy process is also used to find suitable weights for each criteria and sub-criteria. The results show that a newly developed evaluation method is significantly better than the previous one in segregating between good and poor suppliers.

  18. An Assembly Line Balancing Problem Automotive Cables

    Directory of Open Access Journals (Sweden)

    Triki Hager

    2015-02-01

    Full Text Available In this paper, an Assembly Line Balancing Problem (ALBP is presented in a real-world automotive cables manufacturer company. This company found it necessary to balance its line, since it needs to increase the production rate. In this ALBP, the number of stations is known and the objective is to minimize cycle time where both precedence and zoning constrains must be satisfied. This problem is formulated as a binary linear program (BLP. Since this problem is NP-hard, an innovative Genetic Algorithm (GA is implemented. The full factorial design is used to obtain the better combination GA parameters and a simple convergence experimental study is performed on the stopping criteria to reduce computational time. Comparison of the proposed GA results with CPLEX software shows that, in a reasonable time, the GA generates consistent solutions that are very close to their optimal ones. Therefore, the proposed GA approach is very effective and competitive.

  19. Aero and vibroacoustics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2013-01-01

    Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation.   In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions.  Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill’s analogy, is required to investigate airborne noises produced by turbochargers in passenger vehi...

  20. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  1. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue. PMID:23007373

  2. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  3. Electromagnetic interference filter for automotive electrical systems

    Science.gov (United States)

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  4. Executable UML Modeling For Automotive Embedded Systems

    International Nuclear Information System (INIS)

    Engineers are more and more faced to the hard problem of sophisticated real-time System whereas time to market becomes always smaller. Object oriented modeling supported by UML standard brings effective solutions to such problems. However the possibility to specify real-time aspects of an application are not yet fully satisfactory Indeed, existing industrial proposals supply good answers to concurrency specification problem but they are yet limited regarding to real-time quantitative properties specification of an application. This work aims to construct a complete and consistent UML methodology based on a profile dedicated to automotive embedded Systems modeling and prototyping. This profile contains ail needed extensions to express easily the real-time quantitative properties of an application. Moreover, thanks to the formalization of UML protocol state machines, real-time concepts have been well-integrated in the object oriented paradigm. The main result of this deep integration is that a user is now able to model real-time Systems through the classical object oriented view i.e. without needing any specific knowing in real-time area. In order to answer to an industrial requirement, Systems prototyping (key point for car industry) the ACCORD/UML approach allows also to build executable models of an application. For that purpose, the method supplies a set of rules allow.ng to remove UML ambiguous semantics points, to complete semantics variation points and then to obtain a complete and coherent global model of an application being executable. The work of UML extension and its using formalization realized all along this thesis supplied also a complete and non-ambiguous modeling framework for automotive electronics Systems development. This is also a base particularly well-suited to tackle other facets of the Systems development as automatic and optimized code generation, validation, simulation or tests. (author)

  5. INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES

    Science.gov (United States)

    The US Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction and econo...

  6. Conference on Future Automotive Technology Focus Electro Mobility

    CERN Document Server

    2013-01-01

    The increasing trend towards electric cars leads to several challenges for the automobile industry, research institutes and politics as well as for the society. Research and serial development move closer together to meet automotive standards with new components such as traction batteries integrated into hybrid and electrical drivetrains. Furthermore, the influence of e-mobility on the daily mobility behavior, the effects on the automotive supply chain and the impact on industrial production have to be taken into account. According to these complex aspects it is crucial to not only acquire specific knowledge in the particular fields but also to consider their functional interaction. Therefore, it seems essential to merge competence from science, economy and politics. This year, the annual „Conference on Future Automotive Technology“ as the follow-up of the „2. Automobiltechnisches Kolloquium München” focuses on the economical realization of widespread automotive electro mobility. Contents - Energy St...

  7. Transitions: the state of the automotive industry–a summary

    OpenAIRE

    Emily Engel; William A. Strauss

    2007-01-01

    The United States automotive industry has been undergoing tremendous changes in recent years. Speakers at a recent Chicago Fed conference explored these changes and considered the road to the future for the auto industry.

  8. GUIDES TO POLLUTION PREVENTION: THE AUTOMOTIVE REFINISHING INDUSTRY

    Science.gov (United States)

    Automotive refinishing shops generate a variety of wastes while performing typical auto body repair and refinishing operations such as welding, filling dents, body section adjustments, alignments, sanding and painting. pportunities for waste reduction exist for the waste thinners...

  9. Firm and Product Heterogeneity in China's Automotive Exports

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-12-01

    Full Text Available The main purpose of this paper is to provide an in-depth analysis of the anatomy of China's automotive exports, relying on the literature on firm and product heterogeneity. For this purpose, we use highly disaggregated HS 8-digit product-category level data collected by the Chinese Customs Office for 2000 and 2008, and we distinguish between foreign firms, domestic public firms, and domestic private firms. We also decompose automotive products into autos and auto parts and components (P/C. We then calculate both the extensive margins – number of products exported – and intensive margins – average value of exports per product – of China's automotive exports. We estimate gravity equations to assess the determinants of China's exports of autos and auto P/C. Overall, our analysis yields a number of new, interesting stylized facts about China's automotive exports by confirming the need for taking into account different types of heterogeneity in analyzing international trade.

  10. Springback Compensation Process for High Strength Steel Automotive Parts

    Science.gov (United States)

    Onhon, M. Fatih

    2016-08-01

    This paper is about an advanced stamping simulation methodology used in automotive industry to shorten total die manufacturing times in a new vehicle project by means of benefiting leading edge virtual try-out technology.

  11. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    Science.gov (United States)

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  12. THE AUTOMOTIVE INDUSTRY IN A NEW TEHNOLOGICAL ERA

    Directory of Open Access Journals (Sweden)

    Simona Catalina ALBULESCU

    2014-11-01

    Full Text Available The business world is changing at an impressive speed: the global financial crisis, challenging markets, technology and talent crisis have a major impact on business. The last century can be associated with the triumph of the automobile industry. At the beginning of the 21st century the automotive industry has experienced one of the largest shifts in the automotive history. The new CO2 regulations on global level have determined the automotove industry to adopt new and original technologies faster than anticipated. The emerging tendency of car sharing in larger cities added to the media information related to the negative environmental effects of car mobility generate concerns that customers were seeking a replacement to the traditional, individual car ownership. The automotive industry will face challenging years ahead taking into consideration the shifting paradigm in auto-mobility. In this context, this article aims to provide a general perspective of the tendencies in the automotive sector.

  13. Robust optical sensors for safety critical automotive applications

    Science.gov (United States)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  14. Reliability Considerations of Flip Chip Components for Automotive Electronic Applications

    OpenAIRE

    Iwao Tachikawa; Naoharu Tsuzimoto; Isao Bansaku; Keisuke Sugiyama

    1981-01-01

    Electronic devices for automotive electronic applications have to be operated under extreme environmental conditions and therefore are required to have higher reliability compared with general electronic equipment. Recently automotive voltage regulators, ignition systems, etc. have been changing from mechanical constructions to electronic ones using thick film technology.This paper presents results that shows that our flip chip IC technology can satisfy the high reliability requirements of au...

  15. Six Sigma process improvements in automotive parts production

    OpenAIRE

    Soković, M.; D. Pavletić; E. Krulčić

    2006-01-01

    Purpose: of this paper: In the paper is presented a Six Sigma project, undertaken within company for production automotive parts, which deals with identification and reduction of production cost in the deburring process for gravity die-castings and improvement of quality level of produced parts.Design/methodology/approach: The objectives are achieved by application of Six Sigma approach to quality improvement project in automotive industry. The applied Six Sigma approach includes team works t...

  16. Multimedia Systems as Immune System to Improve Automotive Security?

    OpenAIRE

    Dittmann, Jana; Hoppe, Tobias; Vielhauer, Claus

    2013-01-01

    International audience Our motivation is driven by the fact, that security mechanisms often cause additional efforts and costs, and need to be aligned with safety goals - protecting human and environment. Especially in the field of automotive security, producers are seeking cost efficient, environmental-condition-adaptive (robust) and fast approaches, if possible combined with existing concepts reusing resources. Initially, working in automotive security, it was easy to see that a wide var...

  17. Model-based testing design for embedded automotive software

    OpenAIRE

    Mjeda, Anila; McElligott, Pat; Ryan, Kevin; Thiel, Steffen

    2009-01-01

    peer-reviewed The ever increasing complexity of embedded automotive software is not matched by the current development and test processes of automotive embedded software and the latter have become the limiting factor. A model-based software development and testing approach has the potential to reduce software development times, to produce executable specifications very early in the process as well as facilitate automatic code generation. Not surprisingly, the above are regarded as hi...

  18. The Strategic Importance of Supplier Relationships in the Automotive Industry

    OpenAIRE

    Ove Brandes; Staffan Brege; Per-Olof Brehmer

    2013-01-01

    The aim of this paper is to analyse longitudinally the development of purchasing strategies in the automotive industry during the last 20 years. The amplitude of the business cycle during this time frame has been very high and includes periods of financial/automotive crisis as well as high sales and demand. Our empirical data is primarily drawn from a 1990–2010 longitudinal case study of the relationship between automaker Volvo Personal Cars and Autoliv, a supplier of seat belts and airbags, ...

  19. Malmquist producticity index: An application of Turkish automotive industry

    OpenAIRE

    Lorcu, Fatma

    2010-01-01

    Automotive sector is one of the most important sectors which seen as the locomotive of economy, shares a large extent of the each economic crisis experienced in the area. In this study; automotive and supplier industry firms', which place in Istanbul Chamber of Industry's (ICI) 500 large firms, total factor productivities analyzed with Malmquist total factor productivity index. While 14 companies came up in this study that compassed 2003-2007 periods, the numbers of employees, net assets are ...

  20. EFFECTIVE OUTSOURCING THROUGHOUT THE SUPPLY CHAIN IN THE AUTOMOTIVE INDUSTRY

    OpenAIRE

    Liu, Ying

    2010-01-01

    The purpose of this bachelor’s thesis was to find a method of using outsourcing effectively throughout the supply chain in the automotive industry. Through the data collecting and analyzing, this thesis was written totally based on theory. As the automotive industry has been developing, the outsourcing service has become one of the most popular methods to improve the supply chain management. The auto manufacturer and spare parts supplier are the two most important roles in the supply chai...

  1. NEW TRENDS AND CHELLENGES IN AUTOMOTIVE INDUSTRY LOGISTICS OPERATIONS

    OpenAIRE

    Dušan Sabadka

    2015-01-01

    This paper lays out the main features of the global automotive industry and identifies several important trends. Logistics operations (inbound and outbound) in the automotive supply chain are complex and account for large expenses and therefore are segments in the value chainwhere improvements can be made. Better coordination between inbound and outbound logistics contributes to optimising the supply chains, to reducing inventories and to responding to consumer requests. As econom...

  2. Integrating plastic recycling industries into the automotive supply chain

    OpenAIRE

    MAUDET-CHARBUILLET, Carole; Bertoluci, Gwenola; FROELICH, Daniel

    2012-01-01

    Chains for recycling the plastics used in the automotive industry are complex systems just emerging. In this paper we propose to explain the reasons which have so far prevented these recycling chains from achieving a sufficiently regulated state to make them reliable partners for automotive manufacturers. On the basis of this, and taking recycling polypropylene as an example, we propose to use a dynamic flow model of this chain to identify the critical parameters on which achieving this regul...

  3. The Indian Automotive Industry and the ASEAN Supply Chain Relations

    OpenAIRE

    Agustin, Tristan Leo Dallo; Schroder, Martin

    2015-01-01

    The topic of automotive supply chains has been increasingly studied as it raises questions of economic development, especially from the perspectives of simultaneous globalisation and regionalisation, and trade. While ASEAN is a prime example of intraregional production networks, supply chains that connect ASEAN and India have not been studied indepth. Therefore, this paper investigates the Indian automotive industry, which is composed of automobile original equipment manufacturers (OEMs) and ...

  4. Supply Chain Risks and Uncertainty in the Automotive Industry

    OpenAIRE

    Lin, Sung-Chieh

    2012-01-01

    The aim of this research is to identify supply chain risks and uncertainty in automotive companies and the strategies that can be applied to help automotive companies mitigate risks and uncertainty. The case study method is applied in this research and the approach to progress data collection is through interviews. The case companies chosen for interviews are one automobile manufacturer and two parts suppliers in Taiwan. From the analysis of data collected, factors that cause supply chain ris...

