WorldWideScience

Sample records for automated single-cell image

  1. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  2. Automated single cell sorting and deposition in submicroliter drops

    Science.gov (United States)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  3. 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo

    OpenAIRE

    Brian Long; Lu Li; Ulf Knoblich; Hongkui Zeng; Hanchuan Peng

    2015-01-01

    We report a method to facilitate single cell, image-guided experiments including in vivo electrophysiology and electroporation. Our method combines 3D image data acquisition, visualization and on-line image analysis with precise control of physical probes such as electrophysiology microelectrodes in brain tissue in vivo. Adaptive pipette positioning provides a platform for future advances in automated, single cell in vivo experiments.

  4. Automated single cell isolation from suspension with computer vision.

    Science.gov (United States)

    Ungai-Salánki, Rita; Gerecsei, Tamás; Fürjes, Péter; Orgovan, Norbert; Sándor, Noémi; Holczer, Eszter; Horvath, Robert; Szabó, Bálint

    2016-01-01

    Current robots can manipulate only surface-attached cells seriously limiting the fields of their application for single cell handling. We developed a computer vision-based robot applying a motorized microscope and micropipette to recognize and gently isolate intact individual cells for subsequent analysis, e.g., DNA/RNA sequencing in 1-2 nanoliters from a thin (~100 μm) layer of cell suspension. It can retrieve rare cells, needs minimal sample preparation, and can be applied for virtually any tissue cell type. Combination of 1 μm positioning precision, adaptive cell targeting and below 1 nl liquid handling precision resulted in an unprecedented accuracy and efficiency in robotic single cell isolation. Single cells were injected either into the wells of a miniature plate with a sorting speed of 3 cells/min or into standard PCR tubes with 2 cells/min. We could isolate labeled cells also from dense cultures containing ~1,000 times more unlabeled cells by the successive application of the sorting process. We compared the efficiency of our method to that of single cell entrapment in microwells and subsequent sorting with the automated micropipette: the recovery rate of single cells was greatly improved. PMID:26856740

  5. An Automated Microwell Platform for Large-Scale Single Cell RNA-Seq

    Science.gov (United States)

    Yuan, Jinzhou; Sims, Peter A.

    2016-01-01

    Recent developments have enabled rapid, inexpensive RNA sequencing of thousands of individual cells from a single specimen, raising the possibility of unbiased and comprehensive expression profiling from complex tissues. Microwell arrays are a particularly attractive microfluidic platform for single cell analysis due to their scalability, cell capture efficiency, and compatibility with imaging. We report an automated microwell array platform for single cell RNA-Seq with significantly improved performance over previous implementations. We demonstrate cell capture efficiencies of >50%, compatibility with commercially available barcoded mRNA capture beads, and parallel expression profiling from thousands of individual cells. We evaluate the level of cross-contamination in our platform by both tracking fluorescent cell lysate in sealed microwells and with a human-mouse mixed species RNA-Seq experiment. Finally, we apply our system to comprehensively assess heterogeneity in gene expression of patient-derived glioma neurospheres and uncover subpopulations similar to those observed in human glioma tissue. PMID:27670648

  6. Automated single cell isolation from suspension with computer vision

    OpenAIRE

    Rita Ungai-Salánki; Tamás Gerecsei; Péter Fürjes; Norbert Orgovan; Noémi Sándor; Eszter Holczer; Robert Horvath; Bálint Szabó

    2016-01-01

    Current robots can manipulate only surface-attached cells seriously limiting the fields of their application for single cell handling. We developed a computer vision-based robot applying a motorized microscope and micropipette to recognize and gently isolate intact individual cells for subsequent analysis, e.g., DNA/RNA sequencing in 1–2 nanoliters from a thin (~100 μm) layer of cell suspension. It can retrieve rare cells, needs minimal sample preparation, and can be applied for virtually any...

  7. Electrical impedance tomographic imaging of a single cell electroporation.

    Science.gov (United States)

    Meir, Arie; Rubinsky, Boris

    2014-06-01

    A living cell placed in a high strength electric field, can undergo a process known as electroporation. It is believed that during electroporation nano-scale defects (pores) occur in the membrane of the cell, causing dramatic changes to the permeability of its membrane. Electroporation is an important technique in biotechnology and medicine and numerous methods are being developed to improve the understanding and use of the technology. We propose to extend the toolbox available for studying electroporation by generating impedance distribution images of the cell as it undergoes electroporation using Electrical Impedance Tomography (EIT). To investigate the feasibility of this concept, we develop a mathematical model of the process of electroporation in a single cell and of EIT of the process and show simulation results of a computer-based finite element model (FEM). Our work is an attempt to develop a new imaging tool for visualizing electroporation in a single cell, offering a different temporal and spatial resolution compared to the state of the art, which includes bulk measurements of electrical properties during single cell electroporation, patch clamp and voltage clamp measurement in single cells and optical imaging with colorimetric dyes during single cell electroporation. This paper is a preliminary theoretic feasibility study.

  8. Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics

    Science.gov (United States)

    Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.

  9. RoboSCell: An automated single cell arraying and analysis instrument

    KAUST Repository

    Sakaki, Kelly

    2009-09-09

    Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell interactions and cell structure. The methods of single cell analysis require mechanical resolution and accuracy that is not possible using conventional techniques. Robotic instruments and novel microdevices can achieve higher throughput and repeatability; however, the development of such instrumentation is a formidable task. A void exists in the state-of-the-art for automated analysis of single cells. With the increase in interest in single cell analyses in stem cell and cancer research the ability to facilitate higher throughput and repeatable procedures is necessary. In this paper, a high-throughput, single cell microarray-based robotic instrument, called the RoboSCell, is described. The proposed instrument employs a partially transparent single cell microarray (SCM) integrated with a robotic biomanipulator for in vitro analyses of live single cells trapped at the array sites. Cells, labeled with immunomagnetic particles, are captured at the array sites by channeling magnetic fields through encapsulated permalloy channels in the SCM. The RoboSCell is capable of systematically scanning the captured cells temporarily immobilized at the array sites and using optical methods to repeatedly measure extracellular and intracellular characteristics over time. The instrument\\'s capabilities are demonstrated by arraying human T lymphocytes and measuring the uptake dynamics of calcein acetoxymethylester-all in a fully automated fashion. © 2009 Springer Science+Business Media, LLC.

  10. Fast and high resolution single-cell BRET imaging

    OpenAIRE

    Elise Goyet; Nathalie Bouquier; Vincent Ollendorff; Julie Perroy

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferas...

  11. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments

    Science.gov (United States)

    Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina

    2016-01-01

    Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996

  12. High resolution ultrasound and photoacoustic imaging of single cells.

    Science.gov (United States)

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  13. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  14. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.

    Science.gov (United States)

    Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik

    2016-10-01

    Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.

  15. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  16. Fast and high resolution single-cell BRET imaging.

    Science.gov (United States)

    Goyet, Elise; Bouquier, Nathalie; Ollendorff, Vincent; Perroy, Julie

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways. PMID:27302735

  17. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  18. Single Cell Imaging of Metabolism with Fluorescent Biosensors

    OpenAIRE

    Hung, Yin Pun

    2012-01-01

    Cells utilize various signal transduction networks to regulate metabolism. Nevertheless, a quantitative understanding of the relationship between growth factor signaling and metabolic state at the single cell level has been lacking. The signal transduction and metabolic states could vary widely among individual cells. However, such cell-to-cell variation might be masked by the bulk measurements obtained from conventional biochemical methods. To assess the spatiotemporal dynamics of metabolism...

  19. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  20. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis.

    Science.gov (United States)

    Li, Xiangtang; Zhao, Shulin; Hu, Hankun; Liu, Yi-Ming

    2016-06-17

    Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level. PMID:27207575

  1. CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses

    Science.gov (United States)

    Fritzsche, Marco; Fernandes, Ricardo A.; Colin-York, Huw; Santos, Ana M.; Lee, Steven F.; Lagerholm, B. Christoffer; Davis, Simon J.; Eggeling, Christian

    2015-11-01

    Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.

  2. Mass spectrometry imaging and profiling of single cells

    OpenAIRE

    Lanni, Eric J.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies—secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI MS)—are most often used in micro-bioanalytical inves...

  3. Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing

    OpenAIRE

    Jhong-Yin Chen; Chao-Wang Young; Chyung Ay

    2013-01-01

    The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface softwar...

  4. Automated medical image segmentation techniques

    OpenAIRE

    Sharma Neeraj; Aggarwal Lalit

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits ...

  5. Single-cell imaging detection of nanobarcoded nanoparticle biodistributions in tissues for nanomedicine

    Science.gov (United States)

    Eustaquio, Trisha; Cooper, Christy L.; Leary, James F.

    2011-03-01

    In nanomedicine, biodistribution studies are critical to evaluate the safety and efficacy of nanoparticles. Currently, extensive biodistribution studies are hampered by the limitations of bulk tissue and single-cell imaging techniques. To ameliorate these limitations, we have developed a novel method for single nanoparticle detection that incorporates a conjugated oligonucleotide as a "nanobarcode" for detection via in situ PCR. This strategy magnifies the detection signal from single nanoparticles, facilitating rapid evaluation of nanoparticle uptake by cell type over larger areas. The nanobarcoding method can enable precise analysis of nanoparticle biodistributions and expedite translation of these nanoparticles to the clinic.

  6. A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body.

    Science.gov (United States)

    Muranaka, Tomoaki; Kubota, Saya; Oyama, Tokitaka

    2013-12-01

    Gene expression is a fundamental cellular process and expression dynamics are of great interest in life science. We succeeded in monitoring cellular gene expression in a duckweed plant, Lemna gibba, using bioluminescent reporters. Using particle bombardment, epidermal and mesophyll cells were transfected with the luciferase gene (luc+) under the control of a constitutive [Cauliflower mosaic virus 35S (CaMV35S)] and a rhythmic [Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1)] promoter. Bioluminescence images were captured using an EM-CCD (electron multiply charged couple device) camera. Luminescent spots of the transfected cells in the plant body were quantitatively measured at the single-cell level. Luminescence intensities varied over a 1,000-fold range among CaMV35S::luc+-transfected cells in the same plant body and showed a log-normal-like frequency distribution. We monitored cellular gene expression under light-dark conditions by capturing bioluminescence images every hour. Luminescence traces of ≥50 individual cells in a frond were successfully obtained in each monitoring procedure. Rhythmic and constitutive luminescence behaviors were observed in cells transfected with AtCCA1::luc+ and CaMV35S::luc+, respectively. Diurnal rhythms were observed in every AtCCA1::luc+-introduced cell with traceable luminescence, and slight differences were detected in their rhythmic waveforms. Thus the single-cell bioluminescence monitoring system was useful for the characterization of cellular gene expression in a plant body.

  7. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method.

    Science.gov (United States)

    Lin, Jia-Ren; Fallahi-Sichani, Mohammad; Sorger, Peter K

    2015-01-01

    Single-cell analysis reveals aspects of cellular physiology not evident from population-based studies, particularly in the case of highly multiplexed methods such as mass cytometry (CyTOF) able to correlate the levels of multiple signalling, differentiation and cell fate markers. Immunofluorescence (IF) microscopy adds information on cell morphology and the microenvironment that are not obtained using flow-based techniques, but the multiplicity of conventional IF is limited. This has motivated development of imaging methods that require specialized instrumentation, exotic reagents or proprietary protocols that are difficult to reproduce in most laboratories. Here we report a public-domain method for achieving high multiplicity single-cell IF using cyclic immunofluorescence (CycIF), a simple and versatile procedure in which four-colour staining alternates with chemical inactivation of fluorophores to progressively build a multichannel image. Because CycIF uses standard reagents and instrumentation and is no more expensive than conventional IF, it is suitable for high-throughput assays and screening applications. PMID:26399630

  8. A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body.

    Science.gov (United States)

    Muranaka, Tomoaki; Kubota, Saya; Oyama, Tokitaka

    2013-12-01

    Gene expression is a fundamental cellular process and expression dynamics are of great interest in life science. We succeeded in monitoring cellular gene expression in a duckweed plant, Lemna gibba, using bioluminescent reporters. Using particle bombardment, epidermal and mesophyll cells were transfected with the luciferase gene (luc+) under the control of a constitutive [Cauliflower mosaic virus 35S (CaMV35S)] and a rhythmic [Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1)] promoter. Bioluminescence images were captured using an EM-CCD (electron multiply charged couple device) camera. Luminescent spots of the transfected cells in the plant body were quantitatively measured at the single-cell level. Luminescence intensities varied over a 1,000-fold range among CaMV35S::luc+-transfected cells in the same plant body and showed a log-normal-like frequency distribution. We monitored cellular gene expression under light-dark conditions by capturing bioluminescence images every hour. Luminescence traces of ≥50 individual cells in a frond were successfully obtained in each monitoring procedure. Rhythmic and constitutive luminescence behaviors were observed in cells transfected with AtCCA1::luc+ and CaMV35S::luc+, respectively. Diurnal rhythms were observed in every AtCCA1::luc+-introduced cell with traceable luminescence, and slight differences were detected in their rhythmic waveforms. Thus the single-cell bioluminescence monitoring system was useful for the characterization of cellular gene expression in a plant body. PMID:24058151

  9. Automated Orientation of Aerial Images

    DEFF Research Database (Denmark)

    Høhle, Joachim

    2002-01-01

    Methods for automated orientation of aerial images are presented. They are based on the use of templates, which are derived from existing databases, and area-based matching. The characteristics of available database information and the accuracy requirements for map compilation and orthoimage...... production are discussed on the example of Denmark. Details on the developed methods for interior and exterior orientation are described. Practical examples like the measurement of réseau images, updating of topographic databases and renewal of orthoimages are used to prove the feasibility of the developed...

  10. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    Science.gov (United States)

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  11. Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing

    Directory of Open Access Journals (Sweden)

    Jhong-Yin Chen

    2013-05-01

    Full Text Available The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937, the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method.

  12. High-throughput and single-cell imaging of NF-κB oscillations using monoclonal cell lines

    Directory of Open Access Journals (Sweden)

    Machuy Nikolaus

    2010-03-01

    Full Text Available Abstract Background The nuclear factor-κB (NF-κB family of transcription factors plays a role in a wide range of cellular processes including the immune response and cellular growth. In addition, deregulation of the NF-κB system has been associated with a number of disease states, including cancer. Therefore, insight into the regulation of NF-κB activation has crucial medical relevance, holding promise for novel drug target discovery. Transcription of NF-κB-induced genes is regulated by differential dynamics of single NF-κB subunits, but only a few methods are currently being applied to study dynamics. In particular, while oscillations of NF-κB activation have been observed in response to the cytokine tumor necrosis factor α (TNFα, little is known about the occurrence of oscillations in response to bacterial infections. Results To quantitatively assess NF-κB dynamics we generated human and murine monoclonal cell lines that stably express the NF-κB subunit p65 fused to GFP. Furthermore, a high-throughput assay based on automated microscopy coupled to image analysis to quantify p65-nuclear translocation was established. Using this assay, we demonstrate a stimulus- and cell line-specific temporal control of p65 translocation, revealing, for the first time, oscillations of p65 translocation in response to bacterial infection. Oscillations were detected at the single-cell level using real-time microscopy as well as at the population level using high-throughput image analysis. In addition, mathematical modeling of NF-κB dynamics during bacterial infections predicted masking of oscillations on the population level in asynchronous activations, which was experimentally confirmed. Conclusions Taken together, this simple and cost effective assay constitutes an integrated approach to infer the dynamics of NF-κB kinetics in single cells and cell populations. Using a single system, novel factors modulating NF-κB can be identified and analyzed

  13. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  14. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    Science.gov (United States)

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months. PMID:27362338

  15. Micro-PIXE for the quantitative imaging of chemical elements in single cells

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, R. [Univ. Bordeaux, CENBG, Gradignan (France); CNRS, IN2P3, CENBG, Gradignan (France)

    2013-07-01

    Full text: The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The aim of this seminar will be to present the recent achievements in this field using micro-PIXE analysis. The combination of micro-PIXE with RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission lon Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STlM analysis will be more specifically highlighted as it provides high spatial resolution imaging (<200 nm) and excellent mass sensitivity (<0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron X-ray fluorescence or the techniques based on mass spectrometry. Examples of micro-PIXE studies for subcellular imaging of trace elements in the various fields of interest will be presented such as metal-based toxicology, pharmacology, and neuro degeneration [1] R. Ortega, G. Devés, A. Carmona. J. R. Soc. Interface, 6, (2009) S649-S658. (author)

  16. Micro-PIXE for the quantitative imaging of chemical elements in single cells

    International Nuclear Information System (INIS)

    Full text: The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The aim of this seminar will be to present the recent achievements in this field using micro-PIXE analysis. The combination of micro-PIXE with RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission lon Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STlM analysis will be more specifically highlighted as it provides high spatial resolution imaging (<200 nm) and excellent mass sensitivity (<0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron X-ray fluorescence or the techniques based on mass spectrometry. Examples of micro-PIXE studies for subcellular imaging of trace elements in the various fields of interest will be presented such as metal-based toxicology, pharmacology, and neuro degeneration [1] R. Ortega, G. Devés, A. Carmona. J. R. Soc. Interface, 6, (2009) S649-S658. (author)

  17. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    Science.gov (United States)

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-01

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue. PMID:27001858

  18. An automated imaging system for radiation biodosimetry.

    Science.gov (United States)

    Garty, Guy; Bigelow, Alan W; Repin, Mikhail; Turner, Helen C; Bian, Dakai; Balajee, Adayabalam S; Lyulko, Oleksandra V; Taveras, Maria; Yao, Y Lawrence; Brenner, David J

    2015-07-01

    We describe here an automated imaging system developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry. The imaging system is built around a fast, sensitive sCMOS camera and rapid switchable LED light source. It features complete automation of all the steps of the imaging process and contains built-in feedback loops to ensure proper operation. The imaging system is intended as a back end to the RABiT-a robotic platform for radiation biodosimetry. It is intended to automate image acquisition and analysis for four biodosimetry assays for which we have developed automated protocols: The Cytokinesis Blocked Micronucleus assay, the γ-H2AX assay, the Dicentric assay (using PNA or FISH probes) and the RABiT-BAND assay. PMID:25939519

  19. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    S P Vimal; P K Thiruvikraman

    2012-12-01

    We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks corresponding to the background and the foreground are not widely separated.

  20. Automated image analysis techniques for cardiovascular magnetic resonance imaging

    NARCIS (Netherlands)

    Geest, Robertus Jacobus van der

    2011-01-01

    The introductory chapter provides an overview of various aspects related to quantitative analysis of cardiovascular MR (CMR) imaging studies. Subsequently, the thesis describes several automated methods for quantitative assessment of left ventricular function from CMR imaging studies. Several novel

  1. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method

    OpenAIRE

    Lin, Jia-Ren; Fallahi-Sichani, Mohammad; Sorger, Peter K.

    2015-01-01

    Single-cell analysis reveals aspects of cellular physiology not evident from population-based studies, particularly in the case of highly multiplexed methods such as mass cytometry (CyTOF) able to correlate the levels of multiple signalling, differentiation and cell fate markers. Immunofluorescence (IF) microscopy adds information on cell morphology and the microenvironment that are not obtained using flow-based techniques, but the multiplicity of conventional IF is limited. This has motivate...

  2. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2015-10-01

    Full Text Available The yeast Saccharomyces cerevisiae is a model organism for replicative aging studies; however, conventional lifespan measurement platforms have several limitations. Here, we present a microfluidics platform that facilitates simultaneous lifespan and gene expression measurements of aging yeast cells. Our multiplexed high-throughput platform offers the capability to perform independent lifespan experiments using different yeast strains or growth media. Using this platform in minimal media environments containing glucose, we measured the full lifespan of individual yeast cells in wild-type and canonical gene deletion backgrounds. Compared to glucose, in galactose we observed a 16.8% decrease in replicative lifespan accompanied by an ∼2-fold increase in single-cell oxidative stress levels reported by PSOD1-mCherry. Using PGAL1-YFP to measure the activity of the bistable galactose network, we saw that OFF and ON cells are similar in their lifespan. Our work shows that aging cells are committed to a single phenotypic state throughout their lifespan.

  3. Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level.

    Directory of Open Access Journals (Sweden)

    Kenta Saito

    Full Text Available BACKGROUND: Efficient bioluminescence resonance energy transfer (BRET from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination. METHODOLOGY/PRINCIPAL FINDINGS: We applied BRET to develop an autoluminescent Ca(2+ indicator, BRAC, which is composed of Ca(2+-binding protein, calmodulin, and its target peptide, M13, sandwiched between a yellow fluorescent protein variant, Venus, and an enhanced Renilla luciferase, RLuc8. Adjusting the relative dipole orientation of the luminescent protein's chromophores improved the dynamic range of BRET signal change in BRAC up to 60%, which is the largest dynamic range among BRET-based indicators reported so far. Using BRAC, we demonstrated successful visualization of Ca(2+ dynamics at the single-cell level with temporal resolution at 1 Hz. Moreover, BRAC signals were acquired by ratiometric imaging capable of canceling out Ca(2+-independent signal drifts due to change in cell shape, focus shift, etc. CONCLUSIONS/SIGNIFICANCE: The brightness and large dynamic range of BRAC should facilitate high-sensitive Ca(2+ imaging not only in single live cells but also in small living subjects.

  4. Development of automated test bench for measurement of the field distribution in single cell elliptical superconducting cavity

    International Nuclear Information System (INIS)

    RRCAT Indore has initiated a program for the development of superconducting cavities and establishing the required infrastructure. A fully computer controlled bench for the field distribution measurement of a 1.3 GHz prototype cavity has been developed. The setup is based on the bead perturbation method, where the acquisition of the s21 transmission coefficient phase shift is synchronized with the displacement of a bead. The measured raw data are then converted to a quantity proportional to the electromagnetic field magnitude. It is very important to measure the resonant frequency and study the field distribution in the cavity at various stages of fabrication viz; after drawing, EB welding, various cleaning processes and most important during tuning of multi cell cavities for field flatness. The bench was used to test a prototype 1.3 GHz OFE Copper elliptical cavity developed at RRCAT. The results were verified from the simulation performed on CST Microwave studio and ANSYS. The paper describes the development of mechanical setup, control system for stepper motor, data acquisition and automation and measurement results for the Copper elliptical cavity. (author)

  5. In vivo X-ray elemental imaging of single cell model organisms manipulated by laser-based optical tweezers

    Science.gov (United States)

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; de Rijcke, Maarten; Bauters, Stephen; Deruytter, David; Vandegehuchte, Michiel; van Nieuwenhove, Ine; Janssen, Colin; Burghammer, Manfred; Vincze, Laszlo

    2015-03-01

    We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in vivo elemental imaging in a two-dimensional (2D) projection mode in free-standing biological microorganisms or single cells, present in their aqueous environment. Using the model organism Scrippsiella trochoidea, a first proof of principle experiment at beamline ID13 of the European Synchrotron Radiation Facility (ESRF) demonstrates the feasibility of the OT XRF methodology, which is applied to study mixture toxicity of Cu-Ni and Cu-Zn as a result of elevated exposure. We expect that the new OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability.

  6. Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2015-04-01

    Full Text Available Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation and germline transgenesis. Single cell electroporation has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of single cell electroporation to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.

  7. Functional imaging of a single cell: far-field infrared super-resolution microscopy using autofluorescence detection

    Science.gov (United States)

    Ohmori, Tsutomu; Inoue, Keiichi; Sakai, Makoto; Fujii, Masaaki; Ishihara, Miya; Kikuchi, Makoto

    2009-02-01

    We demonstrated cell imaging without any stain by far-field 2-color infrared (IR) super-resolution microscopy, combining laser fluorescence microscope and picosecond transient fluorescence detected IR (TFD-IR) spectroscopy. TFD-IR spectroscopy detects IR absorption by monitoring fluorescence due to an electronic transition from a vibrational excited level by an additional visible light. By using the IR microscopy based on TFD-IR spectroscopy, the spatial resolution of the image can be increased to the visible diffraction limit of sub-μm, i.e., the IR is super-resolved. Cell auto-fluorescence due to flavin molecules was monitored for label-free detection of the cellular components. The fluorescence image of an A549 cell was obtained by introducing both an IR light at 3300 nm and a visible light at 560 nm. The spatial resolution of the image was estimated to be 1.6 μm. This is about 2.5-times higher resolution than the diffraction limit of IR light. The fluorescence intensity of the images at 3448 nm was smaller than that at 3300 nm, corresponding to the smaller IR absorption. Therefore, IR spectral imaging of a single cell was achieved with superresolution.

  8. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...... is based on determination of the left-ventricular endocardial and epicardial borders. Since manual border detection is laborious, automated segmentation is highly desirable as a fast, objective and reproducible alternative. Automated segmentation will thus enhance comparability between and within cardiac...... studies and increase accuracy by allowing acquisition of thinner MRI-slices. This abstract demonstrates that statistical models of shape and appearance, namely the deformable models: Active Appearance Models, can successfully segment cardiac MRIs....

  9. Automated spectral imaging for clinical diagnostics

    Science.gov (United States)

    Breneman, John; Heffelfinger, David M.; Pettipiece, Ken; Tsai, Chris; Eden, Peter; Greene, Richard A.; Sorensen, Karen J.; Stubblebine, Will; Witney, Frank

    1998-04-01

    Bio-Rad Laboratories supplies imaging equipment for many applications in the life sciences. As part of our effort to offer more flexibility to the investigator, we are developing a microscope-based imaging spectrometer for the automated detection and analysis of either conventionally or fluorescently labeled samples. Immediate applications will include the use of fluorescence in situ hybridization (FISH) technology. The field of cytogenetics has benefited greatly from the increased sensitivity of FISH producing simplified analysis of complex chromosomal rearrangements. FISH methods for identification lends itself to automation more easily than the current cytogenetics industry standard of G- banding, however, the methods are complementary. Several technologies have been demonstrated successfully for analyzing the signals from labeled samples, including filter exchanging and interferometry. The detection system lends itself to other fluorescent applications including the display of labeled tissue sections, DNA chips, capillary electrophoresis or any other system using color as an event marker. Enhanced displays of conventionally stained specimens will also be possible.

  10. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  11. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    Science.gov (United States)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  12. In Situ Probing of Cholesterol in Astrocytes at the Single Cell Level using Laser Desorption Ionization Mass Spectrometric Imaging with Colloidal Silver

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, D.C.; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-18

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  13. Automated landmark-guided deformable image registration

    Science.gov (United States)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  14. Automated Quality Assurance Applied to Mammographic Imaging

    Directory of Open Access Journals (Sweden)

    Anne Davis

    2002-07-01

    Full Text Available Quality control in mammography is based upon subjective interpretation of the image quality of a test phantom. In order to suppress subjectivity due to the human observer, automated computer analysis of the Leeds TOR(MAM test phantom is investigated. Texture analysis via grey-level co-occurrence matrices is used to detect structures in the test object. Scoring of the substructures in the phantom is based on grey-level differences between regions and information from grey-level co-occurrence matrices. The results from scoring groups of particles within the phantom are presented.

  15. Live-Cell Imaging Tool Optimization To Study Gene Expression Levels and Dynamics in Single Cells of Bacillus cereus

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Kuipers, Oscar P.

    2013-01-01

    Single-cell methods are a powerful application in microbial research to study the molecular mechanism underlying phenotypic heterogeneity and cell-to-cell variability. Here, we describe the optimization and application of single-cell time-lapse fluorescence microscopy for the food spoilage bacterium

  16. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.;

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  17. Automated vertebra identification in CT images

    Science.gov (United States)

    Ehm, Matthias; Klinder, Tobias; Kneser, Reinhard; Lorenz, Cristian

    2009-02-01

    In this paper, we describe and compare methods for automatically identifying individual vertebrae in arbitrary CT images. The identification is an essential precondition for a subsequent model-based segmentation, which is used in a wide field of orthopedic, neurological, and oncological applications, e.g., spinal biopsies or the insertion of pedicle screws. Since adjacent vertebrae show similar characteristics, an automated labeling of the spine column is a very challenging task, especially if no surrounding reference structures can be taken into account. Furthermore, vertebra identification is complicated due to the fact that many images are bounded to a very limited field of view and may contain only few vertebrae. We propose and evaluate two methods for automatically labeling the spine column by evaluating similarities between given models and vertebral objects. In one method, object boundary information is taken into account by applying a Generalized Hough Transform (GHT) for each vertebral object. In the other method, appearance models containing mean gray value information are registered to each vertebral object using cross and local correlation as similarity measures for the optimization function. The GHT is advantageous in terms of computational performance but cuts back concerning the identification rate. A correct labeling of the vertebral column has been successfully performed on 93% of the test set consisting of 63 disparate input images using rigid image registration with local correlation as similarity measure.

  18. Computerized Station For Semi-Automated Testing Image Intensifier Tubes

    OpenAIRE

    Chrzanowski Krzysztof

    2015-01-01

    Testing of image intensifier tubes is still done using mostly manual methods due to a series of both technical and legal problems with test automation. Computerized stations for semi-automated testing of IITs are considered as novelty and are under continuous improvements. This paper presents a novel test station that enables semi-automated measurement of image intensifier tubes. Wide test capabilities and advanced design solutions rise the developed test station significantly above the curre...

  19. Automated object detection for astronomical images

    Science.gov (United States)

    Orellana, Sonny; Zhao, Lei; Boussalis, Helen; Liu, Charles; Rad, Khosrow; Dong, Jane

    2005-10-01

    Sponsored by the National Aeronautical Space Association (NASA), the Synergetic Education and Research in Enabling NASA-centered Academic Development of Engineers and Space Scientists (SERENADES) Laboratory was established at California State University, Los Angeles (CSULA). An important on-going research activity in this lab is to develop an easy-to-use image analysis software with the capability of automated object detection to facilitate astronomical research. This paper presented a fast object detection algorithm based on the characteristics of astronomical images. This algorithm consists of three steps. First, the foreground and background are separated using histogram-based approach. Second, connectivity analysis is conducted to extract individual object. The final step is post processing which refines the detection results. To improve the detection accuracy when some objects are blocked by clouds, top-hat transform is employed to split the sky into cloudy region and non-cloudy region. A multi-level thresholding algorithm is developed to select the optimal threshold for different regions. Experimental results show that our proposed approach can successfully detect the blocked objects by clouds.

  20. A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging.

    Science.gov (United States)

    Mezzanotte, Laura; Blankevoort, Vicky; Löwik, Clemens W G M; Kaijzel, Eric L

    2014-09-01

    Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 10(3) and 5 × 10(4) cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging.

  1. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Szymanski, Craig J.; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James E.; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-15

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics at the molecular level.

  2. OpenComet: An automated tool for comet assay image analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Gyori

    2014-01-01

    Full Text Available Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  3. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  4. Image analysis and platform development for automated phenotyping in cytomics

    NARCIS (Netherlands)

    Yan, Kuan

    2013-01-01

    This thesis is dedicated to the empirical study of image analysis in HT/HC screen study. Often a HT/HC screening produces extensive amounts that cannot be manually analyzed. Thus, an automated image analysis solution is prior to an objective understanding of the raw image data. Compared to general a

  5. Computerized Station For Semi-Automated Testing Image Intensifier Tubes

    Directory of Open Access Journals (Sweden)

    Chrzanowski Krzysztof

    2015-09-01

    Full Text Available Testing of image intensifier tubes is still done using mostly manual methods due to a series of both technical and legal problems with test automation. Computerized stations for semi-automated testing of IITs are considered as novelty and are under continuous improvements. This paper presents a novel test station that enables semi-automated measurement of image intensifier tubes. Wide test capabilities and advanced design solutions rise the developed test station significantly above the current level of night vision metrology.

  6. Image segmentation for automated dental identification

    Science.gov (United States)

    Haj Said, Eyad; Nassar, Diaa Eldin M.; Ammar, Hany H.

    2006-02-01

    Dental features are one of few biometric identifiers that qualify for postmortem identification; therefore, creation of an Automated Dental Identification System (ADIS) with goals and objectives similar to the Automated Fingerprint Identification System (AFIS) has received increased attention. As a part of ADIS, teeth segmentation from dental radiographs films is an essential step in the identification process. In this paper, we introduce a fully automated approach for teeth segmentation with goal to extract at least one tooth from the dental radiograph film. We evaluate our approach based on theoretical and empirical basis, and we compare its performance with the performance of other approaches introduced in the literature. The results show that our approach exhibits the lowest failure rate and the highest optimality among all full automated approaches introduced in the literature.

  7. Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation.

    Science.gov (United States)

    Beijbom, Oscar; Edmunds, Peter J; Roelfsema, Chris; Smith, Jennifer; Kline, David I; Neal, Benjamin P; Dunlap, Matthew J; Moriarty, Vincent; Fan, Tung-Yung; Tan, Chih-Jui; Chan, Stephen; Treibitz, Tali; Gamst, Anthony; Mitchell, B Greg; Kriegman, David

    2015-01-01

    Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys. PMID:26154157

  8. Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation.

    Directory of Open Access Journals (Sweden)

    Oscar Beijbom

    Full Text Available Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys.

  9. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    OpenAIRE

    Wang, Yuanmin; Sevinc, Papatya C.; Balchik, Sara M.; Fridrickson, Jim; Shi, Liang; Lu, H. Peter

    2013-01-01

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles ads...

  10. Procedures for the quantification of whole-tissue immunofluorescence images obtained at single-cell resolution during murine tubular organ development.

    Science.gov (United States)

    Hirashima, Tsuyoshi; Adachi, Taiji

    2015-01-01

    Whole-tissue quantification at single-cell resolution has become an inevitable approach for further quantitative understanding of morphogenesis in organ development. The feasibility of the approach has been dramatically increased by recent technological improvements in optical tissue clearing and microscopy. However, the series of procedures required for this approach to lead to successful whole-tissue quantification is far from developed. To provide the appropriate procedure, we here show tips for each critical step of the entire process, including fixation for immunofluorescence, optical clearing, and digital image processing, using developing murine internal organs such as epididymis, kidney, and lung as an example. Through comparison of fixative solutions and of clearing methods, we found optimal conditions to achieve clearer deep-tissue imaging of specific immunolabeled targets and explain what methods result in vivid volume imaging. In addition, we demonstrated that three-dimensional digital image processing after optical clearing produces objective quantitative data for the whole-tissue analysis, focusing on the spatial distribution of mitotic cells in the epididymal tubule. The procedure for the whole-tissue quantification shown in this article should contribute to systematic measurements of cellular processes in developing organs, accelerating the further understanding of morphogenesis at the single cell level. PMID:26258587

  11. Procedures for the quantification of whole-tissue immunofluorescence images obtained at single-cell resolution during murine tubular organ development.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hirashima

    Full Text Available Whole-tissue quantification at single-cell resolution has become an inevitable approach for further quantitative understanding of morphogenesis in organ development. The feasibility of the approach has been dramatically increased by recent technological improvements in optical tissue clearing and microscopy. However, the series of procedures required for this approach to lead to successful whole-tissue quantification is far from developed. To provide the appropriate procedure, we here show tips for each critical step of the entire process, including fixation for immunofluorescence, optical clearing, and digital image processing, using developing murine internal organs such as epididymis, kidney, and lung as an example. Through comparison of fixative solutions and of clearing methods, we found optimal conditions to achieve clearer deep-tissue imaging of specific immunolabeled targets and explain what methods result in vivid volume imaging. In addition, we demonstrated that three-dimensional digital image processing after optical clearing produces objective quantitative data for the whole-tissue analysis, focusing on the spatial distribution of mitotic cells in the epididymal tubule. The procedure for the whole-tissue quantification shown in this article should contribute to systematic measurements of cellular processes in developing organs, accelerating the further understanding of morphogenesis at the single cell level.