  5. Analyzing competitiveness of automotive industry through cumulative belief degrees

    OpenAIRE

    Kabak, Özgür; Ülengin, Füsun; Önsel, Şule; Özaydin, Özay; Aktaş, Emel

    2012-01-01

    Copyright @ 2012 The European Mathematical Society This study aims to analyze the automotive industry from competitiveness perspective using a novel cumulative belief degrees (CBD) approach. For this purpose, a mathematical model based on CBD is proposed to quantify the relations among the variables in a system. This model is used to analyze the Turkish Automotive Industry through scenario analysis. This research is supported by SEDEFED (Federation of Industrial Associations), REF (TÜSİ...

  6. The impact of alternate fuels on future candidate automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Rahnke, C.J.; Nichols, R.J.

    1982-06-01

    The thermal efficiency that could occur in the future for a variety of automotive engine candidates operating on conventional and alternate fuels is projected based on current automotive engine development trends and the special characteristics of the various alternate fuels. The multi-fuel engine candidates include mixture cycle and direct injection reciprocating engines, as well as adiabatic turbocompound engines and advanced gas turbine and Stirling engines. The alternate fuels considered are propane, methanol, ethanol, diesel and methane.

  7. Minimizing interference in automotive radar using digital beamforming

    OpenAIRE

    C. Fischer; M. Goppelt; Blöcher, H.-L.; Dickmann, J.

    2011-01-01

    Millimetre wave radar is an essential part of automotive safety functions. A high interference tolerance, especially with other radar sensors, is vital. This paper gives an overview of the motivation, the boundary conditions and related activities in the MOSARIM project funded by the European Union and concerned with interference mitigation in automotive radars. Current and planned activities considering Digital Beamforming (DBF) as a method for interference mitigation are p...

  8. Global Production Sharing in the Australian Automotive Trade

    OpenAIRE

    Kishor Sharma

    2012-01-01

    This paper contributes to the literature on global production sharing by investigating the experience of the Australian automotive industry, which has experienced significant structural change following trade liberalisation. Our analysis indicates that the globalisation of the world economy, together with developments in transport and communication, has significantly increased the importance of the global production network in the Australian automotive industry, leading to a substantial rise ...

  9. Improving plastic waste management system in the automotive industry

    OpenAIRE

    Kashenko, Yuliya

    2013-01-01

    The main goals of the thesis were defined as the analysis of the environmental impact of the automotive company in the field of waste management and developing proposals for improving plastic waste management system. Current study is concentrated only on plastic waste to make the study results as concrete and achievable as possible. Today, to make lighter weight and more economical vehicles, plastics are replacing many metal components in automotive industry. In order...

  10. The Epidemiology of Facial Fractures in Automotive Collisions

    OpenAIRE

    Cormier, Joseph; Duma, Stefan

    2009-01-01

    This study examines the pattern of facial fractures in automotive collisions using the National Automotive Sampling System – Crashworthiness Data System. The database was examined for trends within collision and occupant descriptors among occupants sustaining facial fractures. Drivers and right front passengers were included in an analysis of frontal collisions. Side impacts were assessed separately by identifying occupants exposed to near and far side collisions. The distribution of facial b...

  11. Mockup Didatic Set for Students Development in Automotive Electronic

    OpenAIRE

    Fabio Delatore; Felipe Serafim Albaladejo; Carlos Alberto Morioka; Alexsander Tressino de Carvalho; Fabrizio Leonardi

    2013-01-01

    The automotive engineering education area, specifically on internal combustion engine, requires the use of suitable systems, capable to simulate, test and obtain specifics data from its operation. Automotive engines are so complex due to it is a mix of engineering subjects, so, a mockup was created to help its study. The mockup is an exactly the same engine that equips a vehicle, but assembled in a mechanical base, equipped with all the necessary components for running it up. The objective of...

  12. Storing electricity, the technological challenge of the automotive sector

    International Nuclear Information System (INIS)

    The search for alternatives to the internal combustion engine for motor vehicles may be nothing new, but the present focus on environmental issues (dwindling fossil fuel reserves, growing awareness of the environmental impact of the internal combustion engine, etc.) makes it more topical than ever. It is no coincidence that most manufacturers and OEMs on the automotive market, and many research centers, are studying the use of batteries and fuel cells as a means of developing greener, sustainable transport solutions for the future. The European Union is considering ways of compelling manufacturers to market vehicles that are more fuel-efficient at a time when the members of the European Automobile Manufacturers Association, unlike their counterparts in Japan, are failing to meet the targets defined in voluntary agreements. Through their sales of hybrid vehicles, Japanese manufacturers have lent credibility to the notion of a market for electrified vehicles. In this way, market constraints (environmental impact of the internal combustion engine, the cost of fossil fuel, consumers, and national or European lawmakers) will push the automotive industry into marketing 'low-carbon' vehicles in the very short term. Manufacturers' product plans reveal that a wave of electrified products can be expected on the market in 2015. That implies a significant R and D effort between now and 2012, with demonstrator vehicles up and running by 2013-2014 at the latest. So now is a crucial time for research organisations to position themselves in preparation for this emerging market. Industry is hoping for technological progress in areas that cut across these varying degrees of hybridisation and electrification, namely the storage and management of electrical energy and power electronics. It is these areas that will be at the heart of research programs. In these highly competitive times, efforts should focus on: - Lowering costs (by a factor of 5 to 10 for fuel cells and 2 to 4 for

  13. Vibration isolation of automotive vehicle engine using periodic mounting systems

    Science.gov (United States)

    Asiri, S.

    2005-05-01

    Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of

  14. Development of fly ash-based automotive brake lining

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, S.; Chugh, Y.P. [South Illinois University, Carbondale, IL (United States). College of Engineering

    2007-07-15

    Coal-fired power plants all over the world generate huge amounts of fly ash each year, 70 million tons of which are produced in the United States alone. Only 40% of all fly ashes generated in the USA find beneficial applications and rest have to be disposed off, which is burden for the generation industry. Fly ash particles possess certain characteristics that make them suitable for use in friction composites as a filter material. An attempt has been made through this research to incorporate more than 50wt% of fly ash particles in automotive brake lining friction composites. This paper presents the research carried out on development of friction composites, using fly ash obtained from a specific power plant in Illinois. Ingredients such as phenolic resin, aramid pulp, glass fiber, potassium titanate, graphite, aluminum fiber and copper powder were used in the composite development phase, in addition to the fly ash. The developed brake lining composites have exhibited consistent coefficients of friction in the range of 0.35-0.4, and wear rates lower than 12wt%.

  15. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  16. Automotive Fuels Survey. Part 2. Distribution and use

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.; Bueckmann, M.; Troelstra, W.P.; Achten, P.A.J. [eds.

    1996-12-01

    The purpose of the title survey is to present an overview of important aspects of the distribution and vehicle use of conventional and alternative automotive fuels. In combination with Part 1 (Raw materials and conversion) it considers the complete well to wheel chain of various fuels. Part 3 (to be published in 1998) will present a direct comparison of the well to wheel chains of the various fuels under consideration. In this part of the IEA/AFIS Annual Report the most important conclusions of the survey are presented for each individual fuel: gasoline and diesel oil, LPG, natural gas, alcohol fuels, vegetable oils and biodiesels, hydrogen and dimethyl ether (DME). After a general introduction, fuel composition and fuel properties are discussed, Next, the fuel chain from the fuel leaving the production plant up to and including vehicle use is described (distribution, refuelling and on-board storage). Subsequently attention is paid to fuel mixtures and legislation. Finally, data on energy consumption, emissions and costs are presented.After the fuel chapters follows an annex on legislation on energy consumption and emissions of road vehicles. figs., tabs., refs.

  17. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    Science.gov (United States)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  18. Occupational lead exposure among automotive garage workers – a case study for Jimma town, Ethiopia

    Directory of Open Access Journals (Sweden)

    Adela Yalemsew

    2012-07-01

    Full Text Available Abstract Background In Ethiopia, although there are numerous small-scale and medium industries which use lead-based raw materials that may pose health risks to workers, there are no workplace regulations for lead exposure. Moreover, there are no studies carried out on the blood lead levels (BLLs of workers or on the contribution of common workplace practices to lead poisoning. Method A cross-sectional study on the BLLs of 45 automotive garage workers and 40 non-garage workers was carried out in the town of Jimma, Ethiopia. In addition to BLL analysis, data on some risk factors such as smoking, and chewing ‘khat’ (the leaves of Catha adulis were gathered through structured questionnaires and interviews and data analysis was performed using SPSS (version 16. The t-test was used to compare mean BLLs of study groups. The analysis of variance (ANOVA, Kruskal-Wallis, Pearson chi-square and odds ratio tests were used to investigate the associations between specific job type, smoking and/or ‘khat’ chewing, service years and occurrence of non-specific symptoms with BLLs. Results The mean BLL of the automotive-garage workers was found to be significantly greater than that of the controls. The BLLs of all the lead-exposed individuals were found to be over 10 μg/dL, and 53% of them had BLLs ranging 12 – 20 μg/dL, with the remaining 47% having over 20 μg/dL. The BLL of the workers increased with the duration of working in an automotive garage. Individuals involved in manual car painting comprise a larger percentage (58% of those with the highest BLLs (≥ 20 μg/dL. Lead accumulation in individuals who chew ‘khat’ in the work place was found to be faster than in those who are not used to chewing ‘khat’. ‘Khat’ is an evergreen shrub native to tropical East Africa, with dark green opposite leaves which are chewed when fresh for their stimulating effects. Conclusion The findings of the study have clearly demonstrated that the

  19. 78 FR 48467 - Delphi Automotive Systems, LLC, Products and Service Solutions Division, Including On-Site Leased...

    Science.gov (United States)

    2013-08-08

    ... Employment and Training Administration Delphi Automotive Systems, LLC, Products and Service Solutions... workers of Delphi Automotive Systems, LLC, Product and Service Solutions Division, Original Equipment... of ] Delphi Automotive Systems, LLC, Product and Service Solutions Division, including on-site...

  20. The relationship between intellectual capital and value-based performance measurement variables (Case study: automotive industry companies of Iran)

    OpenAIRE

    MOHAMMADI CHESHMEH KABOUDI, Afshin; JOORBONYAN, Saeed; EBRAHIMI, Ebrahim; MOJAHED, Saeed

    2015-01-01

    Abstract. This study aimed to investigate the relationship between intellectual capital and value-based performance measurement variables of automotive companies operating in Iran in the period 2008-2014 and it was found that efficient use of material and intellectual resources is effective on value-based performance measurement indicators. Also, the efficiency of human capital impacts on economic value added, market value added and value-added cash and the efficiency of capital employed impa...

  1. Measuring soot particles from automotive exhaust emissions

    Directory of Open Access Journals (Sweden)

    Andres Hanspeter

    2014-01-01

    Full Text Available The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  2. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  3. DYNAMIC TASK SCHEDULING ON MULTICORE AUTOMOTIVE ECUS

    Directory of Open Access Journals (Sweden)

    Geetishree Mishra

    2014-12-01

    Full Text Available Automobile manufacturers are controlled by stringent govt. regulations for safety and fuel emissions and motivated towards adding more advanced features and sophisticated applications to the existing electronic system. Ever increasing customer’s demands for high level of comfort also necessitate providing even more sophistication in vehicle electronics system. All these, directly make the vehicle software system more complex and computationally more intensive. In turn, this demands very high computational capability of the microprocessor used in electronic control unit (ECU. In this regard, multicore processors have already been implemented in some of the task rigorous ECUs like, power train, image processing and infotainment. To achieve greater performance from these multicore processors, parallelized ECU software needs to be efficiently scheduled by the underlaying operating system for execution to utilize all the computational cores to the maximum extent possible and meet the real time constraint. In this paper, we propose a dynamic task scheduler for multicore engine control ECU that provides maximum CPU utilization, minimized preemption overhead, minimum average waiting time and all the tasks meet their real time deadlines while compared to the static priority scheduling suggested by Automotive Open Systems Architecture (AUTOSAR

  4. Light source modeling for automotive lighting devices

    Science.gov (United States)

    Zerhau-Dreihoefer, Harald; Haack, Uwe; Weber, Thomas; Wendt, Dierk

    2002-08-01

    Automotive lighting devices generally have to meet high standards. For example to avoid discomfort glare for the oncoming traffic, luminous intensities of a low beam headlight must decrease by more than one order of magnitude within a fraction of a degree along the horizontal cutoff-line. At the same time, a comfortable homogeneous illumination of the road requires slowly varying luminous intensities below the cutoff line. All this has to be realized taking into account both, the legal requirements and the customer's stylistic specifications. In order to be able to simulate and optimize devices with a good optical performance different light source models are required. In the early stage of e.g. reflector development simple unstructured models allow a very fast development of the reflectors shape. On the other hand the final simulation of a complex headlamp or signal light requires a sophisticated model of the spectral luminance. In addition to theoretical models based on the light source's geometry, measured luminance data can also be used in the simulation and optimization process.