  12. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis.

    Science.gov (United States)

    Brandl, Maria T; Huynh, Steven

    2014-08-01

    Salmonella enterica has the ability to form biofilms and large aggregates on produce surfaces, including on cilantro leaves. Aggregates of S. enterica serovar Thompson that remained attached to cilantro leaves after rigorous washing and that were present free or bound to dislodged leaf tissue in the wash suspension were observed by confocal microscopy. Measurement of S. Thompson population sizes in the leaf washes by plate counts failed to show an effect of 0.05% Tween 80 on the removal of the pathogen from cilantro leaves 2 and 6 days after inoculation. On the contrary, digital image analysis of micrographs of single cells and aggregates of green fluorescent protein (GFP)-S. Thompson present in cilantro leaf washes revealed that single cells represented 13.7% of the cell assemblages in leaf washes containing Tween 80, versus 9.3% in those without the surfactant. Moreover, Tween 80 decreased the percentage of the total S. Thompson cell population located in aggregates equal to or larger than 64 cells from 9.8% to 4.4% (P < 0.05). Regression analysis of the frequency distribution of aggregate size in leaf washes with and without Tween 80 showed that the surfactant promoted the dispersal of cells from large aggregates into smaller ones and into single cells (P < 0.05). Our study underlines the importance of investigating bacterial behavior at the scale of single cells in order to uncover trends undetectable at the population level by bacterial plate counts. Such an approach may provide valuable information to devise strategies aimed at enhancing the efficacy of produce sanitization treatments. PMID:24907336

  13. Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation

    OpenAIRE

    Oscar Beijbom; Edmunds, Peter J.; Chris Roelfsema; Jennifer Smith; Kline, David I.; Neal, Benjamin P.; Matthew J Dunlap; Vincent Moriarty; Tung-Yung Fan; Chih-Jui Tan; Stephen Chan; Tali Treibitz; Anthony Gamst; B. Greg Mitchell; David Kriegman

    2015-01-01

    Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images capture...

  14. Automated identification of animal species in camera trap images

    NARCIS (Netherlands)

    Yu, X.; Wang, J.; Kays, R.; Jansen, P.A.; Wang, T.; Huang, T.

    2013-01-01

    Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species identif

  15. Automated diabetic retinopathy imaging in Indian eyes: A pilot study

    Directory of Open Access Journals (Sweden)

    Rupak Roy

    2014-01-01

    Full Text Available Aim: To evaluate the efficacy of an automated retinal image grading system in diabetic retinopathy (DR screening. Materials and Methods: Color fundus images of patients of a DR screening project were analyzed for the purpose of the study. For each eye two set of images were acquired, one centerd on the disk and the other centerd on the macula. All images were processed by automated DR screening software (Retmarker. The results were compared to ophthalmologist grading of the same set of photographs. Results: 5780 images of 1445 patients were analyzed. Patients were screened into two categories DR or no DR. Image quality was high, medium and low in 71 (4.91%, 1117 (77.30% and 257 (17.78% patients respectively. Specificity and sensitivity for detecting DR in the high, medium and low group were (0.59, 0.91; (0.11, 0.95 and (0.93, 0.14. Conclusion: Automated retinal image screening system for DR had a high sensitivity in high and medium quality images. Automated DR grading software′s hold promise in future screening programs.

  16. Automation of Cassini Support Imaging Uplink Command Development

    Science.gov (United States)

    Ly-Hollins, Lisa; Breneman, Herbert H.; Brooks, Robert

    2010-01-01

    "Support imaging" is imagery requested by other Cassini science teams to aid in the interpretation of their data. The generation of the spacecraft command sequences for these images is performed by the Cassini Instrument Operations Team. The process initially established for doing this was very labor-intensive, tedious and prone to human error. Team management recognized this process as one that could easily benefit from automation. Team members were tasked to document the existing manual process, develop a plan and strategy to automate the process, implement the plan and strategy, test and validate the new automated process, and deliver the new software tools and documentation to Flight Operations for use during the Cassini extended mission. In addition to the goals of higher efficiency and lower risk in the processing of support imaging requests, an effort was made to maximize adaptability of the process to accommodate uplink procedure changes and the potential addition of new capabilities outside the scope of the initial effort.

  17. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy.

    Science.gov (United States)

    Hua, Xin; Szymanski, Craig; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-16

    Chemical imaging of single cells at the molecular level is important in capturing biological dynamics. Single cell correlative imaging is realized between super-resolution microscopy, namely, structured illumination microscopy (SIM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using a multimodal microreactor (i.e., System for Analysis at the Liquid Vacuum Interface, SALVI). SIM characterized cells and guided subsequent ToF-SIMS analysis. Lipid fragments were identified in the cell membrane via dynamic ToF-SIMS depth profiling. Positive SIMS spectra show intracellular potassium and sodium ion transport due to exposure to nanoparticles. Spectral principal component analysis elucidates differences in chemical composition among healthy alveolar epithelial mouse lung C10 cells, cells that uptake zinc oxide nanoparticles, and various wet and dry control samples. The observation of Zn(+) gives the first direct evidence of ZnO NP uptake and dissolution by the cell membrane. Our results provide submicron chemical mapping for investigating cell dynamics at the molecular level. PMID:27053104

  18. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging

    DEFF Research Database (Denmark)

    Trampe, Erik Christian Løvbjerg; Kolbowski, J.; Schreiber, U.;

    2011-01-01

    We present a new system for microscopic multicolour variable chlorophyll fluorescence imaging of aquatic phototrophs. The system is compact and portable and enables microscopic imaging of photosynthetic performance of individual cells and chloroplasts using different combinations of blue, green...

  19. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  20. Quantitative chemical imaging of the intracellular spatial distribution of fundamental elements and light metals in single cells.

    Science.gov (United States)

    Malucelli, Emil; Iotti, Stefano; Gianoncelli, Alessandra; Fratini, Michela; Merolle, Lucia; Notargiacomo, Andrea; Marraccini, Chiara; Sargenti, Azzurra; Cappadone, Concettina; Farruggia, Giovanna; Bukreeva, Inna; Lombardo, Marco; Trombini, Claudio; Maier, Jeanette A; Lagomarsino, Stefano

    2014-05-20

    We report a method that allows a complete quantitative characterization of whole single cells, assessing the total amount of carbon, nitrogen, oxygen, sodium, and magnesium and providing submicrometer maps of element molar concentration, cell density, mass, and volume. This approach allows quantifying elements down to 10(6) atoms/μm(3). This result was obtained by applying a multimodal fusion approach that combines synchrotron radiation microscopy techniques with off-line atomic force microscopy. The method proposed permits us to find the element concentration in addition to the mass fraction and provides a deeper and more complete knowledge of cell composition. We performed measurements on LoVo human colon cancer cells sensitive (LoVo-S) and resistant (LoVo-R) to doxorubicin. The comparison of LoVo-S and LoVo-R revealed different patterns in the maps of Mg concentration with higher values within the nucleus in LoVo-R and in the perinuclear region in LoVo-S cells. This feature was not so evident for the other elements, suggesting that Mg compartmentalization could be a significant trait of the drug-resistant cells.

  1. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    Directory of Open Access Journals (Sweden)

    Jianfang Cao

    2015-01-01

    Full Text Available With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance.

  2. Automated image registration for FDOPA PET studies

    Science.gov (United States)

    Lin, Kang-Ping; Huang, Sung-Cheng; Yu, Dan-Chu; Melega, William; Barrio, Jorge R.; Phelps, Michael E.

    1996-12-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention.

  3. Automated Localization of Optic Disc in Retinal Images

    Directory of Open Access Journals (Sweden)

    Deepali A.Godse

    2013-03-01

    Full Text Available An efficient detection of optic disc (OD in colour retinal images is a significant task in an automated retinal image analysis system. Most of the algorithms developed for OD detection are especially applicable to normal and healthy retinal images. It is a challenging task to detect OD in all types of retinal images, that is, normal, healthy images as well as abnormal, that is, images affected due to disease. This paper presents an automated system to locate an OD and its centre in all types of retinal images. The ensemble of steps based on different criteria produces more accurate results. The proposed algorithm gives excellent results and avoids false OD detection. The technique is developed and tested on standard databases provided for researchers on internet, Diaretdb0 (130 images, Diaretdb1 (89 images, Drive (40 images and local database (194 images. The local database images are collected from ophthalmic clinics. It is able to locate OD and its centre in 98.45% of all tested cases. The results achieved by different algorithms can be compared when algorithms are applied on same standard databases. This comparison is also discussed in this paper which shows that the proposed algorithm is more efficient.

  4. Automated image capture and defects detection by cavity inspection camera

    International Nuclear Information System (INIS)

    The defects as pit and scar make electric/magnetic field enhance and it cause field emission and quench in superconducting cavities. We used inspection camera to find these defects, but the current system which operated by human often mistake file naming and require long acquisition time. This study aims to solve these problems with introduction of cavity driving automation and defect inspection. We used rs232c of serial communication to drive of motor and camera for the automation of the inspection camera, and we used defect inspection software with defects reference images and pattern match software with the OpenCV lib. By the automation, we cut down the acquisition time from 8 hours to 2 hours, however defect inspection software is under preparation. The defect inspection software has a problem of complexity of image back ground. (author)

  5. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  6. Automated image analysis in the study of collagenous colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Kristensson, Martin; Engel, Ulla;

    2016-01-01

    PURPOSE: The aim of this study was to develop an automated image analysis software to measure the thickness of the subepithelial collagenous band in colon biopsies with collagenous colitis (CC) and incomplete CC (CCi). The software measures the thickness of the collagenous band on microscopic...

  7. Automated radiopharmaceutical production systems for positron imaging

    International Nuclear Information System (INIS)

    This study provides information that will lead towards the widespread availability of systems for routine production of positron emitting isotopes and radiopharmaceuticals in a medical setting. The first part describes the collection, evaluation, and preparation in convenient form of the pertinent physical, engineering, and chemical data related to reaction yields and isotope production. The emphasis is on the production of the four short-lived isotopes C-11, N-13, O-15 and F-18. The second part is an assessment of radiation sources including cyclotrons, linear accelerators, and other more exotic devices. Various aspects of instrumentation including ease of installation, cost, and shielding are included. The third part of the study reviews the preparation of precursors and radiopharmaceuticals by automated chemical systems. 182 refs., 3 figs., 15 tabs

  8. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  9. Analyzing the effect of absorption and refractive index on image formation in high numerical aperture transmission microscopy of single cells

    Science.gov (United States)

    Coe, Ryan L.; Seibel, Eric J.

    2013-02-01

    Transmission bright-field microscopy is the clinical mainstay for disease diagnosis where image contrast is provided by absorptive and refractive index differences between tissue and the surrounding media. Different microscopy techniques often assume one of the two contrast mechanisms is negligible as a means to better understand the tissue scattering processes. This particular work provides better understanding of the role of refractive index and absorption within Optical Projection Tomographic Microscopy (OPTM) through the development of a generalized computational model based upon the Finite-Difference Time-Domain method. The model mimics OPTM by simulating axial scanning of the objective focal plane through the cell to produce projection images. These projection images, acquired from circumferential positions around the cell, are reconstructed into isometric three-dimensional images using the filtered backprojection normally employed in Computed Tomography (CT). The model provides a platform to analyze all aspects of bright-field microscopes, such as the degree of refractive index matching and the numerical aperture, which can be varied from air-immersion to high NA oil-immersion. In this preliminary work, the model is used to understand the effects of absorption and refraction on image formation using micro-shells and idealized nuclei. Analysis of absorption and refractive index separately provides the opportunity to better assess their role together as a complex refractive index for improved interpretation of bright-field scattering, essential for OPTM image reconstruction. This simulation, as well as ones in the future looking at other effects, will be used to optimize OPTM imaging parameters and triage efforts to further improve the overall system design.

  10. Automated image-based tracking and its application in ecology.

    Science.gov (United States)

    Dell, Anthony I; Bender, John A; Branson, Kristin; Couzin, Iain D; de Polavieja, Gonzalo G; Noldus, Lucas P J J; Pérez-Escudero, Alfonso; Perona, Pietro; Straw, Andrew D; Wikelski, Martin; Brose, Ulrich

    2014-07-01

    The behavior of individuals determines the strength and outcome of ecological interactions, which drive population, community, and ecosystem organization. Bio-logging, such as telemetry and animal-borne imaging, provides essential individual viewpoints, tracks, and life histories, but requires capture of individuals and is often impractical to scale. Recent developments in automated image-based tracking offers opportunities to remotely quantify and understand individual behavior at scales and resolutions not previously possible, providing an essential supplement to other tracking methodologies in ecology. Automated image-based tracking should continue to advance the field of ecology by enabling better understanding of the linkages between individual and higher-level ecological processes, via high-throughput quantitative analysis of complex ecological patterns and processes across scales, including analysis of environmental drivers.

  11. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri;

    2009-01-01

    advantages and applicability of this technique. Our present data on assessment of low radiation doses, repair kinetics, spontaneous DNA damage in cancer cells, as well as constitutive and replication stress-induced HR events and their dependence on upstream factors within the DDR machinery document the......Maintenance of genome integrity is essential for homeostasis and survival as impaired DNA damage response (DDR) may predispose to grave pathologies such as neurodegenerative and immunodeficiency syndromes, cancer and premature aging. Therefore, accurate assessment of DNA damage caused by...... environmental or metabolic genotoxic insults is critical for contemporary biomedicine. The available physical, flow cytometry and sophisticated scanning approaches to DNA damage estimation each have some drawbacks such as insufficient sensitivity, limitation to analysis of cells in suspension, or high costs and...

  12. Automated vasculature extraction from placenta images

    Science.gov (United States)

    Almoussa, Nizar; Dutra, Brittany; Lampe, Bryce; Getreuer, Pascal; Wittman, Todd; Salafia, Carolyn; Vese, Luminita

    2011-03-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental blood vessels, which supply a fetus with all of its oxygen and nutrition. An essential step in the analysis of the vascular network pattern is the extraction of the blood vessels, which has only been done manually through a costly and time-consuming process. There is no existing method to automatically detect placental blood vessels; in addition, the large variation in the shape, color, and texture of the placenta makes it difficult to apply standard edge-detection algorithms. We describe a method to automatically detect and extract blood vessels from a given image by using image processing techniques and neural networks. We evaluate several local features for every pixel, in addition to a novel modification to an existing road detector. Pixels belonging to blood vessel regions have recognizable responses; hence, we use an artificial neural network to identify the pattern of blood vessels. A set of images where blood vessels are manually highlighted is used to train the network. We then apply the neural network to recognize blood vessels in new images. The network is effective in capturing the most prominent vascular structures of the placenta.

  13. Automated Pointing of Cardiac Imaging Catheters.

    Science.gov (United States)

    Loschak, Paul M; Brattain, Laura J; Howe, Robert D

    2013-12-31

    Intracardiac echocardiography (ICE) catheters enable high-quality ultrasound imaging within the heart, but their use in guiding procedures is limited due to the difficulty of manually pointing them at structures of interest. This paper presents the design and testing of a catheter steering model for robotic control of commercial ICE catheters. The four actuated degrees of freedom (4-DOF) are two catheter handle knobs to produce bi-directional bending in combination with rotation and translation of the handle. An extra degree of freedom in the system allows the imaging plane (dependent on orientation) to be directed at an object of interest. A closed form solution for forward and inverse kinematics enables control of the catheter tip position and the imaging plane orientation. The proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip. The ability to automatically acquire imaging targets in the heart may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissue structures that are not visible using standard fluoroscopic guidance. Although the system has been developed and tested for manipulating ICE catheters, the methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control.

  14. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  15. SAND: Automated VLBI imaging and analyzing pipeline

    Science.gov (United States)

    Zhang, Ming

    2016-05-01

    The Search And Non-Destroy (SAND) is a VLBI data reduction pipeline composed of a set of Python programs based on the AIPS interface provided by ObitTalk. It is designed for the massive data reduction of multi-epoch VLBI monitoring research. It can automatically investigate calibrated visibility data, search all the radio emissions above a given noise floor and do the model fitting either on the CLEANed image or directly on the uv data. It then digests the model-fitting results, intelligently identifies the multi-epoch jet component correspondence, and recognizes the linear or non-linear proper motion patterns. The outputs including CLEANed image catalogue with polarization maps, animation cube, proper motion fitting and core light curves. For uncalibrated data, a user can easily add inline modules to do the calibration and self-calibration in a batch for a specific array.

  16. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  17. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  18. Quantifying biodiversity using digital cameras and automated image analysis.

    Science.gov (United States)

    Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.

    2009-04-01

    Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and

  19. Automated fetal spine detection in ultrasound images

    Science.gov (United States)

    Tolay, Paresh; Vajinepalli, Pallavi; Bhattacharya, Puranjoy; Firtion, Celine; Sisodia, Rajendra Singh

    2009-02-01

    A novel method is proposed for the automatic detection of fetal spine in ultrasound images along with its orientation in this paper. This problem presents a variety of challenges, including robustness to speckle noise, variations in the visible shape of the spine due to orientation of the ultrasound probe with respect to the fetus and the lack of a proper edge enclosing the entire spine on account of its composition out of distinct vertebra. The proposed method improves robustness and accuracy by making use of two independent techniques to estimate the spine, and then detects the exact location using a cross-correlation approach. Experimental results show that the proposed method is promising for fetal spine detection.

  20. Automated techniques for quality assurance of radiological image modalities

    Science.gov (United States)

    Goodenough, David J.; Atkins, Frank B.; Dyer, Stephen M.

    1991-05-01

    This paper will attempt to identify many of the important issues for quality assurance (QA) of radiological modalities. It is of course to be realized that QA can span many aspects of the diagnostic decision making process. These issues range from physical image performance levels to and through the diagnostic decision of the radiologist. We will use as a model for automated approaches a program we have developed to work with computed tomography (CT) images. In an attempt to unburden the user, and in an effort to facilitate the performance of QA, we have been studying automated approaches. The ultimate utility of the system is its ability to render in a safe and efficacious manner, decisions that are accurate, sensitive, specific and which are possible within the economic constraints of modern health care delivery.

  1. Endocytic Sorting of CFTR variants Monitored by Single Cell Fluorescence Ratio Image Analysis (FRIA) in Living Cells

    Science.gov (United States)

    Barriere, H.; Apaja, P.; Okiyoneda, T.; Lukacs, G. L.

    2016-01-01

    Summary The wild-type CFTR channel undergoes constitutive internalization and recycling at the plasma membrane. This process is initiated by the recognition of the Tyr- and di-Leu-based endocytic motifs of CFTR by the AP-2 adaptor complex, leading to the formation of clathrin-coated vesicles and the channel delivery to sorting/recycling endosomes. Accumulating evidence suggests that conformationally defective mutant CFTRs (e.g. rescued ΔF508 and glycosylation-deficient channel) are unstable at the plasma membrane and undergo augmented ubiquitination in post-Golgi compartments. Ubiquitination conceivably accounts for the metabolic instability at cell surface by provoking accelerated internalization, as well as rerouting the channel from recycling towards lysosomal degradation. We developed an in vivo fluorescence ratio imaging assay (FRIA) that in concert with genetic manipulation can be utilized to establish the post-endocytic fate and sorting determinants of mutant CFTRs. PMID:21594793

  2. Automated Structure Detection in HRTEM Images: An Example with Graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Vestergaard, Jacob Schack; Dahl, Anders Bjorholm;

    analysis. Single-layer graphene with its regular honeycomb lattice is a perfect model structure to apply automated structure detection. By utilizing Fourier analysis the initial perfect hexagonal structure can easily be recognized. The recorded hexagonal tessellation reflects the unperturbed structure...... challenging to interpret. In order to increase the signal-to-noise ratio of the images two routes can be pursued: 1) the exposure time can be increased; or 2) acquiring series of images and summarize them after alignment. Both methods have the disadvantage of summing images acquired over a certain period...... in the image. The centers of the C-hexagons are displayed as nodes. To segment the image into “pure” and “impure” regions, like areas with residual amorphous contamination or defects e.g. holes, a sliding window approach is used. The magnitude of the Fourier transformation within a window is compared...

  3. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  4. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  5. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10{sup {minus}8} M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  6. AUTOMATED IMAGE MATCHING WITH CODED POINTS IN STEREOVISION MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    Dong Mingli; Zhou Xiaogang; Zhu Lianqing; Lü Naiguang; Sun Yunan

    2005-01-01

    A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.

  7. A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device.

    Science.gov (United States)

    Bartalena, Guido; Grieder, Reto; Sharma, Ram I; Zambelli, Tomaso; Muff, Roman; Snedeker, Jess G

    2011-04-01

    Various micro-devices have been used to assess single cell mechanical properties. Here, we designed and implemented a novel, mechanically actuated, two dimensional cell culture system that enables a measure of cell stiffness based on quantitative functional imaging of cell-substrate interaction. Based on parametric finite element design analysis, we fabricated a soft (5 kPa) polydimethylsiloxane (PDMS) cell substrate coated with collagen-I and fluorescent micro-beads, thus providing a favorable terrain for cell adhesion and for substrate deformation quantification, respectively. We employed a real-time tracking system that analyzes high magnification images of living cells under stretch, and compensates for gross substrate motions by dynamic adjustment of the microscope stage. Digital image correlation (DIC) was used to quantify substrate deformation beneath and surrounding the cell, leading to an estimate of cell stiffness based upon the ability of the cell to resist the applied substrate deformation. Sensitivity of the system was tested using chemical treatments to both "soften" and "stiffen" the cell cytoskeleton with either 0.5 μg/ml Cytochalasin-D or 3% Glutaraldehyde, respectively. Results indicate that untreated osteosarcoma cells (SAOS-2) exhibit a 1.5 ± 0.7% difference in strain from an applied target substrate strain of 8%. Compared to untreated cells, those treated with Cyochalasin-D passively followed the substrate (0.5 ± 0.5%, p deformation (2.9 ± 1.6%, p < 0.001). Nano-indentation testing showed differences in cell stiffness based on culture treatment, consistent with DIC findings. Our results indicate that mechanics and image analysis approaches do hold promise as a method to quantitatively assess tensile cell constitutive properties. PMID:21120698

  8. An automated system for whole microscopic image acquisition and analysis.

    Science.gov (United States)

    Bueno, Gloria; Déniz, Oscar; Fernández-Carrobles, María Del Milagro; Vállez, Noelia; Salido, Jesús

    2014-09-01

    The field of anatomic pathology has experienced major changes over the last decade. Virtual microscopy (VM) systems have allowed experts in pathology and other biomedical areas to work in a safer and more collaborative way. VMs are automated systems capable of digitizing microscopic samples that were traditionally examined one by one. The possibility of having digital copies reduces the risk of damaging original samples, and also makes it easier to distribute copies among other pathologists. This article describes the development of an automated high-resolution whole slide imaging (WSI) system tailored to the needs and problems encountered in digital imaging for pathology, from hardware control to the full digitization of samples. The system has been built with an additional digital monochromatic camera together with the color camera by default and LED transmitted illumination (RGB). Monochrome cameras are the preferred method of acquisition for fluorescence microscopy. The system is able to digitize correctly and form large high resolution microscope images for both brightfield and fluorescence. The quality of the digital images has been quantified using three metrics based on sharpness, contrast and focus. It has been proved on 150 tissue samples of brain autopsies, prostate biopsies and lung cytologies, at five magnifications: 2.5×, 10×, 20×, 40×, and 63×. The article is focused on the hardware set-up and the acquisition software, although results of the implemented image processing techniques included in the software and applied to the different tissue samples are also presented.

  9. Usefulness of automated biopsy guns in image-guided biopsy

    International Nuclear Information System (INIS)

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis

  10. Automated retinal image analysis for diabetic retinopathy in telemedicine.

    Science.gov (United States)

    Sim, Dawn A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Aiello, Lloyd Paul; Silva, Paolo S

    2015-03-01

    There will be an estimated 552 million persons with diabetes globally by the year 2030. Over half of these individuals will develop diabetic retinopathy, representing a nearly insurmountable burden for providing diabetes eye care. Telemedicine programmes have the capability to distribute quality eye care to virtually any location and address the lack of access to ophthalmic services. In most programmes, there is currently a heavy reliance on specially trained retinal image graders, a resource in short supply worldwide. These factors necessitate an image grading automation process to increase the speed of retinal image evaluation while maintaining accuracy and cost effectiveness. Several automatic retinal image analysis systems designed for use in telemedicine have recently become commercially available. Such systems have the potential to substantially improve the manner by which diabetes eye care is delivered by providing automated real-time evaluation to expedite diagnosis and referral if required. Furthermore, integration with electronic medical records may allow a more accurate prognostication for individual patients and may provide predictive modelling of medical risk factors based on broad population data. PMID:25697773

  11. Automated 3D renal segmentation based on image partitioning

    Science.gov (United States)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  12. Quantitative Determination and Subcellular Imaging of Cu in Single Cells via Laser Ablation-ICP-Mass Spectrometry Using High-Density Microarray Gelatin Standards.

    Science.gov (United States)

    Van Malderen, Stijn J M; Vergucht, Eva; De Rijcke, Maarten; Janssen, Colin; Vincze, Laszlo; Vanhaecke, Frank

    2016-06-01

    This manuscript describes the development and characterization of a high-density microarray calibration standard, manufactured in-house and designed to overcome the limitations in precision, accuracy, and throughput of current calibration approaches for the quantification of elemental concentrations on the cellular level using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). As a case study, the accumulation of Cu in the model organism Scrippsiella trochoidea resulting from transition metal exposure (ranging from 0.5 to 100 μg/L) was evaluated. After the Cu exposure, cells of this photosynthetic dinoflagellate were treated with a critical point drying protocol, transferred to a carbon stub, and sputter-coated with a Au layer for scanning electron microscopy (SEM) analysis. In subsequent LA-ICPMS analysis, approximately 100 cells of each population were individually ablated. This approach permitted the evaluation of the mean concentration of Cu in the cell population across different exposure levels and also allowed the examination of the cellular distribution of Cu within the populations. In a cross-validation exercise, subcellular LA-ICPMS imaging was demonstrated to corroborate synchrotron radiation confocal X-ray fluorescence (SR-XRF) microimaging of single cells investigated under in vivo conditions. PMID:27149342

  13. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Rosenvinge, Flemming Schønning; Spillum, Erik;

    2015-01-01

    Background Antibiotics of the β-lactam group are able to alter the shape of the bacterial cell wall, e.g. filamentation or a spheroplast formation. Early determination of antimicrobial susceptibility may be complicated by filamentation of bacteria as this can be falsely interpreted as growth...... in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results Three E. coli strains displaying...... different resistant profiles and differences in filamentation kinetics were used to study a novel image analysis algorithm to quantify length of bacteria and bacterial filamentation. A total of 12 β-lactam antibiotics or β-lactam–β-lactamase inhibitor combinations were analyzed for their ability to induce...

  14. Automated localization of vertebra landmarks in MRI images

    Science.gov (United States)

    Pai, Akshay; Narasimhamurthy, Anand; Rao, V. S. Veeravasarapu; Vaidya, Vivek

    2011-03-01

    The identification of key landmark points in an MR spine image is an important step for tasks such as vertebra counting. In this paper, we propose a template matching based approach for automatic detection of two key landmark points, namely the second cervical vertebra (C2) and the sacrum from sagittal MR images. The approach is comprised of an approximate localization of vertebral column followed by matching with appropriate templates in order to detect/localize the landmarks. A straightforward extension of the work described here is an automated classification of spine section(s). It also serves as a useful building block for further automatic processing such as extraction of regions of interest for subsequent image processing and also in aiding the counting of vertebra.

  15. Automated blood vessel extraction using local features on retinal images

    Science.gov (United States)

    Hatanaka, Yuji; Samo, Kazuki; Tajima, Mikiya; Ogohara, Kazunori; Muramatsu, Chisako; Okumura, Susumu; Fujita, Hiroshi

    2016-03-01

    An automated blood vessel extraction using high-order local autocorrelation (HLAC) on retinal images is presented. Although many blood vessel extraction methods based on contrast have been proposed, a technique based on the relation of neighbor pixels has not been published. HLAC features are shift-invariant; therefore, we applied HLAC features to retinal images. However, HLAC features are weak to turned image, thus a method was improved by the addition of HLAC features to a polar transformed image. The blood vessels were classified using an artificial neural network (ANN) with HLAC features using 105 mask patterns as input. To improve performance, the second ANN (ANN2) was constructed by using the green component of the color retinal image and the four output values of ANN, Gabor filter, double-ring filter and black-top-hat transformation. The retinal images used in this study were obtained from the "Digital Retinal Images for Vessel Extraction" (DRIVE) database. The ANN using HLAC output apparent white values in the blood vessel regions and could also extract blood vessels with low contrast. The outputs were evaluated using the area under the curve (AUC) based on receiver operating characteristics (ROC) analysis. The AUC of ANN2 was 0.960 as a result of our study. The result can be used for the quantitative analysis of the blood vessels.

  16. An automated 3D reconstruction method of UAV images

    Science.gov (United States)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  17. Magnetic levitation of single cells.

    Science.gov (United States)

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  18. Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images

    Science.gov (United States)

    Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz

    2016-01-01

    The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692

  19. Granulometric profiling of aeolian dust deposits by automated image analysis

    Science.gov (United States)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  20. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  1. Automated Image Processing for the Analysis of DNA Repair Dynamics

    CERN Document Server

    Riess, Thorsten; Tomas, Martin; Ferrando-May, Elisa; Merhof, Dorit

    2011-01-01

    The efficient repair of cellular DNA is essential for the maintenance and inheritance of genomic information. In order to cope with the high frequency of spontaneous and induced DNA damage, a multitude of repair mechanisms have evolved. These are enabled by a wide range of protein factors specifically recognizing different types of lesions and finally restoring the normal DNA sequence. This work focuses on the repair factor XPC (xeroderma pigmentosum complementation group C), which identifies bulky DNA lesions and initiates their removal via the nucleotide excision repair pathway. The binding of XPC to damaged DNA can be visualized in living cells by following the accumulation of a fluorescent XPC fusion at lesions induced by laser microirradiation in a fluorescence microscope. In this work, an automated image processing pipeline is presented which allows to identify and quantify the accumulation reaction without any user interaction. The image processing pipeline comprises a preprocessing stage where the ima...

  2. Automated segmentation of three-dimensional MR brain images

    Science.gov (United States)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  3. An automated deformable image registration evaluation of confidence tool

    Science.gov (United States)

    Kirby, Neil; Chen, Josephine; Kim, Hojin; Morin, Olivier; Nie, Ke; Pouliot, Jean

    2016-04-01

    Deformable image registration (DIR) is a powerful tool for radiation oncology, but it can produce errors. Beyond this, DIR accuracy is not a fixed quantity and varies on a case-by-case basis. The purpose of this study is to explore the possibility of an automated program to create a patient- and voxel-specific evaluation of DIR accuracy. AUTODIRECT is a software tool that was developed to perform this evaluation for the application of a clinical DIR algorithm to a set of patient images. In brief, AUTODIRECT uses algorithms to generate deformations and applies them to these images (along with processing) to generate sets of test images, with known deformations that are similar to the actual ones and with realistic noise properties. The clinical DIR algorithm is applied to these test image sets (currently 4). From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. In this study, four commercially available DIR algorithms were used to deform a dose distribution associated with a virtual pelvic phantom image set, and AUTODIRECT was used to generate dose uncertainty estimates for each deformation. The virtual phantom image set has a known ground-truth deformation, so the true dose-warping errors of the DIR algorithms were also known. AUTODIRECT predicted error patterns that closely matched the actual error spatial distribution. On average AUTODIRECT overestimated the magnitude of the dose errors, but tuning the AUTODIRECT algorithms should improve agreement. This proof-of-principle test demonstrates the potential for the AUTODIRECT algorithm as an empirical method to predict DIR errors.

  4. Scanning probe image wizard: A toolbox for automated scanning probe microscopy data analysis

    Science.gov (United States)

    Stirling, Julian; Woolley, Richard A. J.; Moriarty, Philip

    2013-11-01

    We describe SPIW (scanning probe image wizard), a new image processing toolbox for SPM (scanning probe microscope) images. SPIW can be used to automate many aspects of SPM data analysis, even for images with surface contamination and step edges present. Specialised routines are available for images with atomic or molecular resolution to improve image visualisation and generate statistical data on surface structure.

  5. Automated extraction of chemical structure information from digital raster images

    Directory of Open Access Journals (Sweden)

    Shedden Kerby A

    2009-02-01

    Full Text Available Abstract Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links

  6. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  7. Automated image analysis for space debris identification and astrometric measurements

    Science.gov (United States)

    Piattoni, Jacopo; Ceruti, Alessandro; Piergentili, Fabrizio

    2014-10-01

    The space debris is a challenging problem for the human activity in the space. Observation campaigns are conducted around the globe to detect and track uncontrolled space objects. One of the main problems in optical observation is obtaining useful information about the debris dynamical state by the images collected. For orbit determination, the most relevant information embedded in optical observation is the precise angular position, which can be evaluated by astrometry procedures, comparing the stars inside the image with star catalogs. This is typically a time consuming process, if done by a human operator, which makes this task impractical when dealing with large amounts of data, in the order of thousands images per night, generated by routinely conducted observations. An automated procedure is investigated in this paper that is capable to recognize the debris track inside a picture, calculate the celestial coordinates of the image's center and use these information to compute the debris angular position in the sky. This procedure has been implemented in a software code, that does not require human interaction and works without any supplemental information besides the image itself, detecting space objects and solving for their angular position without a priori information. The algorithm for object detection was developed inside the research team. For the star field computation, the software code astrometry.net was used and released under GPL v2 license. The complete procedure was validated by an extensive testing, using the images obtained in the observation campaign performed in a joint project between the Italian Space Agency (ASI) and the University of Bologna at the Broglio Space center, Kenya.

  8. Automated Recognition of 3D Features in GPIR Images

    Science.gov (United States)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  9. Automated detection of open magnetic field regions in EUV images

    Science.gov (United States)

    Krista, Larisza Diana; Reinard, Alysha

    2016-05-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature, but both appear as dark regions in EUV images. For this reason their detection can be done in a similar way. As coronal holes are often large and long-lived in comparison to dimmings, their detection is more straightforward. The Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm detects coronal holes using EUV images and a magnetogram. The EUV images are used to identify dark regions, and the magnetogam allows us to determine if the dark region is unipolar – a characteristic of coronal holes. There is no temporal sensitivity in this process, since coronal hole lifetimes span days to months. Dimming regions, however, emerge and disappear within hours. Hence, the time and location of a dimming emergence need to be known to successfully identify them and distinguish them from regular coronal holes. Currently, the Coronal Dimming Tracker (CoDiT) algorithm is semi-automated – it requires the dimming emergence time and location as an input. With those inputs we can identify the dimming and track it through its lifetime. CoDIT has also been developed to allow the tracking of dimmings that split or merge – a typical feature of dimmings.The advantage of these particular algorithms is their ability to adapt to detecting different types of open field regions. For coronal hole detection, each full-disk solar image is processed individually to determine a threshold for the image, hence, we are not limited to a single pre-determined threshold. For dimming regions we also allow individual thresholds for each dimming, as they can differ substantially. This flexibility is necessary for a subjective analysis of the studied regions. These algorithms were developed with the goal to allow us better understand the processes that give rise to eruptive and non-eruptive open field regions. We aim to study how these regions evolve over time and what environmental

  10. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    Science.gov (United States)

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  11. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinic...

  12. Chemical Analysis of Single Cells

    Science.gov (United States)

    Borland, Laura M.; Kottegoda, Sumith; Phillips, K. Scott; Allbritton, Nancy L.

    2008-07-01

    Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.

  13. Automated movement correction for dynamic PET/CT images: Evaluation with phantom and patient data

    OpenAIRE

    Ye, H.; Wong, KP; Wardak, M; Dahlbom, M.; Kepe, V; Barrio, JR; Nelson, LD; Small, GW; Huang, SC

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed th...

  14. Automated Image Retrieval of Chest CT Images Based on Local Grey Scale Invariant Features.

    Science.gov (United States)

    Arrais Porto, Marcelo; Cordeiro d'Ornellas, Marcos

    2015-01-01

    Textual-based tools are regularly employed to retrieve medical images for reading and interpretation using current retrieval Picture Archiving and Communication Systems (PACS) but pose some drawbacks. All-purpose content-based image retrieval (CBIR) systems are limited when dealing with medical images and do not fit well into PACS workflow and clinical practice. This paper presents an automated image retrieval approach for chest CT images based local grey scale invariant features from a local database. Performance was measured in terms of precision and recall, average retrieval precision (ARP), and average retrieval rate (ARR). Preliminary results have shown the effectiveness of the proposed approach. The prototype is also a useful tool for radiology research and education, providing valuable information to the medical and broader healthcare community. PMID:26262345

  15. Automated Nanofiber Diameter Measurement in SEM Images Using a Robust Image Analysis Method

    Directory of Open Access Journals (Sweden)

    Ertan Öznergiz

    2014-01-01

    Full Text Available Due to the high surface area, porosity, and rigidity, applications of nanofibers and nanosurfaces have developed in recent years. Nanofibers and nanosurfaces are typically produced by electrospinning method. In the production process, determination of average fiber diameter is crucial for quality assessment. Average fiber diameter is determined by manually measuring the diameters of randomly selected fibers on scanning electron microscopy (SEM images. However, as the number of the images increases, manual fiber diameter determination becomes a tedious and time consuming task as well as being sensitive to human errors. Therefore, an automated fiber diameter measurement system is desired. In the literature, this task is achieved by using image analysis algorithms. Typically, these methods first isolate each fiber in the image and measure the diameter of each isolated fiber. Fiber isolation is an error-prone process. In this study, automated calculation of nanofiber diameter is achieved without fiber isolation using image processing and analysis algorithms. Performance of the proposed method was tested on real data. The effectiveness of the proposed method is shown by comparing automatically and manually measured nanofiber diameter values.

  16. Automated Detection of Firearms and Knives in a CCTV Image.

    Science.gov (United States)

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

  17. Automated Detection of Firearms and Knives in a CCTV Image

    Directory of Open Access Journals (Sweden)

    Michał Grega

    2016-01-01

    Full Text Available Closed circuit television systems (CCTV are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

  18. Application of automated image analysis to coal petrography

    Science.gov (United States)

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    The coal petrologist seeks to determine the petrographic characteristics of organic and inorganic coal constituents and their lateral and vertical variations within a single coal bed or different coal beds of a particular coal field. Definitive descriptions of coal characteristics and coal facies provide the basis for interpretation of depositional environments, diagenetic changes, and burial history and determination of the degree of coalification or metamorphism. Numerous coal core or columnar samples must be studied in detail in order to adequately describe and define coal microlithotypes, lithotypes, and lithologic facies and their variations. The large amount of petrographic information required can be obtained rapidly and quantitatively by use of an automated image-analysis system (AIAS). An AIAS can be used to generate quantitative megascopic and microscopic modal analyses for the lithologic units of an entire columnar section of a coal bed. In our scheme for megascopic analysis, distinctive bands 2 mm or more thick are first demarcated by visual inspection. These bands consist of either nearly pure microlithotypes or lithotypes such as vitrite/vitrain or fusite/fusain, or assemblages of microlithotypes. Megascopic analysis with the aid of the AIAS is next performed to determine volume percentages of vitrite, inertite, minerals, and microlithotype mixtures in bands 0.5 to 2 mm thick. The microlithotype mixtures are analyzed microscopically by use of the AIAS to determine their modal composition in terms of maceral and optically observable mineral components. Megascopic and microscopic data are combined to describe the coal unit quantitatively in terms of (V) for vitrite, (E) for liptite, (I) for inertite or fusite, (M) for mineral components other than iron sulfide, (S) for iron sulfide, and (VEIM) for the composition of the mixed phases (Xi) i = 1,2, etc. in terms of the maceral groups vitrinite V, exinite E, inertinite I, and optically observable mineral

  19. Automated image analysis of atomic force microscopy images of rotavirus particles

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Allison, D.P. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996 (United States); Molecular Imaging Inc. Tempe, AZ, 85282 (United States); Qi, H. [Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Morrell-Falvey, J.L. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kallewaard, N.L. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Crowe, J.E. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Doktycz, M.J. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)]. E-mail: doktyczmj@ornl.gov

    2006-06-15

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM.

  20. Use of automated image registration to generate mean brain SPECT image of Alzheimer's patients

    International Nuclear Information System (INIS)

    The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer's type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape. Ten patients with Alzheimer's disease (age 71.6±5.0 yr) and ten age matched normal subjects (age 71.0±6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy. A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p<0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p<0.001). The mean brain atrophy indices for patients and normal subjects were 0.853±0.042 and 0.933±0.017 respectively, the difference being statistically significant (p<0.001). The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation. (author)

  1. Imaging Automation and Volume Tomographic Visualization at Texas Neutron Imaging Facility

    International Nuclear Information System (INIS)

    A thermal neutron imaging facility for real-time neutron radiography and computed tomography has been developed at the University of Texas reactor. The facility produced good-quality radiographs and two-dimensional tomograms. Further developments have been recently accomplished. A computer software has been developed to automate and expedite the data acquisition and reconstruction processes. Volume tomographic visualization using Interactive Data Language (IDL) software has been demonstrated and will be further developed. Volume tomography provides the additional flexibility of producing slices of the object using software and thus avoids redoing the measurements

  2. Imaging automation and volume tomographic visualization at Texas Neutron Imaging Facility

    International Nuclear Information System (INIS)

    A thermal neutron imaging facility for real-time neutron radiography and computed tomography has been developed at the University of Texas reactor. The facility produced a good-quality radiographs and two-dimensional tomograms. Further developments have been recently accomplished. Further developments have been recently accomplished. A computer software has been developed to automate and expedite the data acquisition and reconstruction processes. Volume tomographic visualization using Interactive Data Language (IDL) software has been demonstrated and will be further developed. Volume tomography provides the additional flexibility of producing slices of the object using software and thus avoids redoing the measurements

  3. OpenComet: An automated tool for comet assay image analysis

    OpenAIRE

    Gyori, Benjamin M.; Gireedhar Venkatachalam; Thiagarajan, P. S.; David Hsu; Marie-Veronique Clement

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires ...

  4. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    Science.gov (United States)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  5. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    International Nuclear Information System (INIS)

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools. (paper)

  6. Introduction: why analyze single cells?

    Science.gov (United States)

    Di Carlo, Dino; Tse, Henry Tat Kwong; Gossett, Daniel R

    2012-01-01

    Powerful methods in molecular biology are abundant; however, in many fields including hematology, stem cell biology, tissue engineering, and cancer biology, data from tools and assays that analyze the average signals from many cells may not yield the desired result because the cells of interest may be in the minority-their behavior masked by the majority-or because the dynamics of the populations of interest are offset in time. Accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. In this chapter, we discuss the rationale for performing analyses on individual cells in more depth, cover the fields of study in which single-cell behavior is yielding new insights into biological and clinical questions, and speculate on how single-cell analysis will be critical in the future.

  7. High-throughput single-cell manipulation in brain tissue.

    Directory of Open Access Journals (Sweden)

    Joseph D Steinmeyer

    Full Text Available The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.

  8. Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images.

    Science.gov (United States)

    Kim, Kwang-Min; Son, Kilho; Palmore, G Tayhas R

    2015-01-01

    Image analysis software is an essential tool used in neuroscience and neural engineering to evaluate changes in neuronal structure following extracellular stimuli. Both manual and automated methods in current use are severely inadequate at detecting and quantifying changes in neuronal morphology when the images analyzed have a low signal-to-noise ratio (SNR). This inadequacy derives from the fact that these methods often include data from non-neuronal structures or artifacts by simply tracing pixels with high intensity. In this paper, we describe Neuron Image Analyzer (NIA), a novel algorithm that overcomes these inadequacies by employing Laplacian of Gaussian filter and graphical models (i.e., Hidden Markov Model, Fully Connected Chain Model) to specifically extract relational pixel information corresponding to neuronal structures (i.e., soma, neurite). As such, NIA that is based on vector representation is less likely to detect false signals (i.e., non-neuronal structures) or generate artifact signals (i.e., deformation of original structures) than current image analysis algorithms that are based on raster representation. We demonstrate that NIA enables precise quantification of neuronal processes (e.g., length and orientation of neurites) in low quality images with a significant increase in the accuracy of detecting neuronal changes post-stimulation. PMID:26593337

  9. AMIsurvey, chimenea and other tools: Automated imaging for transient surveys with existing radio-observatories

    CERN Document Server

    Staley, Tim D

    2015-01-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, making use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. These packages...

  10. Quantization of polyphenolic compounds in histological sections of grape berries by automated color image analysis

    Science.gov (United States)

    Clement, Alain; Vigouroux, Bertnand

    2003-04-01

    We present new results in applied color image analysis that put in evidence the significant influence of soil on localization and appearance of polyphenols in grapes. These results have been obtained with a new unsupervised classification algorithm founded on hierarchical analysis of color histograms. The process is automated thanks to a software platform we developed specifically for color image analysis and it's applications.

  11. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for si

  12. Knowledge Acquisition, Validation, and Maintenance in a Planning System for Automated Image Processing

    Science.gov (United States)

    Chien, Steve A.

    1996-01-01

    A key obstacle hampering fielding of AI planning applications is the considerable expense of developing, verifying, updating, and maintainting the planning knowledge base (KB). Planning systems must be able to compare favorably in terms of software lifecycle costs to other means of automation such as scripts or rule-based expert systems. This paper describes a planning application of automated imaging processing and our overall approach to knowledge acquisition for this application.

  13. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.

  14. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    DEFF Research Database (Denmark)

    Karagiannis, Georgios; Antón Castro, Francesc/François; Mioc, Darka

    2016-01-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detec...... of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches....

  15. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    Directory of Open Access Journals (Sweden)

    Mohendra Roy

    2016-05-01

    Full Text Available Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al., we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings.

  16. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology.

    Science.gov (United States)

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  17. A novel automated image analysis method for accurate adipocyte quantification

    OpenAIRE

    Osman, Osman S.; Selway, Joanne L; Kępczyńska, Małgorzata A; Stocker, Claire J.; O’Dowd, Jacqueline F; Cawthorne, Michael A.; Arch, Jonathan RS; Jassim, Sabah; Langlands, Kenneth

    2013-01-01

    Increased adipocyte size and number are associated with many of the adverse effects observed in metabolic disease states. While methods to quantify such changes in the adipocyte are of scientific and clinical interest, manual methods to determine adipocyte size are both laborious and intractable to large scale investigations. Moreover, existing computational methods are not fully automated. We, therefore, developed a novel automatic method to provide accurate measurements of the cross-section...

  18. Automative Multi Classifier Framework for Medical Image Analysis

    Directory of Open Access Journals (Sweden)

    R. Edbert Rajan

    2015-04-01

    Full Text Available Medical image processing is the technique used to create images of the human body for medical purposes. Nowadays, medical image processing plays a major role and a challenging solution for the critical stage in the medical line. Several researches have done in this area to enhance the techniques for medical image processing. However, due to some demerits met by some advanced technologies, there are still many aspects that need further development. Existing study evaluate the efficacy of the medical image analysis with the level-set shape along with fractal texture and intensity features to discriminate PF (Posterior Fossa tumor from other tissues in the brain image. To develop the medical image analysis and disease diagnosis, to devise an automotive subjective optimality model for segmentation of images based on different sets of selected features from the unsupervised learning model of extracted features. After segmentation, classification of images is done. The classification is processed by adapting the multiple classifier frameworks in the previous work based on the mutual information coefficient of the selected features underwent for image segmentation procedures. In this study, to enhance the classification strategy, we plan to implement enhanced multi classifier framework for the analysis of medical images and disease diagnosis. The performance parameter used for the analysis of the proposed enhanced multi classifier framework for medical image analysis is Multiple Class intensity, image quality, time consumption.

  19. Improving Automated Annotation of Benthic Survey Images Using Wide-band Fluorescence

    Science.gov (United States)

    Beijbom, Oscar; Treibitz, Tali; Kline, David I.; Eyal, Gal; Khen, Adi; Neal, Benjamin; Loya, Yossi; Mitchell, B. Greg; Kriegman, David

    2016-03-01

    Large-scale imaging techniques are used increasingly for ecological surveys. However, manual analysis can be prohibitively expensive, creating a bottleneck between collected images and desired data-products. This bottleneck is particularly severe for benthic surveys, where millions of images are obtained each year. Recent automated annotation methods may provide a solution, but reflectance images do not always contain sufficient information for adequate classification accuracy. In this work, the FluorIS, a low-cost modified consumer camera, was used to capture wide-band wide-field-of-view fluorescence images during a field deployment in Eilat, Israel. The fluorescence images were registered with standard reflectance images, and an automated annotation method based on convolutional neural networks was developed. Our results demonstrate a 22% reduction of classification error-rate when using both images types compared to only using reflectance images. The improvements were large, in particular, for coral reef genera Platygyra, Acropora and Millepora, where classification recall improved by 38%, 33%, and 41%, respectively. We conclude that convolutional neural networks can be used to combine reflectance and fluorescence imagery in order to significantly improve automated annotation accuracy and reduce the manual annotation bottleneck.

  20. Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.

    Science.gov (United States)

    Welikala, R A; Fraz, M M; Foster, P J; Whincup, P H; Rudnicka, A R; Owen, C G; Strachan, D P; Barman, S A

    2016-04-01

    Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost. PMID:26894596

  1. Microscopic images dataset for automation of RBCs counting.

    Science.gov (United States)

    Abbas, Sherif

    2015-12-01

    A method for Red Blood Corpuscles (RBCs) counting has been developed using RBCs light microscopic images and Matlab algorithm. The Dataset consists of Red Blood Corpuscles (RBCs) images and there RBCs segmented images. A detailed description using flow chart is given in order to show how to produce RBCs mask. The RBCs mask was used to count the number of RBCs in the blood smear image.

  2. Automated analysis of protein subcellular location in time series images

    OpenAIRE

    Hu, Yanhua; Osuna-Highley, Elvira; Hua, Juchang; Nowicki, Theodore Scott; Stolz, Robert; McKayle, Camille; Murphy, Robert F.

    2010-01-01

    Motivation: Image analysis, machine learning and statistical modeling have become well established for the automatic recognition and comparison of the subcellular locations of proteins in microscope images. By using a comprehensive set of features describing static images, major subcellular patterns can be distinguished with near perfect accuracy. We now extend this work to time series images, which contain both spatial and temporal information. The goal is to use temporal features to improve...

  3. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  4. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    International Nuclear Information System (INIS)

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  5. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    Energy Technology Data Exchange (ETDEWEB)

    Gratama van Andel, Hugo A.F. [Erasmus MC-University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Erasmus MC-University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Academic Medical Centre-University of Amsterdam, Department of Medical Physics, Amsterdam (Netherlands); Meijering, Erik; Vrooman, Henri A.; Stokking, Rik [Erasmus MC-University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Erasmus MC-University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Lugt, Aad van der; Monye, Cecile de [Erasmus MC-University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands)

    2006-02-01

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  6. Improved automated synthesis and preliminary animal PET/CT imaging of 11C-acetate

    International Nuclear Information System (INIS)

    To study a simple and rapid automated synthetic technology of 11C-acetate (11C- AC), automated synthesis of 11C-AC was performed by carboxylation of MeMgBr/tetrahydrofuran (THF) on a polyethylene loop with 11C-CO2, followed by hydrolysis and purification on solid-phase extraction cartridges using a 11C-Choline/Methionine synthesizer made in China. A high and reproducible radiochemical yield of above 40% (decay corrected) was obtained within the whole synthesis time about 8 min from 11C-CO2. The radiochemical purity of 11C-AC was over 95%. The novel, simple and rapid on-column hydrolysis-purification procedure should adaptable to the fully automated synthesis of 11C-AC at several commercial synthesis module. 11C-AC injection produced by the automated procedure is safe and effective, and can be used for PET imaging of animals and humans. (authors)

  7. A review of automated image understanding within 3D baggage computed tomography security screening.

    Science.gov (United States)

    Mouton, Andre; Breckon, Toby P

    2015-01-01

    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT.

  8. Automated quantification of budding Saccharomyces cerevisiae using a novel image cytometry method.

    Science.gov (United States)

    Laverty, Daniel J; Kury, Alexandria L; Kuksin, Dmitry; Pirani, Alnoor; Flanagan, Kevin; Chan, Leo Li-Ying

    2013-06-01

    The measurements of concentration, viability, and budding percentages of Saccharomyces cerevisiae are performed on a routine basis in the brewing and biofuel industries. Generation of these parameters is of great importance in a manufacturing setting, where they can aid in the estimation of product quality, quantity, and fermentation time of the manufacturing process. Specifically, budding percentages can be used to estimate the reproduction rate of yeast populations, which directly correlates with metabolism of polysaccharides and bioethanol production, and can be monitored to maximize production of bioethanol during fermentation. The traditional method involves manual counting using a hemacytometer, but this is time-consuming and prone to human error. In this study, we developed a novel automated method for the quantification of yeast budding percentages using Cellometer image cytometry. The automated method utilizes a dual-fluorescent nucleic acid dye to specifically stain live cells for imaging analysis of unique morphological characteristics of budding yeast. In addition, cell cycle analysis is performed as an alternative method for budding analysis. We were able to show comparable yeast budding percentages between manual and automated counting, as well as cell cycle analysis. The automated image cytometry method is used to analyze and characterize corn mash samples directly from fermenters during standard fermentation. Since concentration, viability, and budding percentages can be obtained simultaneously, the automated method can be integrated into the fermentation quality assurance protocol, which may improve the quality and efficiency of beer and bioethanol production processes.

  9. Automated detection of a prostate Ni-Ti stent in electronic portal images

    DEFF Research Database (Denmark)

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane;

    2006-01-01

    of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection...... algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study....... Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7  mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67...

  10. A feasibility assessment of automated FISH image and signal analysis to assist cervical cancer detection

    Science.gov (United States)

    Wang, Xingwei; Li, Yuhua; Liu, Hong; Li, Shibo; Zhang, Roy R.; Zheng, Bin

    2012-02-01

    Fluorescence in situ hybridization (FISH) technology provides a promising molecular imaging tool to detect cervical cancer. Since manual FISH analysis is difficult, time-consuming, and inconsistent, the automated FISH image scanning systems have been developed. Due to limited focal depth of scanned microscopic image, a FISH-probed specimen needs to be scanned in multiple layers that generate huge image data. To improve diagnostic efficiency of using automated FISH image analysis, we developed a computer-aided detection (CAD) scheme. In this experiment, four pap-smear specimen slides were scanned by a dual-detector fluorescence image scanning system that acquired two spectrum images simultaneously, which represent images of interphase cells and FISH-probed chromosome X. During image scanning, once detecting a cell signal, system captured nine image slides by automatically adjusting optical focus. Based on the sharpness index and maximum intensity measurement, cells and FISH signals distributed in 3-D space were projected into a 2-D con-focal image. CAD scheme was applied to each con-focal image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm and detect FISH-probed signals using a top-hat transform. The ratio of abnormal cells was calculated to detect positive cases. In four scanned specimen slides, CAD generated 1676 con-focal images that depicted analyzable cells. FISH-probed signals were independently detected by our CAD algorithm and an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots. The study demonstrated the feasibility of applying automated FISH image and signal analysis to assist cyto-geneticists in detecting cervical cancers.

  11. Comparison of semi-automated image analysis and manual methods for tissue quantification in pancreatic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.J. [Regional Medical Physics Department, Freeman Hospital, Newcastle upon Tyne (United Kingdom)]. E-mail: a.j.sims@newcastle.ac.uk; Murray, A. [Regional Medical Physics Department, Freeman Hospital, Newcastle upon Tyne (United Kingdom); Bennett, M.K. [Department of Histopathology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne (United Kingdom)

    2002-04-21

    Objective measurements of tissue area during histological examination of carcinoma can yield valuable prognostic information. However, such measurements are not made routinely because the current manual approach is time consuming and subject to large statistical sampling error. In this paper, a semi-automated image analysis method for measuring tissue area in histological samples is applied to the measurement of stromal tissue, cell cytoplasm and lumen in samples of pancreatic carcinoma and compared with the standard manual point counting method. Histological samples from 26 cases of pancreatic carcinoma were stained using the sirius red, light-green method. Images from each sample were captured using two magnifications. Image segmentation based on colour cluster analysis was used to subdivide each image into representative colours which were classified manually into one of three tissue components. Area measurements made using this technique were compared to corresponding manual measurements and used to establish the comparative accuracy of the semi-automated image analysis technique, with a quality assurance study to measure the repeatability of the new technique. For both magnifications and for each tissue component, the quality assurance study showed that the semi-automated image analysis algorithm had better repeatability than its manual equivalent. No significant bias was detected between the measurement techniques for any of the comparisons made using the 26 cases of pancreatic carcinoma. The ratio of manual to semi-automatic repeatability errors varied from 2.0 to 3.6. Point counting would need to be increased to be between 400 and 1400 points to achieve the same repeatability as for the semi-automated technique. The results demonstrate that semi-automated image analysis is suitable for measuring tissue fractions in histological samples prepared with coloured stains and is a practical alternative to manual point counting. (author)

  12. Comparison of semi-automated image analysis and manual methods for tissue quantification in pancreatic carcinoma

    International Nuclear Information System (INIS)

    Objective measurements of tissue area during histological examination of carcinoma can yield valuable prognostic information. However, such measurements are not made routinely because the current manual approach is time consuming and subject to large statistical sampling error. In this paper, a semi-automated image analysis method for measuring tissue area in histological samples is applied to the measurement of stromal tissue, cell cytoplasm and lumen in samples of pancreatic carcinoma and compared with the standard manual point counting method. Histological samples from 26 cases of pancreatic carcinoma were stained using the sirius red, light-green method. Images from each sample were captured using two magnifications. Image segmentation based on colour cluster analysis was used to subdivide each image into representative colours which were classified manually into one of three tissue components. Area measurements made using this technique were compared to corresponding manual measurements and used to establish the comparative accuracy of the semi-automated image analysis technique, with a quality assurance study to measure the repeatability of the new technique. For both magnifications and for each tissue component, the quality assurance study showed that the semi-automated image analysis algorithm had better repeatability than its manual equivalent. No significant bias was detected between the measurement techniques for any of the comparisons made using the 26 cases of pancreatic carcinoma. The ratio of manual to semi-automatic repeatability errors varied from 2.0 to 3.6. Point counting would need to be increased to be between 400 and 1400 points to achieve the same repeatability as for the semi-automated technique. The results demonstrate that semi-automated image analysis is suitable for measuring tissue fractions in histological samples prepared with coloured stains and is a practical alternative to manual point counting. (author)

  13. SU-E-I-94: Automated Image Quality Assessment of Radiographic Systems Using An Anthropomorphic Phantom

    International Nuclear Information System (INIS)

    Purpose: In a large, academic medical center, consistent radiographic imaging performance is difficult to routinely monitor and maintain, especially for a fleet consisting of multiple vendors, models, software versions, and numerous imaging protocols. Thus, an automated image quality control methodology has been implemented using routine image quality assessment with a physical, stylized anthropomorphic chest phantom. Methods: The “Duke” Phantom (Digital Phantom 07-646, Supertech, Elkhart, IN) was imaged twice on each of 13 radiographic units from a variety of vendors at 13 primary care clinics. The first acquisition used the clinical PA chest protocol to acquire the post-processed “FOR PRESENTATION” image. The second image was acquired without an antiscatter grid followed by collection of the “FOR PROCESSING” image. Manual CNR measurements were made from the largest and thickest contrast-detail inserts in the lung, heart, and abdominal regions of the phantom in each image. An automated image registration algorithm was used to estimate the CNR of the same insert using similar ROIs. Automated measurements were then compared to the manual measurements. Results: Automatic and manual CNR measurements obtained from “FOR PRESENTATION” images had average percent differences of 0.42%±5.18%, −3.44%±4.85%, and 1.04%±3.15% in the lung, heart, and abdominal regions, respectively; measurements obtained from “FOR PROCESSING” images had average percent differences of -0.63%±6.66%, −0.97%±3.92%, and −0.53%±4.18%, respectively. The maximum absolute difference in CNR was 15.78%, 10.89%, and 8.73% in the respective regions. In addition to CNR assessment of the largest and thickest contrast-detail inserts, the automated method also provided CNR estimates for all 75 contrast-detail inserts in each phantom image. Conclusion: Automated analysis of a radiographic phantom has been shown to be a fast, robust, and objective means for assessing radiographic

  14. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    Netten, van Jaap J.; Baal, van Jeff G.; Liu, Chanjuan; Heijden, van der Ferdi; Bus, Sicco A.

    2013-01-01

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the ap

  15. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  16. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    International Nuclear Information System (INIS)

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells

  17. Automated Selection of Uniform Regions for CT Image Quality Detection

    CERN Document Server

    Naeemi, Maitham D; Roychodhury, Sohini

    2016-01-01

    CT images are widely used in pathology detection and follow-up treatment procedures. Accurate identification of pathological features requires diagnostic quality CT images with minimal noise and artifact variation. In this work, a novel Fourier-transform based metric for image quality (IQ) estimation is presented that correlates to additive CT image noise. In the proposed method, two windowed CT image subset regions are analyzed together to identify the extent of variation in the corresponding Fourier-domain spectrum. The two square windows are chosen such that their center pixels coincide and one window is a subset of the other. The Fourier-domain spectral difference between these two sub-sampled windows is then used to isolate spatial regions-of-interest (ROI) with low signal variation (ROI-LV) and high signal variation (ROI-HV), respectively. Finally, the spatial variance ($var$), standard deviation ($std$), coefficient of variance ($cov$) and the fraction of abdominal ROI pixels in ROI-LV ($\

  18. Automated and unbiased image analyses as tools in phenotypic classification of small-spored Alternaria species

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Hansen, Michael Edberg; Smedsgaard, Jørn

    2005-01-01

    often has been broadly applied to various morphologically and chemically distinct groups of isolates from different hosts. The purpose of this study was to develop and evaluate automated and unbiased image analysis systems that will analyze different phenotypic characters and facilitate testing...

  19. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria Jeanne [California Institute of Technology

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  20. Automated registration of multispectral MR vessel wall images of the carotid artery

    Energy Technology Data Exchange (ETDEWEB)

    Klooster, R. van ' t; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der, E-mail: rvdgeest@lumc.nl [Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Klein, S. [Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 GE (Netherlands); Kwee, R. M.; Kooi, M. E. [Department of Radiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht 6202 AZ (Netherlands)

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  1. An image-processing program for automated counting

    Science.gov (United States)

    Cunningham, D.J.; Anderson, W.H.; Anthony, R.M.

    1996-01-01

    An image-processing program developed by the National Institute of Health, IMAGE, was modified in a cooperative project between remote sensing specialists at the Ohio State University Center for Mapping and scientists at the Alaska Science Center to facilitate estimating numbers of black brant (Branta bernicla nigricans) in flocks at Izembek National Wildlife Refuge. The modified program, DUCK HUNT, runs on Apple computers. Modifications provide users with a pull down menu that optimizes image quality; identifies objects of interest (e.g., brant) by spectral, morphometric, and spatial parameters defined interactively by users; counts and labels objects of interest; and produces summary tables. Images from digitized photography, videography, and high- resolution digital photography have been used with this program to count various species of waterfowl.

  2. ASTRiDE: Automated Streak Detection for Astronomical Images

    Science.gov (United States)

    Kim, Dae-Won

    2016-05-01

    ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

  3. Automated Drusen Segmentation and Quantification in SD-OCT Images

    OpenAIRE

    Chen, Qiang; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Ma, Jeffrey; de Sisternes, Luis; Rubin, Daniel L.

    2013-01-01

    Spectral domain optical coherence tomography (SD-OCT) is a useful tool for the visualization of drusen, a retinal abnormality seen in patients with age-related macular degeneration (AMD); however, objective assessment of drusen is thwarted by the lack of a method to robustly quantify these lesions on serial OCT images. Here, we describe an automatic drusen segmentation method for SD-OCT retinal images, which leverages a priori knowledge of normal retinal morphology and anatomical features. Th...

  4. An automated image analysis system to measure and count organisms in laboratory microcosms.

    Science.gov (United States)

    Mallard, François; Le Bourlot, Vincent; Tully, Thomas

    2013-01-01

    1. Because of recent technological improvements in the way computer and digital camera perform, the potential use of imaging for contributing to the study of communities, populations or individuals in laboratory microcosms has risen enormously. However its limited use is due to difficulties in the automation of image analysis. 2. We present an accurate and flexible method of image analysis for detecting, counting and measuring moving particles on a fixed but heterogeneous substrate. This method has been specifically designed to follow individuals, or entire populations, in experimental laboratory microcosms. It can be used in other applications. 3. The method consists in comparing multiple pictures of the same experimental microcosm in order to generate an image of the fixed background. This background is then used to extract, measure and count the moving organisms, leaving out the fixed background and the motionless or dead individuals. 4. We provide different examples (springtails, ants, nematodes, daphnia) to show that this non intrusive method is efficient at detecting organisms under a wide variety of conditions even on faintly contrasted and heterogeneous substrates. 5. The repeatability and reliability of this method has been assessed using experimental populations of the Collembola Folsomia candida. 6. We present an ImageJ plugin to automate the analysis of digital pictures of laboratory microcosms. The plugin automates the successive steps of the analysis and recursively analyses multiple sets of images, rapidly producing measurements from a large number of replicated microcosms. PMID:23734199

  5. An automated image analysis system to measure and count organisms in laboratory microcosms.

    Directory of Open Access Journals (Sweden)

    François Mallard

    Full Text Available 1. Because of recent technological improvements in the way computer and digital camera perform, the potential use of imaging for contributing to the study of communities, populations or individuals in laboratory microcosms has risen enormously. However its limited use is due to difficulties in the automation of image analysis. 2. We present an accurate and flexible method of image analysis for detecting, counting and measuring moving particles on a fixed but heterogeneous substrate. This method has been specifically designed to follow individuals, or entire populations, in experimental laboratory microcosms. It can be used in other applications. 3. The method consists in comparing multiple pictures of the same experimental microcosm in order to generate an image of the fixed background. This background is then used to extract, measure and count the moving organisms, leaving out the fixed background and the motionless or dead individuals. 4. We provide different examples (springtails, ants, nematodes, daphnia to show that this non intrusive method is efficient at detecting organisms under a wide variety of conditions even on faintly contrasted and heterogeneous substrates. 5. The repeatability and reliability of this method has been assessed using experimental populations of the Collembola Folsomia candida. 6. We present an ImageJ plugin to automate the analysis of digital pictures of laboratory microcosms. The plugin automates the successive steps of the analysis and recursively analyses multiple sets of images, rapidly producing measurements from a large number of replicated microcosms.

  6. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images

    International Nuclear Information System (INIS)

    Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods

  7. Automated analysis of image mammogram for breast cancer diagnosis

    Science.gov (United States)

    Nurhasanah, Sampurno, Joko; Faryuni, Irfana Diah; Ivansyah, Okto

    2016-03-01

    Medical imaging help doctors in diagnosing and detecting diseases that attack the inside of the body without surgery. Mammogram image is a medical image of the inner breast imaging. Diagnosis of breast cancer needs to be done in detail and as soon as possible for determination of next medical treatment. The aim of this work is to increase the objectivity of clinical diagnostic by using fractal analysis. This study applies fractal method based on 2D Fourier analysis to determine the density of normal and abnormal and applying the segmentation technique based on K-Means clustering algorithm to image abnormal for determine the boundary of the organ and calculate the area of organ segmentation results. The results show fractal method based on 2D Fourier analysis can be used to distinguish between the normal and abnormal breast and segmentation techniques with K-Means Clustering algorithm is able to generate the boundaries of normal and abnormal tissue organs, so area of the abnormal tissue can be determined.