  5. Dynamic Task Scheduling on Multicore Automotive ECUs

    Directory of Open Access Journals (Sweden)

    Geetishree Mishra

    2014-12-01

    Full Text Available Automobile manufacturers are controlled by stringen t govt. regulations for safety and fuel emissions a nd motivated towards adding more advanced features and sophisticated applications to the existing electro nic system. Ever increasing customer’s demands for high level of comfort also necessitate providing even m ore sophistication in vehicle electronics system. All t hese, directly make the vehicle software system mor e complex and computationally more intensive. In turn , this demands very high computational capability o f the microprocessor used in electronic control unit (ECU. In this regard, multicore processors have already been implemented in some of the task rigoro us ECUs like, power train, image processing and infotainment. To achieve greater performance from t hese multicore processors, parallelized ECU softwar e needs to be efficiently scheduled by the underlayin g operating system for execution to utilize all the computational cores to the maximum extent possible and meet the real time constraint. In this paper, w e propose a dynamic task scheduler for multicore engi ne control ECU that provides maximum CPU utilization, minimized preemption overhead, minimum average waiting time and all the tasks meet their real time deadlines while compared to the static pr iority scheduling suggested by Automotive Open Syst ems Architecture (AUTOSAR.

  6. Measuring soot particles from automotive exhaust emissions

    Science.gov (United States)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  7. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    Science.gov (United States)

    Nguyen, Vinh Ngoc

    metamaterials show material properties closely matching those predicted by full-wave simulations. Due to the high losses associated with resonant metamaterials, I shift my focus to non-resonant metamaterials. I discuss the design, fabrication, and testing of non-resonant metamaterials for fabrication on multilayer LCP printed circuit boards (PCBs). I then use these non-resonant metamaterials in a W-band planar metamaterial GRIN lens. Radiation pattern measurements show that this lens functions as a strong collimating element. Using similar lens design methods, I design a metamaterial GRIN lens from polytetrafluoroethylene-based (PTFE-based) non-resonant metamaterials. This GRIN lens is designed to match a target dielectric lens's radiation characteristics across a +/-6° field of view. Measurements at automotive radar frequencies show that this lens has approximately the same radiation characteristics as the target lens across the desired field of view. Finally, I describe the development of electrically reconfigurable metamaterials using thin-film silicon semiconductors. These silicon-based reconfigurable metamaterials were developed in close collaboration with several other researchers. My major contribution to the development of these reconfigurable metamaterials consisted of the initial metamaterial design. The Jokerst research group fabricated this initial design while TRI-NA characterized the fabricated metamaterial experimentally. Measurements showed approximately 8% variation in transmission under a 5 Volt DC bias. This variation in transmission closely matched the variation in transmission predicted by coupled electronic-electromagnetic simulation run by Yaroslav Urzhumov, one of other contributors to the development of the reconfigurable metamaterial.

  8. Deployment of ERP Systems at Automotive Industries, Security Inspection (Case Study: IRAN KHODRO Automotive Company)

    Science.gov (United States)

    Ali, Hatamirad; Hasan, Mehrjerdi

    Automotive industry and car production process is one of the most complex and large-scale production processes. Today, information technology (IT) and ERP systems incorporates a large portion of production processes. Without any integrated systems such as ERP, the production and supply chain processes will be tangled. The ERP systems, that are last generation of MRP systems, make produce and sale processes of these industries easier and this is the major factor of development of these industries anyhow. Today many of large-scale companies are developing and deploying the ERP systems. The ERP systems facilitate many of organization processes and make organization to increase efficiency. The security is a very important part of the ERP strategy at the organization, Security at the ERP systems, because of integrity and extensive, is more important of local and legacy systems. Disregarding of this point can play a giant role at success or failure of this kind of systems. The IRANKHODRO is the biggest automotive factory in the Middle East with an annual production over 600.000 cars. This paper presents ERP security deployment experience at the "IRANKHODRO Company". Recently, by launching ERP systems, it moved a big step toward more developments.

  9. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  10. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  11. Overview of Automotive Core Tools: Applications and Benefits

    Science.gov (United States)

    Doshi, Jigar A.; Desai, Darshak

    2016-06-01

    Continuous improvement of product and process quality is always challenging and creative task in today's era of globalization. Various quality tools are available and used for the same. Some of them are successful and few of them are not. Considering the complexity in the continuous quality improvement (CQI) process various new techniques are being introduced by the industries, as well as proposed by researchers and academia. Lean Manufacturing, Six Sigma, Lean Six Sigma is some of the techniques. In recent years, there are new tools being opted by the industry, especially automotive, called as Automotive Core Tools (ACT). The intention of this paper is to review the applications and benefits along with existing research on Automotive Core Tools with special emphasis on continuous quality improvement. The methodology uses an extensive review of literature through reputed publications—journals, conference proceedings, research thesis, etc. This paper provides an overview of ACT, its enablers, and exertions, how it evolved into sophisticated methodologies and benefits used in organisations. It should be of value to practitioners of Automotive Core Tools and to academics who are interested in how CQI can be achieved using ACT. It needs to be stressed here that this paper is not intended to scorn Automotive Core Tools, rather, its purpose is limited only to provide a balance on the prevailing positive views toward ACT.

  12. Evolution of the Automotive Body Coating Process—A Review

    Directory of Open Access Journals (Sweden)

    Nelson K. Akafuah

    2016-06-01

    Full Text Available Automotive coatings and the processes used to coat automobile surfaces exemplify the avant-garde of technologies that are capable of producing durable surfaces, exceeding customers’ expectations of appearance, maximizing efficiency, and meeting environmental regulations. These accomplishments are rooted in 100 years of experience, trial-and-error approaches, technique and technology advancements, and theoretical assessments. Because of advancements directed at understanding the how, why, when, and where of automobile coatings, the progress in controlling droplets and their deposition attributes, and the development of new technologies and paint chemistries, a comprehensive and up-to-date review of automobile coatings and coating technologies was considered to be of value to industrial practitioners and researchers. Overall, the critical performance factors driving the development and use of advanced automotive coatings and coating technologies are (a aesthetic characteristics; (b corrosion protection; (c mass production; (d cost and environmental requirements; and (e appearance and durability. Although the relative importance of each of these factors is debatable, the perfection of any one at the expense of another would be unacceptable. Hence, new developments in automotive coatings are described and discussed in the following review, and then related to improvements in production technologies and paints. Modern automotive coating procedures are also discussed in detail. Finally, an extrapolation into the future of automotive coating is offered with a view of the developments and technologies needed for an increasingly efficient and more sustainable coatings industry.

  13. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    International Nuclear Information System (INIS)

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy's Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation

  14. Efficient production of automotive biofuels; Effektiv produktion av biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Hagberg, Linus; Rydberg, Tomas; Raadberg, Henrik; Saernholm, Erik

    2008-07-01

    The report describes opportunities and consequences associated with biomass polygeneration plants, in particular the role that heat plants (HP) or combined heat and power plants (CHP) in district heating systems can play in the production of automotive biofuels. The aim of the report is to provide a knowledge base to stakeholders to help assess energy and environmental benefits associated with collaborative approaches in planning, constructing and operating energy plants. Several configurations are possible for an energy polygeneration plant, but this report focuses on configurations in which a plant for automotive biofuel production and a district heating system with HPs or CHPs have been integrated in some way in order to achieve added value. The modes of integration are several, e.g.: - Supply of process steam from the CHP to the fuel plant, by which the time of operation for the CHP can be extended; Supply of surplus heat from the fuel plant to the district heating system; Material exchange between the systems, by use of residue streams from the fuel plant as fuel in the HP/CHP; Surplus heat from the fuel plant used for drying of the solid fuel to the HP/CHP or for drying of raw material for pellets production; Co-location providing opportunities for shared infrastructure for raw material handling, service systems, utilities and/or logistics. The report principally addresses integration options of the first three types, but describes briefly also pellets production. The starting point for the analysis of integration options is the description of technologies of interest for the production of automotive biofuels. Commercially available technologies are of prime interest, but also a couple of technologies under development are included in this part of the study. In addition to outlining the process characteristics for these processes, surrounding conditions and system requirements are briefly outlined. The results are summarized in Table S1. Ethanol fermentation

  15. Supplier–customer relationships: Weaknesses in south african automotive supply chains

    OpenAIRE

    M. J. Naude; J. A. Badenhorst-Weiss

    2012-01-01

    The South African automotive industry, which is an important sector in the South African economy, needs to function efficiently if it is to compete internationally. However, South African automotive components manufacturers (ACMs) are not internationally competitive and automotive assemblers, also known as original equipment manufacturers (OEMs), often import cheaper components from abroad. All parties in the South African automotive supply chains need each other to ensure optimal efficiency ...

  16. Foreign Direct Investment and Restructuring in the Automotive Industry in Central and East Europe

    OpenAIRE

    Radosevic, S; Rozeik, A.

    2005-01-01

    This paper reviews and explores the major effects of FDI on industry restructuring of the CEE automotive industry. In particular, we are interested if automotive companies have exploited the value creation potential of CEE? Which factors explain the scale and depth of automotive industry restructuring in CEE? What are the economic effects of restructuring the automotive industry in terms of employment, trade and technology? What has been the role of national and EU policies in shaping FDI and...

  17. The survey on cores supplies in the sme in automotive remanufacturing sector

    Directory of Open Access Journals (Sweden)

    Paulina Golinska-Dawson

    2015-03-01

    Full Text Available Background: Remanufacturing of automotive components is a developing sector. The majority of companies in this sector belong to the group of SMEs. The remanufacturing benefits to the circular economy concept. The used products referred as "cores" are in the remanufacturing process bring back to as good as new condition. Supply management of cores faces a number of problems, which are discussed in the literature but there is still a lack of empirical studies in this domain. Material and methods: The research methodology consists of a literature review, where research papers from the Scopus, Science Direct and Business Source Premier databases were used. On the basis of literature review the problems are identified. The pilot survey was elaborated in order to get in depth knowledge on the organization of the cores' supplies in small and medium-sized enterprises (SMEs.  Results: The survey was conducted among 40 SMEs in automotive remanufacturing sector. The paper presents the characteristics of the respondents and it identifies sources of the cores supplies. Authors discuss also  the main problems which appear by organization of these supplies.  Conclusions: A remanufacturing process is more complex than the respective production process. The cores' supply management is crucial for profitability of remanufacturing. This paper provides in depth view on the practical issues in the cores supply management regarding source of cores, quality problems, material matching restriction problems and high variety of cores.

  18. Production of Integrated Automotive Part in High Pressure Diecasting Process Using Salt Core

    Institute of Scientific and Technical Information of China (English)

    Ki-Bae Kim; Hyun-Kwang Seok; Jun-Su Kim

    2004-01-01

    A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy,was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. A salt core, named a fusible core in this paper because the salt core can be easily extracted just as holding at a temperature under a solidus temperature of a casting alloy, was developed and applied to produce a fuel control part for automotive GDI engine in high pressure diecasting machine. A different salt material of a lower melting temperature than that of A1 alloy was mixed with a different ceramic particulate to improve a thermo-physical property of fusible core. The thermo-physical property of the fusible core was measured and a weight faction of the ceramic particulate was optimized. The selected core materials were poured in metallic mold by gravity to produce a fusible core for a fuel control part for automotive GDI engine. The fuel control part, which the fusible core was included inside, was successful to fabricate in a conventional diecasting machine with no melting of fusible core during casting.

  19. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.

    Science.gov (United States)

    Tian, Jin; Chen, Ming

    2014-02-01

    The growth in automotive production has increased the number of end-of-life vehicles (ELVs) annually. The traditional approach ELV processing involves dismantling, shredding, and landfill disposal. The "3R" (i.e., reduce, reuse, and recycle) principle has been increasingly employed in processing ELVs, particularly ELV parts, to promote sustainable development. The first step in processing ELVs is dismantling. However, certain parts of the vehicle are difficult to disassemble and use in practice. The extended producer responsibility policy requires carmakers to contribute in the processing of scrap cars either for their own developmental needs or for social responsibility. The design for dismantling approach can be an effective solution to the existing difficulties in dismantling ELVs. This approach can also provide guidelines in the design of automotive products. This paper illustrates the difficulty of handling polymers in dashboards. The physical properties of polymers prevent easy separation and recycling by using mechanical methods. Thus, dealers have to rely on chemical methods such as pyrolysis. Therefore, car designers should use a single material to benefit dealers. The use of materials for effective end-of-life processing without sacrificing the original performance requirements of the vehicle should be explored. PMID:24326159

  20. Design and analysis of automotive carbon fiber composite bumper beam based on finite element analysis

    Directory of Open Access Journals (Sweden)

    Tie Wang

    2015-06-01

    Full Text Available In this article, the most important part of the automotive front bumper system, namely, the bumper beam, is studied by changing the material and thickness to improve the crashworthiness performance in low-velocity impact. According to the low-speed standard of automotives stated in E.C.E. United Nations Agreement, Regulation no. 42, the low-velocity impact simulation based on finite element analysis is carried out. Lightweight is the main purpose of this article. First, the bumper beam analysis is accomplished for carbon fiber composite and steel material to analyze their deformation, weight, impact force, energy absorption, and the acceleration of the impactor. As a consequence, the bumper beam made by carbon fiber composite achieves better impact behavior. Second, on the purpose of lightweight, the bumper beams of different thickness including 5.4, 6, 6.6, and 7.2 mm are investigated. The results show that the 5.4 mm bumper beam is the best selection without sacrificing the impact performance. Third, according to the stress distribution, the thickness distribution of the bumper beam is changed to get better lightweight results. It is indicated that the weight of the improved bumper beam is further reduced and the impact performance is not weakened.