  8. Automated Contour Detection for Intravascular Ultrasound Image Sequences Based on Fast Active Contour Algorithm

    Institute of Scientific and Technical Information of China (English)

    DONG Hai-yan; WANG Hui-nan

    2006-01-01

    Intravascular ultrasound can provide high-resolution real-time crosssectional images about lumen, plaque and tissue. Traditionally, the luminal border and medial-adventitial border are traced manually. This process is extremely timeconsuming and the subjective difference would be large. In this paper, a new automated contour detection method is introduced based on fast active contour model.Experimental results found that lumen and vessel area measurements after automated detection showed good agreement with manual tracings with high correlation coefficients (0.94 and 0.95, respectively) and small system difference ( -0.32 and 0.56, respectively). So it can be a reliable and accurate diagnostic tool.

  9. An Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.; Thomas, Mathew; Carson, James P.; Laskin, Julia

    2012-10-02

    An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSI QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.

  10. Image cytometer method for automated assessment of human spermatozoa concentration

    DEFF Research Database (Denmark)

    Egeberg, D L; Kjaerulff, S; Hansen, C;

    2013-01-01

    In the basic clinical work-up of infertile couples, a semen analysis is mandatory and the sperm concentration is one of the most essential variables to be determined. Sperm concentration is usually assessed by manual counting using a haemocytometer and is hence labour intensive and may be subjected...... to investigator bias. Here we show that image cytometry can be used to accurately measure the sperm concentration of human semen samples with great ease and reproducibility. The impact of several factors (pipetting, mixing, round cell content, sperm concentration), which can influence the read-out as well....... Moreover, by evaluation of repeated measurements it appeared that image cytometry produced more consistent and accurate measurements than manual counting of human spermatozoa concentration. In conclusion, image cytometry provides an appealing substitute of manual counting by providing reliable, robust...

  11. Automated Classification of Glaucoma Images by Wavelet Energy Features

    Directory of Open Access Journals (Sweden)

    N.Annu

    2013-04-01

    Full Text Available Glaucoma is the second leading cause of blindness worldwide. As glaucoma progresses, more optic nerve tissue is lost and the optic cup grows which leads to vision loss. This paper compiles a systemthat could be used by non-experts to filtrate cases of patients not affected by the disease. This work proposes glaucomatous image classification using texture features within images and efficient glaucoma classification based on Probabilistic Neural Network (PNN. Energy distribution over wavelet sub bands is applied to compute these texture features. Wavelet features were obtained from the daubechies (db3, symlets (sym3, and biorthogonal (bio3.3, bio3.5, and bio3.7 wavelet filters. It uses a technique to extract energy signatures obtained using 2-D discrete wavelet transform and the energy obtained from the detailed coefficients can be used to distinguish between normal and glaucomatous images. We observedan accuracy of around 95%, this demonstrates the effectiveness of these methods.

  12. Automated detection of meteors in observed image sequence

    Science.gov (United States)

    Šimberová, Stanislava; Suk, Tomáš

    2015-12-01

    We propose a new detection technique based on statistical characteristics of images in the video sequence. These characteristics displayed in time enable to catch any bright track during the whole sequence. We applied our method to the image datacubes that are created from camera pictures of the night sky. Meteor flying through the Earth's atmosphere leaves a light trail lasting a few seconds on the sky background. We developed a special technique to recognize this event automatically in the complete observed video sequence. For further analysis leading to the precise recognition of object we suggest to apply Fourier and Hough transformations.

  13. Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA)

    Energy Technology Data Exchange (ETDEWEB)

    Bewes, J M; Suchowerska, N; McKenzie, D R [School of Physics, University of Sydney, Sydney, NSW (Australia)], E-mail: jbewes@physics.usyd.edu.au

    2008-11-07

    We present an automated cell colony counting method that is flexible, robust and capable of providing more in-depth clonogenic analysis than existing manual and automated approaches. The full form of the Hough transform without approximation has been implemented, for the first time. Improvements in computing speed have facilitated this approach. Colony identification was achieved by pre-processing the raw images of the colonies in situ in the flask, including images of the flask edges, by erosion, dilation and Gaussian smoothing processes. Colony edges were then identified by intensity gradient field discrimination. Our technique eliminates the need for specialized hardware for image capture and enables the use of a standard desktop scanner for distortion-free image acquisition. Additional parameters evaluated included regional colony counts, average colony area, nearest neighbour distances and radial distribution. This spatial and qualitative information extends the utility of the clonogenic assay, allowing analysis of spatially-variant cytotoxic effects. To test the automated system, two flask types and three cell lines with different morphology, cell size and plating density were examined. A novel Monte Carlo method of simulating cell colony images, as well as manual counting, were used to quantify algorithm accuracy. The method was able to identify colonies with unusual morphology, to successfully resolve merged colonies and to correctly count colonies adjacent to flask edges.

  14. Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA)

    Science.gov (United States)

    Bewes, J. M.; Suchowerska, N.; McKenzie, D. R.

    2008-11-01

    We present an automated cell colony counting method that is flexible, robust and capable of providing more in-depth clonogenic analysis than existing manual and automated approaches. The full form of the Hough transform without approximation has been implemented, for the first time. Improvements in computing speed have facilitated this approach. Colony identification was achieved by pre-processing the raw images of the colonies in situ in the flask, including images of the flask edges, by erosion, dilation and Gaussian smoothing processes. Colony edges were then identified by intensity gradient field discrimination. Our technique eliminates the need for specialized hardware for image capture and enables the use of a standard desktop scanner for distortion-free image acquisition. Additional parameters evaluated included regional colony counts, average colony area, nearest neighbour distances and radial distribution. This spatial and qualitative information extends the utility of the clonogenic assay, allowing analysis of spatially-variant cytotoxic effects. To test the automated system, two flask types and three cell lines with different morphology, cell size and plating density were examined. A novel Monte Carlo method of simulating cell colony images, as well as manual counting, were used to quantify algorithm accuracy. The method was able to identify colonies with unusual morphology, to successfully resolve merged colonies and to correctly count colonies adjacent to flask edges.

  15. Automation of the method gamma of comparison dosimetry images

    International Nuclear Information System (INIS)

    The objective of this work was the development of JJGAMMA application analysis software, which enables this task systematically, minimizing intervention specialist and therefore the variability due to the observer. Both benefits, allow comparison of images is done in practice with the required frequency and objectivity. (Author)

  16. Automated identification of retained surgical items in radiological images

    Science.gov (United States)

    Agam, Gady; Gan, Lin; Moric, Mario; Gluncic, Vicko

    2015-03-01

    Retained surgical items (RSIs) in patients is a major operating room (OR) patient safety concern. An RSI is any surgical tool, sponge, needle or other item inadvertently left in a patients body during the course of surgery. If left undetected, RSIs may lead to serious negative health consequences such as sepsis, internal bleeding, and even death. To help physicians efficiently and effectively detect RSIs, we are developing computer-aided detection (CADe) software for X-ray (XR) image analysis, utilizing large amounts of currently available image data to produce a clinically effective RSI detection system. Physician analysis of XRs for the purpose of RSI detection is a relatively lengthy process that may take up to 45 minutes to complete. It is also error prone due to the relatively low acuity of the human eye for RSIs in XR images. The system we are developing is based on computer vision and machine learning algorithms. We address the problem of low incidence by proposing synthesis algorithms. The CADe software we are developing may be integrated into a picture archiving and communication system (PACS), be implemented as a stand-alone software application, or be integrated into portable XR machine software through application programming interfaces. Preliminary experimental results on actual XR images demonstrate the effectiveness of the proposed approach.

  17. Computer-assisted tree taxonomy by automated image recognition

    NARCIS (Netherlands)

    Pauwels, E.J.; Zeeuw, P.M.de; Ranguelova, E.B.

    2009-01-01

    We present an algorithm that performs image-based queries within the domain of tree taxonomy. As such, it serves as an example relevant to many other potential applications within the field of biodiversity and photo-identification. Unsupervised matching results are produced through a chain of comput

  18. Automated Hierarchical Time Gain Compensation for In Vivo Ultrasound Imaging

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Hemmsen, Martin Christian; Martins, Bo;

    2015-01-01

    Time gain compensation (TGC) is essential to ensure the optimal image quality of the clinical ultrasound scans. When large fluid collections are present within the scan plane, the attenuation distribution is changed drastically and TGC compensation becomes challenging. This paper presents...

  19. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    Science.gov (United States)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  20. AUTOMATED VIDEO IMAGE MORPHOMETRY OF THE CORNEAL ENDOTHELIUM

    NARCIS (Netherlands)

    SIERTSEMA, JV; LANDESZ, M; VANDENBROM, H; VANRIJ, G

    1993-01-01

    The central corneal endothelium of 13 eyes in 13 subjects was visualized with a non-contact specular microscope. This report describes the computer-assisted morphometric analysis of enhanced digitized images, using a direct input by means of a frame grabber. The output consisted of mean cell area, c

  1. Automated Detection of Contaminated Radar Image Pixels in Mountain Areas

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; Qin XU; Pengfei ZHANG; Shun LIU

    2008-01-01

    In mountain areas,radar observations are often contaminated(1)by echoes from high-speed moving vehicles and(2)by point-wise ground clutter under either normal propagation(NP)or anomalous propa-gation(AP)conditions.Level II data are collected from KMTX(Salt Lake City,Utah)radar to analyze these two types of contamination in the mountain area around the Great Salt Lake.Human experts provide the"ground truth"for possible contamination of either type on each individual pixel.Common features are then extracted for contaminated pixels of each type.For example,pixels contaminated by echoes from high-speed moving vehicles are characterized by large radial velocity and spectrum width.Echoes from a moving train tend to have larger velocity and reflectivity but smaller spectrum width than those from moving vehicles on highways.These contaminated pixels are only seen in areas of large terrain gradient(in the radial direction along the radar beam).The same is true for the second type of contamination-point-wise ground clutters.Six quality control(QC)parameters are selected to quantify the extracted features.Histograms are computed for each QC parameter and grouped for contaminated pixels of each type and also for non-contaminated pixels.Based on the computed histograms,a fuzzy logical algorithm is developed for automated detection of contaminated pixels.The algorithm is tested with KMTX radar data under different(clear and rainy)weather conditions.

  2. Automated marker tracking using noisy X-ray images degraded by the treatment beam

    Energy Technology Data Exchange (ETDEWEB)

    Wisotzky, E. [Fraunhofer Institute for Production Systems and Design Technology (IPK), Berlin (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Fast, M.F.; Nill, S. [The Royal Marsden NHS Foundation Trust, London (United Kingdom). Joint Dept. of Physics; Oelfke, U. [The Royal Marsden NHS Foundation Trust, London (United Kingdom). Joint Dept. of Physics; German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2015-09-01

    This study demonstrates the feasibility of automated marker tracking for the real-time detection of intrafractional target motion using noisy kilovoltage (kV) X-ray images degraded by the megavoltage (MV) treatment beam. The authors previously introduced the in-line imaging geometry, in which the flat-panel detector (FPD) is mounted directly underneath the treatment head of the linear accelerator. They found that the 121 kVp image quality was severely compromised by the 6 MV beam passing through the FPD at the same time. Specific MV-induced artefacts present a considerable challenge for automated marker detection algorithms. For this study, the authors developed a new imaging geometry by re-positioning the FPD and the X-ray tube. This improved the contrast-to-noise-ratio between 40% and 72% at the 1.2 mAs/image exposure setting. The increase in image quality clearly facilitates the quick and stable detection of motion with the aid of a template matching algorithm. The setup was tested with an anthropomorphic lung phantom (including an artificial lung tumour). In the tumour one or three Calypso {sup registered} beacons were embedded to achieve better contrast during MV radiation. For a single beacon, image acquisition and automated marker detection typically took around 76±6 ms. The success rate was found to be highly dependent on imaging dose and gantry angle. To eliminate possible false detections, the authors implemented a training phase prior to treatment beam irradiation and also introduced speed limits for motion between subsequent images.

  3. Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images

    OpenAIRE

    Cheng Yan; Anan Li; Bin Zhang,; Wenxiang Ding; Qingming Luo; Hui Gong

    2013-01-01

    Automated and accurate localization and morphometry of somas in 3D neuron images is essential for quantitative studies of neural networks in the brain. However, previous methods are limited in obtaining the location and surface morphology of somas with variable size and uneven staining in large-scale 3D neuron images. In this work, we proposed a method for automated soma locating in large-scale 3D neuron images that contain relatively sparse soma distributions. This method involves three step...

  4. Automated segmentation of pigmented skin lesions in multispectral imaging

    International Nuclear Information System (INIS)

    The aim of this study was to develop an algorithm for the automatic segmentation of multispectral images of pigmented skin lesions. The study involved 1700 patients with 1856 cutaneous pigmented lesions, which were analysed in vivo by a novel spectrophotometric system, before excision. The system is able to acquire a set of 15 different multispectral images at equally spaced wavelengths between 483 and 951 nm. An original segmentation algorithm was developed and applied to the whole set of lesions and was able to automatically contour them all. The obtained lesion boundaries were shown to two expert clinicians, who, independently, rejected 54 of them. The 97.1% contour accuracy indicates that the developed algorithm could be a helpful and effective instrument for the automatic segmentation of skin pigmented lesions. (note)

  5. Automated interpretation of PET/CT images in patients with lung cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Jakobsson, David; Olofsson, Fredrik;

    2007-01-01

    cancer. METHODS: A total of 87 patients who underwent PET/CT examinations due to suspected lung cancer comprised the training group. The test group consisted of PET/CT images from 49 patients suspected with lung cancer. The consensus interpretations by two experienced physicians were used as the 'gold...... for localization of lesions in the PET images in the feature extraction process. Eight features from each examination were used as inputs to artificial neural networks trained to classify the images. Thereafter, the performance of the network was evaluated in the test set. RESULTS: The performance of the automated...

  6. Extending and applying active appearance models for automated, high precision segmentation in different image modalities

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Fisker, Rune; Ersbøll, Bjarne Kjær

    2001-01-01

    , an initialization scheme is designed thus making the usage of AAMs fully automated. Using these extensions it is demonstrated that AAMs can segment bone structures in radiographs, pork chops in perspective images and the left ventricle in cardiovascular magnetic resonance images in a robust, fast and accurate...... object class description, which can be employed to rapidly search images for new object instances. The proposed extensions concern enhanced shape representation, handling of homogeneous and heterogeneous textures, refinement optimization using Simulated Annealing and robust statistics. Finally...

  7. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    Science.gov (United States)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  8. Automation of disbond detection in aircraft fuselage through thermal image processing

    Science.gov (United States)

    Prabhu, D. R.; Winfree, W. P.

    1992-01-01

    A procedure for interpreting thermal images obtained during the nondestructive evaluation of aircraft bonded joints is presented. The procedure operates on time-derivative thermal images and resulted in a disbond image with disbonds highlighted. The size of the 'black clusters' in the output disbond image is a quantitative measure of disbond size. The procedure is illustrated using simulation data as well as data obtained through experimental testing of fabricated samples and aircraft panels. Good results are obtained, and, except in pathological cases, 'false calls' in the cases studied appeared only as noise in the output disbond image which was easily filtered out. The thermal detection technique coupled with an automated image interpretation capability will be a very fast and effective method for inspecting bonded joints in an aircraft structure.

  9. Extended Field Laser Confocal Microscopy (EFLCM: Combining automated Gigapixel image capture with in silico virtual microscopy

    Directory of Open Access Journals (Sweden)

    Strandh Christer

    2008-07-01

    Full Text Available Abstract Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM. Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA instrument for automated screening processes.

  10. Automated detection of diabetic retinopathy in retinal images

    Directory of Open Access Journals (Sweden)

    Carmen Valverde

    2016-01-01

    Full Text Available Diabetic retinopathy (DR is a disease with an increasing prevalence and the main cause of blindness among working-age population. The risk of severe vision loss can be significantly reduced by timely diagnosis and treatment. Systematic screening for DR has been identified as a cost-effective way to save health services resources. Automatic retinal image analysis is emerging as an important screening tool for early DR detection, which can reduce the workload associated to manual grading as well as save diagnosis costs and time. Many research efforts in the last years have been devoted to developing automatic tools to help in the detection and evaluation of DR lesions. However, there is a large variability in the databases and evaluation criteria used in the literature, which hampers a direct comparison of the different studies. This work is aimed at summarizing the results of the available algorithms for the detection and classification of DR pathology. A detailed literature search was conducted using PubMed. Selected relevant studies in the last 10 years were scrutinized and included in the review. Furthermore, we will try to give an overview of the available commercial software for automatic retinal image analysis.

  11. Automated Peripheral Neuropathy Assessment Using Optical Imaging and Foot Anthropometry.

    Science.gov (United States)

    Siddiqui, Hafeez-U R; Spruce, Michelle; Alty, Stephen R; Dudley, Sandra

    2015-08-01

    A large proportion of individuals who live with type-2 diabetes suffer from plantar sensory neuropathy. Regular testing and assessment for the condition is required to avoid ulceration or other damage to patient's feet. Currently accepted practice involves a trained clinician testing a patient's feet manually with a hand-held nylon monofilament probe. The procedure is time consuming, labor intensive, requires special training, is prone to error, and repeatability is difficult. With the vast increase in type-2 diabetes, the number of plantar sensory neuropathy sufferers has already grown to such an extent as to make a traditional manual test problematic. This paper presents the first investigation of a novel approach to automatically identify the pressure points on a given patient's foot for the examination of sensory neuropathy via optical image processing incorporating plantar anthropometry. The method automatically selects suitable test points on the plantar surface that correspond to those repeatedly chosen by a trained podiatrist. The proposed system automatically identifies the specific pressure points at different locations, namely the toe (hallux), metatarsal heads and heel (Calcaneum) areas. The approach is generic and has shown 100% reliability on the available database used. The database consists of Chinese, Asian, African, and Caucasian foot images. PMID:26186748

  12. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    OpenAIRE

    Yu Ting Chow; Shuxun Chen; Ran Wang; Chichi Liu; Chi-wing Kong; Li, Ronald A.; Shuk Han Cheng; Dong Sun

    2016-01-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an a...

  13. Automated Image-Based Procedures for Adaptive Radiotherapy

    DEFF Research Database (Denmark)

    Bjerre, Troels

    Fractionated radiotherapy for cancer treatment is a field of constant innovation. Developments in dose delivery techniques have made it possible to precisely direct ionizing radiation at complicated targets. In order to further increase tumour control probability (TCP) and decrease normal...... to encourage bone rigidity and local tissue volume change only in the gross tumour volume and the lungs. This is highly relevant in adaptive radiotherapy when modelling significant tumour volume changes. - It is described how cone beam CT reconstruction can be modelled as a deformation of a planning CT scan...... be employed for contour propagation in adaptive radiotherapy. - MRI-radiotherapy devices have the potential to offer near real-time intrafraction imaging without any additional ionising radiation. It is detailed how the use of multiple, orthogonal slices can form the basis for reliable 3D soft tissue tracking....

  14. Automated grading of renal cell carcinoma using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Introduction: Recent technology developments have demonstrated the benefit of using whole slide imaging (WSI in computer-aided diagnosis. In this paper, we explore the feasibility of using automatic WSI analysis to assist grading of clear cell renal cell carcinoma (RCC, which is a manual task traditionally performed by pathologists. Materials and Methods: Automatic WSI analysis was applied to 39 hematoxylin and eosin-stained digitized slides of clear cell RCC with varying grades. Kernel regression was used to estimate the spatial distribution of nuclear size across the entire slides. The analysis results were correlated with Fuhrman nuclear grades determined by pathologists. Results: The spatial distribution of nuclear size provided a panoramic view of the tissue sections. The distribution images facilitated locating regions of interest, such as high-grade regions and areas with necrosis. The statistical analysis showed that the maximum nuclear size was significantly different (P < 0.001 between low-grade (Grades I and II and high-grade tumors (Grades III and IV. The receiver operating characteristics analysis showed that the maximum nuclear size distinguished high-grade and low-grade tumors with a false positive rate of 0.2 and a true positive rate of 1.0. The area under the curve is 0.97. Conclusion: The automatic WSI analysis allows pathologists to see the spatial distribution of nuclei size inside the tumors. The maximum nuclear size can also be used to differentiate low-grade and high-grade clear cell RCC with good sensitivity and specificity. These data suggest that automatic WSI analysis may facilitate pathologic grading of renal tumors and reduce variability encountered with manual grading.

  15. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record.

    Science.gov (United States)

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A; Mailhot, M

    1999-12-01

    This paper describes preliminary work evaluating automated semantic indexing of radiology imaging reports to represent images stored in the Image Engine multimedia medical record system at the University of Pittsburgh Medical Center. The authors used the SAPHIRE indexing system to automatically identify important biomedical concepts within radiology reports and represent these concepts with terms from the 1998 edition of the U.S. National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. This automated UMLS indexing was then compared with manual UMLS indexing of the same reports. Human indexing identified appropriate UMLS Metathesaurus descriptors for 81% of the important biomedical concepts contained in the report set. SAPHIRE automatically identified UMLS Metathesaurus descriptors for 64% of the important biomedical concepts contained in the report set. The overall conclusions of this pilot study were that the UMLS metathesaurus provided adequate coverage of the majority of the important concepts contained within the radiology report test set and that SAPHIRE could automatically identify and translate almost two thirds of these concepts into appropriate UMLS descriptors. Further work is required to improve both the recall and precision of this automated concept extraction process. PMID:10805018

  16. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record.

    Science.gov (United States)

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A; Mailhot, M

    1999-12-01

    This paper describes preliminary work evaluating automated semantic indexing of radiology imaging reports to represent images stored in the Image Engine multimedia medical record system at the University of Pittsburgh Medical Center. The authors used the SAPHIRE indexing system to automatically identify important biomedical concepts within radiology reports and represent these concepts with terms from the 1998 edition of the U.S. National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. This automated UMLS indexing was then compared with manual UMLS indexing of the same reports. Human indexing identified appropriate UMLS Metathesaurus descriptors for 81% of the important biomedical concepts contained in the report set. SAPHIRE automatically identified UMLS Metathesaurus descriptors for 64% of the important biomedical concepts contained in the report set. The overall conclusions of this pilot study were that the UMLS metathesaurus provided adequate coverage of the majority of the important concepts contained within the radiology report test set and that SAPHIRE could automatically identify and translate almost two thirds of these concepts into appropriate UMLS descriptors. Further work is required to improve both the recall and precision of this automated concept extraction process.

  17. Automated Formosat Image Processing System for Rapid Response to International Disasters

    Science.gov (United States)

    Cheng, M. C.; Chou, S. C.; Chen, Y. C.; Chen, B.; Liu, C.; Yu, S. J.

    2016-06-01

    FORMOSAT-2, Taiwan's first remote sensing satellite, was successfully launched in May of 2004 into the Sun-synchronous orbit at 891 kilometers of altitude. With the daily revisit feature, the 2-m panchromatic, 8-m multi-spectral resolution images captured have been used for researches and operations in various societal benefit areas. This paper details the orchestration of various tasks conducted in different institutions in Taiwan in the efforts responding to international disasters. The institutes involved including its space agency-National Space Organization (NSPO), Center for Satellite Remote Sensing Research of National Central University, GIS Center of Feng-Chia University, and the National Center for High-performance Computing. Since each institution has its own mandate, the coordinated tasks ranged from receiving emergency observation requests, scheduling and tasking of satellite operation, downlink to ground stations, images processing including data injection, ortho-rectification, to delivery of image products. With the lessons learned from working with international partners, the FORMOSAT Image Processing System has been extensively automated and streamlined with a goal to shorten the time between request and delivery in an efficient manner. The integrated team has developed an Application Interface to its system platform that provides functions of search in archive catalogue, request of data services, mission planning, inquiry of services status, and image download. This automated system enables timely image acquisition and substantially increases the value of data product. Example outcome of these efforts in recent response to support Sentinel Asia in Nepal Earthquake is demonstrated herein.

  18. Development of a methodology for automated assessment of the quality of digitized images in mammography

    International Nuclear Information System (INIS)

    The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. The purpose of this study is to develop a computational methodology to automate the process of assessing the quality of mammography images through techniques of digital imaging processing (PDI), using an existing image processing environment (ImageJ). With the application of PDI techniques was possible to extract geometric and radiometric characteristics of the images evaluated. The evaluated parameters include spatial resolution, high-contrast detail, low contrast threshold, linear detail of low contrast, tumor masses, contrast ratio and background optical density. The results obtained by this method were compared with the results presented in the visual evaluations performed by the Health Surveillance of Minas Gerais. Through this comparison was possible to demonstrate that the automated methodology is presented as a promising alternative for the reduction or elimination of existing subjectivity in the visual assessment methodology currently in use. (author)

  19. An Automated System for the Detection of Stratified Squamous Epithelial Cancer Cell Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Ram Krishna Kumar

    2013-06-01

    Full Text Available Early detection of cancer disease is a difficult problem and if it is not detected in starting phase the cancer can be fatal. Current medical procedures which are used to diagnose the cancer in body partsare time taking and more laboratory work is required for them. This work is an endeavor to possible recognition of cancer cells in the body part. The process consists of image taken of the affected area and digital image processing of the images to get a morphological pattern which differentiate normal cell to cancer cell. The technique is different than visual inspection and biopsy process. Image processing enables the visualization of cellular structure with substantial resolution. The aim of the work is to exploit differences in cellular organization between cancerous and normal tissue using image processing technique, thus allowing for automated, fast and accurate diagnosis.

  20. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    Science.gov (United States)

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  1. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma

    Science.gov (United States)

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan

    2009-09-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  2. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    Science.gov (United States)

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways. PMID:26968612

  3. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    Science.gov (United States)

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways.

  4. Automated construction of arterial and venous trees in retinal images.

    Science.gov (United States)

    Hu, Qiao; Abràmoff, Michael D; Garvin, Mona K

    2015-10-01

    While many approaches exist to segment retinal vessels in fundus photographs, only a limited number focus on the construction and disambiguation of arterial and venous trees. Previous approaches are local and/or greedy in nature, making them susceptible to errors or limiting their applicability to large vessels. We propose a more global framework to generate arteriovenous trees in retinal images, given a vessel segmentation. In particular, our approach consists of three stages. The first stage is to generate an overconnected vessel network, named the vessel potential connectivity map (VPCM), consisting of vessel segments and the potential connectivity between them. The second stage is to disambiguate the VPCM into multiple anatomical trees, using a graph-based metaheuristic algorithm. The third stage is to classify these trees into arterial or venous (A/V) trees. We evaluated our approach with a ground truth built based on a public database, showing a pixel-wise classification accuracy of 88.15% using a manual vessel segmentation as input, and 86.11% using an automatic vessel segmentation as input. PMID:26636114

  5. Automated 3D-Objectdocumentation on the Base of an Image Set

    Directory of Open Access Journals (Sweden)

    Sebastian Vetter

    2011-12-01

    Full Text Available Digital stereo-photogrammetry allows users an automatic evaluation of the spatial dimension and the surface texture of objects. The integration of image analysis techniques simplifies the automation of evaluation of large image sets and offers a high accuracy [1]. Due to the substantial similarities of stereoscopic image pairs, correlation techniques provide measurements of subpixel precision for corresponding image points. With the help of an automated point search algorithm in image sets identical points are used to associate pairs of images to stereo models and group them. The found identical points in all images are basis for calculation of the relative orientation of each stereo model as well as defining the relation of neighboured stereo models. By using proper filter strategies incorrect points are removed and the relative orientation of the stereo model can be made automatically. With the help of 3D-reference points or distances at the object or a defined distance of camera basis the stereo model is orientated absolute. An adapted expansion- and matching algorithm offers the possibility to scan the object surface automatically. The result is a three dimensional point cloud; the scan resolution depends on image quality. With the integration of the iterative closest point- algorithm (ICP these partial point clouds are fitted to a total point cloud. In this way, 3D-reference points are not necessary. With the help of the implemented triangulation algorithm a digital surface models (DSM can be created. The texturing can be made automatically by the usage of the images that were used for scanning the object surface. It is possible to texture the surface model directly or to generate orthophotos automatically. By using of calibrated digital SLR cameras with full frame sensor a high accuracy can be reached. A big advantage is the possibility to control the accuracy and quality of the 3d-objectdocumentation with the resolution of the images. The

  6. Automated measurement of parameters related to the deformities of lower limbs based on x-rays images.

    Science.gov (United States)

    Wojciechowski, Wadim; Molka, Adrian; Tabor, Zbisław

    2016-03-01

    Measurement of the deformation of the lower limbs in the current standard full-limb X-rays images presents significant challenges to radiologists and orthopedists. The precision of these measurements is deteriorated because of inexact positioning of the leg during image acquisition, problems with selecting reliable anatomical landmarks in projective X-ray images, and inevitable errors of manual measurements. The influence of the random errors resulting from the last two factors on the precision of the measurement can be reduced if an automated measurement method is used instead of a manual one. In the paper a framework for an automated measurement of various metric and angular quantities used in the description of the lower extremity deformation in full-limb frontal X-ray images is described. The results of automated measurements are compared with manual measurements. These results demonstrate that an automated method can be a valuable alternative to the manual measurements.

  7. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  8. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  9. Quality Control in Automated Manufacturing Processes – Combined Features for Image Processing

    Directory of Open Access Journals (Sweden)

    B. Kuhlenkötter

    2006-01-01

    Full Text Available In production processes the use of image processing systems is widespread. Hardware solutions and cameras respectively are available for nearly every application. One important challenge of image processing systems is the development and selection of appropriate algorithms and software solutions in order to realise ambitious quality control for production processes. This article characterises the development of innovative software by combining features for an automatic defect classification on product surfaces. The artificial intelligent method Support Vector Machine (SVM is used to execute the classification task according to the combined features. This software is one crucial element for the automation of a manually operated production process. 

  10. Automation of Axisymmetric Drop Shape Analysis Using Digital Image Processing

    Science.gov (United States)

    Cheng, Philip Wing Ping

    The Axisymmetric Drop Shape Analysis - Profile (ADSA-P) technique, as initiated by Rotenberg, is a user -oriented scheme to determine liquid-fluid interfacial tensions and contact angles from the shape of axisymmetric menisci, i.e., from sessile as well as pendant drops. The ADSA -P program requires as input several coordinate points along the drop profile, the value of the density difference between the bulk phases, and gravity. The solution yields interfacial tension and contact angle. Although the ADSA-P technique was in principle complete, it was found that it was of very limited practical use. The major difficulty with the method is the need for very precise coordinate points along the drop profile, which, up to now, could not be obtained readily. In the past, the coordinate points along the drop profile were obtained by manual digitization of photographs or negatives. From manual digitization data, the surface tension values obtained had an average error of +/-5% when compared with literature values. Another problem with the ADSA-P technique was that the computer program failed to converge for the case of very elongated pendant drops. To acquire the drop profile coordinates automatically, a technique which utilizes recent developments in digital image acquisition and analysis was developed. In order to determine the drop profile coordinates as precisely as possible, the errors due to optical distortions were eliminated. In addition, determination of drop profile coordinates to pixel and sub-pixel resolution was developed. It was found that high precision could be obtained through the use of sub-pixel resolution and a spline fitting method. The results obtained using the automatic digitization technique in conjunction with ADSA-P not only compared well with the conventional methods, but also outstripped the precision of conventional methods considerably. To solve the convergence problem of very elongated pendant drops, it was found that the reason for the

  11. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    Science.gov (United States)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  12. Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images

    Science.gov (United States)

    Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2016-03-01

    Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.

  13. Sfm_georef: Automating image measurement of ground control points for SfM-based projects

    Science.gov (United States)

    James, Mike R.

    2016-04-01

    Deriving accurate DEM and orthomosaic image products from UAV surveys generally involves the use of multiple ground control points (GCPs). Here, we demonstrate the automated collection of GCP image measurements for SfM-MVS processed projects, using sfm_georef software (James & Robson, 2012; http://www.lancaster.ac.uk/staff/jamesm/software/sfm_georef.htm). Sfm_georef was originally written to provide geo-referencing procedures for SfM-MVS projects. It has now been upgraded with a 3-D patch-based matching routine suitable for automating GCP image measurement in both aerial and ground-based (oblique) projects, with the aim of reducing the time required for accurate geo-referencing. Sfm_georef is compatible with a range of SfM-MVS software and imports the relevant files that describe the image network, including camera models and tie points. 3-D survey measurements of ground control are then provided, either for natural features or artificial targets distributed over the project area. Automated GCP image measurement is manually initiated through identifying a GCP position in an image by mouse click; the GCP is then represented by a square planar patch in 3-D, textured from the image and oriented parallel to the local topographic surface (as defined by the 3-D positions of nearby tie points). Other images are then automatically examined by projecting the patch into the images (to account for differences in viewing geometry) and carrying out a sub-pixel normalised cross-correlation search in the local area. With two or more observations of a GCP, its 3-D co-ordinates are then derived by ray intersection. With the 3-D positions of three or more GCPs identified, an initial geo-referencing transform can be derived to relate the SfM-MVS co-ordinate system to that of the GCPs. Then, if GCPs are symmetric and identical, image texture from one representative GCP can be used to search automatically for all others throughout the image set. Finally, the GCP observations can be

  14. ATOM - an OMERO add-on for automated import of image data

    Directory of Open Access Journals (Sweden)

    Lipp Peter

    2011-10-01

    Full Text Available Abstract Background Modern microscope platforms are able to generate multiple gigabytes of image data in a single experimental session. In a routine research laboratory workflow, these data are initially stored on the local acquisition computer from which files need to be transferred to the experimenter's (remote image repository (e.g., DVDs, portable hard discs or server-based storage because of limited local data storage. Although manual solutions for this migration, such as OMERO - a client-server software for visualising and managing large amounts of image data - exist, this import process may be a time-consuming and tedious task. Findings We have developed ATOM, a Java-based and thus platform-independent add-on for OMERO enabling automated transfer of image data from a wide variety of acquisition software packages into OMERO. ATOM provides a graphical user interface and allows pre-organisation of experimental data for the transfer. Conclusions ATOM is a convenient extension of the OMERO software system. An automated interface to OMERO will be a useful tool for scientists working with file formats supported by the Bio-Formats file format library, a platform-independent library for reading the most common file formats of microscope images.

  15. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets.

    Science.gov (United States)

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I; Letts, Robyn F R; Pantanowitz, Adam; Rubin, David M; Thomsen, Jesper S; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron.

  16. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets

    Directory of Open Access Journals (Sweden)

    Charita Bhikha

    2015-01-01

    Full Text Available An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron.

  17. Automated quantification technology for cerebrospinal fluid dynamics based on magnetic resonance image analysis

    International Nuclear Information System (INIS)

    Time-spatial labeling inversion pulse (Time-SLIP) technology, which is a non-contrast-enhanced magnetic resonance imaging (MRI) technology for the visualization of blood flow and cerebrospinal fluid (CSF) dynamics, is used for diagnosis of neurological diseases related to CSF including idiopathic normal-pressure hydrocephalus (iNPH), one of the causes of dementia. However, physicians must subjectively evaluate the velocity of CSF dynamics through observation of Time-SLIP images because no quantification technology exists that can express the values numerically. To address this issue, Toshiba, in cooperation with Toshiba Medical Systems Corporation and Toshiba Rinkan Hospital, has developed an automated quantification technology for CSF dynamics utilizing MR image analysis. We have confirmed the effectiveness of this technology through verification tests using a water phantom and quantification experiments using images of healthy volunteers. (author)

  18. An image-based, dual fluorescence reporter assay to evaluate the efficacy of shRNA for gene silencing at the single-cell level [v1; ref status: indexed, http://f1000r.es/2tt

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Kojima

    2014-02-01

    Full Text Available RNA interference (RNAi is widely used to suppress gene expression in a specific manner. The efficacy of RNAi is mainly dependent on the sequence of small interfering RNA (siRNA in relation to the target mRNA. Although several algorithms have been developed for the design of siRNA, it is still difficult to choose a really effective siRNA from among multiple candidates. In this article, we report the development of an image-based, quantitative, ratiometric fluorescence reporter assay to evaluate the efficacy of RNAi at the single-cell level. Two fluorescence reporter constructs are used. One expresses the candidate small hairpin RNA (shRNA together with an enhanced green fluorescent protein (EGFP; the other expresses a 19-nt target sequence inserted into a cassette expressing a red fluorescent protein (either DsRed or mCherry. Effectiveness of the candidate shRNA is evaluated as the extent to which it knocks down expression of the red fluorescent protein. Thus, the red-to-green fluorescence intensity ratio (appropriately normalized to controls is used as the read-out for quantifying the siRNA efficacy at the individual cell level. We tested this dual fluorescence assay and compared predictions to actual endogenous knockdown levels for three different genes (vimentin, lamin A/C and Arp3 and twenty different shRNAs. For each of the genes, our assay successfully predicted the target sequences for effective RNAi. To further facilitate testing of RNAi efficacy, we developed a negative selection marker (ccdB method for construction of shRNA and red fluorescent reporter plasmids that allowed us to purify these plasmids directly from transformed bacteria without the need for colony selection and DNA sequencing verification.

  19. An image-based, dual fluorescence reporter assay to evaluate the efficacy of shRNA for gene silencing at the single-cell level [v2; ref status: indexed, http://f1000r.es/39j

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Kojima

    2014-05-01

    Full Text Available RNA interference (RNAi is widely used to suppress gene expression in a specific manner. The efficacy of RNAi is mainly dependent on the sequence of small interfering RNA (siRNA in relation to the target mRNA. Although several algorithms have been developed for the design of siRNA, it is still difficult to choose a really effective siRNA from among multiple candidates. In this article, we report the development of an image-based, quantitative, ratiometric fluorescence reporter assay to evaluate the efficacy of RNAi at the single-cell level. Two fluorescence reporter constructs are used. One expresses the candidate small hairpin RNA (shRNA together with an enhanced green fluorescent protein (EGFP; the other expresses a 19-nt target sequence inserted into a cassette expressing a red fluorescent protein (either DsRed or mCherry. Effectiveness of the candidate shRNA is evaluated as the extent to which it knocks down expression of the red fluorescent protein. Thus, the red-to-green fluorescence intensity ratio (appropriately normalized to controls is used as the read-out for quantifying the siRNA efficacy at the individual cell level. We tested this dual fluorescence assay and compared predictions to actual endogenous knockdown levels for three different genes (vimentin, lamin A/C and Arp3 and twenty different shRNAs. For each of the genes, our assay successfully predicted the target sequences for effective RNAi. To further facilitate testing of RNAi efficacy, we developed a negative selection marker (ccdB method for construction of shRNA and red fluorescent reporter plasmids that allowed us to purify these plasmids directly from transformed bacteria without the need for colony selection and DNA sequencing verification.

  20. Integrated Electrowetting Nanoinjector for Single Cell Transfection

    OpenAIRE

    Elaheh Shekaramiz; Ganeshkumar Varadarajalu; Day, Philip J.; Kumar Wickramasinghe, H.

    2016-01-01

    Single cell transfection techniques are essential to understand the heterogeneity between cells. We have developed an integrated electrowetting nanoinjector (INENI) to transfect single cells. The high transfection efficiency, controlled dosage delivery and ease of INENI fabrication promote the widespread application of the INENI in cell transfection assays.

  1. Automated classification of optical coherence tomography images of human atrial tissue.

    Science.gov (United States)

    Gan, Yu; Tsay, David; Amir, Syed B; Marboe, Charles C; Hendon, Christine P

    2016-10-01

    Tissue composition of the atria plays a critical role in the pathology of cardiovascular disease, tissue remodeling, and arrhythmogenic substrates. Optical coherence tomography (OCT) has the ability to capture the tissue composition information of the human atria. In this study, we developed a region-based automated method to classify tissue compositions within human atria samples within OCT images. We segmented regional information without prior information about the tissue architecture and subsequently extracted features within each segmented region. A relevance vector machine model was used to perform automated classification. Segmentation of human atrial ex vivo datasets was correlated with trichrome histology and our classification algorithm had an average accuracy of 80.41% for identifying adipose, myocardium, fibrotic myocardium, and collagen tissue compositions. PMID:26926869

  2. Automated Line Tracking of lambda-DNA for Single-Molecule Imaging

    CERN Document Server

    Guan, Juan; Granick, Steve

    2011-01-01

    We describe a straightforward, automated line tracking method to visualize within optical resolution the contour of linear macromolecules as they rearrange shape as a function of time by Brownian diffusion and under external fields such as electrophoresis. Three sequential stages of analysis underpin this method: first, "feature finding" to discriminate signal from noise; second, "line tracking" to approximate those shapes as lines; third, "temporal consistency check" to discriminate reasonable from unreasonable fitted conformations in the time domain. The automated nature of this data analysis makes it straightforward to accumulate vast quantities of data while excluding the unreliable parts of it. We implement the analysis on fluorescence images of lambda-DNA molecules in agarose gel to demonstrate its capability to produce large datasets for subsequent statistical analysis.

  3. Estimation of urinary stone composition by automated processing of CT images

    CERN Document Server

    Chevreau, Grégoire; Conort, Pierre; Renard-Penna, Raphaëlle; Mallet, Alain; Daudon, Michel; Mozer, Pierre; 10.1007/s00240-009-0195-3

    2009-01-01

    The objective of this article was developing an automated tool for routine clinical practice to estimate urinary stone composition from CT images based on the density of all constituent voxels. A total of 118 stones for which the composition had been determined by infrared spectroscopy were placed in a helical CT scanner. A standard acquisition, low-dose and high-dose acquisitions were performed. All voxels constituting each stone were automatically selected. A dissimilarity index evaluating variations of density around each voxel was created in order to minimize partial volume effects: stone composition was established on the basis of voxel density of homogeneous zones. Stone composition was determined in 52% of cases. Sensitivities for each compound were: uric acid: 65%, struvite: 19%, cystine: 78%, carbapatite: 33.5%, calcium oxalate dihydrate: 57%, calcium oxalate monohydrate: 66.5%, brushite: 75%. Low-dose acquisition did not lower the performances (P < 0.05). This entirely automated approach eliminat...

  4. A method for the automated detection phishing websites through both site characteristics and image analysis

    Science.gov (United States)

    White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.

    2012-06-01

    Phishing website analysis is largely still a time-consuming manual process of discovering potential phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing phishing sites up and down rapidly at new locations, making automated response essential. In this paper, we present a method for rapid, automated detection and analysis of phishing websites. Our method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch the pages pointed to by each URL and characterize each page with a set of easily computed values such as number of images and links. We also capture a screen-shot of the rendered page image, compute a hash of the image and use the Hamming distance between these image hashes as a form of visual comparison. We provide initial results demonstrate the feasibility of our techniques by comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011. We discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for future work.

  5. An Automated Images-to-Graphs Framework for High Resolution Connectomics

    Directory of Open Access Journals (Sweden)

    William R Gray Roncal

    2015-08-01

    Full Text Available Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individual neurons and their synaptic connections to be directly observed. Recovering neuronal networks by manually tracing each neuronal process at this scale is unmanageable, and therefore researchers are developing automated image processing modules. Thus far, state-of-the-art algorithms focus only on the solution to a particular task (e.g., neuron segmentation or synapse identification. In this manuscript we present the first fully automated images-to-graphs pipeline (i.e., a pipeline that begins with an imaged volume of neural tissue and produces a brain graph without any human interaction. To evaluate overall performance and select the best parameters and methods, we also develop a metric to assess the quality of the output graphs. We evaluate a set of algorithms and parameters, searching possible operating points to identify the best available brain graph for our assessment metric. Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly available data set. This provides a baseline result and framework for community analysis and future algorithm development and testing. All code and data derivatives have been made publicly available toward eventually unlocking new biofidelic computational primitives and understanding of neuropathologies.

  6. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    Science.gov (United States)

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  7. AUTOMATED DETECTION OF OIL DEPOTS FROM HIGH RESOLUTION IMAGES: A NEW PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    A. O. Ok

    2015-03-01

    Full Text Available This paper presents an original approach to identify oil depots from single high resolution aerial/satellite images in an automated manner. The new approach considers the symmetric nature of circular oil depots, and it computes the radial symmetry in a unique way. An automated thresholding method to focus on circular regions and a new measure to verify circles are proposed. Experiments are performed on six GeoEye-1 test images. Besides, we perform tests on 16 Google Earth images of an industrial test site acquired in a time series manner (between the years 1995 and 2012. The results reveal that our approach is capable of detecting circle objects in very different/difficult images. We computed an overall performance of 95.8% for the GeoEye-1 dataset. The time series investigation reveals that our approach is robust enough to locate oil depots in industrial environments under varying illumination and environmental conditions. The overall performance is computed as 89.4% for the Google Earth dataset, and this result secures the success of our approach compared to a state-of-the-art approach.

  8. Fully automated segmentation of left ventricle using dual dynamic programming in cardiac cine MR images

    Science.gov (United States)

    Jiang, Luan; Ling, Shan; Li, Qiang

    2016-03-01

    Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.

  9. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    Science.gov (United States)

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule. PMID:27333609

  10. Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis

    Directory of Open Access Journals (Sweden)

    Wheeler Richard J

    2012-01-01

    Full Text Available Abstract Background Many trypanosomatid protozoa are important human or animal pathogens. The well defined morphology and precisely choreographed division of trypanosomatid cells makes morphological analysis a powerful tool for analyzing the effect of mutations, chemical insults and changes between lifecycle stages. High-throughput image analysis of micrographs has the potential to accelerate collection of quantitative morphological data. Trypanosomatid cells have two large DNA-containing organelles, the kinetoplast (mitochondrial DNA and nucleus, which provide useful markers for morphometric analysis; however they need to be accurately identified and often lie in close proximity. This presents a technical challenge. Accurate identification and quantitation of the DNA content of these organelles is a central requirement of any automated analysis method. Results We have developed a technique based on double staining of the DNA with a minor groove binding (4'', 6-diamidino-2-phenylindole (DAPI and a base pair intercalating (propidium iodide (PI or SYBR green fluorescent stain and color deconvolution. This allows the identification of kinetoplast and nuclear DNA in the micrograph based on whether the organelle has DNA with a more A-T or G-C rich composition. Following unambiguous identification of the kinetoplasts and nuclei the resulting images are amenable to quantitative automated analysis of kinetoplast and nucleus number and DNA content. On this foundation we have developed a demonstrative analysis tool capable of measuring kinetoplast and nucleus DNA content, size and position and cell body shape, length and width automatically. Conclusions Our approach to DNA staining and automated quantitative analysis of trypanosomatid morphology accelerated analysis of trypanosomatid protozoa. We have validated this approach using Leishmania mexicana, Crithidia fasciculata and wild-type and mutant Trypanosoma brucei. Automated analysis of T. brucei

  11. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  12. Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ani eEloyan

    2012-08-01

    Full Text Available Successful automated diagnoses of attention deficit hyperactive disorder (ADHD using imaging and functional biomarkers would have fundamental consequences on the public health impact of the disease. In this work, we show results on the predictability of ADHD using imaging biomarkers and discuss the scientific and diagnostic impacts of the research. We created a prediction model using the landmark ADHD 200 data set focusing on resting state functional connectivity (rs-fc and structural brain imaging. We predicted ADHD status and subtype, obtained by behavioral examination, using imaging data, intelligence quotients and other covariates. The novel contributions of this manuscript include a thorough exploration of prediction and image feature extraction methodology on this form of data, including the use of singular value decompositions, CUR decompositions, random forest, gradient boosting, bagging, voxel-based morphometry and support vector machines as well as important insights into the value, and potentially lack thereof, of imaging biomarkers of disease. The key results include the CUR-based decomposition of the rs-fc-fMRI along with gradient boosting and the prediction algorithm based on a motor network parcellation and random forest algorithm. We conjecture that the CUR decomposition is largely diagnosing common population directions of head motion. Of note, a byproduct of this research is a potential automated method for detecting subtle in-scanner motion. The final prediction algorithm, a weighted combination of several algorithms, had an external test set specificity of 94% with sensitivity of 21%. The most promising imaging biomarker was a correlation graph from a motor network parcellation. In summary, we have undertaken a large-scale statistical exploratory prediction exercise on the unique ADHD 200 data set. The exercise produced several potential leads for future scientific exploration of the neurological basis of ADHD.

  13. Computer-assisted scheme for automated determination of imaging planes in cervical spinal cord MRI

    Science.gov (United States)

    Tsurumaki, Masaki; Tsai, Du-Yih; Lee, Yongbum; Sekiya, Masaru; Kazama, Kiyoko

    2009-02-01

    This paper presents a computerized scheme to assist MRI operators in accurate and rapid determination of sagittal sections for MRI exam of cervical spinal cord. The algorithm of the proposed scheme consisted of 6 steps: (1) extraction of a cervical vertebra containing spinal cord from an axial localizer image; (2) extraction of spinal cord with sagittal image from the extracted vertebra; (3) selection of a series of coronal localizer images corresponding to various, involved portions of the extracted spinal cord with sagittal image; (4) generation of a composite coronal-plane image from the obtained coronal images; (5) extraction of spinal cord from the obtained composite image; (6) determination of oblique sagittal sections from the detected location and gradient of the extracted spinal cord. Cervical spine images obtained from 25 healthy volunteers were used for the study. A perceptual evaluation was performed by five experienced MRI operators. Good agreement between the automated and manual determinations was achieved. By use of the proposed scheme, average execution time was reduced from 39 seconds/case to 1 second/case. The results demonstrate that the proposed scheme can assist MRI operators in performing cervical spinal cord MRI exam accurately and rapidly.

  14. Newly found pulmonary pathophysiology from automated breath-hold perfusion-SPECT-CT fusion image

    International Nuclear Information System (INIS)

    Pulmonary perfusion single photon emission computed tomography (SPECT)-CT fusion image largely contributes to objective and detailed correlation between lung morphologic and perfusion impairment in various lung diseases. However, traditional perfusion SPECT obtained during rest breathing usually shows a significant mis-registration on fusion image with conventional CT obtained during deep-inspiratory phase. There are also other adverse effects caused by respiratory lung motion such as blurring or smearing of small perfusion defects. To resolve these disadvantages of traditional perfusion SPECT, an innovative method of deep-inspiratory breath-hold (DIBrH) SPECT scan is developed in the Nuclear Medicine Institute of Yamaguchi University Hospital. This review article briefly describes the new findings of pulmonary pathophysiology which has been reveled by detailed lung morphologic-perfusion correlation on automated reliable DIBrH perfusion SPECT-CT fusion image. (author)

  15. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya

    DEFF Research Database (Denmark)

    Juul Bøgelund Hansen, Morten; Abramoff, M. D.; Folk, J. C.;

    2015-01-01

    Objective Digital retinal imaging is an established method of screening for diabetic retinopathy (DR). It has been established that currently about 1% of the world's blind or visually impaired is due to DR. However, the increasing prevalence of diabetes mellitus and DR is creating an increased...... workload on those with expertise in grading retinal images. Safe and reliable automated analysis of retinal images may support screening services worldwide. This study aimed to compare the Iowa Detection Program (IDP) ability to detect diabetic eye diseases (DED) to human grading carried out at Moorfields...... gave an AUC of 0.878 (95% CI 0.850-0.905). It showed a negative predictive value of 98%. The IDP missed no vision threatening retinopathy in any patients and none of the false negative cases met criteria for treatment. Conclusions In this epidemiological sample, the IDP's grading was comparable...

  16. Automated system for acquisition and image processing for the control and monitoring boned nopal

    Science.gov (United States)

    Luevano, E.; de Posada, E.; Arronte, M.; Ponce, L.; Flores, T.

    2013-11-01

    This paper describes the design and fabrication of a system for acquisition and image processing to control the removal of thorns nopal vegetable (Opuntia ficus indica) in an automated machine that uses pulses of a laser of Nd: YAG. The areolas, areas where thorns grow on the bark of the Nopal, are located applying segmentation algorithms to the images obtained by a CCD. Once the position of the areolas is known, coordinates are sent to a motors system that controls the laser to interact with all areolas and remove the thorns of the nopal. The electronic system comprises a video decoder, memory for image and software storage, and digital signal processor for system control. The firmware programmed tasks on acquisition, preprocessing, segmentation, recognition and interpretation of the areolas. This system achievement identifying areolas and generating table of coordinates of them, which will be send the motor galvo system that controls the laser for removal

  17. The use of the Kalman filter in the automated segmentation of EIT lung images.

    Science.gov (United States)

    Zifan, A; Liatsis, P; Chapman, B E

    2013-06-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.

  18. The use of the Kalman filter in the automated segmentation of EIT lung images

    International Nuclear Information System (INIS)

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging. (paper)

  19. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    Science.gov (United States)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  20. Microbleed detection using automated segmentation (MIDAS: a new method applicable to standard clinical MR images.

    Directory of Open Access Journals (Sweden)

    Mohamed L Seghier

    Full Text Available BACKGROUND: Cerebral microbleeds, visible on gradient-recalled echo (GRE T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts. Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87. MIDAS successfully detected all patients with multiple (≥2 lobar microbleeds. CONCLUSIONS/SIGNIFICANCE: MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.

  1. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging

    Science.gov (United States)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system’s unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  2. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging.

    Science.gov (United States)

    Jenkins, Cesare H; Naczynski, Dominik J; Yu, Shu-Jung S; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system's unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  3. Fully automated quantitative analysis of breast cancer risk in DCE-MR images

    Science.gov (United States)

    Jiang, Luan; Hu, Xiaoxin; Gu, Yajia; Li, Qiang

    2015-03-01

    Amount of fibroglandular tissue (FGT) and background parenchymal enhancement (BPE) in dynamic contrast enhanced magnetic resonance (DCE-MR) images are two important indices for breast cancer risk assessment in the clinical practice. The purpose of this study is to develop and evaluate a fully automated scheme for quantitative analysis of FGT and BPE in DCE-MR images. Our fully automated method consists of three steps, i.e., segmentation of whole breast, fibroglandular tissues, and enhanced fibroglandular tissues. Based on the volume of interest extracted automatically, dynamic programming method was applied in each 2-D slice of a 3-D MR scan to delineate the chest wall and breast skin line for segmenting the whole breast. This step took advantages of the continuity of chest wall and breast skin line across adjacent slices. We then further used fuzzy c-means clustering method with automatic selection of cluster number for segmenting the fibroglandular tissues within the segmented whole breast area. Finally, a statistical method was used to set a threshold based on the estimated noise level for segmenting the enhanced fibroglandular tissues in the subtraction images of pre- and post-contrast MR scans. Based on the segmented whole breast, fibroglandular tissues, and enhanced fibroglandular tissues, FGT and BPE were automatically computed. Preliminary results of technical evaluation and clinical validation showed that our fully automated scheme could obtain good segmentation of the whole breast, fibroglandular tissues, and enhanced fibroglandular tissues to achieve accurate assessment of FGT and BPE for quantitative analysis of breast cancer risk.

  4. Automated measurement of CT noise in patient images with a novel structure coherence feature

    International Nuclear Information System (INIS)

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCCwithin  =  0.75, PCCbetween  =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine. (paper)

  5. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    Science.gov (United States)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  6. Automated measurement of CT noise in patient images with a novel structure coherence feature

    Science.gov (United States)

    Chun, Minsoo; Choi, Young Hun; Hyo Kim, Jong

    2015-12-01

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCCwithin  =  0.75, PCCbetween  =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine.

  7. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    Science.gov (United States)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  8. Automated detection of regions of interest for tissue microarray experiments: an image texture analysis

    Directory of Open Access Journals (Sweden)

    Tözeren Aydin

    2007-03-01

    Full Text Available Abstract Background Recent research with tissue microarrays led to a rapid progress toward quantifying the expressions of large sets of biomarkers in normal and diseased tissue. However, standard procedures for sampling tissue for molecular profiling have not yet been established. Methods This study presents a high throughput analysis of texture heterogeneity on breast tissue images for the purpose of identifying regions of interest in the tissue for molecular profiling via tissue microarray technology. Image texture of breast histology slides was described in terms of three parameters: the percentage of area occupied in an image block by chromatin (B, percentage occupied by stroma-like regions (P, and a statistical heterogeneity index H commonly used in image analysis. Texture parameters were defined and computed for each of the thousands of image blocks in our dataset using both the gray scale and color segmentation. The image blocks were then classified into three categories using the texture feature parameters in a novel statistical learning algorithm. These categories are as follows: image blocks specific to normal breast tissue, blocks specific to cancerous tissue, and those image blocks that are non-specific to normal and disease states. Results Gray scale and color segmentation techniques led to identification of same regions in histology slides as cancer-specific. Moreover the image blocks identified as cancer-specific belonged to those cell crowded regions in whole section image slides that were marked by two pathologists as regions of interest for further histological studies. Conclusion These results indicate the high efficiency of our automated method for identifying pathologic regions of interest on histology slides. Automation of critical region identification will help minimize the inter-rater variability among different raters (pathologists as hundreds of tumors that are used to develop an array have typically been evaluated

  9. Automated Image Segmentation And Characterization Technique For Effective Isolation And Representation Of Human Face

    Directory of Open Access Journals (Sweden)

    Rajesh Reddy N

    2014-01-01

    Full Text Available In areas such as defense and forensics, it is necessary to identify the face of the criminals from the already available database. Automated face recognition system involves face isolation, feature extraction and classification technique. Challenges in face recognition system are isolating the face effectively as it may be affected by illumination, posture and variation in skin color. Hence it is necessary to develop an effective algorithm that isolates face from the image. In this paper, advanced face isolation technique and feature extraction technique has been proposed.

  10. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  11. Magnetic levitation of single cells

    OpenAIRE

    Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-01-01

    Cells consist of micro- and nanoscale components and materials that contribute to their fundamental magnetic and density signatures. Previous studies have claimed that magnetic levitation can only be used to measure density signatures of nonliving materials. Here, we demonstrate that both eukaryotic and prokaryotic cells can be levitated and that each cell has a unique levitation profile. Furthermore, our levitation platform uniquely enables ultrasensitive density measurements, imaging, and p...

  12. Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy

    NARCIS (Netherlands)

    Jong, Imke G. de; Beilharz, Katrin; Kuipers, Oscar P.; Veening, Jan-Willem

    2011-01-01

    During the last few years scientists became increasingly aware that average data obtained from microbial population based experiments are not representative of the behavior, status or phenotype of single cells. Due to this new insight the number of single cell studies rises continuously. However, ma

  13. Automated aortic calcification detection in low-dose chest CT images

    Science.gov (United States)

    Xie, Yiting; Htwe, Yu Maw; Padgett, Jennifer; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    The extent of aortic calcification has been shown to be a risk indicator for vascular events including cardiac events. We have developed a fully automated computer algorithm to segment and measure aortic calcification in low-dose noncontrast, non-ECG gated, chest CT scans. The algorithm first segments the aorta using a pre-computed Anatomy Label Map (ALM). Then based on the segmented aorta, aortic calcification is detected and measured in terms of the Agatston score, mass score, and volume score. The automated scores are compared with reference scores obtained from manual markings. For aorta segmentation, the aorta is modeled as a series of discrete overlapping cylinders and the aortic centerline is determined using a cylinder-tracking algorithm. Then the aortic surface location is detected using the centerline and a triangular mesh model. The segmented aorta is used as a mask for the detection of aortic calcification. For calcification detection, the image is first filtered, then an elevated threshold of 160 Hounsfield units (HU) is used within the aorta mask region to reduce the effect of noise in low-dose scans, and finally non-aortic calcification voxels (bony structures, calcification in other organs) are eliminated. The remaining candidates are considered as true aortic calcification. The computer algorithm was evaluated on 45 low-dose non-contrast CT scans. Using linear regression, the automated Agatston score is 98.42% correlated with the reference Agatston score. The automated mass and volume score is respectively 98.46% and 98.28% correlated with the reference mass and volume score.

  14. Single cell analysis: the new frontier in 'Omics'

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Bodovitz, Steven

    2010-01-14

    Cellular heterogeneity arising from stochastic expression of genes, proteins, and metabolites is a fundamental principle of cell biology, but single cell analysis has been beyond the capabilities of 'Omics' technologies. This is rapidly changing with the recent examples of single cell genomics, transcriptomics, proteomics, and metabolomics. The rate of change is expected to accelerate owing to emerging technologies that range from micro/nanofluidics to microfabricated interfaces for mass spectrometry to third- and fourth-generation automated DNA sequencers. As described in this review, single cell analysis is the new frontier in Omics, and single cell Omics has the potential to transform systems biology through new discoveries derived from cellular heterogeneity.

  15. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    Science.gov (United States)

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous

  16. AI (artificial intelligence in histopathology--from image analysis to automated diagnosis.

    Directory of Open Access Journals (Sweden)

    Aleksandar Bogovac

    2010-02-01

    Full Text Available The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures and pixel based (texture measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and

  17. Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas

    Science.gov (United States)

    Alexander, Nathan S.; Palczewska, Grazyna; Palczewski, Krzysztof

    2015-01-01

    Automated image segmentation is a critical step toward achieving a quantitative evaluation of disease states with imaging techniques. Two-photon fluorescence microscopy (TPM) has been employed to visualize the retinal pigmented epithelium (RPE) and provide images indicating the health of the retina. However, segmentation of RPE cells within TPM images is difficult due to small differences in fluorescence intensity between cell borders and cell bodies. Here we present a semi-automated method for segmenting RPE cells that relies upon multiple weak features that differentiate cell borders from the remaining image. These features were scored by a search optimization procedure that built up the cell border in segments around a nucleus of interest. With six images used as a test, our method correctly identified cell borders for 69% of nuclei on average. Performance was strongly dependent upon increasing retinosome content in the RPE. TPM image analysis has the potential of providing improved early quantitative assessments of diseases affecting the RPE. PMID:26309765

  18. Automating the Analysis of Spatial Grids A Practical Guide to Data Mining Geospatial Images for Human & Environmental Applications

    CERN Document Server

    Lakshmanan, Valliappa

    2012-01-01

    The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery.

  19. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    Science.gov (United States)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk

  20. Evaluation of a content-based retrieval system for blood cell images with automated methods.

    Science.gov (United States)

    Seng, Woo Chaw; Mirisaee, Seyed Hadi

    2011-08-01

    Content-based image retrieval techniques have been extensively studied for the past few years. With the growth of digital medical image databases, the demand for content-based analysis and retrieval tools has been increasing remarkably. Blood cell image is a key diagnostic tool for hematologists. An automated system that can retrieved relevant blood cell images correctly and efficiently would save the effort and time of hematologists. The purpose of this work is to develop such a content-based image retrieval system. Global color histogram and wavelet-based methods are used in the prototype. The system allows users to search by providing a query image and select one of four implemented methods. The obtained results demonstrate the proposed extended query refinement has the potential to capture a user's high level query and perception subjectivity by dynamically giving better query combinations. Color-based methods performed better than wavelet-based methods with regard to precision, recall rate and retrieval time. Shape and density of blood cells are suggested as measurements for future improvement. The system developed is useful for undergraduate education. PMID:20703533

  1. Knee x-ray image analysis method for automated detection of osteoarthritis.

    Science.gov (United States)

    Shamir, Lior; Ling, Shari M; Scott, William W; Bos, Angelo; Orlov, Nikita; Macura, Tomasz J; Eckley, D Mark; Ferrucci, Luigi; Goldberg, Ilya G

    2009-02-01

    We describe a method for automated detection of radiographic osteoarthritis (OA) in knee X-ray images. The detection is based on the Kellgren-Lawrence (KL) classification grades, which correspond to the different stages of OA severity. The classifier was built using manually classified X-rays, representing the first four KL grades (normal, doubtful, minimal, and moderate). Image analysis is performed by first identifying a set of image content descriptors and image transforms that are informative for the detection of OA in the X-rays and assigning weights to these image features using Fisher scores. Then, a simple weighted nearest neighbor rule is used in order to predict the KL grade to which a given test X-ray sample belongs. The dataset used in the experiment contained 350 X-ray images classified manually by their KL grades. Experimental results show that moderate OA (KL grade 3) and minimal OA (KL grade 2) can be differentiated from normal cases with accuracy of 91.5% and 80.4%, respectively. Doubtful OA (KL grade 1) was detected automatically with a much lower accuracy of 57%. The source code developed and used in this study is available for free download at www.openmicroscopy.org. PMID:19342330

  2. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul;

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate detec...

  3. Single cell genomics: advances and future perspectives.

    OpenAIRE

    Macaulay, Iain C.; Thierry Voet

    2014-01-01

    Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organis...

  4. Single-cell analysis - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-06-01

    Full Text Available This is certainly a timely volume in the Methods in molecular biology series: we already entered the synthetic biology era and thus we need to be aware of the new methodological advances able to fulfill the new and necessary needs for biologists, biotechnologists and nano-biotechnologists. Notably, among these, the possibility to perform single cell analysis allow researchers to capture single cell responses....

  5. Efficient Synergistic Single-Cell Genome Assembly.

    Science.gov (United States)

    Movahedi, Narjes S; Embree, Mallory; Nagarajan, Harish; Zengler, Karsten; Chitsaz, Hamidreza

    2016-01-01

    As the vast majority of all microbes are unculturable, single-cell sequencing has become a significant method to gain insight into microbial physiology. Single-cell sequencing methods, currently powered by multiple displacement genome amplification (MDA), have passed important milestones such as finishing and closing the genome of a prokaryote. However, the quality and reliability of genome assemblies from single cells are still unsatisfactory due to uneven coverage depth and the absence of scattered chunks of the genome in the final collection of reads caused by MDA bias. In this work, our new algorithm Hybrid De novo Assembler (HyDA) demonstrates the power of coassembly of multiple single-cell genomic data sets through significant improvement of the assembly quality in terms of predicted functional elements and length statistics. Coassemblies contain significantly more base pairs and protein coding genes, cover more subsystems, and consist of longer contigs compared to individual assemblies by the same algorithm as well as state-of-the-art single-cell assemblers SPAdes and IDBA-UD. Hybrid De novo Assembler (HyDA) is also able to avoid chimeric assemblies by detecting and separating shared and exclusive pieces of sequence for input data sets. By replacing one deep single-cell sequencing experiment with a few single-cell sequencing experiments of lower depth, the coassembly method can hedge against the risk of failure and loss of the sample, without significantly increasing sequencing cost. Application of the single-cell coassembler HyDA to the study of three uncultured members of an alkane-degrading methanogenic community validated the usefulness of the coassembly concept. HyDA is open source and publicly available at http://chitsazlab.org/software.html, and the raw reads are available at http://chitsazlab.org/research.html. PMID:27243002

  6. Efficient synergistic single-cell genome assembly

    Directory of Open Access Journals (Sweden)

    Narjes S. Movahedi

    2016-05-01

    Full Text Available As the vast majority of all microbes are unculturable, single-cell sequencing has become a significant method to gain insight into microbial physiology. Single-cell sequencing methods, currently powered by multiple displacement genome amplification (MDA, have passed important milestones such as finishing and closing the genome of a prokaryote. However, the quality and reliability of genome assemblies from single cells are still unsatisfactory due to uneven coverage depth and the absence of scattered chunks of the genome in the final collection of reads caused by MDA bias. In this work, our new algorithm Hybrid De novo Assembler (HyDA demonstrates the power of co-assembly of multiple single-cell genomic data sets through significant improvement of the assembly quality in terms of predicted functional elements and length statistics. Co-assemblies contain significantly more base pairs and protein coding genes, cover more subsystems, and consist of longer contigs compared to individual assemblies by the same algorithm as well as state-of-the-art single-cell assemblers SPAdes and IDBA-UD. Hybrid emph{De novo} Assembler (HyDA is also able to avoid chimeric assemblies by detecting and separating shared and exclusive pieces of sequence for input data sets. By replacing one deep single-cell sequencing experiment with a few single-cell sequencing experiments of lower depth, the co-assembly method can hedge against the risk of failure and loss of the sample, without significantly increasing sequencing cost. Application of the single-cell co-assembler HyDA to the study of three uncultured members of an alkane-degrading methanogenic community validated the usefulness of the co-assembly concept. HyDA is open source and publicly available at http://chitsazlab.org/software.html and the raw reads are available at http://chitsazlab.org/research.html.

  7. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  8. Automated model-based bias field correction of MR images of the brain.

    Science.gov (United States)

    Van Leemput, K; Maes, F; Vandermeulen, D; Suetens, P

    1999-10-01

    We propose a model-based method for fully automated bias field correction of MR brain images. The MR signal is modeled as a realization of a random process with a parametric probability distribution that is corrupted by a smooth polynomial inhomogeneity or bias field. The method we propose applies an iterative expectation-maximization (EM) strategy that interleaves pixel classification with estimation of class distribution and bias field parameters, improving the likelihood of the model parameters at each iteration. The algorithm, which can handle multichannel data and slice-by-slice constant intensity offsets, is initialized with information from a digital brain atlas about the a priori expected location of tissue classes. This allows full automation of the method without need for user interaction, yielding more objective and reproducible results. We have validated the bias correction algorithm on simulated data and we illustrate its performance on various MR images with important field inhomogeneities. We also relate the proposed algorithm to other bias correction algorithms. PMID:10628948

  9. Automated static image analysis as a novel tool in describing the physical properties of dietary fiber

    Directory of Open Access Journals (Sweden)

    Marcin Andrzej KUREK

    2015-01-01

    Full Text Available Abstract The growing interest in the usage of dietary fiber in food has caused the need to provide precise tools for describing its physical properties. This research examined two dietary fibers from oats and beets, respectively, in variable particle sizes. The application of automated static image analysis for describing the hydration properties and particle size distribution of dietary fiber was analyzed. Conventional tests for water holding capacity (WHC were conducted. The particles were measured at two points: dry and after water soaking. The most significant water holding capacity (7.00 g water/g solid was achieved by the smaller sized oat fiber. Conversely, the water holding capacity was highest (4.20 g water/g solid in larger sized beet fiber. There was evidence for water absorption increasing with a decrease in particle size in regards to the same fiber source. Very strong correlations were drawn between particle shape parameters, such as fiber length, straightness, width and hydration properties measured conventionally. The regression analysis provided the opportunity to estimate whether the automated static image analysis method could be an efficient tool in describing the hydration properties of dietary fiber. The application of the method was validated using mathematical model which was verified in comparison to conventional WHC measurement results.