  1. Hybrid Modeling and Simulation of Automotive Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2013-07-01

    Full Text Available According to the operation of automotive supply chain and the features of various simulation methods, we create and simulate a automotive supply chain network model with the core enterprise of two vehicle manufacturers, consisting of several parts suppliers, vehicle distributors and logistics service providers. On this basis of a conceptual model including the establishment of enterprise layer, business layer and operation layer, we establish a detailed model of the network system according to the network structure of automotive supply chain, the operation process and the internal business process of core enterprises; then we use System Dynamics (SD, Discrete Event Simulation (DES and Agent Based Modeling (ABM to describe the operating state of each node in the network model. We execute and analyze the simulation model of the whole network system described by Anylogic, using the results of the distributors’ inventory, inventory cost and customer’s satisfaction to prove the effectiveness of the model.

  2. Digitalization of automotive industry – scenarios for future manufacturing

    Directory of Open Access Journals (Sweden)

    Peters Steven

    2016-01-01

    Full Text Available Among the current challenges to the global automotive industry are changes in global markets leading to product variety, regulation leading to pressure for new technologies in body and powertrain, and competition by new players such as huge information and communication technology companies. Automotive original equipment manufacturers (OEMs deal with these issues in different ways. This paper uses the scenario technique to illustrate possible answers to the question, how future value chains of automotive industry will look like. In almost all cases, information and communication technology (ICT plays a major role in future strategies to cope with the aforementioned challenges. On the one hand, ICT can boost the way to more efficient production of variants by utilizing smart manufacturing approaches, on the other hand ICT enables new features such as autonomous driving.

  3. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  4. State of the art: benchmarking microprocessors for embedded automotive applications

    Directory of Open Access Journals (Sweden)

    Adnan Shaout

    2016-09-01

    Full Text Available Benchmarking microprocessors provides a way for consumers to evaluate the performance of the processors. This is done by using either synthetic or real world applications. There are a number of benchmarks that exist today to assist consumers in evaluating the vast number of microprocessors that are available in the market. In this paper an investigation of the various benchmarks available for evaluating microprocessors for embedded automotive applications will be performed. We will provide an overview of the following benchmarks: Whetstone, Dhrystone, Linpack, standard performance evaluation corporation (SPEC CPU2006, embedded microprocessor benchmark consortium (EEMBC AutoBench and MiBench. A comparison of existing benchmarks will be given based on relevant characteristics of automotive applications which will give the proper recommendation when benchmarking processors for automotive applications.

  5. Evaluation of an attributive measurement system in the automotive industry

    Science.gov (United States)

    Simion, C.

    2016-08-01

    Measurement System Analysis (MSA) is a critical component for any quality improvement process. MSA is defined as an experimental and mathematical method of determining how much the variation within the measurement process contributes to overall process variability and it falls into two categories: attribute and variable. Most problematic measurement system issues come from measuring attribute data, which are usually the result of human judgment (visual inspection). Because attributive measurement systems are often used in some manufacturing processes, their assessment is important to obtain the confidence in the inspection process, to see where are the problems in order to eliminate them and to guide the process improvement. It was the aim of this paper to address such a issue presenting a case study made in a local company from the Sibiu region supplying products for the automotive industry, specifically the bag (a technical textile component, i.e. the fabric) for the airbag module. Because defects are inherent in every manufacturing process and in the field of airbag systems a minor defect can influence their performance and lives depend on the safety feature, there is a stringent visual inspection required on the defects of the bag material. The purpose of this attribute MSA was: to determine if all inspectors use the same criteria to determine “pass” from “fail” product (i.e. the fabric); to assess company inspection standards against customer's requirements; to determine how well inspectors are conforming to themselves; to identify how inspectors are conforming to a “known master,” which includes: how often operators ship defective product, how often operators dispose of acceptable product; to discover areas where training is required, procedures must be developed and standards are not available. The results were analyzed using MINITAB software with its module called Attribute Agreement Analysis. The conclusion was that the inspection process must

  6. A Study of the Awareness Level of Electric Vehicle Technology in California Community College Automotive Curriculums.

    Science.gov (United States)

    Keyzer, James

    California automotive technician programs were surveyed regarding their awareness of the impact that mandates of the Clean Air Act would have on their automotive technology programs. A questionnaire was sent to 100 California community colleges with an automotive technology program; 49 usable questionnaires were returned. A possible byproduct of…

  7. 40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.

    Science.gov (United States)

    2010-07-01

    ... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass...

  8. 78 FR 70278 - Automotive Trade Mission to New Delhi, Pune and Chennai, India

    Science.gov (United States)

    2013-11-25

    ... International Trade Administration Automotive Trade Mission to New Delhi, Pune and Chennai, India April 24-April... automotive trade mission to India (New Delhi, Pune and Chennai), April 24-30, 2014. The purpose of the mission is to introduce U.S. firms to India's rapidly expanding automotive market. Many global...

  9. 38 CFR 17.155 - Minimum standards of safety and quality for automotive adaptive equipment.

    Science.gov (United States)

    2010-07-01

    ... safety and quality for automotive adaptive equipment. 17.155 Section 17.155 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Automotive Equipment and Driver Training § 17.155 Minimum standards of safety and quality for automotive adaptive equipment. (a) The Under Secretary...

  10. Beyond survival: Challenges facing South African automotive component exporters

    Directory of Open Access Journals (Sweden)

    M. J. Naude

    2006-12-01

    Full Text Available Purpose and Objective: The South African automotive component industry faces huge challenges in a very competitive global market. The primary focus of this research article is to determine the challenges facing exporters within this industry with special reference to selected sub-sectors. The challenges are approached from a supply chain perspective only. Problem Investigated: The research problem of this study was to identify these unique challenges and ascertain whether the implementation of a 'philosophy of continuous improvement' could be used as a strategic tool to address the challenges they face in the market. Methodology: This study included a combination of literature review, interviews with managers in the selected sub-groups and questionnaires sent out to determine the challenges facing automotive component exporters. In order to test the content validity and the reliability of the questionnaire, a pilot study was conducted at two organisations that are the main suppliers of automotive filters for passenger vehicles. The non-probability convenience sample technique was used to select the sample and consisted of selected sub-sectors that contribute 64,1% of the total value of automotive component exports in South Africa. Out of twenty-seven questionnaires sent out, twenty (74% response rate were duly completed by the respondents and returned to the researcher. Findings: South Africa faces unique challenges and these are listed and ranked according to priority from most to least important as follows: 1. The reduction of production costs; 2. R/US$ exchange rate effect on the respondent's export sales and profit margin; 3. Exchange rate fluctuations; 4. Threats to the local automotive component market; and 5. Increased competition by way of manufactured imports being sold in the South African market. Value of Research: The study provides recommendations that can be used within the automotive component industry.

  11. Applicability valuation for evaluation of surface deflection in automotive outer panels

    Directory of Open Access Journals (Sweden)

    D.H. Park

    2008-12-01

    Full Text Available Purpose: Upon unloading in a forming process there is elastic recovery, which is the release of the elasticstrains and the redistribution of the residual stresses through the thickness direction, thus producing surfacedeflection. It causes changes in shape and dimensions that can create major problem in the external appearanceof outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Manyfactors could affect surface deflection in the process, such as material variations in mechanical properties, sheetthickness, tool geometry, processing parameters and lubricant condition.Design/methodology/approach: Numerical simulation of process was performed by the use of finite elementmethod, paying attention particularly to the thickness distribution and surface deflection of the drawn outerpanel and the outline flange during forming. Simulation procedures of automotive outer panel as large size shapeare as follows; 1 Acquisition of drawing parts 2 Laser scanning for generating CAD model 3 CAD modelgeneration 4 Simulation model operation 5 Simulation execution and analyses of simulation results.Findings: The development of automation in stamping and assembly processes of automobile manufacture willrequire an excellent surface quality of formed panels and also their accurate dimensions.Practical implications: The use of high strength steel sheets in the manufacturing of automobile outer panels hasincreased in the automotive industry over the years because of its lightweight and fuel-efficient improvement.But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be costeffective, accurate prediction must be made of its formability. The automotive industry places rigid constraintson final shape and dimensional tolerances as well as external appearance quality of outer panels. The numericalsimulation makes it possible to design and optimize the total process to a level

  12. Visualization of the air flow behind the automotive benchmark vent

    Science.gov (United States)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  13. SEE - Sight Effectiveness Enhancement. Results of the automotive evaluation

    DEFF Research Database (Denmark)

    Andersen, V.; Hansen, K.D.; Cathala, T.;

    2006-01-01

    the automotive part of the evaluation. The evaluation of the automotive application was carried out in computer simulated environments and followed the general objectives of the evaluation described in ‘Definition of theEvaluation Plan’ . The field experiment discussed, however, was given up due to lack...... assessing the SEE prototype during test rides carried out in Germany during foggy conditions. The reasons for the difference in performance of the real SEE system and the simulated systemappear to do with the parameterization of the simulated fog, which is described briefly in the main text of this report...

  14. Simulation work of fatigue life prediction of rubber automotive components

    Energy Technology Data Exchange (ETDEWEB)

    Samad, M S A [Automotive Engineering Unit, Institute of Advanced Technology, University Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia); Ali, Aidy, E-mail: aidy@eng.upm.edu.my [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor (Malaysia)

    2010-05-15

    The usage of rubbers has always been so important, especially in automotive industries. Rubbers have a hyper elastic behaviour which is the ability to withstand very large strain without failure. The normal applications for rubbers are used for shock absorption, sound isolation and mounting. In this study, the predictions of fatigue life of an engine mount of rubber automotive components were presented. The finite element analysis was performed to predict the critical part and the strain output were incorporated into fatigue model for prediction. The predicted result shows agreement in term of failure location of rubber mount.

  15. NEW TRENDS AND CHELLENGES IN AUTOMOTIVE INDUSTRY LOGISTICS OPERATIONS

    Directory of Open Access Journals (Sweden)

    Dušan Sabadka

    2015-03-01

    Full Text Available This paper lays out the main features of the global automotive industry and identifies several important trends. Logistics operations (inbound and outbound in the automotive supply chain are complex and account for large expenses and therefore are segments in the value chainwhere improvements can be made. Better coordination between inbound and outbound logistics contributes to optimising the supply chains, to reducing inventories and to responding to consumer requests. As economies grow, the competition shifts towards brand image and customisation and here the speed and reliability of logistics operations becomes a critical elements.

  16. Visualization of the air flow behind the automotive benchmark vent

    Directory of Open Access Journals (Sweden)

    Pech Ondrej

    2015-01-01

    Full Text Available Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  17. On Mixed Flow Turbines for Automotive Turbocharger Applications

    OpenAIRE

    Bernhardt Lüddecke; Dietmar Filsinger; Jan Ehrhard

    2012-01-01

    Due to increased demands for improved fuel economy of passenger cars, low-end and part-load performance is of key importance for the design of automotive turbocharger turbines. In an automotive drive cycle, a turbine which can extract more energy at high pressure ratios and lower rotational speeds is desirable. In the literature it is typically found that radial turbines provide peak efficiency at speed ratios of 0.7, but at high pressure ratios and low rotational speeds the blade speed ratio...

  18. Engineering wear-resistant surfaces in automotive aluminum

    Science.gov (United States)

    Kavorkijan, V.

    2003-02-01

    Inadequate wear resistance and low seizure loads prevent the direct use of aluminum alloys in automotive parts subject to intensive friction combined with high thermal and mechanical loading, such as brake discs, pistons, and cylinder liners. To enable the use of aluminum alloys in the production of automotive brake discs and other wear-resistant products, the insertion of a monolithic friction cladding rather than surface coating has been considered in this work. Three experimental approaches, two based on the pressure-less infiltration of porous ceramic preforms and one based on the subsequent hot rolling of aluminum and metal-matrix composite strips, are currently under investigation.