  10. Fully automated image-guided needle insertion: application to small animal biopsies.

    Science.gov (United States)

    Ayadi, A; Bour, G; Aprahamian, M; Bayle, B; Graebling, P; Gangloff, J; Soler, L; Egly, J M; Marescaux, J

    2007-01-01

    The study of biological process evolution in small animals requires time-consuming and expansive analyses of a large population of animals. Serial analyses of the same animal is potentially a great alternative. However non-invasive procedures must be set up, to retrieve valuable tissue samples from precisely defined areas in living animals. Taking advantage of the high resolution level of in vivo molecular imaging, we defined a procedure to perform image-guided needle insertion and automated biopsy using a micro CT-scan, a robot and a vision system. Workspace limitations in the scanner require the animal to be removed and laid in front of the robot. A vision system composed of a grid projector and a camera is used to register the designed animal-bed with to respect to the robot and to calibrate automatically the needle position and orientation. Automated biopsy is then synchronised with respiration and performed with a pneumatic translation device, at high velocity, to minimize organ deformation. We have experimentally tested our biopsy system with different needles.

  11. Quantitative Assessment of Mouse Mammary Gland Morphology Using Automated Digital Image Processing and TEB Detection.

    Science.gov (United States)

    Blacher, Silvia; Gérard, Céline; Gallez, Anne; Foidart, Jean-Michel; Noël, Agnès; Péqueux, Christel

    2016-04-01

    The assessment of rodent mammary gland morphology is largely used to study the molecular mechanisms driving breast development and to analyze the impact of various endocrine disruptors with putative pathological implications. In this work, we propose a methodology relying on fully automated digital image analysis methods including image processing and quantification of the whole ductal tree and of the terminal end buds as well. It allows to accurately and objectively measure both growth parameters and fine morphological glandular structures. Mammary gland elongation was characterized by 2 parameters: the length and the epithelial area of the ductal tree. Ductal tree fine structures were characterized by: 1) branch end-point density, 2) branching density, and 3) branch length distribution. The proposed methodology was compared with quantification methods classically used in the literature. This procedure can be transposed to several software and thus largely used by scientists studying rodent mammary gland morphology. PMID:26910307

  12. Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Franziska Mech

    Full Text Available Aspergillus fumigatus is a ubiquitous airborne fungus and opportunistic human pathogen. In immunocompromised hosts, the fungus can cause life-threatening diseases like invasive pulmonary aspergillosis. Since the incidence of fungal systemic infections drastically increased over the last years, it is a major goal to investigate the pathobiology of A. fumigatus and in particular the interactions of A. fumigatus conidia with immune cells. Many of these studies include the activity of immune effector cells, in particular of macrophages, when they are confronted with conidia of A. fumigus wild-type and mutant strains. Here, we report the development of an automated analysis of confocal laser scanning microscopy images from macrophages coincubated with different A. fumigatus strains. At present, microscopy images are often analysed manually, including cell counting and determination of interrelations between cells, which is very time consuming and error-prone. Automation of this process overcomes these disadvantages and standardises the analysis, which is a prerequisite for further systems biological studies including mathematical modeling of the infection process. For this purpose, the cells in our experimental setup were differentially stained and monitored by confocal laser scanning microscopy. To perform the image analysis in an automatic fashion, we developed a ruleset that is generally applicable to phagocytosis assays and in the present case was processed by the software Definiens Developer XD. As a result of a complete image analysis we obtained features such as size, shape, number of cells and cell-cell contacts. The analysis reported here, reveals that different mutants of A. fumigatus have a major influence on the ability of macrophages to adhere and to phagocytose the respective conidia. In particular, we observe that the phagocytosis ratio and the aggregation behaviour of pksP mutant compared to wild-type conidia are both significantly

  13. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Price A.; Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Beauregard, Jean-Mathieu [Department of Radiology, Université Laval, Quebec City G1V 0A6 (Canada); Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J. [Department of Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  14. Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images

    Directory of Open Access Journals (Sweden)

    Pachiyappan Arulmozhivarman

    2012-06-01

    Full Text Available Abstract We describe a system for the automated diagnosis of diabetic retinopathy and glaucoma using fundus and optical coherence tomography (OCT images. Automatic screening will help the doctors to quickly identify the condition of the patient in a more accurate way. The macular abnormalities caused due to diabetic retinopathy can be detected by applying morphological operations, filters and thresholds on the fundus images of the patient. Early detection of glaucoma is done by estimating the Retinal Nerve Fiber Layer (RNFL thickness from the OCT images of the patient. The RNFL thickness estimation involves the use of active contours based deformable snake algorithm for segmentation of the anterior and posterior boundaries of the retinal nerve fiber layer. The algorithm was tested on a set of 89 fundus images of which 85 were found to have at least mild retinopathy and OCT images of 31 patients out of which 13 were found to be glaucomatous. The accuracy for optical disk detection is found to be 97.75%. The proposed system therefore is accurate, reliable and robust and can be realized.

  15. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  16. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues

    OpenAIRE

    Joshua Chopin; Hamid Laga; Chun Yuan Huang; Sigrid Heuer; Miklavcic, Stanley J.

    2015-01-01

    The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processi...

  17. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  18. Automated detection and labeling of high-density EEG electrodes from structural MR images

    Science.gov (United States)

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work

  19. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    International Nuclear Information System (INIS)

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  20. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    Science.gov (United States)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  1. Automated Analysis of {sup 123}I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-03-15

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4-{sup 123}I-iodophenyl)tropane ({sup 123}I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional {sup 123}I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease.

  2. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Sennett, Charlene A.; Giger, Maryellen L. [Department of Radiology, MC2026, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  3. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.

    Science.gov (United States)

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-02-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  4. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    Science.gov (United States)

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-01-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  5. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.

    Directory of Open Access Journals (Sweden)

    Jens H Westhoff

    Full Text Available The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.

  6. High-throughput automated home-cage mesoscopic functional imaging of mouse cortex.

    Science.gov (United States)

    Murphy, Timothy H; Boyd, Jamie D; Bolaños, Federico; Vanni, Matthieu P; Silasi, Gergely; Haupt, Dirk; LeDue, Jeff M

    2016-01-01

    Mouse head-fixed behaviour coupled with functional imaging has become a powerful technique in rodent systems neuroscience. However, training mice can be time consuming and is potentially stressful for animals. Here we report a fully automated, open source, self-initiated head-fixation system for mesoscopic functional imaging in mice. The system supports five mice at a time and requires minimal investigator intervention. Using genetically encoded calcium indicator transgenic mice, we longitudinally monitor cortical functional connectivity up to 24 h per day in >7,000 self-initiated and unsupervised imaging sessions up to 90 days. The procedure provides robust assessment of functional cortical maps on the basis of both spontaneous activity and brief sensory stimuli such as light flashes. The approach is scalable to a number of remotely controlled cages that can be assessed within the controlled conditions of dedicated animal facilities. We anticipate that home-cage brain imaging will permit flexible and chronic assessment of mesoscale cortical function. PMID:27291514

  7. Vision 20/20: Perspectives on automated image segmentation for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Gregory, E-mail: gcsharp@partners.org; Fritscher, Karl D.; Shusharina, Nadya [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Pekar, Vladimir [Philips Healthcare, Markham, Ontario 6LC 2S3 (Canada); Peroni, Marta [Center for Proton Therapy, Paul Scherrer Institut, 5232 Villigen-PSI (Switzerland); Veeraraghavan, Harini [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Yang, Jinzhong [Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-05-15

    Due to rapid advances in radiation therapy (RT), especially image guidance and treatment adaptation, a fast and accurate segmentation of medical images is a very important part of the treatment. Manual delineation of target volumes and organs at risk is still the standard routine for most clinics, even though it is time consuming and prone to intra- and interobserver variations. Automated segmentation methods seek to reduce delineation workload and unify the organ boundary definition. In this paper, the authors review the current autosegmentation methods particularly relevant for applications in RT. The authors outline the methods’ strengths and limitations and propose strategies that could lead to wider acceptance of autosegmentation in routine clinical practice. The authors conclude that currently, autosegmentation technology in RT planning is an efficient tool for the clinicians to provide them with a good starting point for review and adjustment. Modern hardware platforms including GPUs allow most of the autosegmentation tasks to be done in a range of a few minutes. In the nearest future, improvements in CT-based autosegmentation tools will be achieved through standardization of imaging and contouring protocols. In the longer term, the authors expect a wider use of multimodality approaches and better understanding of correlation of imaging with biology and pathology.

  8. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  9. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  10. Automated tissue classification of intracardiac optical coherence tomography images (Conference Presentation)

    Science.gov (United States)

    Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.

    2016-03-01

    Remodeling of the myocardium is associated with increased risk of arrhythmia and heart failure. Our objective is to automatically identify regions of fibrotic myocardium, dense collagen, and adipose tissue, which can serve as a way to guide radiofrequency ablation therapy or endomyocardial biopsies. Using computer vision and machine learning, we present an automated algorithm to classify tissue compositions from cardiac optical coherence tomography (OCT) images. Three dimensional OCT volumes were obtained from 15 human hearts ex vivo within 48 hours of donor death (source, NDRI). We first segmented B-scans using a graph searching method. We estimated the boundary of each region by minimizing a cost function, which consisted of intensity, gradient, and contour smoothness. Then, features, including texture analysis, optical properties, and statistics of high moments, were extracted. We used a statistical model, relevance vector machine, and trained this model with abovementioned features to classify tissue compositions. To validate our method, we applied our algorithm to 77 volumes. The datasets for validation were manually segmented and classified by two investigators who were blind to our algorithm results and identified the tissues based on trichrome histology and pathology. The difference between automated and manual segmentation was 51.78 +/- 50.96 μm. Experiments showed that the attenuation coefficients of dense collagen were significantly different from other tissue types (P tissues were different from normal myocardium in entropy and kurtosis. The tissue types were classified with an accuracy of 84%. The results show good agreements with histology.

  11. Automated parameterisation for multi-scale image segmentation on multiple layers

    Science.gov (United States)

    Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D.

    2014-01-01

    We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. PMID:24748723

  12. Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image

    Science.gov (United States)

    Al Fugura, A.'kif; Billa, Lawal; Pradhan, Biswajeet

    2011-12-01

    Coastline identification is important for surveying and mapping reasons. Coastline serves as the basic point of reference and is used on nautical charts for navigation purposes. Its delineation has become crucial and more important in the wake of the many recent earthquakes and tsunamis resulting in complete change and redraw of some shorelines. In a tropical country like Malaysia, presence of cloud cover hinders the application of optical remote sensing data. In this study a semi-automated technique and procedures are presented for shoreline delineation from RADARSAT-1 image. A scene of RADARSAT-1 satellite image was processed using enhanced filtering technique to identify and extract the shoreline coast of Kuala Terengganu, Malaysia. RADSARSAT image has many advantages over the optical data because of its ability to penetrate cloud cover and its night sensing capabilities. At first, speckles were removed from the image by using Lee sigma filter which was used to reduce random noise and to enhance the image and discriminate the boundary between land and water. The results showed an accurate and improved extraction and delineation of the entire coastline of Kuala Terrenganu. The study demonstrated the reliability of the image averaging filter in reducing random noise over the sea surface especially near the shoreline. It enhanced land-water boundary differentiation, enabling better delineation of the shoreline. Overall, the developed techniques showed the potential of radar imagery for accurate shoreline mapping and will be useful for monitoring shoreline changes during high and low tides as well as shoreline erosion in a tropical country like Malaysia.

  13. Studies of the Ecophysiology of Single Cells in Microbial Communities by (Quantitative) Microautoradiography and Fluorescence In Situ Hybridization (MAR-FISH)

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    Microautoradiography (MAR) in combination with fluorescence in situ hybridization (FISH) is a powerful method of obtaining information about the ecophysiology of probe-defined single cells in mixed microbial communities. The incorporation of radiolabelled substrates can be quantified by automated...

  14. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  15. Automated Detection of Coronal Mass Ejections in STEREO Heliospheric Imager data

    CERN Document Server

    Pant, V; Rodriguez, L; Mierla, M; Banerjee, D; Davies, J A

    2016-01-01

    We have performed, for the first time, the successful automated detection of Coronal Mass Ejections (CMEs) in data from the inner heliospheric imager (HI-1) cameras on the STEREO A spacecraft. Detection of CMEs is done in time-height maps based on the application of the Hough transform, using a modified version of the CACTus software package, conventionally applied to coronagraph data. In this paper we describe the method of detection. We present the result of the application of the technique to a few CMEs that are well detected in the HI-1 imagery, and compare these results with those based on manual cataloging methodologies. We discuss in detail the advantages and disadvantages of this method.

  16. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    Science.gov (United States)

    Collette, R.; King, J.; Buesch, C.; Keiser, D. D.; Williams, W.; Miller, B. D.; Schulthess, J.

    2016-07-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.

  17. Single-cell twitching chemotaxis in developing biofilms.

    Science.gov (United States)

    Oliveira, Nuno M; Foster, Kevin R; Durham, William M

    2016-06-01

    Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development. We show that individual cells can efficiently move toward chemoattractants using pili-based "twitching" motility and the Chp chemosensory system. Moreover, we discovered the behavioral mechanism underlying this surface chemotaxis: Cells reverse direction more frequently when moving away from chemoattractant sources. These corrective maneuvers are triggered rapidly, typically before a wayward cell has ventured a fraction of a micron. Our work shows that single bacteria can direct their motion with submicron precision and reveals the hidden potential for chemotaxis within bacterial biofilms. PMID:27222583

  18. Automated centreline extraction of neuronal dendrite from optical microscopy image stacks

    Science.gov (United States)

    Xiao, Liang; Zhang, Fanbiao

    2010-11-01

    In this work we present a novel vision-based pipeline for automated skeleton detection and centreline extraction of neuronal dendrite from optical microscopy image stacks. The proposed pipeline is an integrated solution that merges image stacks pre-processing, the seed points detection, ridge traversal procedure, minimum spanning tree optimization and tree trimming into to a unified framework to deal with the challenge problem. In image stacks preprocessing, we first apply a curvelet transform based shrinkage and cycle spinning technique to remove the noise. This is followed by the adaptive threshold method to compute the result of neuronal object segmentation, and the 3D distance transformation is performed to get the distance map. According to the eigenvalues and eigenvectors of the Hessian matrix, the skeleton seed points are detected. Staring from the seed points, the initial centrelines are obtained using ridge traversal procedure. After that, we use minimum spanning tree to organize the geometrical structure of the skeleton points, and then we use graph trimming post-processing to compute the final centreline. Experimental results on different datasets demonstrate that our approach has high reliability, good robustness and requires less user interaction.

  19. Automated torso organ segmentation from 3D CT images using conditional random field

    Science.gov (United States)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2016-03-01

    This paper presents a segmentation method for torso organs using conditional random field (CRF) from medical images. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. In this paper, we propose an organ segmentation method using structured output learning which is based on probabilistic graphical model. The proposed method utilizes CRF on three-dimensional grids as probabilistic graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weight parameters of the CRF using stochastic gradient descent algorithm and estimate organ labels for a given image by maximum a posteriori (MAP) estimation. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 6.6%. The DICE coefficients of right lung, left lung, heart, liver, spleen, right kidney, and left kidney are 0.94, 0.92, 0.65, 0.67, 0.36, 0.38, and 0.37, respectively.

  20. Automated torso organ segmentation from 3D CT images using structured perceptron and dual decomposition

    Science.gov (United States)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku

    2015-03-01

    This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.

  1. New technologies for automated cell counting based on optical image analysis ;The Cellscreen'.

    Science.gov (United States)

    Brinkmann, Marlies; Lütkemeyer, Dirk; Gudermann, Frank; Lehmann, Jürgen

    2002-01-01

    A prototype of a newly developed apparatus for measuring cell growth characteristics of suspension cells in micro titre plates over a period of time was examined. Fully automated non-invasive cell counts in small volume cultivation vessels, e.g. 96 well plates, were performed with the Cellscreen system by Innovatis AG, Germany. The system automatically generates microscopic images of suspension cells which had sedimented on the base of the well plate. The total cell number and cell geometry was analysed without staining or sampling using the Cedex image recognition technology. Thus, time course studies of cell growth with the identical culture became possible. Basic parameters like the measurement range, the minimum number of images which were required for statistically reliable results, as well as the influence of the measurement itself and the effect of evaporation in 96 well plates on cell proliferation were determined. A comparison with standard methods including the influence of the cultured volume per well (25 mul to 200 mul) on cell growth was performed. Furthermore, the toxic substances ammonia, lactate and butyrate were used to show that the Cellscreen system is able to detect even the slightest changes in the specific growth rate. PMID:19003093

  2. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers

    Science.gov (United States)

    Ghiasi-Freez, Javad; Soleimanpour, Iman; Kadkhodaie-Ilkhchi, Ali; Ziaii, Mansur; Sedighi, Mahdi; Hatampour, Amir

    2012-08-01

    Identification of different types of porosity within a reservoir rock is a functional parameter for reservoir characterization since various pore types play different roles in fluid transport and also, the pore spaces determine the fluid storage capacity of the reservoir. The present paper introduces a model for semi-automatic identification of porosity types within thin section images. To get this goal, a pattern recognition algorithm is followed. Firstly, six geometrical shape parameters of sixteen largest pores of each image are extracted using image analysis techniques. The extracted parameters and their corresponding pore types of 294 pores are used for training two intelligent discriminant classifiers, namely linear and quadratic discriminant analysis. The trained classifiers take the geometrical features of the pores to identify the type and percentage of five types of porosity, including interparticle, intraparticle, oomoldic, biomoldic, and vuggy in each image. The accuracy of classifiers is determined from two standpoints. Firstly, the predicted and measured percentages of each type of porosity are compared with each other. The results indicate reliable performance for predicting percentage of each type of porosity. In the second step, the precisions of classifiers for categorizing the pore spaces are analyzed. The classifiers also took a high acceptance score when used for individual recognition of pore spaces. The proposed methodology is a further promising application for petroleum geologists allowing statistical study of pore types in a rapid and accurate way.

  3. Automated optical image correlation to constrain dynamics of slow-moving landslides

    Science.gov (United States)

    Mackey, B. H.; Roering, J. J.; Lamb, M. P.

    2011-12-01

    Large, slow-moving landslides can dominate sediment flux from mountainous terrain, yet their long-term spatio-temporal behavior at the landscape scale is not well understood. Movement can be inconspicuous, episodic, persist for decades, and is challenging and time consuming to quantify using traditional methods such as stereo photogrammetry or field surveying. In the absence of large datasets documenting the movement of slow-moving landslides, we are challenged to isolate the key variables that control their movement and evolution. This knowledge gap hampers our understanding of landslide processes, landslide hazard, sediment budgets, and landscape evolution. Here we document the movement of numerous slow-moving landslides along the Eel River, northern California. These glacier-like landslides (earthflows) move seasonally (typically 1-2 m/yr), with minimal surface deformation, such that scattered shrubs can grow on the landslide surface for decades. Previous work focused on manually tracking the position of individual features (trees, rocks) on photos and LiDAR-derived digital topography to identify the extent of landslide activity. Here, we employ sub-pixel change detection software (COSI-Corr) to generate automated maps of landslide displacement by correlating successive orthorectified photos. Through creation of a detailed multi-temporal deformation field across the entire landslide surface, COSI-Corr is able to delineate zones of movement, quantify displacement, and identify domains of flow convergence and divergence. The vegetation and fine-scale landslide morphology provide excellent texture for automated comparison between successive orthorectified images, although decorrelation can occur in areas where translation between images is greater than the specified search window, or where intense ground deformation or vegetation change occurs. We automatically detected movement on dozens of active landslides (with landslide extent and displacement confirmed by

  4. AUTOMATED CLASSIFICATION AND SEGREGATION OF BRAIN MRI IMAGES INTO IMAGES CAPTURED WITH RESPECT TO VENTRICULAR REGION AND EYE-BALL REGION

    Directory of Open Access Journals (Sweden)

    C. Arunkumar

    2014-05-01

    Full Text Available Magnetic Resonance Imaging (MRI images of the brain are used for detection of various brain diseases including tumor. In such cases, classification of MRI images captured with respect to ventricular and eye ball regions helps in automated location and classification of such diseases. The methods employed in the paper can segregate the given MRI images of brain into images of brain captured with respect to ventricular region and images of brain captured with respect to eye ball region. First, the given MRI image of brain is segmented using Particle Swarm Optimization (PSO algorithm, which is an optimized algorithm for MRI image segmentation. The algorithm proposed in the paper is then applied on the segmented image. The algorithm detects whether the image consist of a ventricular region or an eye ball region and classifies it accordingly.

  5. Myocardial Perfusion: Near-automated Evaluation from Contrast-enhanced MR Images Obtained at Rest and during Vasodilator Stress

    OpenAIRE

    Tarroni, Giacomo; Corsi, Cristiana; Antkowiak, Patrick F; Veronesi, Federico; Kramer, Christopher M.; Epstein, Frederick H; Walter, James; Lamberti, Claudio; Lang, Roberto M.; Mor-Avi, Victor; Patel, Amit R

    2012-01-01

    This study demonstrated that despite the extreme dynamic nature of contrast-enhanced cardiac MR image sequences and respiratory motion, near-automated frame-by-frame detection of myocardial segments and high-quality quantification of myocardial contrast is feasible both at rest and during vasodilator stress.

  6. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    International Nuclear Information System (INIS)

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  7. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Rahmat, K. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); University Malaya, Biomedical Imaging Department, Kuala Lumpur (Malaysia); Ariffin, H. [University of Malaya, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2012-07-15

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  8. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study

    International Nuclear Information System (INIS)

    The aim of this research was to evaluate the performance of a new spectroscopic system in the diagnosis of melanoma. This study involves a consecutive series of 1278 patients with 1391 cutaneous pigmented lesions including 184 melanomas. In an attempt to approach the 'real world' of lesion population, a further set of 1022 not excised clinically reassuring lesions was also considered for analysis. Each lesion was imaged in vivo by a multispectral imaging system. The system operates at wavelengths between 483 and 950 nm by acquiring 15 images at equally spaced wavelength intervals. From the images, different lesion descriptors were extracted related to the colour distribution and morphology of the lesions. Data reduction techniques were applied before setting up a neural network classifier designed to perform automated diagnosis. The data set was randomly divided into three sets: train (696 lesions, including 90 melanomas) and verify (348 lesions, including 53 melanomas) for the instruction of a proper neural network, and an independent test set (347 lesions, including 41 melanomas). The neural network was able to discriminate between melanomas and non-melanoma lesions with a sensitivity of 80.4% and a specificity of 75.6% in the 1391 histologized cases data set. No major variations were found in classification scores when train, verify and test subsets were separately evaluated. Following receiver operating characteristic (ROC) analysis, the resulting area under the curve was 0.85. No significant differences were found among areas under train, verify and test set curves, supporting the good network ability to generalize for new cases. In addition, specificity and area under ROC curve increased up to 90% and 0.90, respectively, when the additional set of 1022 lesions without histology was added to the test set. Our data show that performance of an automated system is greatly population dependent, suggesting caution in the comparison with results reported in the

  9. Hyper-Cam automated calibration method for continuous hyperspectral imaging measurements

    Science.gov (United States)

    Gagnon, Jean-Philippe; Habte, Zewdu; George, Jacks; Farley, Vincent; Tremblay, Pierre; Chamberland, Martin; Romano, Joao; Rosario, Dalton

    2010-04-01

    The midwave and longwave infrared regions of the electromagnetic spectrum contain rich information which can be captured by hyperspectral sensors thus enabling enhanced detection of targets of interest. A continuous hyperspectral imaging measurement capability operated 24/7 over varying seasons and weather conditions permits the evaluation of hyperspectral imaging for detection of different types of targets in real world environments. Such a measurement site was built at Picatinny Arsenal under the Spectral and Polarimetric Imagery Collection Experiment (SPICE), where two Hyper-Cam hyperspectral imagers are installed at the Precision Armament Laboratory (PAL) and are operated autonomously since Fall of 2009. The Hyper-Cam are currently collecting a complete hyperspectral database that contains the MWIR and LWIR hyperspectral measurements of several targets under day, night, sunny, cloudy, foggy, rainy and snowy conditions. The Telops Hyper-Cam sensor is an imaging spectrometer that enables the spatial and spectral analysis capabilities using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The MWIR version covers the 3 to 5 μm spectral range and the LWIR version covers the 8 to 12 μm spectral range. This paper describes the automated operation of the two Hyper-Cam sensors being used in the SPICE data collection. The Reveal Automation Control Software (RACS) developed collaboratively between Telops, ARDEC, and ARL enables flexible operating parameters and autonomous calibration. Under the RACS software, the Hyper-Cam sensors can autonomously calibrate itself using their internal blackbody targets, and the calibration events are initiated by user defined time intervals and on internal beamsplitter temperature monitoring. The RACS software is the first software developed for

  10. Rapid and Semi-Automated Extraction of Neuronal Cell Bodies and Nuclei from Electron Microscopy Image Stacks

    Science.gov (United States)

    Holcomb, Paul S.; Morehead, Michael; Doretto, Gianfranco; Chen, Peter; Berg, Stuart; Plaza, Stephen; Spirou, George

    2016-01-01

    Connectomics—the study of how neurons wire together in the brain—is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes. PMID:27259933

  11. Capillary Electrophoretic Technologies for Single Cell Metabolomics

    Science.gov (United States)

    Lapainis, Theodore E.

    2009-01-01

    Understanding the functioning of the brain is hindered by a lack of knowledge of the full complement of neurotransmitters and neuromodulatory compounds. Single cell measurements aid in the discovery of neurotransmitters used by small subsets of neurons that would be diluted below detection limits or masked by ubiquitous compounds when working with…

  12. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics

    Directory of Open Access Journals (Sweden)

    Huang Kai

    2004-06-01

    accuracy for single 2D images being higher than 90% for the first time. In particular, the classification accuracy for the easily confused endomembrane compartments (endoplasmic reticulum, Golgi, endosomes, lysosomes was improved by 5–15%. We achieved further improvements when classification was conducted on image sets rather than on individual cell images. Conclusions The availability of accurate, fast, automated classification systems for protein location patterns in conjunction with high throughput fluorescence microscope imaging techniques enables a new subfield of proteomics, location proteomics. The accuracy and sensitivity of this approach represents an important alternative to low-resolution assignments by curation or sequence-based prediction.

  13. Single-cell measurements of IgE-mediated FcεRI signaling using an integrated microfluidic platform.

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    Full Text Available Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.

  14. Development of Automated Image Analysis Tools for Verification of Radiotherapy Field Accuracy with AN Electronic Portal Imaging Device.

    Science.gov (United States)

    Dong, Lei

    1995-01-01

    The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5^ circ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1^ circ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross -correlation technique were

  15. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  16. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    Science.gov (United States)

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  17. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells.

    Science.gov (United States)

    Park, Han Sang; Rinehart, Matthew T; Walzer, Katelyn A; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  18. Evaluation of automated image registration algorithm for image-guided radiotherapy (IGRT)

    International Nuclear Information System (INIS)

    The performance of an image registration (IR) software was evaluated for automatically detecting known errors simulated through the movement of ExactCouch using an onboard imager. Twenty-seven set-up errors (11 translations, 10 rotations, 6 translation and rotation) were simulated by introducing offset up to ±15 mm in three principal axes and 0° to ±1° in yaw. For every simulated error, orthogonal kV radiograph and cone beam CT were acquired in half-fan (CBCTHF) and full-fan (CBCTFF) mode. The orthogonal radiographs and CBCTs were automatically co-registered to reference digitally reconstructed radiographs (DRRs) and planning CT using 2D–2D and 3D–3D matching software based on mutual information transformation. A total of 79 image sets (ten pairs of kV X-rays and 69 session of CBCT) were analyzed to determine the (a) reproducibility of IR outcome and (b) residual error, defined as the deviation between the known and IR software detected displacement in translation and rotation. The reproducibility of automatic IR of planning CT and repeat CBCTs taken with and without kilovoltage detector and kilovoltage X-ray source arm movement was excellent with mean SD of 0.1 mm in the translation and 0.0° in rotation. The average residual errors in translation and rotation were within ±0.5 mm and ±0.2°, ±0.9 mm and ±0.3°, and ±0.4 mm and ±0.2° for setup simulated only in translation, rotation, and both translation and rotation. The mean (SD) 3D vector was largest when only translational error was simulated and was 1.7 (1.1) mm for 2D–2D match of reference DRR with radiograph, 1.4 (0.6) and 1.3 (0.5) mm for 3D–3D match of reference CT and CBCT with full fan and half fan, respectively. In conclusion, the image-guided radiation therapy (IGRT) system is accurate within 1.8 mm and 0.4° and reproducible under control condition. Inherent error from any IGRT process should be taken into account while setting clinical IGRT protocol.

  19. Primary histologic diagnosis using automated whole slide imaging: a validation study

    Directory of Open Access Journals (Sweden)

    Jukic Drazen M

    2006-04-01

    Full Text Available Abstract Background Only prototypes 5 years ago, high-speed, automated whole slide imaging (WSI systems (also called digital slide systems, virtual microscopes or wide field imagers are becoming increasingly capable and robust. Modern devices can capture a slide in 5 minutes at spatial sampling periods of less than 0.5 micron/pixel. The capacity to rapidly digitize large numbers of slides should eventually have a profound, positive impact on pathology. It is important, however, that pathologists validate these systems during development, not only to identify their limitations but to guide their evolution. Methods Three pathologists fully signed out 25 cases representing 31 parts. The laboratory information system was used to simulate real-world sign-out conditions including entering a full diagnostic field and comment (when appropriate and ordering special stains and recuts. For each case, discrepancies between diagnoses were documented by committee and a "consensus" report was formed and then compared with the microscope-based, sign-out report from the clinical archive. Results In 17 of 25 cases there were no discrepancies between the individual study pathologist reports. In 8 of the remaining cases, there were 12 discrepancies, including 3 in which image quality could be at least partially implicated. When the WSI consensus diagnoses were compared with the original sign-out diagnoses, no significant discrepancies were found. Full text of the pathologist reports, the WSI consensus diagnoses, and the original sign-out diagnoses are available as an attachment to this publication. Conclusion The results indicated that the image information contained in current whole slide images is sufficient for pathologists to make reliable diagnostic decisions and compose complex diagnostic reports. This is a very positive result; however, this does not mean that WSI is as good as a microscope. Virtually every slide had focal areas in which image quality (focus

  20. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis.

    Science.gov (United States)

    Slusarewicz, Paul; Pagano, Stefanie; Mills, Christopher; Popa, Gabriel; Chow, K Martin; Mendenhall, Michael; Rodgers, David W; Nielsen, Martin K

    2016-07-01

    Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (Psmartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices. PMID:27025771

  1. Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images.

    Directory of Open Access Journals (Sweden)

    Anna Kreshuk

    Full Text Available We describe a protocol for fully automated detection and segmentation of asymmetric, presumed excitatory, synapses in serial electron microscopy images of the adult mammalian cerebral cortex, taken with the focused ion beam, scanning electron microscope (FIB/SEM. The procedure is based on interactive machine learning and only requires a few labeled synapses for training. The statistical learning is performed on geometrical features of 3D neighborhoods of each voxel and can fully exploit the high z-resolution of the data. On a quantitative validation dataset of 111 synapses in 409 images of 1948×1342 pixels with manual annotations by three independent experts the error rate of the algorithm was found to be comparable to that of the experts (0.92 recall at 0.89 precision. Our software offers a convenient interface for labeling the training data and the possibility to visualize and proofread the results in 3D. The source code, the test dataset and the ground truth annotation are freely available on the website http://www.ilastik.org/synapse-detection.

  2. Automated segmentation of muscle and adipose tissue on CT images for human body composition analysis

    Science.gov (United States)

    Chung, Howard; Cobzas, Dana; Birdsell, Laura; Lieffers, Jessica; Baracos, Vickie

    2009-02-01

    The ability to compute body composition in cancer patients lends itself to determining the specific clinical outcomes associated with fat and lean tissue stores. For example, a wasting syndrome of advanced disease associates with shortened survival. Moreover, certain tissue compartments represent sites for drug distribution and are likely determinants of chemotherapy efficacy and toxicity. CT images are abundant, but these cannot be fully exploited unless there exist practical and fast approaches for tissue quantification. Here we propose a fully automated method for segmenting muscle, visceral and subcutaneous adipose tissues, taking the approach of shape modeling for the analysis of skeletal muscle. Muscle shape is represented using PCA encoded Free Form Deformations with respect to a mean shape. The shape model is learned from manually segmented images and used in conjunction with a tissue appearance prior. VAT and SAT are segmented based on the final deformed muscle shape. In comparing the automatic and manual methods, coefficients of variation (COV) (1 - 2%), were similar to or smaller than inter- and intra-observer COVs reported for manual segmentation.

  3. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    Directory of Open Access Journals (Sweden)

    Domenico F. Galati

    2016-01-01

    Full Text Available Multi-ciliated cells (MCCs use polarized fields of undulating cilia (ciliary array to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs that are arranged within a spatially complex 3-dimensional geometry (3D. Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  4. Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images.

    Science.gov (United States)

    Joutsijoki, Henry; Haponen, Markus; Rasku, Jyrki; Aalto-Setälä, Katriina; Juhola, Martti

    2016-01-01

    The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies. PMID:27493680

  5. Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images

    Science.gov (United States)

    Haponen, Markus; Rasku, Jyrki

    2016-01-01

    The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies. PMID:27493680

  6. Automated Waterline Detection in the Wadden Sea Using High-Resolution TerraSAR-X Images

    Directory of Open Access Journals (Sweden)

    Stefan Wiehle

    2015-01-01

    Full Text Available We present an algorithm for automatic detection of the land-water-line from TerraSAR-X images acquired over the Wadden Sea. In this coastal region of the southeastern North Sea, a strip of up to 20 km of seabed falls dry during low tide, revealing mudflats and tidal creeks. The tidal currents transport sediments and can change the coastal shape with erosion rates of several meters per month. This rate can be strongly increased by storm surges which also cause flooding of usually dry areas. Due to the high number of ships traveling through the Wadden Sea to the largest ports of Germany, frequent monitoring of the bathymetry is also an important task for maritime security. For such an extended area and the required short intervals of a few months, only remote sensing methods can perform this task efficiently. Automating the waterline detection in weather-independent radar images provides a fast and reliable way to spot changes in the coastal topography. The presented algorithm first performs smoothing, brightness thresholding, and edge detection. In the second step, edge drawing and flood filling are iteratively performed to determine optimal thresholds for the edge drawing. In the last step, small misdetections are removed.