  19. Towards a Load Balancing Middleware for Automotive Infotainment Systems

    Science.gov (United States)

    Khaluf, Yara; Rettberg, Achim

    In this paper a middleware for distributed automotive systems is developed. The goal of this middleware is to support the load bal- ancing and service optimization in automotive infotainment and entertainment systems. These systems provide navigation, telecommunication, Internet, audio/video and many other services where a kind of dynamic load balancing mechanisms in addition to service quality optimization mechanisms will be applied by the developed middleware in order to improve the system performance and also at the same time improve the quality of services if possible.

  20. Financial Crises and Automotive Industry Development in Southeast Asia

    DEFF Research Database (Denmark)

    Doner, Richard F.; Wad, Peter

    2014-01-01

    The automotive industries of Southeast Asia have grown significantly but unevenly. Thailand has outperformed its neighbours in Malaysia, Indonesia and the Philippines with regard to production and, most notably, export volumes. But the Thai auto industry has not exhibited the level of local...... whose very success weakened pressures for upgrading; encouraged more moderate automotive liberalisation in Indonesia and, to a lesser extent, in the Philippines; but promoted only minimal changes to Malaysia’s relatively protectionist national car strategy. The fact that the crises served more...

  1. Simulation of mechanical joining for automotive applications

    OpenAIRE

    Gårdstam, Johannes

    2006-01-01

    Regarding the use of material, modern lightweight car bodies are becoming more and more complex than previous constructions. The materials nowadays are used for a more specific field of application and more high strength steels are used and also other materials like aluminium, stainless steel, reinforced polymers are used more frequent. The joining of these materials often requires new or modified joining processes. The aim with this thesis is concerned with the development of simulation mode...

  2. Review on electrochromic devices for automotive glazing

    Science.gov (United States)

    Demiryont, Hulya

    1991-12-01

    Electrochromic materials have been intensively studied for applications of various switchable optical systems. These materials exhibit adjustable optical absorption upon reversible oxidation/reduction processes. Since a reversible oxidation/reduction phenomenon is provided by electrically-driven electrochemical reactions, these materials are known as electrochromics. There are many publications including proceedings, books, and review articles written on electrochromic (EC) materials and their applications. This paper focuses on conventional and some new electrochromic devices (ECD), their specifications, and applications.

  3. Sliding mode observers for automotive alternator

    Science.gov (United States)

    Chen, De-Shiou

    Estimator development for synchronous rectification of the automotive alternator is a desirable approach for estimating alternator's back electromotive forces (EMFs) without a direct mechanical sensor of the rotor position. Recent theoretical studies show that estimation of the back EMF may be observed based on system's phase current model by sensing electrical variables (AC phase currents and DC bus voltage) of the synchronous rectifier. Observer design of the back EMF estimation has been developed for constant engine speed. In this work, we are interested in nonlinear observer design of the back EMF estimation for the real case of variable engine speed. Initial back EMF estimate can be obtained from a first-order sliding mode observer (SMO) based on the phase current model. A fourth-order nonlinear asymptotic observer (NAO), complemented by the dynamics of the back EMF with time-varying frequency and amplitude, is then incorporated into the observer design for chattering reduction. Since the cost of required phase current sensors may be prohibitive, the most applicable approach in real implementation by measuring DC current of the synchronous rectifier is carried out in the dissertation. It is shown that the DC link current consists of sequential "windows" with partial information of the phase currents, hence, the cascaded NAO is responsible not only for the purpose of chattering reduction but also for necessarily accomplishing the process of estimation. Stability analyses of the proposed estimators are considered for most linear and time-varying cases. The stability of the NAO without speed information is substantiated by both numerical and experimental results. Prospective estimation algorithms for the case of battery current measurements are investigated. Theoretical study indicates that the convergence of the proposed LAO may be provided by high gain inputs. Since the order of the LAO/NAO for the battery current case is one order higher than that of the link

  4. Multiscale Characterization of Automotive Surface Coating Formation for Sustainable Manufacturing%可持续制造业中汽车表面涂层自动化生产的多尺度表征

    Institute of Scientific and Technical Information of China (English)

    Jie XIAO; Jia LI; C.Piluso; Yinlun HUANG

    2008-01-01

    Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface through paint spray and curing in a multistage, dynamically changing environment. Traditionally, the quality control is solely post-process inspection based, and process operational adjustment is only experience based, thus the manufacturing may not be (highly) sustainable. In this article, a multiscale system modeling and analysis methodology is introduced for achieving a sustainable application of polymeric materials through paint spray and film curing in automotive surface coating manufacturing. By this methodology, the correlations among paint material, application processes and coating performance can be identified. The model-based analysis allows a comprehensive and deep study of the dynamic behaviors of the material, process, and product in a wide spectrum of length and time. Case studies illustrate the efficacy of the methodology for sustainable manufacturing.

  5. A Secure Mechanism to Supervise Automotive Sensor Network by Client on Smart Phone

    OpenAIRE

    T R Yashavanth,; Ravi S Malashetty,; V R Udupi

    2013-01-01

    This paper presents a proposal on design of a secure client on smart phone to monitor automotive sensor network. Recently, more and more vehicles, such as BMW X5, are connected from outside via smart phone [3]. From smart phone, users can use the internet resources in automotive. Users can monitor the automotives by using their smart phones. When the automotive is moving or stolen by robber, alert information will be reported to users and users can even brake their automotive via smart phone ...

  6. Application of carbon fiber composites in the automotive industry%碳纤维复合材料在汽车工业中的应用

    Institute of Scientific and Technical Information of China (English)

    赵艳荣; 胡平; 梁继才; 张文杰

    2015-01-01

    节能减排是当前汽车工业可持续发展迫切需要解决的问题,采用碳纤维复合材料等轻质材料使汽车轻量化是一个有效的解决办法.介绍了碳纤维复合材料的性能特点和在汽车上的应用现状,从材料、设计和成型工艺3个方面分析了其在国内汽车工业应用中的问题,提出了促进碳纤维复合材料广泛应用的发展建议,并展望了其在汽车工业中的应用前景.%Energy conservation and emission reduction are two urgent problems to be solved in the sustainable development of automotive industry, an effective solution is to use carbon fiber composites and other light materials to make automobile lightweight. Performance characteristics and application status in the automotive industry of carbon fiber composites are introduced, application problems in the domestic automotive industry are analyzed from three aspects of material, design and forming process, some development suggestions are put forward and application prospect in the automotive industry is forecasted.

  7. The influence of start-stop velocity cycling on the friction and wear behaviour of a hyper-eutectic Al-Si automotive alloy

    OpenAIRE

    J. C. Walker; Kamps, T.J.; R.J.K. Wood

    2013-01-01

    This paper is the first international publication on the effect of start-stop transient sliding velocities on the friction and wear behaviour of a light-weight aluminium - silicon hyper-eutectic alloy used as an automotive cylinder liner material. The work has used focused ion beam - secondary ion mass spectrometry to shown how green start-stop technology can reduce the thickness of lubricating surface tribo-layers formed on the surface of aluminium cylinder liner materials due to repeated ve...

  8. Effects of potassium titanate fiber on the wear of automotive brake linings

    Science.gov (United States)

    Halberstadt, M. L.; Mansfield, J. A.; Rhee, S. K.

    1977-01-01

    Asbestos reinforcing fiber in an automotive friction material was replaced by an experimental ingredient having better thermal stability, and the effects on wear and friction were studied. A friction materials test machine (SAE J661a) was used to determine friction and wear, under constant energy output conditions, as a function of temperature between 121 and 343 C (250 and 650 F). When potassium titanate fiber replaced one half of the asbestos in a standard commercial lining, with a 40 percent upward adjustment of phenolic resin content, wear above 204 C (400 F) was improved by 40% and friction by 30%. Tests on a full-scale inertial dynamometer supported the findings of the sample dynamometer tests. It was demonstrated that the potassium titanate fiber contributes directly to the improvement in wear and friction.

  9. Nanotechnology in automotive industry: research strategy and trends for the future-small objects, big impacts.

    Science.gov (United States)

    Coelho, Margarida C; Torrão, Guilhermina; Emami, Nazanin; Grácio, José

    2012-08-01

    The goal of this paper is to emphasize and present briefly the nanotechnology science and its potential impact on the automotive industry in order to improve the production of recent models with an optimization of the safety performance and a reduction in the environmental impacts. Nanomaterials can be applied in car bodies as light weight constructions without compromising the stiffness and crashwortiness, which means less material and less fuel consumption. This paper outlines the progress of nanotechnology applications into the safety features of more recent vehicle models and fuel efficiency, but also emphasis the importance of sustainable development on the application of these technologies and life cycle analysis of the considered materials, in order to meet the society trends and customers demands to improve ecology, safety and comfort.

  10. The use of fatigue tests in the manufacture of automotive steel wheels.

    Science.gov (United States)

    Drozyner, P.; Rychlik, A.

    2016-08-01

    Production for the automotive industry must be particularly sensitive to the aspect of safety and reliability of manufactured components. One of such element is the rim, where durability is a feature which significantly affects the safety of transport. Customer complaints regarding this element are particularly painful for the manufacturer because it is almost always associated with the event of accident or near-accident. Authors propose original comprehensive method of quality control at selected stages of rims production: supply of materials, production and pre-shipment inspections. Tests by the proposed method are carried out on the originally designed inertial fatigue machine The machine allows bending fatigue tests in the frequency range of 0 to 50 Hz at controlled increments of vibration amplitude. The method has been positively verified in one of rims factory in Poland. Implementation resulted in an almost complete elimination of complaints resulting from manufacturing and material errors.

  11. Nanotechnology in automotive industry: research strategy and trends for the future-small objects, big impacts.

    Science.gov (United States)

    Coelho, Margarida C; Torrão, Guilhermina; Emami, Nazanin; Grácio, José

    2012-08-01

    The goal of this paper is to emphasize and present briefly the nanotechnology science and its potential impact on the automotive industry in order to improve the production of recent models with an optimization of the safety performance and a reduction in the environmental impacts. Nanomaterials can be applied in car bodies as light weight constructions without compromising the stiffness and crashwortiness, which means less material and less fuel consumption. This paper outlines the progress of nanotechnology applications into the safety features of more recent vehicle models and fuel efficiency, but also emphasis the importance of sustainable development on the application of these technologies and life cycle analysis of the considered materials, in order to meet the society trends and customers demands to improve ecology, safety and comfort. PMID:22962798

  12. Characterization of automotive shredder residues before and five years after landfill disposal

    Directory of Open Access Journals (Sweden)

    Lucian Ionel Cioca

    2015-04-01

    Full Text Available The paper illustrates the results of an extensive analytical characterization study of automotive shredder residues (ASR, also known as "fluff”. The analyses concerned material fractions and their content, with special reference to heavy metals (e.g. Cd, Cr, Hg, Pb, Cu and arsenic. Elution tests on the original materials were also conducted. Moreover, chemical concentrations of ASR samples after about five years' landfill residence was assessed, in order to verify possible changes resulting from both in-situ leaching and organic matter degradation phenomena. Results show that lead seems to be the most critical element in view of possible ASR acceptance in non-hazardous waste landfills because of its high concentration in raw waste and, especially, of its proven leachability characteristics.

  13. Innovative design, analysis and development practices in aerospace and automotive engineering

    CERN Document Server

    Chandrasekhar, U; Arankalle, Avinash

    2014-01-01

    The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

  14. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  15. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  16. Environmental Performance and firm strategies in the Dutch automotive sector

    NARCIS (Netherlands)

    van der Vooren, A.; Alkemade, F.; Hekkert, M.P.

    2013-01-01

    This paper explores how automotive firms positioned their portfolio since the introduction of energy labels for cars. Using data on product characteristics of automobiles offered on the Dutch market over the period 2001-2010, we analyse how car manufacturers' product portfolios have changed. Portfol

  17. The Progressive Insurance Automotive X PRIZE Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  18. Environmental management and operational performance in automotive companies in Brazil

    DEFF Research Database (Denmark)

    Jabbour, C.J.C.; De Sousa Jabbour, A.B.L.; Govindan, Kannan;

    2013-01-01

    The main objective of this study is to verify the influence of Environmental Management (EM) on Operational Performance (OP) in Brazilian automotive companies, analyzing whether Lean Manufacturing (LM) and Human Resources (HR) interfere in the greening of these companies. Therefore, a conceptual...

  19. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY FILTRATION

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction and economic issues involved in recycling automotive and heavy-duty engine coolants. he specific recycling units evaluated are a fleet-size unit and a portable unit, both based on the technology of chemical filtration...

  20. Utilization of Durability Criterion to Develop Automotive Components

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2010-01-01

    Today the automotive companies must reduce the time to development of new products with improvement in performance, durability and low cost reductions where possible. To achieve this goal the carmakers need to improve the design criterion of car systems like body, chassis and suspension components...