  7. Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, Frederik L. [Department of Radiology, German Cancer Research Center (Germany); MRI Unit, Department of Radiology, Sheffield (United Kingdom)], E-mail: f.giesel@dkfz.de; Thomann, Philipp A. [Section of Geriatric Psychiatry, University of Heidelberg (Germany); Hahn, Horst K. [MeVis, Bremen (Germany); Politi, Maria [Neuroradiology, Homburg/Saar (Germany); Stieltjes, Bram; Weber, Marc-Andre [Department of Radiology, German Cancer Research Center (Germany); Pantel, Johannes [Department of Psychiatry, University of Frankfurt (Germany); Wilkinson, I.D.; Griffiths, Paul D. [MRI Unit, Department of Radiology, Sheffield (United Kingdom); Schroeder, Johannes [Section of Geriatric Psychiatry, University of Heidelberg (Germany); Essig, Marco [Department of Radiology, German Cancer Research Center (Germany)

    2008-05-15

    Purpose: Objective quantification of brain structure can aid diagnosis and therapeutic monitoring in several neuropsychiatric disorders. In this study, we aimed to compare direct and indirect quantification approaches for hippocampal formation changes in patients with mild cognitive impairment and Alzheimer's disease (AD). Methods and materials: Twenty-one healthy volunteers (mean age: 66.2), 21 patients with mild cognitive impairment (mean age: 66.6), and 10 patients with AD (mean age: 65.1) were enrolled. All subjects underwent extensive neuropsychological testing and were imaged at 1.5 T (Vision, Siemens, Germany; T1w coronal TR = 4 ms, Flip = 13 deg., FOV = 250 mm, Matrix = 256 x 256, 128 contiguous slices, 1.8 mm). Direct measurement of the hippocampal formation was performed on coronal slices using a standardized protocol, while indirect temporal horn volume (THV) was calculated using a watershed algorithm-based software package (MeVis, Germany). Manual tracing took about 30 min, semi-automated measurement less than 3 min time. Results: Successful direct and indirect quantification was performed in all subjects. A significant volume difference was found between controls and AD patients (p < 0.001) with both the manual and the semi-automated approach. Group analysis showed a slight but not significant decrease of hippocampal volume and increase in temporal horn volume (THV) for subjects with mild cognitive impairment compared to volunteers (p < 0.07). A significant correlation (p < 0.001) of direct and indirect measurement was found. Conclusion: The presented indirect approach for hippocampus volumetry is equivalent to the direct approach and offers the advantages of observer independency, time reduction and thus usefulness for clinical routine.

  8. Automated coronary artery calcification detection on low-dose chest CT images

    Science.gov (United States)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  9. Modeling single cell antibody excretion on a biosensor.

    Science.gov (United States)

    Stojanović, Ivan; Baumgartner, Wolfgang; van der Velden, Thomas J G; Terstappen, Leon W M M; Schasfoort, Richard B M

    2016-07-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed that antibody loss by diffusion away from the sensor was less than 1%. Unexpectedly, more than 99% of the excreted antibodies were captured on the sensor. These data prove the remarkable phenomenon that the SPRi output of cellular antibody excretion and its subsequent binding, performed under the conditions described here, is directly usable for quantification of single cell antibody production rates. PMID:27040182

  10. Comparison of Automated Image-Based Grain Sizing to Standard Pebble Count Methods

    Science.gov (United States)

    Strom, K. B.

    2009-12-01

    This study explores the use of an automated, image-based method for characterizing grain-size distributions (GSDs) of exposed, open-framework gravel beds. This was done by comparing the GSDs measured with an image-based method to distributions obtained with two pebble-count methods. Selection of grains for the two pebble-count methods was carried out using a gridded sampling frame and the heel-to-toe Wolman walk method at six field sites. At each site, 500-partcle pebble-count samples were collected with each of the two pebble-count methods and digital images were systematically collected over the same sampling area. For the methods used, the pebble counts collected with the gridded sampling frame were assumed to be the most accurate representations of the true grain-size population, and results from the image-based method were compared to the grid derived GSDs for accuracy estimates; comparisons between the grid and Wolman walk methods were conducted to give an indication of possible variation between commonly used methods for each particular field site. Comparison of grain sizes were made at two spatial scales. At the larger scale, results from the image-based method were integrated over the sampling area required to collect the 500-particle pebble-count samples. At the smaller sampling scale, the image derived GSDs were compared to those from 100-particle, pebble-count samples obtained with the gridded sampling frame. The comparisons show that the image-based method performed reasonably well on five of the six study sites. For those five sites, the image-based method slightly underestimate all grain-size percentiles relative to the pebble counts collected with the gridded sampling frame. The average bias for Ψ5, Ψ50, and Ψ95 between the image and grid count methods at the larger sampling scale was 0.07Ψ, 0.04Ψ, and 0.19Ψ respectively; at the smaller sampling scale the average bias was 0.004Ψ, 0.03Ψ, and 0.18Ψ respectively. The average bias between the

  11. An automated classification system for the differentiation of obstructive lung diseases based on the textural analysis of HRCT images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Seo, Joon Beom; Kim, Nam Kug; Lee, Young Kyung; Kim, Song Soo; Chae, Eun Jin [University of Ulsan, College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, June Goo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-07-15

    To develop an automated classification system for the differentiation of obstructive lung diseases based on the textural analysis of HRCT images, and to evaluate the accuracy and usefulness of the system. For textural analysis, histogram features, gradient features, run length encoding, and a co-occurrence matrix were employed. A Bayesian classifier was used for automated classification. The images (image number n = 256) were selected from the HRCT images obtained from 17 healthy subjects (n = 67), 26 patients with bronchiolitis obliterans (n = 70), 28 patients with mild centrilobular emphysema (n = 65), and 21 patients with panlobular emphysema or severe centrilobular emphysema (n = 63). An five-fold cross-validation method was used to assess the performance of the system. Class-specific sensitivities were analyzed and the overall accuracy of the system was assessed with kappa statistics. The sensitivity of the system for each class was as follows: normal lung 84.9%, bronchiolitis obliterans 83.8%, mild centrilobular emphysema 77.0%, and panlobular emphysema or severe centrilobular emphysema 95.8%. The overall performance for differentiating each disease and the normal lung was satisfactory with a kappa value of 0.779. An automated classification system for the differentiation between obstructive lung diseases based on the textural analysis of HRCT images was developed. The proposed system discriminates well between the various obstructive lung diseases and the normal lung.

  12. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    Science.gov (United States)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then

  13. Mechanical downstream processing of Single Cell Oils

    OpenAIRE

    De Coninck, Maarten; Van Hecke, Renaat; Deprez, Koen; De Baerdemaeker, Josse

    2011-01-01

    During the last years, the third generation of bio fuels has been arousing more and more interest. Under certain conditions some micro organisms: yeasts, algae, fungi and bacteria, can accumulate up to 50% oil (based on dry weight). These so-called ‘Single cell oils’ (SCO) are well known in this context. Nowadays, harvesting and recovery of interesting products from microalgae is one of the most problematic areas of algal biofuel production technology. The traditional downstream process,...

  14. Measuring enzyme activity in single cells

    OpenAIRE

    Kovarik, Michelle L.; Allbritton, Nancy L.

    2011-01-01

    Seemingly identical cells can differ in their biochemical state, function and fate, and this variability plays an increasingly recognized role in organism-level outcomes. Cellular heterogeneity arises in part from variation in enzyme activity, which results from interplay between biological noise and multiple cellular processes. As a result, single-cell assays of enzyme activity, particularly those that measure product formation directly, are crucial. Recent innovations have yielded a range o...

  15. Optimization of genetic analysis for single cell

    Directory of Open Access Journals (Sweden)

    hussein mouawia

    2012-03-01

    Full Text Available The molecular genetic analysis of microdissected cells by laser, a method for selecting a starting material of pure DNA or RNA uncontaminated. Our study focuses on technical pre-PCR (polymerase chain reaction for the amplification of DNA from a single cell (leukocyte isolated from human blood after laser microdissection and aims to optimize the yield of DNA extracted of this cell to be amplified without errors and provide reliable genetic analyzes. This study has allowed us to reduce the duration of cell lysis in order to perform the step of expanding genomic PEP (primer extension preamplification directly after lysis the same day and the quality of genomic amplification and eliminate purification step of the product PEP, step with a risk of contamination and risk of loss of genetic material related to manipulation. This approach has shown that the combination of at least 3 STR (short tandem repeat markers for genetic analysis of single cell improves the efficiency and accuracy of PCR and minimizes the loss of allele (allele drop out; ADO. This protocol can be applied to large scale and an effective means suitable for genetic testing for molecular diagnostic from isolated single cell (cancerous - fetal.

  16. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (Source-code for MATLAB and ImageJ is freely available under a permissive open-source license.

  17. Automated gas bubble imaging at sea floor – a new method of in situ gas flux quantification

    Directory of Open Access Journals (Sweden)

    K. Thomanek

    2010-02-01

    Full Text Available Photo-optical systems are common in marine sciences and have been extensively used in coastal and deep-sea research. However, due to technical limitations in the past photo images had to be processed manually or semi-automatically. Recent advances in technology have rapidly improved image recording, storage and processing capabilities which are used in a new concept of automated in situ gas quantification by photo-optical detection. The design for an in situ high-speed image acquisition and automated data processing system is reported ("Bubblemeter". New strategies have been followed with regards to back-light illumination, bubble extraction, automated image processing and data management. This paper presents the design of the novel method, its validation procedures and calibration experiments. The system will be positioned and recovered from the sea floor using a remotely operated vehicle (ROV. It is able to measure bubble flux rates up to 10 L/min with a maximum error of 33% for worst case conditions. The Bubblemeter has been successfully deployed at a water depth of 1023 m at the Makran accretionary prism offshore Pakistan during a research expedition with R/V Meteor in November 2007.

  18. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  19. Experimental saltwater intrusion in coastal aquifers using automated image analysis: Applications to homogeneous aquifers

    Science.gov (United States)

    Robinson, G.; Ahmed, Ashraf A.; Hamill, G. A.

    2016-07-01

    This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimising manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.

  20. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    Science.gov (United States)

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice. PMID:27478927

  1. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry.

    Science.gov (United States)

    Baluya, Dodge L; Garrett, Timothy J; Yost, Richard A

    2007-09-01

    Careful matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is critical for producing reproducible analyte ion signals. Traditional methods for matrix deposition are often considered an art rather than a science, with significant sample-to-sample variability. Here we report an automated method for matrix deposition, employing a desktop inkjet printer (printer tray, designed to hold CDs and DVDs, was modified to hold microscope slides. Empty ink cartridges were filled with MALDI matrix solutions, including DHB in methanol/water (70:30) at concentrations up to 40 mg/mL. Various samples (including rat brain tissue sections and standards of small drug molecules) were prepared using three deposition methods (electrospray, airbrush, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed that matrix crystals were formed evenly across the sample. There was minimal background signal after storing the matrix in the cartridges over a 6-month period. Overall, the mass spectral images gathered from inkjet-printed tissue specimens were of better quality and more reproducible than from specimens prepared by the electrospray and airbrush methods.

  2. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  3. Optical manipulation and microfluidics for studies of single cell dynamics

    Science.gov (United States)

    Eriksson, E.; Scrimgeour, J.; Granéli, A.; Ramser, K.; Wellander, R.; Enger, J.; Hanstorp, D.; Goksör, M.

    2007-08-01

    Most research on optical manipulation aims towards investigation and development of the system itself. In this paper we show how optical manipulation, imaging and microfluidics can be combined for investigations of single cells. Microfluidic systems have been fabricated and are used, in combination with optical tweezers, to enable environmental changes for single cells. The environment within the microfluidic system has been modelled to ensure control of the process. Three biological model systems have been studied with different combinations of optical manipulation, imaging techniques and microfluidics. In Saccharomyces cerevisiae, environmentally induced size modulations and spatial localization of proteins have been studied to elucidate various signalling pathways. In a similar manner the oxygenation cycle of single red blood cells was triggered and mapped using Raman spectroscopy. In the third experiment the forces between the endoplasmic reticulum and chloroplasts were studied in Pisum sativum and Arabidopsis thaliana. By combining different techniques we make advanced biological research possible, revealing information on a cellular level that is impossible to obtain with traditional techniques.

  4. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    Science.gov (United States)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  5. Automated Synthesis of 18F-Fluoropropoxytryptophan for Amino Acid Transporter System Imaging

    Directory of Open Access Journals (Sweden)

    I-Hong Shih

    2014-01-01

    Full Text Available Objective. This study was to develop a cGMP grade of [18F]fluoropropoxytryptophan (18F-FTP to assess tryptophan transporters using an automated synthesizer. Methods. Tosylpropoxytryptophan (Ts-TP was reacted with K18F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1 and HPLC (C-18 column, methanol : water = 7 : 3 analyses. In vitro cellular uptake of 18F-FTP and 18F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with 18F-FTP and 18F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv. Results. Radio-TLC and HPLC analyses of 18F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected. Cellular uptake of 18F-FTP and 18F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that 18F-FTP had less tumor uptake than 18F-FDG in prostate cancer model. However, 18F-FTP had more uptake than 18F-FDG in small cell lung cancer model. Conclusion. 18F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by 18F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response.

  6. Automated collection of imaging and phenotypic data to centralized and distributed data repositories

    Directory of Open Access Journals (Sweden)

    Margaret D King

    2014-06-01

    Full Text Available Accurate data collection at the ground level is vital to the integrity of neuroimaging research. Similarly important is the ability to connect and curate data in order to make it meaningful and sharable with other investigators. Collecting data, especially with several different modalities, can be time consuming and expensive. These issues have driven the development of automated collection of neuroimaging and clinical assessment data within COINS (Collaborative Informatics and Neuroimaging Suite. COINS is an end-to-end data management system. It provides a comprehensive platform for data collection, management, secure storage, and flexible data retrieval (Bockholt et al., 2010, Scott et al., 2011. Self Assessment (SAis an application embedded in the Assessment Manager tool in the COINS. It is an innovative tool that allows participants to fill out assessments via the web-based Participant Portal. It eliminates the need for paper collection and data entry by allowing participants to submit their assessments directly to COINS. After a queue has been created for the participant, they can access the Participant Portal via the internet to fill out their assessments. This allows them the flexibility to participate from home, a library, on site, etc. The collected data is stored in a PostgresSQL database at the Mind Research Network behind a firewall to protect sensitive data. An added benefit to using COINS is the ability to collect, store and share imaging data and assessment data with no interaction with outside tools or programs. All study data collected (imaging and assessment are stored and exported with a participant's unique subject identifier so there is no need to keep extra spreadsheets or databases to link and keep track of the data. There is a great need for data collection tools that limit human intervention and error. COINS aims to be a leader in database solutions for research studies collecting data from several different modalities

  7. Automated synthesis of novel cell death imaging tracer 18F-FPDuramycin

    International Nuclear Information System (INIS)

    Background: The noninvasive imaging of cell death plays an important role in the evaluation of degenerative diseases and detection of tumor treatments. Duramycin, a peptide with 19-amino acid, is produced by Streptoverticillium cinnamoneus. It binds specifically to phosphatidylethanolamine (PE), a novel molecular target for cell death. Purpose: The aim is to develop a synthetic method to label duramycin using 18F ion. The automated synthesis was carried out by multi-step procedure on the modified PET-MF-2V-IT-I synthesizer. Methods: Firstly, the prosthetic group of 4-nitrophenyl 2-[18F]fluoropropionate (18F-NFP) was automatically synthesized by a convenient three-step procedure. Secondly, 18F-FPDuramycin was synthesized by conjunction of 18F-NFP with duramycin, which was purified by a solid-phase extraction cartridge. Orthogonal test was performed to confirm the suitable reaction conditions (solvent, base and temperature). Results: The radiochemical yields of 18F-NFP were (25±5)% (n=10, decay-uncorrected) based on[18F]fluoride in 80 min. 18F-FPDuramycin was obtained with yield of (70±3)% (n=8, decay-uncorrected) based on 18F-NFP within 20 min. The radiochemical purity of 18F-FPDuramycin was greater than 99% and the specific activity was greater than (23.7±13.7) GBq·μmol-1 (n=10). Conclusion: 18F-FPDuramycin injection is easy to be prepared with 'two-pot reaction' and is a promising radiotracer used for the clinical and scientific study on positron emission tomography (PET) imaging. (authors)

  8. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  9. Quantification of Eosinophilic Granule Protein Deposition in Biopsies of Inflammatory Skin Diseases by Automated Image Analysis of Highly Sensitive Immunostaining

    Directory of Open Access Journals (Sweden)

    Peter Kiehl

    1999-01-01

    Full Text Available Eosinophilic granulocytes are major effector cells in inflammation. Extracellular deposition of toxic eosinophilic granule proteins (EGPs, but not the presence of intact eosinophils, is crucial for their functional effect in situ. As even recent morphometric approaches to quantify the involvement of eosinophils in inflammation have been only based on cell counting, we developed a new method for the cell‐independent quantification of EGPs by image analysis of immunostaining. Highly sensitive, automated immunohistochemistry was done on paraffin sections of inflammatory skin diseases with 4 different primary antibodies against EGPs. Image analysis of immunostaining was performed by colour translation, linear combination and automated thresholding. Using strictly standardized protocols, the assay was proven to be specific and accurate concerning segmentation in 8916 fields of 520 sections, well reproducible in repeated measurements and reliable over 16 weeks observation time. The method may be valuable for the cell‐independent segmentation of immunostaining in other applications as well.

  10. Single-cell Raman spectroscopy of irradiated tumour cells

    Science.gov (United States)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  11. Computer-aided method for automated selection of optimal imaging plane for measurement of total cerebral blood flow by MRI

    Science.gov (United States)

    Teng, Pang-yu; Bagci, Ahmet Murat; Alperin, Noam

    2009-02-01

    A computer-aided method for finding an optimal imaging plane for simultaneous measurement of the arterial blood inflow through the 4 vessels leading blood to the brain by phase contrast magnetic resonance imaging is presented. The method performance is compared with manual selection by two observers. The skeletons of the 4 vessels for which centerlines are generated are first extracted. Then, a global direction of the relatively less curved internal carotid arteries is calculated to determine the main flow direction. This is then used as a reference direction to identify segments of the vertebral arteries that strongly deviates from the main flow direction. These segments are then used to identify anatomical landmarks for improved consistency of the imaging plane selection. An optimal imaging plane is then identified by finding a plane with the smallest error value, which is defined as the sum of the angles between the plane's normal and the vessel centerline's direction at the location of the intersections. Error values obtained using the automated and the manual methods were then compared using 9 magnetic resonance angiography (MRA) data sets. The automated method considerably outperformed the manual selection. The mean error value with the automated method was significantly lower than the manual method, 0.09+/-0.07 vs. 0.53+/-0.45, respectively (p<.0001, Student's t-test). Reproducibility of repeated measurements was analyzed using Bland and Altman's test, the mean 95% limits of agreements for the automated and manual method were 0.01~0.02 and 0.43~0.55 respectively.

  12. Automated image analysis of alveolar expansion patterns in immature newborn rabbits treated with natural or artificial surfactant.

    OpenAIRE

    Halliday, H; Robertson, B.; Nilsson, R.; Rigaut, J. P.; Grossmann, G.

    1987-01-01

    Automated image analysis of histological lung sections was used to compare the efficacy of an artificial surfactant (dipalmitoylphosphatidylcholine + high-density lipoprotein, 10:1) and a natural surfactant (the phospholipid fraction of porcine surfactant, isolated by liquid-gel chromatography in ventilated immature newborn rabbits delivered after 27 days' gestation. Tidal volumes were significantly improved in each group treated with surfactant when compared with controls, but natural surfac...

  13. Development and application of an automated analysis method for individual cerebral perfusion single photon emission tomography images

    CERN Document Server

    Cluckie, A J

    2001-01-01

    Neurological images may be analysed by performing voxel by voxel comparisons with a group of control subject images. An automated, 3D, voxel-based method has been developed for the analysis of individual single photon emission tomography (SPET) scans. Clusters of voxels are identified that represent regions of abnormal radiopharmaceutical uptake. Morphological operators are applied to reduce noise in the clusters, then quantitative estimates of the size and degree of the radiopharmaceutical uptake abnormalities are derived. Statistical inference has been performed using a Monte Carlo method that has not previously been applied to SPET scans, or for the analysis of individual images. This has been validated for group comparisons of SPET scans and for the analysis of an individual image using comparison with a group. Accurate statistical inference was obtained independent of experimental factors such as degrees of freedom, image smoothing and voxel significance level threshold. The analysis method has been eval...

  14. LOCALIZATION OF PALM DORSAL VEIN PATTERN USING IMAGE PROCESSING FOR AUTOMATED INTRA-VENOUS DRUG NEEDLE INSERTION

    Directory of Open Access Journals (Sweden)

    Mrs. Kavitha. R,

    2011-06-01

    Full Text Available Vein pattern in palms is a random mesh of interconnected and inter- wining blood vessels. This project is the application of vein detection concept to automate the drug delivery process. It dealswith extracting palm dorsal vein structures, which is a key procedure for selecting the optimal drug needle insertion point. Gray scale images obtained from a low cost IR-webcam are poor in contrast, and usually noisy which make an effective vein segmentation a great challenge. Here a new vein image segmentation method is introduced, based on enhancement techniques resolves the conflict between poor contrast vein image and good quality image segmentation. Gaussian filter is used to remove the high frequency noise in the image. The ultimate goal is to identify venous bifurcations and determine the insertion point for the needle in between their branches.

  15. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  16. Automated Image Analysis for the Detection of Benthic Crustaceans and Bacterial Mat Coverage Using the VENUS Undersea Cabled Network

    Directory of Open Access Journals (Sweden)

    Jacopo Aguzzi

    2011-11-01

    Full Text Available The development and deployment of sensors for undersea cabled observatories is presently biased toward the measurement of habitat variables, while sensor technologies for biological community characterization through species identification and individual counting are less common. The VENUS cabled multisensory network (Vancouver Island, Canada deploys seafloor camera systems at several sites. Our objective in this study was to implement new automated image analysis protocols for the recognition and counting of benthic decapods (i.e., the galatheid squat lobster, Munida quadrispina, as well as for the evaluation of changes in bacterial mat coverage (i.e., Beggiatoa spp., using a camera deployed in Saanich Inlet (103 m depth. For the counting of Munida we remotely acquired 100 digital photos at hourly intervals from 2 to 6 December 2009. In the case of bacterial mat coverage estimation, images were taken from 2 to 8 December 2009 at the same time frequency. The automated image analysis protocols for both study cases were created in MatLab 7.1. Automation for Munida counting incorporated the combination of both filtering and background correction (Median- and Top-Hat Filters with Euclidean Distances (ED on Red-Green-Blue (RGB channels. The Scale-Invariant Feature Transform (SIFT features and Fourier Descriptors (FD of tracked objects were then extracted. Animal classifications were carried out with the tools of morphometric multivariate statistic (i.e., Partial Least Square Discriminant Analysis; PLSDA on Mean RGB (RGBv value for each object and Fourier Descriptors (RGBv+FD matrices plus SIFT and ED. The SIFT approach returned the better results. Higher percentages of images were correctly classified and lower misclassification errors (an animal is present but not detected occurred. In contrast, RGBv+FD and ED resulted in a high incidence of records being generated for non-present animals. Bacterial mat coverage was estimated in terms of Percent

  17. A Novel Automated High-Content Analysis Workflow Capturing Cell Population Dynamics from Induced Pluripotent Stem Cell Live Imaging Data

    Science.gov (United States)

    Kerz, Maximilian; Folarin, Amos; Meleckyte, Ruta; Watt, Fiona M.; Dobson, Richard J.; Danovi, Davide

    2016-01-01

    Most image analysis pipelines rely on multiple channels per image with subcellular reference points for cell segmentation. Single-channel phase-contrast images are often problematic, especially for cells with unfavorable morphology, such as induced pluripotent stem cells (iPSCs). Live imaging poses a further challenge, because of the introduction of the dimension of time. Evaluations cannot be easily integrated with other biological data sets including analysis of endpoint images. Here, we present a workflow that incorporates a novel CellProfiler-based image analysis pipeline enabling segmentation of single-channel images with a robust R-based software solution to reduce the dimension of time to a single data point. These two packages combined allow robust segmentation of iPSCs solely on phase-contrast single-channel images and enable live imaging data to be easily integrated to endpoint data sets while retaining the dynamics of cellular responses. The described workflow facilitates characterization of the response of live-imaged iPSCs to external stimuli and definition of cell line–specific, phenotypic signatures. We present an efficient tool set for automated high-content analysis suitable for cells with challenging morphology. This approach has potentially widespread applications for human pluripotent stem cells and other cell types. PMID:27256155

  18. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    Science.gov (United States)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  19. Pseudotime estimation: deconfounding single cell time series

    Science.gov (United States)

    Reid, John E.; Wernisch, Lorenz

    2016-01-01

    Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. Results: We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method’s utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Availability and Implementation: Our method is available on CRAN in the DeLorean package. Contact: john.reid@mrc-bsu.cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318198

  20. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement.

    Science.gov (United States)

    Maloof, Julin N; Nozue, Kazunari; Mumbach, Maxwell R; Palmer, Christine M

    2013-01-01

    High throughput phenotyping (phenomics) is a powerful tool for linking genes to their functions (see review and recent examples). Leaves are the primary photosynthetic organ, and their size and shape vary developmentally and environmentally within a plant. For these reasons studies on leaf morphology require measurement of multiple parameters from numerous leaves, which is best done by semi-automated phenomics tools. Canopy shade is an important environmental cue that affects plant architecture and life history; the suite of responses is collectively called the shade avoidance syndrome (SAS). Among SAS responses, shade induced leaf petiole elongation and changes in blade area are particularly useful as indices. To date, leaf shape programs (e.g. SHAPE, LAMINA, LeafAnalyzer, LEAFPROCESSOR) can measure leaf outlines and categorize leaf shapes, but can not output petiole length. Lack of large-scale measurement systems of leaf petioles has inhibited phenomics approaches to SAS research. In this paper, we describe a newly developed ImageJ plugin, called LeafJ, which can rapidly measure petiole length and leaf blade parameters of the model plant Arabidopsis thaliana. For the occasional leaf that required manual correction of the petiole/leaf blade boundary we used a touch-screen tablet. Further, leaf cell shape and leaf cell numbers are important determinants of leaf size. Separate from LeafJ we also present a protocol for using a touch-screen tablet for measuring cell shape, area, and size. Our leaf trait measurement system is not limited to shade-avoidance research and will accelerate leaf phenotyping of many mutants and screening plants by leaf phenotyping. PMID:23380664

  1. A rapid and automated relocation method of an AFM probe for high-resolution imaging

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-01

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation—relative angular rotation and positional offset between the AFM probe and nano target—it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.

  2. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

    2012-09-01

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

  3. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging

    International Nuclear Information System (INIS)

    To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint.Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 18–49 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system.High intra- and inter-rater reliability (intra-class correlation coefficients  >  0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r  =  0.84) and anterior (r  =  0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F  <  0.01, p  =  0.98).Our automatic 3D method analysed MR images of the hip joints to generate alpha angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the

  4. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    Science.gov (United States)

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria. PMID:27088225

  5. Automation of a high-speed imaging setup for differential viscosity measurements

    International Nuclear Information System (INIS)

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose

  6. SU-C-304-04: A Compact Modular Computational Platform for Automated On-Board Imager Quality Assurance

    International Nuclear Information System (INIS)

    Purpose: Traditionally, the assessment of X-ray tube output and detector positioning accuracy of on-board imagers (OBI) has been performed manually and subjectively with rulers and dosimeters, and typically takes hours to complete. In this study, we have designed a compact modular computational platform to automatically analyze OBI images acquired with in-house designed phantoms as an efficient and robust surrogate. Methods: The platform was developed as an integrated and automated image analysis-based platform using MATLAB for easy modification and maintenance. Given a set of images acquired with the in-house designed phantoms, the X-ray output accuracy was examined via cross-validation of the uniqueness and integration minimization of important image quality assessment metrics, while machine geometric and positioning accuracy were validated by utilizing pattern-recognition based image analysis techniques. Results: The platform input was a set of images of an in-house designed phantom. The total processing time is about 1–2 minutes. Based on the data acquired from three Varian Truebeam machines over the course of 3 months, the designed test validation strategy achieved higher accuracy than traditional methods. The kVp output accuracy can be verified within +/−2 kVp, the exposure accuracy within 2%, and exposure linearity with a coefficient of variation (CV) of 0.1. Sub-millimeter position accuracy was achieved for the lateral and longitudinal positioning tests, while vertical positioning accuracy within +/−2 mm was achieved. Conclusion: This new platform delivers to the radiotherapy field an automated, efficient, and stable image analysis-based procedure, for the first time, acting as a surrogate for traditional tests for LINAC OBI systems. It has great potential to facilitate OBI quality assurance (QA) with the assistance of advanced image processing techniques. In addition, it provides flexible integration of additional tests for expediting other OBI

  7. SU-C-304-04: A Compact Modular Computational Platform for Automated On-Board Imager Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Dolly, S [Washington University School of Medicine, Saint Louis, MO (United States); University of Missouri, Columbia, MO (United States); Cai, B; Chen, H; Anastasio, M; Sun, B; Yaddanapudi, S; Noel, C; Goddu, S; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Tan, J [UTSouthwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Traditionally, the assessment of X-ray tube output and detector positioning accuracy of on-board imagers (OBI) has been performed manually and subjectively with rulers and dosimeters, and typically takes hours to complete. In this study, we have designed a compact modular computational platform to automatically analyze OBI images acquired with in-house designed phantoms as an efficient and robust surrogate. Methods: The platform was developed as an integrated and automated image analysis-based platform using MATLAB for easy modification and maintenance. Given a set of images acquired with the in-house designed phantoms, the X-ray output accuracy was examined via cross-validation of the uniqueness and integration minimization of important image quality assessment metrics, while machine geometric and positioning accuracy were validated by utilizing pattern-recognition based image analysis techniques. Results: The platform input was a set of images of an in-house designed phantom. The total processing time is about 1–2 minutes. Based on the data acquired from three Varian Truebeam machines over the course of 3 months, the designed test validation strategy achieved higher accuracy than traditional methods. The kVp output accuracy can be verified within +/−2 kVp, the exposure accuracy within 2%, and exposure linearity with a coefficient of variation (CV) of 0.1. Sub-millimeter position accuracy was achieved for the lateral and longitudinal positioning tests, while vertical positioning accuracy within +/−2 mm was achieved. Conclusion: This new platform delivers to the radiotherapy field an automated, efficient, and stable image analysis-based procedure, for the first time, acting as a surrogate for traditional tests for LINAC OBI systems. It has great potential to facilitate OBI quality assurance (QA) with the assistance of advanced image processing techniques. In addition, it provides flexible integration of additional tests for expediting other OBI

  8. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. PMID:24037521

  9. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging

    Science.gov (United States)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Walker, Duncan; Crozier, Stuart; Engstrom, Craig

    2015-10-01

    To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint. Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 18-49 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system. High intra- and inter-rater reliability (intra-class correlation coefficients  >  0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r  =  0.84) and anterior (r  =  0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F  angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the potential to improve analyses of cam-type lesions of the FHN junction for large-scale morphometric and clinical MR

  10. Automated image analysis to quantify the subnuclear organization of transcriptional coregulatory protein complexes in living cell populations

    Science.gov (United States)

    Voss, Ty C.; Demarco, Ignacio A.; Booker, Cynthia F.; Day, Richard N.

    2004-06-01

    Regulated gene transcription is dependent on the steady-state concentration of DNA-binding and coregulatory proteins assembled in distinct regions of the cell nucleus. For example, several different transcriptional coactivator proteins, such as the Glucocorticoid Receptor Interacting Protein (GRIP), localize to distinct spherical intranuclear bodies that vary from approximately 0.2-1 micron in diameter. We are using multi-spectral wide-field microscopy of cells expressing coregulatory proteins labeled with the fluorescent proteins (FP) to study the mechanisms that control the assembly and distribution of these structures in living cells. However, variability between cells in the population makes an unbiased and consistent approach to this image analysis absolutely critical. To address this challenge, we developed a protocol for rigorous quantification of subnuclear organization in cell populations. Cells transiently co-expressing a green FP (GFP)-GRIP and the monomeric red FP (mRFP) are selected for imaging based only on the signal in the red channel, eliminating bias due to knowledge of coregulator organization. The impartially selected images of the GFP-coregulatory protein are then analyzed using an automated algorithm to objectively identify and measure the intranuclear bodies. By integrating all these features, this combination of unbiased image acquisition and automated analysis facilitates the precise and consistent measurement of thousands of protein bodies from hundreds of individual living cells that represent the population.

  11. An automated four-point scale scoring of segmental wall motion in echocardiography using quantified parametric images

    International Nuclear Information System (INIS)

    The aim of this paper is to develop an automated method which operates on echocardiographic dynamic loops for classifying the left ventricular regional wall motion (RWM) in a four-point scale. A non-selected group of 37 patients (2 and 4 chamber views) was studied. Each view was segmented according to the standardized segmentation using three manually positioned anatomical landmarks (the apex and the angles of the mitral annulus). The segmented data were analyzed by two independent experienced echocardiographists and the consensual RWM scores were used as a reference for comparisons. A fast and automatic parametric imaging method was used to compute and display as static color-coded parametric images both temporal and motion information contained in left ventricular dynamic echocardiograms. The amplitude and time parametric images were provided to a cardiologist for visual analysis of RWM and used for RWM quantification. A cross-validation method was applied to the segmental quantitative indices for classifying RWM in a four-point scale. A total of 518 segments were analyzed. Comparison between visual interpretation of parametric images and the reference reading resulted in an absolute agreement (Aa) of 66% and a relative agreement (Ra) of 96% and kappa (κ) coefficient of 0.61. Comparison of the automated RWM scoring against the same reference provided Aa = 64%, Ra = 96% and κ = 0.64 on the validation subset. Finally, linear regression analysis between the global quantitative index and global reference scores as well as ejection fraction resulted in correlations of 0.85 and 0.79. A new automated four-point scale scoring of RWM was developed and tested in a non-selected database. Its comparison against a consensual visual reading of dynamic echocardiograms showed its ability to classify RWM abnormalities.