  1. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  2. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  3. Flexible Labour Strategy in the Dutch Automotive Industry

    NARCIS (Netherlands)

    Riemsdijk, van Maarten; Leede, de Jan

    2001-01-01

    Labour flexibility is a major way for companies to become more flexible. Why companies use flexible labour relations varies widely per industry. We assess the development of labour flexibility within the Dutch automotive industry. Four cases, together representing the production chain, are presented

  4. Analysis of ISO 26262 Compliant Techniques for the Automotive Domain

    NARCIS (Netherlands)

    Kannan, M. S.; Dajsuren, Y.; Luo, Y.; Barosan, I.

    2015-01-01

    The ISO 26262 standard denes functional safety for automotive E/E systems. Since the publication of the rst edition of this standard in 2011, many dierent safety techniques complying to the ISO 26262 have been developed. However, it is not clear which parts and (sub-) phases of the standard are targ

  5. Automotive Technology Student Learning Styles and Their Implications for Faculty

    Science.gov (United States)

    Threeton, Mark D.; Walter, Richard A.

    2009-01-01

    In an effort to provide Career and Technical Education (CTE) professionals with additional insight on how to better meet the educational needs of the learner, this study sought to identify the preference for learning of postsecondary automotive technology students. While it might appear logical to naturally classify auto-tech students as primarily…

  6. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens;

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests, or p...

  7. Analysis of sound absorption of tuck spacer fabrics to reduce automotive noise

    Science.gov (United States)

    Dias, Tilak; Monaragala, Ravindra; Needham, Peter; Lay, Edward

    2007-08-01

    Textiles are widely used in the automotive industry to provide both comfort to the passengers and an aesthetic appearance to the automotive interior. They can also be used to reduce automotive interior noise, which can make automotive travel safer and more comfortable. Knitted fabrics are used widely in automotive upholstery; however, the sound absorbency of a single layer of a knitted fabric is inadequate for the reduction of automotive interior noise. This paper investigates the sound absorbency of a novel knitted spacer fabric, which can be used in automotive upholstery and has the potential for greater sound absorbency than a conventional plain knitted fabric and its derivatives. The spacer fabric is modelled as a porous sound absorber and its sound absorbency is studied with regard to its structural parameters.

  8. Building Real Modularity Competence in Automotive Design, Development, Production, and After-service

    DEFF Research Database (Denmark)

    Sanchez, Ron

    2013-01-01

    In recent years, modular approaches to design and production have been discussed and implemented in various ways in the automotive industry. However, this paper draws on the author's extensive work with firms in the automotive and other industries to suggest that there is still relatively limited...... to which a firm has developed and is applying a real modularity competence in automotive design, development, production, and after-service.......In recent years, modular approaches to design and production have been discussed and implemented in various ways in the automotive industry. However, this paper draws on the author's extensive work with firms in the automotive and other industries to suggest that there is still relatively limited...... understanding of what modular strategies really mean and of what effective implementation of modularity strategies would entail in the automotive industry ' with the result that at least some automotive firms that claim to be using modular strategies are in fact doing so in name only. This paper then proposes...

  9. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

  10. Effect of turbulence in modeling the reduction of local drag forces in a computational automotive model

    Directory of Open Access Journals (Sweden)

    Sanwar A. Sunny

    2011-11-01

    Full Text Available In this computational fluid dynamic (CFD study on vehicle drag forces sheds light on the mathematical algorithms utilized to converge on pertinent data useful in the design and manufacture of automobiles. COSMOS Floworks™ was used to model the virtual vehicle motion involving various governing flow equations with main attention given to turbulent behavior in incompressible fluid flows. The paper highlighted Navier-Stokes considerations in the study and introduced Reynolds Decomposition methods to generate more refined models which in turn give accurate results, such as Reynolds-Averaged Navier–Stokes (RANS Equations and Large Eddy Simulation (LES Techniques, introduced using the Einstein Notation. Recent developments in Coherent vortex simulation methods were also briefly discussed. Example modeling and tests were conducted to show automotive design improvements that resulted in a 8.57% improvement in local drag forces (FD at the rear wheel wells, which effectively reduces the required Horsepower (hp of the vehicle traveling at a certain speed (7.24 %. Different 3-D Automotive Design Models were examined in the current study, where real life design considerations and design benefits applications were briefly discussed. Furthermore, the paper highlights the need for utilization of both computational and real flow analysis on the car body and future performance relationship with the car’s body weight, material and design.

  11. Ergonomics and Kaizen as strategies for competitiveness: a theoretical and practical in an automotive industry.

    Science.gov (United States)

    Vieira, Leandro; Balbinotti, Giles; Varasquin, Adriano; Gontijo, Leila

    2012-01-01

    With increased international competitiveness in the automotive industry, came the concern of the companies save costs and lower production costs. For this purpose many ways are designed to reduce costs and waste of raw materials and reduce activities that do not aggregate value to manufacturing processes. In the early XVII appears the manufacturing system, which processes were hard with little concern for the health and safety of employees and conditions of the workplace. After the advent of the production system called lean manufacturing, a new paradigm in terms of production system capable of providing high levels of productivity and quality. It is based on waste elimination that occur during the production process. After began a new way of thinking, creating a culture of continuous improvement and lean process with no waste and reducing costs, without neglecting the welfare worker and improving the conditions of their work environment. This paper presents a reflection on the application of ergonomics in a lean production system of an automotive industry, using methodology based on the Kaizen (Continuous Improvement) to gain performance and improving the conditions of the workplace, also will be presented with positive and negative points in using this methodology in relation to ergonomics. The research will be conducted by collecting data 'in loco' and interviews with workers. Some studies show that in companies that are lean system and using the methodology of Kaizen, the results of product quality, levels of absenteeism and accidents are better than those obtained in companies that do not apply the same concept.

  12. Characterization of automotive paint by optical coherence tomography.

    Science.gov (United States)

    Zhang, Ning; Wang, Chengming; Sun, Zhenwen; Mei, Hongcheng; Huang, Wei; Xu, Lei; Xie, Lanchi; Guo, Jingjing; Yan, Yuwen; Li, Zhihui; Xu, Xiaojing; Xue, Ping; Liu, Ningning

    2016-09-01

    Automotive paint is common trace evidence that plays a significant role in many vehicle-related criminal cases. However, the conventional methods of obtaining tomographic images tend to damage the samples. Optical coherence tomography (OCT) is a novel method to obtain high-resolution and cross-sectional images of the automotive paints in a non-destructive, and high-speed manner. In this study, OCT was applied to image and analyze the automotive paint, using scanning electron microscope (SEM) as reference. Eight automotive paint samples of different brands were examined. The images of multi-layer structures provided by OCT system with 5μm depth resolution were consistent with those by SEM. To distinguish different paints with similar visual appearance, we extracted internal structural features from the images using peak analysis and optical attenuation fit. Six characterized parameters were found to distinguish the samples including the optical path length (OPL) of base coat, the optical attenuation coefficient (OAC) of base coat, the OPL of clear coat, the back-scattering ratio (BSR) of clear coat and base coat, the OPL of primer surfacer, and the BSR of base coat and primer. Statistical differences were evaluated by an independent t-test with p<0.05. OCT was applied to analyze repainted paint as well. Three-dimensional OCT reconstruction of the paints was also implemented to create en face (transverse section) images for morphology examination and comparison. These results suggest that OCT imaging can provide additional new features for analyzing the automotive paints and thereby may be a promising supplement to traditional methods. Meanwhile, the OCT system is favorable for achieving in-situ and real-time examination at the scene of crime. PMID:27341546

  13. Automotive fuels survey. Part 4. Innovations or illusions

    International Nuclear Information System (INIS)

    Volumes 1 to 3 of the IEA/AFIS Automotive Fuels Survey, address the most well-known automotive fuels and fuel production routes. Less well-known fuels and energy sources that are not used in combustion engines, e.g. electricity, were excluded from these volumes. In this report fuel routes and fuels that have not been addressed in the first volumes will be analysed. In this report, each chapter starts with a short description of the fuel(route) and its status of development (e.g. if the idea has been abandoned or if the fuel is already sold at a fuel station). Then the different aspects of that fuel are described as far as the information is available. This is limited to information that can not be found in volumes one and two of the Automotive Fuels Survey. For example: for the diesel-water mixtures, the production of diesel is not be described. If comparisons are made, they are made either relative to an already described fuel(route) that is related (e.g. biogas will be compared with natural gas) or relative to diesel and gasoline as was done in volume 1 and 2 of the Automotive Fuels Survey. For some of the fuels, the relation with a fuel already covered in volume one and two is very strong. For these fuels more information can be found in the chapters on the related fuel in the other volumes of the Automotive Fuels Survey. The following fuels are covered in this report: biodiesel from used oil and fat, biodiesel and biogasoline from algae, diesel from hydrothermal upgrading, biogas, hythane, Fischer-Tropsch diesel, diesel-water blends, higher ethers, and electricity. 74 refs

  14. Automotive fuels survey. Part 4. Innovations or illusions

    Energy Technology Data Exchange (ETDEWEB)

    Troelstra, W.P.; Van Walwijk, M.; Bueckmann, M. [International Energy Agency Automotive Fuels Information Service IEA/AFIS, c/o Innas, Breda (Netherlands)

    1999-01-01

    Volumes 1 to 3 of the IEA/AFIS Automotive Fuels Survey, address the most well-known automotive fuels and fuel production routes. Less well-known fuels and energy sources that are not used in combustion engines, e.g. electricity, were excluded from these volumes. In this report fuel routes and fuels that have not been addressed in the first volumes will be analysed. In this report, each chapter starts with a short description of the fuel(route) and its status of development (e.g. if the idea has been abandoned or if the fuel is already sold at a fuel station). Then the different aspects of that fuel are described as far as the information is available. This is limited to information that can not be found in volumes one and two of the Automotive Fuels Survey. For example: for the diesel-water mixtures, the production of diesel is not be described. If comparisons are made, they are made either relative to an already described fuel(route) that is related (e.g. biogas will be compared with natural gas) or relative to diesel and gasoline as was done in volume 1 and 2 of the Automotive Fuels Survey. For some of the fuels, the relation with a fuel already covered in volume one and two is very strong. For these fuels more information can be found in the chapters on the related fuel in the other volumes of the Automotive Fuels Survey. The following fuels are covered in this report: biodiesel from used oil and fat, biodiesel and biogasoline from algae, diesel from hydrothermal upgrading, biogas, hythane, Fischer-Tropsch diesel, diesel-water blends, higher ethers, and electricity. 74 refs.

  15. Performance Analysis of Leaf Spring by Contact Mechanics Approach Based on the Nature of Material Properties

    OpenAIRE

    Sathish Gandhi, Veeramalai Chinnasamy; Kumaravelan, Radhakrishnan; Ramesh, Sengottuvelu; Joemax Agu, Maxwell Thompson

    2014-01-01

    In an automotive system, a curved leaf spring is used for the purpose of suspension and for reducing the transient vibration of the system. Composite materials are widely used in automobile industries as a replacement for steel to reduce the weight and to increase the strength of an automotive system. In this study, various materials have been considered for an analysis based on the Young modulus-to-yield strength ratio. The study has been carried out by considering the material properties. T...

  16. Acoustic response variability in automotive vehicles

    Science.gov (United States)

    Hills, E.; Mace, B. R.; Ferguson, N. S.

    2009-03-01

    A statistical analysis of a series of measurements of the audio-frequency response of a large set of automotive vehicles is presented: a small hatchback model with both a three-door (411 vehicles) and five-door (403 vehicles) derivative and a mid-sized family five-door car (316 vehicles). The sets included vehicles of various specifications, engines, gearboxes, interior trim, wheels and tyres. The tests were performed in a hemianechoic chamber with the temperature and humidity recorded. Two tests were performed on each vehicle and the interior cabin noise measured. In the first, the excitation was acoustically induced by sets of external loudspeakers. In the second test, predominantly structure-borne noise was induced by running the vehicle at a steady speed on a rough roller. For both types of excitation, it is seen that the effects of temperature are small, indicating that manufacturing variability is larger than that due to temperature for the tests conducted. It is also observed that there are no significant outlying vehicles, i.e. there are at most only a few vehicles that consistently have the lowest or highest noise levels over the whole spectrum. For the acoustically excited tests, measured 1/3-octave noise reduction levels typically have a spread of 5 dB or so and the normalised standard deviation of the linear data is typically 0.1 or higher. Regarding the statistical distribution of the linear data, a lognormal distribution is a somewhat better fit than a Gaussian distribution for lower 1/3-octave bands, while the reverse is true at higher frequencies. For the distribution of the overall linear levels, a Gaussian distribution is generally the most representative. As a simple description of the response variability, it is sufficient for this series of measurements to assume that the acoustically induced airborne cabin noise is best described by a Gaussian distribution with a normalised standard deviation between 0.09 and 0.145. There is generally

  17. SCT2008. Future trends in steel development, processing technologies and applications. Bringing the automotive, supplier and steel industries together

    Energy Technology Data Exchange (ETDEWEB)

    Fuchsbauer, Bernhard; Wieland, Hans-Joachim (eds.)

    2008-07-01

    Within the Second Conference Steels in Cars and Trucks at 1st to 5th Juni, 2008, in Wiesbaden (Federal Republic of Germany), the following lectures were held: (1) Opening and welcome: Status of the steel industry (Hans Jueergen Kerkhoff); (2) The automotive world (Martin Wissmann); (3) Steel grades - Needs for the future (Bernard Bramaud); (4) Cars and stel - Quo vadis? (Josef Bauman); (5) Making a promise real - Delivering high quality to the automotive market (Juergen Horsthofer); (6) Ultrahigh strength and supraduvtile high-manganese light-weight steels for automotive applications (Georg Frommeyer); (7) Effect of B on the transformation behaviour in TRIP steels (Jai-Huyn Kwak, Kwang-Geun Chin); (8) Customer oriented development and optimization of cold rolled intercritically annealed multiphase TRIP sheet steels (Daniel Krizan et al.); (9) X-IP {sup registered} 1000: Properties of an austenitic super high strength high manganese steel - status and outlook (Harald Hofmann et al.); (10) Ultrahigh strength hot-rolled structural steel with enhanced inherent corrosion resistance (Mikko Arponen, Jukka Koerni); (11) Mechanical properties of ferritic stainless Al Cr steels (Ralf Rablbauer, Georg Frommeyer); (12) Development status and market potential of hot formed ballistic steels (Christian Howe et al.); (13) Use of corrosion-resistant higher-alloyed metallic materials for the transport of dangerous goods in tanks (Margit Weltschev et al.); (14) Modern development of forged components for automotive applications (Hans-Willi Raedt, Manfred Hirschvogel); (15) A new high strength steel 20MnCrMo7 (Heike Langner et al.); (16) Temperature resistant steel at 350 C with a tensile strength of 1400 MPa (Serosh Engineer et al.); (17) High pressure fuel lines for modern diesel engines (Steffen Zimmermann et al.).

  18. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  19. All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Duranceau, C. M.; Spangenberger, J. S. (Energy Systems); (Vehicle Recycling Partnership, LLC); (American Chemistry Counsel, Plastics Division)

    2011-09-26

    A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the

  20. 铝合金与玻璃钢汽车引擎盖的生命周期评价%Life cycle assessment of automotive engine hoods made of aluminum alloy and glass mat reinforced thermoplastic

    Institute of Scientific and Technical Information of China (English)

    刘志峰; 王进京; 张雷; 鲍宏

    2012-01-01

    In this paper,the life cycle environmental impact of automotive engine hoods made of aluminum alloy and composite plastic is estimated and analyzed contrastively. The result shows that during the phases of obtaining raw material and manufacturing, the environmental impact of automotive engine hoods made of aluminum alloy is larger than that of the ones made of composite plastic, while the life cycle environmental impact of the former is less than that of the latter because of the lower gasoline consumption during servicing phase. The assessment is extended from the engine hood to the entire automotive as the automotive A using 100 kg aluminum alloy is compared with the automotive B using 120 kg composite plastic. The life cycle environmental impact of automotive A is less than that of automotive B, while the impact of automotive A is larger than that of automotive B until the auto-motives have served for seven years, reaching an accumulative distance of 148 500 km.%文章对铝合金和复合材料汽车引擎盖的生命周期环境影响进行了评价和对比分析,结果表明,在原材料获取阶段和加工制造阶段,铝合金引擎盖的环境影响大于复合材料引擎盖,使用阶段的低油耗使得前者的生命周期环境影响小于后者.由分析单一引擎盖零部件扩展到整车,将使用100 kg铝合金的汽车A与使用120kg复合材料的汽车B进行对比分析.汽车A的生命周期环境影响小于汽车B,但在车辆行驶至第7年之前,即累计行程为14.85×104 km,汽车A生命周期环境影响大于汽车B.

  1. 汽车用非织造材料的发展%Developments of Nonwovens for Automotive Market

    Institute of Scientific and Technical Information of China (English)

    赵永霞

    2013-01-01

      近年来,纺织品特别是非织造布在汽车领域扮演着日益重要的角色。一般来说,汽车用非织造布的开发主要围绕舒适性、安全性和环保性而展开。随着低碳经济和绿色环保理念在全球的盛行,可回收材料加工的非织造布迎来了新的发展机遇。本文重点介绍了非织造布在汽车吸音材料、电池隔膜等中的发展应用。%Nowadays, textiles especially nonwovens see a strong growth in automotive market. Generally, the development of automotive nonwovens mainly focus on comfort, safe and green. To develop new, extremely sustainable vehicles, the use of recycled materials and other renewable raw materials continue to grow. In this article, latest developments of nonwoven absorber materials, filtration materials and battery separator were introduced.

  2. Suitability of Alternative Lubricants for Automotive Gear Applications

    Directory of Open Access Journals (Sweden)

    Amit Suhane

    2014-03-01

    Full Text Available Rising environmental concerns due to the problems associated with conventional mineral lubricants has renewed interest in usage of alternative resources. Various attempts have been made to explore the possibilities of utilizing vegetable oils for range of applications. Properties like excellent viscosity features, higher biodegradability, lower toxicity, better renewability & natural lubricity etc shows its potential as lubricants inspite of certain technical problems. Critical issues like lower oxidation stability , poor cold temperature properties affects the performance of vegetable oils and restricts its application to limited range . Gear oils are the hidden workhorses of automotive applications. This article highlights the suitability of various vegetable oils for lubricant formulation as an alternative in automotive gearing applications.

  3. Economic crisis and the automotive industry in Romania

    Directory of Open Access Journals (Sweden)

    Iosip, A.

    2010-12-01

    Full Text Available The economic crisis has affected many areas but the auto industry is perhaps one of the most affected. Renault, Ford, General Motors, Toyota, Volkswagen, BMW are just some of the big players caught unprepared. Through this paper we propose an analysis of the automotive market in Romania in order to understand the sales decrease of the last two years. At the same time we aimed at understanding the reasons that led to a decrease in car sales, what were the measures taken by the government to stop this phenomenon and how the economic crisis influenced the automotive field in Romania. An objective image of the situation in the automobile market in Romania at this moment also requires an analysis of the marketing environment and the changes it has undergone over time. Last but not least we will try to find a series of measures to re-launch the car market in Romania.

  4. Automotive Technology and Human Factors Research: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Motoyuki Akamatsu

    2013-01-01

    Full Text Available This paper reviews the history of automotive technology development and human factors research, largely by decade, since the inception of the automobile. The human factors aspects were classified into primary driving task aspects (controls, displays, and visibility, driver workspace (seating and packaging, vibration, comfort, and climate, driver’s condition (fatigue and impairment, crash injury, advanced driver-assistance systems, external communication access, and driving behavior. For each era, the paper describes the SAE and ISO standards developed, the major organizations and conferences established, the major news stories affecting vehicle safety, and the general social context. The paper ends with a discussion of what can be learned from this historical review and the major issues to be addressed. A major contribution of this paper is more than 180 references that represent the foundation of automotive human factors, which should be considered core knowledge and should be familiar to those in the profession.

  5. Strategies of performance self-monitoring in automotive production.

    Science.gov (United States)

    Faye, Hélène; Falzon, Pierre

    2009-09-01

    Production in the automotive industry, based on assembly line work, is now characterized by lean manufacturing and customization. This results in greater flexibility and increased quality demands, including worker performance self-monitoring. The objectives of this study are to refine the concept of performance self-monitoring and to characterize the strategies developed by operators to achieve it. Data were collected based on the method of individual auto-confrontation, consisting of two steps: eleven assembly-line operators of a French automotive company were individually observed and video-taped while they were working; an interview then allowed each operator to discuss his/her activity based on the video-tape. This study expands the concept of performance self-monitoring by highlighting three types of strategies directly oriented toward quality: prevention, feedback control and control action strategies. PMID:19230859

  6. Mockup Didatic Set for Students Development in Automotive Electronic

    Directory of Open Access Journals (Sweden)

    Fabio Delatore

    2013-05-01

    Full Text Available The automotive engineering education area, specifically on internal combustion engine, requires the use of suitable systems, capable to simulate, test and obtain specifics data from its operation. Automotive engines are so complex due to it is a mix of engineering subjects, so, a mockup was created to help its study. The mockup is an exactly the same engine that equips a vehicle, but assembled in a mechanical base, equipped with all the necessary components for running it up. The objective of this work is to develop a mockup with a suitable Electronic Control Unit (ECU board, in order to obtain the sensors/actuators signals from the engine and control some important engine functions by using an external ECU, so that the students may test their own strategies, compare with the original ECU.

  7. Automotive Gas Turbine Power System-Performance Analysis Code

    Science.gov (United States)

    Juhasz, Albert J.

    1997-01-01

    An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.

  8. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  9. 20th International Forum on Advanced Microsystems for Automotive Applications

    CERN Document Server

    Müller, Beate; Meyer, Gereon

    2016-01-01

    This book contains the papers presented at the 20th anniversary edition of the AMAA conference held in Brussels, Belgium in 2016. The theme of the conference was "Smart Systems for the Automobile of the Future". The automobile is currently being reshaped at unprecedented pace. Automation and electrification are the two dominant megatrends which dramatically change the choice and design of components, systems, vehicular architectures and ultimately the way we use cars in the coming decades. Novel E/E architectures, vehicular connectivity and cloud services will be key to extending the perception and decision-making horizons of automated vehicles, to enable cooperative functions and a seamless digital user experience. The AMAA's ongoing mission to detect novel trends in automotive ICT, electronics and smart systems and to discuss the technological implications is once again reflected in this volume. The book will be a valuable read for research experts and professionals in the automotive and smart systems indus...

  10. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  11. A Comparative Study on Automotive Brake Testing Standards

    Science.gov (United States)

    Kumbhar, Bhau Kashinath; Patil, Satyajit Ramchandra; Sawant, Suresh Maruti

    2016-06-01

    Performance testing of automotive brakes involves determination of stopping time, distance and deceleration level. Braking performance of an automobile is required to be ensured for various surfaces like dry, wet, concrete, bitumen etc. as well as for prolonged applications. Various brake testing standards are used worldwide to assure vehicle and pedestrian safety. This article presents methodologies used for automotive service brake testing for two wheelers. The main contribution of this work lies in comparative study of three main brake testing standards; viz. Indian Standards, Federal Motor Vehicle Safety Standards and European Economic Commission Standards. This study shall help the policy makers to choose the best criteria out of these three while formulating newer edition of testing standards.

  12. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  13. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet

    International Nuclear Information System (INIS)

    Resistance spot welding (RSW) is difficult to apply to aluminium automotive alloys. High power ultrasonic spot welding (HP-USW) is a new alternative method which is extremely efficient, using ∼2% of the energy of RSW. However, to date there have been few studies of the mechanisms of bond formation and the material interactions that take place with this process. Here, we report on a detailed investigation where we have used X-ray tomography, high resolution SEM, and EBSD, and dissimilar alloy welds, to track the interface position and characterise the stages of weld formation, and microstructure evolution, as a function of welding energy. Under optimum conditions high quality welds are produced, showing few defects. Welding proceeds by the development and spread of microwelds, until extensive plastic deformation occurs within the weld zone, where the temperature reaches ∼380 deg. C. The origin of the weld interface 'flow features' characteristic of HP-USW are discussed.

  14. 16th International Forum on Advanced Microsystems for Automotive Applications (AMAA)

    CERN Document Server

    Advanced Microsystems for Automotive Applications 2012 : Smart Systems for Safe, Sustainable and Networked Vehicles

    2012-01-01

    The ambitious objectives of future road mobility, i.e. fuel efficiency, reduced emissions, and zero accidents, imply a paradigm shift in the concept of the car regarding its architecture, materials, and propulsion technology, and require an intelligent integration into the systems of transportation and power. ICT, components and smart systems have been essential for a multitude of recent innovations, and are expected to be key enabling technologies for the changes ahead, both inside the vehicle and at its interfaces for the exchange of data and power with the outside world. It has been the objective of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for almost two decades to detect novel trends and to discuss technological implications and innovation potential from day one on. In 2012, the topic of the AMAA conference is “Smart Systems for Safe, Sustainable and Networked Vehicles”. The conference papers selected for this book address current research, developments and i...

  15. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet

    Energy Technology Data Exchange (ETDEWEB)

    Bakavos, D., E-mail: dimitrios.bakavos@manchester.ac.uk [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk [Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2010-09-15

    Resistance spot welding (RSW) is difficult to apply to aluminium automotive alloys. High power ultrasonic spot welding (HP-USW) is a new alternative method which is extremely efficient, using {approx}2% of the energy of RSW. However, to date there have been few studies of the mechanisms of bond formation and the material interactions that take place with this process. Here, we report on a detailed investigation where we have used X-ray tomography, high resolution SEM, and EBSD, and dissimilar alloy welds, to track the interface position and characterise the stages of weld formation, and microstructure evolution, as a function of welding energy. Under optimum conditions high quality welds are produced, showing few defects. Welding proceeds by the development and spread of microwelds, until extensive plastic deformation occurs within the weld zone, where the temperature reaches {approx}380 deg. C. The origin of the weld interface 'flow features' characteristic of HP-USW are discussed.

  16. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    Science.gov (United States)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  17. The effects of reconditioning by welding of crankshafts in automotive industry

    Directory of Open Access Journals (Sweden)

    O. Chivu

    2015-10-01

    Full Text Available The reconditioning by welding process applied to the crankshafts in the automotive industry can be carried out by using various reconditioning technologies that are based on different welding parameters and processes. This paper presents a comparison between Shielded Metal Arc Welding (SMAW and Welding in Gas (WIG reconditioning processes from the perspective of the metallographic analysis conducted on the zones resulted after the depositing process. The heat cycle resulted during the two welding processes influences in a different manner the welding behavior of the base material due to the occurrence of micro-structural changes in the main zones of the deposit. The occurred structural changes may influence to a significant degree the operating behavior of the structures repaired by welding.

  18. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  19. Low-carbon Economy Promoting Development and Application of Automotive Engineering Plastic%低碳经济推动车用工程塑料的研发与应用

    Institute of Scientific and Technical Information of China (English)

    肖艳

    2011-01-01

    汽车工业的发展离不开汽车塑料化的进程,随着我国汽车工业的进步,车用塑料制品也开始全面发展。在我国石油化工迅猛发展和加快汽车材料国产化进程的带动下,汽车塑料制品的用量迅速增长。根据工程塑料在现代汽车制造中的广泛应用和巨大的市场潜力,文章详细介绍了工程塑料的性能特点及适用于汽车零部件领域里的工程塑料的种类,并指出汽车以塑代钢的轻量化急待研发。%The development of automotive industry cannot be seprated from the progress of automotive plastic. With the developemnt of China's automobile industry, automotive plastic products also began to enjoy its all-round growth. Automotive plastic products are used more and more because of the rapid development of petrochemical industry in China and the accelerated momentum of domestically produced automotive material. In accordance with the extensive application and the huge market potential of the engineering plastic in the modern automobile production, this paper elaborates on its performance characteristics as well as the acceptable types for automotive parts and components. The paper points out that , as a substitute of steel, plastic should be the preoccupation in automotive lightweight research and development.

  20. MARKETING REQUIREMENTS FOR DEVELOP A BRAND IN AUTOMOTIVE INDUSTRY

    OpenAIRE

    Liliana Adela Zima

    2013-01-01

    TAbstract: The Umbrella Brand can be define to be the mother brand which is not usually model specific which houses the family of brands. sis a trustworthy, relevant, and distinctive promise to the consumer. In our case of General Motorâ€(tm)s Europe, Opel /Vauxhall is the Umbrella Brand. To develop and maintain on the automotive market a strong brand there are some marketing and management requirements to applied. This document summarizes the Marketing requirements for the Gamma Monocab prog...

  1. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  2. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-05-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  3. Software independence: impact on product development plan in automotive industries

    OpenAIRE

    M. Annarumma; Naddeo, A.; M. Pappalardo

    2006-01-01

    Purpose: Purpose of this paper: Actually, in automotive industries one of the most important activities inproduct design is the evaluation of various events (i.e. crash events) using FEM simulation; in this context,software independence, that means to obtain the same simulation results on the same car-model using differentFEM solvers, will be useful for reducing virtual prototyping time and consequently Time To Market.Design/methodology/approach: Development of a software-indipendence transla...

  4. Software independence: impact on automotive product development process

    OpenAIRE

    M. Pappalardo; Naddeo, A.; M. Annarumma

    2008-01-01

    Purpose: Currently, in automotive industries one of the most important works in product design is the evaluationof crash events using FEM simulation; in this context, software independence, that means to obtain the samesimulation results on the same vehicle-model using different FEM solvers, will be useful for reducing virtualprototyping time and consequently Time To Market.Design/methodology/approach: The carrying out of a software-independence translation methodology is theaim of this work,...

  5. Software Process Improvement and Lifecycle Models in Automotive Industry

    OpenAIRE

    Sabar, Suneel

    2011-01-01

    The quality of a product depends on the quality of the underlying process is a well known fact. Software development organizations have been struggling to decrease their cost, increase their ROI, reduce time-to-market, and enhance the quality of their products. This all depends upon the improvement in the processes they are following inside their organizations. A number of software process improvement models exist in market, e.g., CMMI, SPICE and Automotive SPICE. But before an organization c...

  6. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  7. Three levels of the electromagnetic compatibility (emc) in automotive engineering

    OpenAIRE

    Sperling, D.; Körber, B.; Müller, N.

    2004-01-01

    An important quality factor for vehicles is the compliance of the Electromagnetic Compatibility (EMC). This compliance is given both through legal requirements and by voluntary defaults of the automotive manufacturers and suppliers. In this paper, some selected EMC measuring methods will be presented, whereas two of these were recently developed at the EMC research laboratory at the University of Applied Sciences Zwickau in close cooperation with Volkswagen and Audi.

  8. CONTRIBUTIONS TO OPTIMIZE QUALITY COSTS IN THE AUTOMOTIVE INDUSTRY

    OpenAIRE

    Ion Ionescu

    2014-01-01

    The main goal of the research is that one to present a way of organizing the management accounting, so that it allow the calculate of a cost for quality pertinent for each activity and on every product made in the automotive industry entities. We critically analyzed the current system used to determine and track quality costs at the studied entities, in order to emphasize the need of organization and implement a modern management accounting, which allows quality control costs and increase the...

  9. AHAA - agile, hybrid assessment method for automotive, safety critical SMEs

    OpenAIRE

    Mc Caffery, Fergal; Pikkarainen, Minna; Richardson, Ita

    2008-01-01

    Peer-reviewed The need for software is increasingly growing in the automotive industry. Software development projects are, however, often troubled by time and budget overruns, resulting in systems that do not fulfill customer requirements. Both research and industry lack strategies to combine reducing the long software development lifecycles (as required by time-to-market demands) with increasing the quality of the software developed. Software process improvement (SPI) provides the first s...

  10. Influence of Multiharmonics Excitation on Rattle Noise in Automotive Gearboxes

    OpenAIRE

    Kadmiri, Y.; Perret-Liaudet, J; Rigaud, E; Le Bot, A.; Vary, L.

    2011-01-01

    We consider the automotive gearbox rattle noise resulting from vibro-impacts that can occur between the idle gears under excessive velocity fluctuations of the shaft-driving gears imposed by engine torque fluctuation. Even if the rattling phenomenon has no consequence on reliability, it may be particularly annoying for vehicle interior sound quality and acoustic comfort. The main parameters governing such kind of vibrations are the excitation source associated with engine torque fluctuation w...

  11. Offline Analysis of Independent Guarded Assertions in Automotive Integration Testing

    OpenAIRE

    Rodriguez-Navas, Guillermo; Kobetski, Avenir; Sundmark, Daniel; Gustafsson, Thomas

    2015-01-01

    The size and complexity of software in automotive systems have increased steadily over the last decades. Modern vehicles typically contain numerous electrical control units (ECUs), and more and more features require real-time interaction between several dedicated ECUs (e.g., gearbox, brake and engine control units) in order to perform their tasks. Since system safety and reliability must not be adversely affected by this increase in complexity, proper quality assurance is a must. Such quality...

  12. Powder Injection Moulding - An alternative Processing Method for Automotive Items

    OpenAIRE

    Hausnerova, Berenika

    2011-01-01

    Powder injection moulding (PIM) technology represents a challeging production method for automotive items, alternative to machining and investment casting.Rheology could play a role of considerable importance in controlling and optimizing the PIM process and eliminating some critical quality concerns. At present, the potential of rheological models available to describe the peculiarities of the flow behaviour of PIM compounds is rather limited as these models are not established for multiphas...

  13. Automotive HMI design and participatory user involvement: Review and perspectives

    OpenAIRE

    FRANCOIS, Mathilde; Osiurak, François; Fort, Alexandra; CRAVE, Philippe; Navarro, Jordan

    2016-01-01

    Automotive human-machine interface (HMI) design is facing new challenges due to the technological advances of the last decades. The design process has to be adapted in order to address human factors and road safety challenges. It is now widely accepted that user involvement in the HMI design process is valuable. However, the current form of user involvement in industry remains at the stages of concept assessment and usability tests. Moreover, the literature in other fields (e.g. information s...

  14. Migration Issues in Modularity for 1st Tier Automotive Suppliers

    OpenAIRE

    James O’ Kane; Robert Trimble

    2009-01-01

    This research attempts to explore the challenges and issues which local automotive component suppliers face as they make the transition to cockpit module suppliers. The paper firstly provides a description of modularity and then discusses the changing supplier roles and relationships in modular outsourcing. An exploratory case study approach involving two suppliers and one OEM is then used to investigate these themes and provide some insights into the motivations and implications for local co...

  15. An RFID implementation in the automotive industry - improving inventory accuracy

    OpenAIRE

    Hellström, Daniel; Wiberg, Mathias

    2010-01-01

    This paper explores and describes the impact of radio frequency identification (RFID) technology on inventory accuracy within a production and assembly plant, and proposes a model for assessing the impact of the technology on inventory accuracy. The empirical investigation, based on case study research, focuses on a RFID implementation at a supplier of bumper and spoiler systems to the automotive industry. The results indicate that RFID ensures that inventory inaccurac...

  16. In Chains? Automotive Suppliers and Their Product Development Activities

    OpenAIRE

    Corswant, F.; Wynstra, Finn; Wetzels, Alex

    2003-01-01

    textabstractA conceptual framework is developed and tested in which supplier downstream position in the supply chain, supplier innovation strategy and customer development commitment are seen as the antecedents of supplier product development activity. Using partial least squares (PLS), we analyze the results of a survey of 161 Swedish automotive suppliers and test a series of nested models to test our hypotheses. We demonstrate that the position of the supplier in the supply chain and its st...

  17. An Empirical Research on Supplier Relationship Management in Automotive Industry

    OpenAIRE

    Narges Imanipour; Mehdi Rahimi; Nasrin Akhondi

    2012-01-01

    Supplier relationship management is an important research field in Supply Chain Management. This paper aims tostudy the existing portfolio models for supplier relationship management then apply Svensson(2000)’s model toclassify buyer-supplier relationship in an Iranian automotive industry supply chain. Finally present a frameworkfor supplier relationship management. Data for this study was collected through two surveys. The current studyanalyzes supplier relationship management in two phases:...

  18. Evolution of Business Interoperability in the Automotive Industry

    OpenAIRE

    Wende, Kristin; Legner, Christine

    2006-01-01

    In recent years, the established roles in the automotive industry have undergone changes: Automakers which have traditionally executed control over the entire value chain are now increasingly focusing on branding and distribution. At the same time, tier-1 suppliers are becoming vehicle integrators. This paper analyses how new forms of cooperation impact the required level of business interoperability. The comparison of two cases, a traditional OEM-supplier relationship and an innovative form ...

  19. Coordinating mecanisms in automotive distribution channel: distinctive elements

    OpenAIRE

    Heloisa Sousa Ribeiro Ferreira; Rosane Lúcia Chicarelli Alcantara

    2011-01-01

    Besides managing its internal activities, the supply chain management has the challenge of coordinating and managing its partners. The references indicate some organizational and management tools that can help in performing those activities, and in this paper, they are called Supply Chain Coordinating Practices. This paper identifies and evaluates the results obtained by applying some coordinating practices o in the Brazilian automotive channel distribution. This article is an exploratory stu...

  20. Beyond survival: Challenges facing South African automotive component exporters

    OpenAIRE

    M. J. Naude; C. O'Neill

    2006-01-01

    Purpose and Objective: The South African automotive component industry faces huge challenges in a very competitive global market. The primary focus of this research article is to determine the challenges facing exporters within this industry with special reference to selected sub-sectors. The challenges are approached from a supply chain perspective only. Problem Investigated: The research problem of this study was to identify these unique challenges and ascertain whether the implement...