  12. Electrodeformation for single cell mechanical characterization

    Science.gov (United States)

    Chen, Jian; Abdelgawad, Mohamed; Yu, Liming; Shakiba, Nika; Chien, Wei-Yin; Lu, Zhe; Geddie, William R.; Jewett, Michael A. S.; Sun, Yu

    2011-05-01

    This paper presents the use of electrodeformation as a method for single cell mechanical characterization in which mechanical properties of SiHa and ME180 cells (two cervical cancer cell lines) were quantified. Cells were directly placed between two microelectrodes with a rectangular ac electric field applied, and cell deformation was recorded under certain experimental conditions. Numerical simulations were performed to model cell electrodeformation based on the Maxwell stress tensor formulation. In these simulations, effects of cell electrical property variations on their electrodeformed behavior were investigated. By comparing the measured morphological changes with those obtained from numerical simulations, we were able to quantify Young's modulus of SiHa cells (601 ± 183 Pa) and ME180 cells (1463 ± 649 Pa). These values were consistent with Young's modulus values (SiHa: 400 ± 290 Pa and ME180: 1070 ± 580 Pa) obtained from conventional micropipette aspiration.

  13. Kinetics of virus production from single cells.

    Science.gov (United States)

    Timm, Andrea; Yin, John

    2012-03-01

    The production of virus by infected cells is an essential process for the spread and persistence of viral diseases, the effectiveness of live-viral vaccines, and the manufacture of viruses for diverse applications. Yet despite its importance, methods to precisely measure virus production from cells are lacking. Most methods test infected-cell populations, masking how individual cells behave. Here we measured the kinetics of virus production from single cells. We combined simple steps of liquid-phase infection, serial dilution, centrifugation, and harvesting, without specialized equipment, to track the production of virus particles from BHK cells infected with vesicular stomatitis virus. Remarkably, cell-to-cell differences in latent times to virus release were within a factor of two, while production rates and virus yields spanned over 300-fold, highlighting an extreme diversity in virus production for cells from the same population. These findings have fundamental and technological implications for health and disease.

  14. Single-cell protein from waste cellulose

    Science.gov (United States)

    Dunlap, C. E.; Callihan, C. D.

    1973-01-01

    The recycle, reuse, or reclamation of single cell protein from liquid and solid agricultural waste fibers by a fermentation process is reported. It is shown that cellulose comprises the bulk of the fibers at 50% to 55% of the dry weight of the refuse and that its biodegradability is of prime importance in the choice of a substrate. The application of sodium hydroxide followed by heat and pressure serves to de-polymerize and disrupt lignin structure while swelling the cellulose to increase water uptake and pore volume. Some of the lignin, hemi-celluloses, ash, and cellulose of the material is hydrolized and solubilized. Introduction of microorganisms to the substrate fibers mixed with nutrients produces continuous fermentation of cellulose for further protein extraction and purification.

  15. Biological Evaluation of Single Cell Protein

    International Nuclear Information System (INIS)

    In this study, the nutritional value of single cell protein (SCP) was evaluated as a non conventional protein source produced by fermenting fungal local strains of Trichoderma longibrachiatum, Aspergillus niger, Aspergillus terreus and Penicillium funiculosum with alkali treated sugar cane bagasse. Amino acid analysis revealed that the produced SCP contains essential and non essential amino acids. Male mice were fed on normal (basal) diet which contains 18% conventional protein and served as control group. In the second (T1) and the third (T2) group, the animals were fed on a diet in which 15% and 30% of conventional protein source were replaced by SCP, respectively. At intervals of 15, 30, 45 and 60 days, mice were sacrificed and the blood samples were collected for the biochemical evaluation. The daily averages of body weight were significantly higher with group T2 than group T1. Where as, the kidney weights in groups (T1) and (T2) were significantly increased as compared with control. A non significant difference between the tested groups in the enzyme activities of AST, ALT and GSH content of liver tissue were recorded. While, cholesterol and triglycerides contents showed a significant decrease in both (T1) and (T2) groups as compared with control. The recorded values of the serum hormone (T4), ALP activities, albumin and A/G ratio did not changed by the previous treatments. Serum levels of total protein, urea, creatinine and uric acid were higher for groups (T1) and (T2) than the control group. In conclusion, partial substitution of soy bean protein in mice diet with single cell protein (15%) improved the mice growth without any adverse effects on some of the physiological functions tested

  16. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs. PMID:19605307

  17. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  18. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography

    International Nuclear Information System (INIS)

    Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also

  19. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steiding, Christian; Kolditz, Daniel; Kalender, Willi A., E-mail: willi.kalender@imp.uni-erlangen.de [Institute of Medical Physics, University of Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany and CT Imaging GmbH, 91052 Erlangen (Germany)

    2014-03-15

    Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also

  20. Different approaches to synovial membrane volume determination by magnetic resonance imaging: manual versus automated segmentation

    DEFF Research Database (Denmark)

    Østergaard, Mikkel

    1997-01-01

    methodology for volume determinations (maximal error 6.3%). Preceded by the determination of reproducibility and the optimal threshold at the available MR unit, automated 'threshold' segmentation appears to be acceptable when changes rather than absolute values of synovial membrane volumes are most important......Automated fast (5-20 min) synovial membrane volume determination by MRI, based on pre-set post-gadolinium-DTPA enhancement thresholds, was evaluated as a substitute for a time-consuming (45-120 min), previously validated, manual segmentation method. Twenty-nine knees [rheumatoid arthritis (RA) 13......, osteoarthritis (OA) 16] and 17 RA wrists were examined. At enhancement thresholds between 30 and 60%, the automated volumes (Syn(x%)) were highly significantly correlated to manual volumes (SynMan) (knees: rho = 0.78-0.91, P

  1. Different approaches to synovial membrane volume determination by magnetic resonance imaging: manual versus automated segmentation

    DEFF Research Database (Denmark)

    Østergaard, Mikkel

    1997-01-01

    methodology for volume determinations (maximal error 6.3%). Preceded by the determination of reproducibility and the optimal threshold at the available MR unit, automated 'threshold' segmentation appears to be acceptable when changes rather than absolute values of synovial membrane volumes are most important......, osteoarthritis (OA) 16] and 17 RA wrists were examined. At enhancement thresholds between 30 and 60%, the automated volumes (Syn(x%)) were highly significantly correlated to manual volumes (SynMan) (knees: rho = 0.78-0.91, P < 10(-5) to < 10(-9); wrists: rho = 0.87-0.95, P < 10(-4) to < 10(-6)). The absolute...... values of the automated estimates were extremely dependent on the threshold chosen. At the optimal threshold of 45%, the median numerical difference from SynMan was 7 ml (17%) in knees and 2 ml (25%) in wrists. At this threshold, the difference was not related to diagnosis, clinical inflammation or...

  2. Use of solid film highlighter in automation of D sight image interpretation

    Science.gov (United States)

    Forsyth, David S.; Komorowski, Jerzy P.; Gould, Ronald W.

    1998-03-01

    Many studies have shown inspector variability to be a crucial parameter in nondestructive evaluation (NDE) reliability. Therefore it is desirable to automate the decision making process in NDE as much as possible. The automation of inspection data handling and interpretation will also enable use of data fusion algorithms currently being researched at IAR for increasing inspection reliability by combination of different NDE modes. Enhanced visual inspection techniques such as D Sight have the capability to rapidly inspect lap splice joints using D Sight and other optical methods. IARs NDI analysis software has been sued to perform analysis and feature extraction on D Sight inspections. Different metrics suitable for automated interpretation have been developed and tested on inspections of actual service-retired aircraft specimens using D Sight with solid film highlighter.

  3. Automated grading of left ventricular segmental wall motion by an artificial neural network using color kinesis images

    Directory of Open Access Journals (Sweden)

    L.O. Murta Jr.

    2006-01-01

    Full Text Available The present study describes an auxiliary tool in the diagnosis of left ventricular (LV segmental wall motion (WM abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN was developed and validated for grading LV segmental WM using data from color kinesis (CK images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1 normal, 2 mild hypokinesia, 3 moderate hypokinesia, 4 severe hypokinesia, 5 akinesia, and 6 dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99. In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.

  4. Automated grading of left ventricular segmental wall motion by an artificial neural network using color kinesis images.

    Science.gov (United States)

    Murta, L O; Ruiz, E E S; Pazin-Filho, A; Schmidt, A; Almeida-Filho, O C; Simões, M V; Marin-Neto, J A; Maciel, B C

    2006-01-01

    The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R2 = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.

  5. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    Science.gov (United States)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  6. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    Science.gov (United States)

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. PMID:24808857

  7. Single-cell analysis of population context advances RNAi screening at multiple levels

    NARCIS (Netherlands)

    Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas

    2012-01-01

    Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensi

  8. Hybrid Confocal Raman Fluorescence Microscopy on Single Cells Using Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Manen, van Henk-Jan; Otto, Cees

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We sh

  9. Automated collection of imaging and phenotypic data to centralized and distributed data repositories.

    Science.gov (United States)

    King, Margaret D; Wood, Dylan; Miller, Brittny; Kelly, Ross; Landis, Drew; Courtney, William; Wang, Runtang; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Accurate data collection at the ground level is vital to the integrity of neuroimaging research. Similarly important is the ability to connect and curate data in order to make it meaningful and sharable with other investigators. Collecting data, especially with several different modalities, can be time consuming and expensive. These issues have driven the development of automated collection of neuroimaging and clinical assessment data within COINS (Collaborative Informatics and Neuroimaging Suite). COINS is an end-to-end data management system. It provides a comprehensive platform for data collection, management, secure storage, and flexible data retrieval (Bockholt et al., 2010; Scott et al., 2011). It was initially developed for the investigators at the Mind Research Network (MRN), but is now available to neuroimaging institutions worldwide. Self Assessment (SA) is an application embedded in the Assessment Manager (ASMT) tool in COINS. It is an innovative tool that allows participants to fill out assessments via the web-based Participant Portal. It eliminates the need for paper collection and data entry by allowing participants to submit their assessments directly to COINS. Instruments (surveys) are created through ASMT and include many unique question types and associated SA features that can be implemented to help the flow of assessment administration. SA provides an instrument queuing system with an easy-to-use drag and drop interface for research staff to set up participants' queues. After a queue has been created for the participant, they can access the Participant Portal via the internet to fill out their assessments. This allows them the flexibility to participate from home, a library, on site, etc. The collected data is stored in a PostgresSQL database at MRN. This data is only accessible by users that have explicit permission to access the data through their COINS user accounts and access to MRN network. This allows for high volume data collection and

  10. Automated collection of imaging and phenotypic data to centralized and distributed data repositories.

    Science.gov (United States)

    King, Margaret D; Wood, Dylan; Miller, Brittny; Kelly, Ross; Landis, Drew; Courtney, William; Wang, Runtang; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Accurate data collection at the ground level is vital to the integrity of neuroimaging research. Similarly important is the ability to connect and curate data in order to make it meaningful and sharable with other investigators. Collecting data, especially with several different modalities, can be time consuming and expensive. These issues have driven the development of automated collection of neuroimaging and clinical assessment data within COINS (Collaborative Informatics and Neuroimaging Suite). COINS is an end-to-end data management system. It provides a comprehensive platform for data collection, management, secure storage, and flexible data retrieval (Bockholt et al., 2010; Scott et al., 2011). It was initially developed for the investigators at the Mind Research Network (MRN), but is now available to neuroimaging institutions worldwide. Self Assessment (SA) is an application embedded in the Assessment Manager (ASMT) tool in COINS. It is an innovative tool that allows participants to fill out assessments via the web-based Participant Portal. It eliminates the need for paper collection and data entry by allowing participants to submit their assessments directly to COINS. Instruments (surveys) are created through ASMT and include many unique question types and associated SA features that can be implemented to help the flow of assessment administration. SA provides an instrument queuing system with an easy-to-use drag and drop interface for research staff to set up participants' queues. After a queue has been created for the participant, they can access the Participant Portal via the internet to fill out their assessments. This allows them the flexibility to participate from home, a library, on site, etc. The collected data is stored in a PostgresSQL database at MRN. This data is only accessible by users that have explicit permission to access the data through their COINS user accounts and access to MRN network. This allows for high volume data collection and

  11. SmashCell: A software framework for the analysis of single-cell amplified genome sequences

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Arumugam, Manimozhiyan; Raes, Jeroen;

    2010-01-01

    generated using traditional, culture-based methods. In order to simplify this analysis we have developed SmashCell (Simple Metagenomics Analysis SHell-for sequences from single Cells). It is designed to automate the main steps in microbial genome analysis - assembly, gene prediction, functional annotation......SUMMARY: Recent advances in single-cell manipulation technology, whole genome amplification and high-throughput sequencing have now made it possible to sequence the genome of an individual cell. The bioinformatic analysis of these genomes however is far more complicated than the analysis of those...... - in a way that allows parameter and algorithm exploration at each step in the process. It alsomanages the data created by these analyses and provides visualisation methods to allow rapid analysis of the results. AVAILABILITY: The SmashCell source code and a comprehensive manual are available at http...

  12. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  13. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location

    DEFF Research Database (Denmark)

    Fennema-Notestine, Christine; Ozyurt, I Burak; Clark, Camellia P;

    2006-01-01

    Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance (MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set, regional anatomy, and age and diagnosis of subjects studied. The present study compared the performance of fou...

  14. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    NARCIS (Netherlands)

    L. Bondar (Luiza); M.S. Hoogeman (Mischa); W. Schillemans; B.J.M. Heijmen (Ben)

    2013-01-01

    textabstractFor online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and

  15. Time efficiency and diagnostic accuracy of new automated myocardial perfusion analysis software in 320-row CT cardiac imaging

    International Nuclear Information System (INIS)

    We aimed to evaluate the time efficiency and diagnostic accuracy of automated myocardial computed tomography perfusion (CTP) image analysis software. 320-row CTP was performed in 30 patients, and analyses were conducted independently by three different blinded readers by the use of two recent software releases (version 4.6 and novel version 4.71GR001, Toshiba, Tokyo, Japan). Analysis times were compared, and automated epi- and endocardial contour detection was subjectively rated in five categories (excellent, good, fair, poor and very poor). As semi-quantitative perfusion parameters, myocardial attenuation and transmural perfusion ratio (TPR) were calculated for each myocardial segment and agreement was tested by using the intraclass correlation coefficient (ICC). Conventional coronary angiography served as reference standard. The analysis time was significantly reduced with the novel automated software version as compared with the former release (Reader 1: 43:08 ± 11:39 min vs. 09:47 ± 04:51 min, Reader 2: 42:07 ± 06:44 min vs. 09:42 ± 02:50 min and Reader 3: 21:38 ± 3:44 min vs. 07:34 ± 02:12 min; p < 0.001 for all). Epi- and endocardial contour detection for the novel software was rated to be significantly better (p < 0.001) than with the former software. ICCs demonstrated strong agreement (≥ 0.75) for myocardial attenuation in 93% and for TPR in 82%. Diagnostic accuracy for the two software versions was not significantly different (p 0.169) as compared with conventional coronary angiography. The novel automated CTP analysis software offers enhanced time efficiency with an improvement by a factor of about four, while maintaining diagnostic accuracy.

  16. Automated estimation of progression of interstitial lung disease in CT images.

    NARCIS (Netherlands)

    Arzhaeva, Y.; Prokop, M.; Murphy, K.; Rikxoort, E.M. van; Jong, P.A. de; Gietema, H.A.; Viergever, M.A.; Ginneken, B. van

    2010-01-01

    PURPOSE: A system is presented for automated estimation of progression of interstitial lung disease in serial thoracic CT scans. METHODS: The system compares corresponding 2D axial sections from baseline and follow-up scans and concludes whether this pair of sections represents regression, progressi

  17. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  18. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Science.gov (United States)

    Chopin, Joshua; Laga, Hamid; Huang, Chun Yuan; Heuer, Sigrid; Miklavcic, Stanley J

    2015-01-01

    The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  19. Analysis of specific RNA in cultured cells through quantitative integration of q-PCR and N-SIM single cell FISH images: Application to hormonal stimulation of StAR transcription.

    Science.gov (United States)

    Lee, Jinwoo; Foong, Yee Hoon; Musaitif, Ibrahim; Tong, Tiegang; Jefcoate, Colin

    2016-07-01

    The steroidogenic acute regulatory protein (StAR) has been proposed to serve as the switch that can turn on/off steroidogenesis. We investigated the events that facilitate dynamic StAR transcription in response to cAMP stimulation in MA-10 Leydig cells, focusing on splicing anomalies at StAR gene loci. We used 3' reverse primers in a single reaction to respectively quantify StAR primary (p-RNA), spliced (sp-RNA/mRNA), and extended 3' untranslated region (UTR) transcripts, which were quantitatively imaged by high-resolution fluorescence in situ hybridization (FISH). This approach delivers spatio-temporal resolution of initiation and splicing at single StAR loci, and transfers individual mRNA molecules to cytoplasmic sites. Gene expression was biphasic, initially showing slow splicing, transitioning to concerted splicing. The alternative 3.5-kb mRNAs were distinguished through the use of extended 3'UTR probes, which exhibited distinctive mitochondrial distribution. Combining quantitative PCR and FISH enables imaging of localization of RNA expression and analysis of RNA processing rates.

  20. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Dürr, Oliver; Sick, Beate

    2016-10-01

    Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening-based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.

  1. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity.

    Directory of Open Access Journals (Sweden)

    Kerry Routenberg Love

    Full Text Available Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.

  2. A microfluidic approach to parallelized transcriptional profiling of single cells

    OpenAIRE

    Sun, Hao; Olsen, Timothy; Zhu, Jing; Tao, Jianguo; Ponnaiya, Brian; Amundson, Sally A; Brenner, David J.; Lin, Qiao

    2015-01-01

    The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently c...

  3. From single-cell transcriptomics to single-molecule counting

    OpenAIRE

    Islam, Saiful

    2013-01-01

    RNA-sequencing (RNA-seq) technology has been progressing so fast in the last few years and made it possible to perform transcriptome analysis at single-cell level that was even unimaginable a few years before. Nowadays, the importance of gene expression analysis at the single-cell level is increasingly appreciated for the study of complex heterogeneous tissue. Also, in order to solve the obscure and no consensus definition of cell types, the single-cell gene expression analysis ap...

  4. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis

    OpenAIRE

    J. A. Cornwell; Hallett, R. M.; S. Auf der Mauer; A. Motazedian; Schroeder, T.; J. S. Draper; Harvey, R. P.; R. E. Nordon

    2016-01-01

    The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, an...

  5. Automated segmentation of thyroid gland on CT images with multi-atlas label fusion and random classification forest

    Science.gov (United States)

    Liu, Jiamin; Chang, Kevin; Kim, Lauren; Turkbey, Evrim; Lu, Le; Yao, Jianhua; Summers, Ronald

    2015-03-01

    The thyroid gland plays an important role in clinical practice, especially for radiation therapy treatment planning. For patients with head and neck cancer, radiation therapy requires a precise delineation of the thyroid gland to be spared on the pre-treatment planning CT images to avoid thyroid dysfunction. In the current clinical workflow, the thyroid gland is normally manually delineated by radiologists or radiation oncologists, which is time consuming and error prone. Therefore, a system for automated segmentation of the thyroid is desirable. However, automated segmentation of the thyroid is challenging because the thyroid is inhomogeneous and surrounded by structures that have similar intensities. In this work, the thyroid gland segmentation is initially estimated by multi-atlas label fusion algorithm. The segmentation is refined by supervised statistical learning based voxel labeling with a random forest algorithm. Multiatlas label fusion (MALF) transfers expert-labeled thyroids from atlases to a target image using deformable registration. Errors produced by label transfer are reduced by label fusion that combines the results produced by all atlases into a consensus solution. Then, random forest (RF) employs an ensemble of decision trees that are trained on labeled thyroids to recognize features. The trained forest classifier is then applied to the thyroid estimated from the MALF by voxel scanning to assign the class-conditional probability. Voxels from the expert-labeled thyroids in CT volumes are treated as positive classes; background non-thyroid voxels as negatives. We applied this automated thyroid segmentation system to CT scans of 20 patients. The results showed that the MALF achieved an overall 0.75 Dice Similarity Coefficient (DSC) and the RF classification further improved the DSC to 0.81.

  6. Relating Single Cell Heterogeneity To Genotype During Cancer Progression

    Science.gov (United States)

    Rajaram, Satwik

    2013-03-01

    Progression of normal cells towards cancer is driven by a series of genetic changes. Traditional population-averaged measurements have found that cell signalling activities are increasingly altered during this progression. Despite the fact that cancer cells are known to be highly heterogeneous, the response of individual pathways to specific genetic changes remains poorly characterized at a single cell level. Do signalling alterations in a pathway reflect a shift of the whole population, or changes to specific subpopulations? Are alterations to pathways independent, or are cells with alterations in one pathway more likely to be abnormal in another due to crosstalk? We are building a computational framework that analyzes immunofluorescence microscopy images of cells to identify alterations in individual pathways at a single-cell level. A primary novelty of our approach is a ``change of basis'' that allows us to understand signalling in cancer cells in terms of the much better understood patterns of signalling in normal cells. This allows us to model heterogeneous populations of cancer cells as a mixture of distinct subpopulations, each with a specific combination of signalling pathways altered beyond the normal baseline. We used this framework to analyze human bronchial epithelial cell lines containing a series of genetic modifications commonly seen in lung cancer. We confirmed expected trends (such as a population-wide epithelial mesenchymal transition following the last of our series of modifications) and are presently studying the relation between the mutational profiles of cancer cells and pathway crosstalk. Our framework will help establish a more natural basis for future investigations into the phenotype-genotype relationship in heterogeneous populations.

  7. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  8. Comparison of the automated evaluation of phantom mama in digital and digitalized images; Comparacao da avaliacao automatizada do phantom mama em imagens digitais e digitalizadas

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Priscila do Carmo, E-mail: pcs@cdtn.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Propedeutica Complementar; Gomes, Danielle Soares; Oliveira, Marcio Alves; Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  9. Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine

    Science.gov (United States)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2010-01-01

    We propose a completely automated algorithm for the detection of the spinal centreline and the centres of vertebral bodies and intervertebral discs in images acquired by computed tomography (CT) and magnetic resonance (MR) imaging. The developed methods are based on the analysis of the geometry of spinal structures and the characteristics of CT and MR images and were evaluated on 29 CT and 13 MR images of lumbar spine. The overall mean distance between the obtained and the ground truth spinal centrelines and centres of vertebral bodies and intervertebral discs were 1.8 ± 1.1 mm and 2.8 ± 1.9 mm, respectively, and no considerable differences were detected among the results for CT, T1-weighted MR and T2-weighted MR images. The knowledge of the location of the spinal centreline and the centres of vertebral bodies and intervertebral discs is valuable for the analysis of the spine. The proposed method may therefore be used to initialize the techniques for labelling and segmentation of vertebrae.

  10. Automated detection of retinal cell nuclei in 3D micro-CT images of zebrafish using support vector machine classification

    Science.gov (United States)

    Ding, Yifu; Tavolara, Thomas; Cheng, Keith

    2016-03-01

    Our group is developing a method to examine biological specimens in cellular detail using synchrotron microCT. The method can acquire 3D images of tissue at micrometer-scale resolutions, allowing for individual cell types to be visualized in the context of the entire specimen. For model organism research, this tool will enable the rapid characterization of tissue architecture and cellular morphology from every organ system. This characterization is critical for proposed and ongoing "phenome" projects that aim to phenotype whole-organism mutants and diseased tissues from different organisms including humans. With the envisioned collection of hundreds to thousands of images for a phenome project, it is important to develop quantitative image analysis tools for the automated scoring of organism phenotypes across organ systems. Here we present a first step towards that goal, demonstrating the use of support vector machines (SVM) in detecting retinal cell nuclei in 3D images of wild-type zebrafish. In addition, we apply the SVM classifier on a mutant zebrafish to examine whether SVMs can be used to capture phenotypic differences in these images. The longterm goal of this work is to allow cellular and tissue morphology to be characterized quantitatively for many organ systems, at the level of the whole-organism.

  11. LeafJ: An ImageJ Plugin for Semi-automated Leaf Shape Measurement

    OpenAIRE

    Maloof, Julin N.; Nozue, Kazunari; Mumbach, Maxwell R.; Palmer, Christine M.

    2013-01-01

    High throughput phenotyping (phenomics) is a powerful tool for linking genes to their functions (see review1 and recent examples2-4). Leaves are the primary photosynthetic organ, and their size and shape vary developmentally and environmentally within a plant. For these reasons studies on leaf morphology require measurement of multiple parameters from numerous leaves, which is best done by semi-automated phenomics tools5,6. Canopy shade is an important environmental cue that affects plant arc...

  12. Single cell genomics of subsurface microorganisms

    Science.gov (United States)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  13. Automated determination of the centers of vertebral bodies and intervertebral discs in CT and MR lumbar spine images

    Science.gov (United States)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2010-03-01

    The knowledge of the location of the centers of vertebral bodies and intervertebral discs is valuable for the analysis of the spine. Existing methods for the detection and segmentation of vertebrae in images acquired by computed tomography (CT) and magnetic resonance (MR) imaging are usually applicable only to a specific image modality and require prior knowledge of the location of vertebrae, usually obtained by manual identification or statistical modeling. We propose a completely automated framework for the detection of the centers of vertebral bodies and intervertebral discs in CT and MR images. The image intensity and gradient magnitude profiles are first extracted in each image along the already obtained spinal centerline and therefore contain a repeating pattern representing the vertebral bodies and intervertebral discs. Based on the period of the repeating pattern and by using a function that approximates the shape of the vertebral body, a model of the vertebral body is generated. The centers of vertebral bodies and intervertebral discs are detected by measuring the similarity between the generated model and the extracted profiles. The method was evaluated on 29 CT and 13 MR images of lumbar spine with varying number of vertebrae. The overall mean distance between the obtained and the ground truth centers was 2.8 +/- 1.9 mm, and no considerable differences were detected between the results for CT, T1-weighted MR or T2-weighted MR images, or among different vertebrae. The proposed method may therefore be valuable for initializing the techniques for the detection and segmentation of vertebrae.

  14. Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry.

    Science.gov (United States)

    Lacson, Ronilda; Harris, Kimberly; Brawarsky, Phyllis; Tosteson, Tor D; Onega, Tracy; Tosteson, Anna N A; Kaye, Abby; Gonzalez, Irina; Birdwell, Robyn; Haas, Jennifer S

    2015-10-01

    Breast cancer screening is central to early breast cancer detection. Identifying and monitoring process measures for screening is a focus of the National Cancer Institute's Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) initiative, which requires participating centers to report structured data across the cancer screening continuum. We evaluate the accuracy of automated information extraction of imaging findings from radiology reports, which are available as unstructured text. We present prevalence estimates of imaging findings for breast imaging received by women who obtained care in a primary care network participating in PROSPR (n = 139,953 radiology reports) and compared automatically extracted data elements to a "gold standard" based on manual review for a validation sample of 941 randomly selected radiology reports, including mammograms, digital breast tomosynthesis, ultrasound, and magnetic resonance imaging (MRI). The prevalence of imaging findings vary by data element and modality (e.g., suspicious calcification noted in 2.6% of screening mammograms, 12.1% of diagnostic mammograms, and 9.4% of tomosynthesis exams). In the validation sample, the accuracy of identifying imaging findings, including suspicious calcifications, masses, and architectural distortion (on mammogram and tomosynthesis); masses, cysts, non-mass enhancement, and enhancing foci (on MRI); and masses and cysts (on ultrasound), range from 0.8 to1.0 for recall, precision, and F-measure. Information extraction tools can be used for accurate documentation of imaging findings as structured data elements from text reports for a variety of breast imaging modalities. These data can be used to populate screening registries to help elucidate more effective breast cancer screening processes. PMID:25561069

  15. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    Science.gov (United States)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  16. Automated systemic-cognitive analysis of images pixels (generalization, abstraction, classification and identification

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2015-09-01

    Full Text Available In the article the application of systemic-cognitive analysis and its mathematical model i.e. the system theory of the information and its program toolkit which is "Eidos" system for loading images from graphics files, synthesis of the generalized images of classes, their abstraction, classification of the generalized images (clusters and constructs comparisons of concrete images with the generalized images (identification are examined. We suggest using the theory of information for processing the data and its size for every pixel which indicates that the image is of a certain class. A numerical example is given in which on the basis of a number of specific examples of images belonging to different classes, forming generalized images of these classes, independent of their specific implementations, i.e., the "Eidoses" of these images (in the definition of Plato – the prototypes or archetypes of images (in the definition of Jung. But the "Eidos" system provides not only the formation of prototype images, which quantitatively reflects the amount of information in the elements of specific images on their belonging to a particular proto-types, but a comparison of specific images with generic (identification and the generalization of pictures images with each other (classification

  17. Contrast-enhanced magnetic resonance angiography in carotid artery disease: does automated image registration improve image quality?

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Jan [University Hospital, Department of Diagnostic Radiology, Goettingen (Germany); Larsen, Joerg [Braunschweig Teaching Hospitals, Institute for Roentgendiagnostics, Braunschweig (Germany)

    2009-05-15

    Contrast-enhanced magnetic resonance angiography (MRA) is a noninvasive imaging alternative to digital subtraction angiography (DSA) for patients with carotid artery disease. In DSA, image quality can be improved by shifting the mask image if the patient has moved during angiography. This study investigated whether such image registration may also help to improve the image quality of carotid MRA. Data from 370 carotid MRA examinations of patients likely to have carotid artery disease were prospectively collected. The standard nonregistered MRAs were compared to automatically linear, affine and warp registered MRA by using three image quality parameters: the vessel detection probability (VDP) in maximum intensity projection (MIP) images, contrast-to-noise ratio (CNR) in MIP images, and contrast-to-noise ratio in three-dimensional image volumes. A body shift of less than 1 mm occurred in 96.2% of cases. Analysis of variance revealed no significant influence of image registration and body shift on image quality (p > 0.05). In conclusion, standard contrast-enhanced carotid MRA usually requires no image registration to improve image quality and is generally robust against any naturally occurring body shift. (orig.)

  18. Automated CAD for Nodule Detection for Magnetic Resonance Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    K.R.Ananth

    2011-05-01

    Full Text Available Contrast is a measure of the variation in intensity or gray value in a specified region of an image. In all applications concerning image acquisition, followed by processing of images, successful pre-processing is of the essence. Every sensor has its own characteristics, but in general the quality of the acquired MR image is fairly poor. Overall grayscale intensity variations, poor contrast and noisy background are the frequently encountered issues. The Rational Unsharp Masking method is the one introduced here to improve the quality of the MR image. It is demonstrated, that the proposed method has much reduced noise sensitivity than another polynomial operator, Cubic Unsharp masking and number of approaches devised to improve the perceived quality of an image. This algorithm has been tested for various slices of axial, sagittal and coronal sections of MR image. The results confirm the ability of the algorithm to produce better quality images, helpful to have effective diagnosis.

  19. Validation of noise models for single-cell transcriptomics

    NARCIS (Netherlands)

    Grün, Dominic; Kester, Lennart; van Oudenaarden, Alexander

    2014-01-01

    Single-cell transcriptomics has recently emerged as a powerful technology to explore gene expression heterogeneity among single cells. Here we identify two major sources of technical variability: sampling noise and global cell-to-cell variation in sequencing efficiency. We propose noise models to co

  20. Design and Analysis of Single-Cell Sequencing Experiments

    NARCIS (Netherlands)

    Grün, Dominic; van Oudenaarden, Alexander

    2015-01-01

    Recent advances in single-cell sequencing hold great potential for exploring biological systems with unprecedented resolution. Sequencing the genome of individual cells can reveal somatic mutations and allows the investigation of clonal dynamics. Single-cell transcriptome sequencing can elucidate th

  1. UV Decontamination of MDA Reagents for Single Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Janey; Tighe, Damon; Sczyrba, Alexander; Malmatrom, Rex; Clingenpeel, Scott; Malfatti, Stephanie; Rinke, Christian; Wang, Zhong; Stepanauskas, Ramunas; Cheng, Jan-Fang; Woyke, Tanja

    2011-03-18

    Single cell genomics, the amplification and sequencing of genomes from single cells, can provide a glimpse into the genetic make-up and thus life style of the vast majority of uncultured microbial cells, making it an immensely powerful and increasingly popular tool. This is accomplished by use of multiple displacement amplification (MDA), which can generate billions of copies of a single bacterial genome producing microgram-range DNA required for shotgun sequencing. Here, we address a key challenge inherent to this approach and propose a solution for the improved recovery of single cell genomes. While DNA-free reagents for the amplification of a single cell genome are a prerequisite for successful single cell sequencing and analysis, DNA contamination has been detected in various reagents, which poses a considerable challenge. Our study demonstrates the effect of UV irradiation in efficient elimination of exogenous contaminant DNA found in MDA reagents, while maintaining Phi29 activity. Consequently, we also find that increased UV exposure to Phi29 does not adversely affect genome coverage of MDA amplified single cells. While additional challenges in single cell genomics remain to be resolved, the proposed methodology is relatively quick and simple and we believe that its application will be of high value for future single cell sequencing projects.

  2. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Woo, B; Kim, J [Seoul National University, Seoul (Korea, Republic of); Jamshidi, N; Kuo, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automatically from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI.

  3. IHC Profiler: An Open Source Plugin for the Quantitative Evaluation and Automated Scoring of Immunohistochemistry Images of Human Tissue Samples

    Science.gov (United States)

    Malhotra, Renu; De, Abhijit

    2014-01-01

    In anatomic pathology, immunohistochemistry (IHC) serves as a diagnostic and prognostic method for identification of disease markers in tissue samples that directly influences classification and grading the disease, influencing patient management. However, till today over most of the world, pathological analysis of tissue samples remained a time-consuming and subjective procedure, wherein the intensity of antibody staining is manually judged and thus scoring decision is directly influenced by visual bias. This instigated us to design a simple method of automated digital IHC image analysis algorithm for an unbiased, quantitative assessment of antibody staining intensity in tissue sections. As a first step, we adopted the spectral deconvolution method of DAB/hematoxylin color spectra by using optimized optical density vectors of the color deconvolution plugin for proper separation of the DAB color spectra. Then the DAB stained image is displayed in a new window wherein it undergoes pixel-by-pixel analysis, and displays the full profile along with its scoring decision. Based on the mathematical formula conceptualized, the algorithm is thoroughly tested by analyzing scores assigned to thousands (n = 1703) of DAB stained IHC images including sample images taken from human protein atlas web resource. The IHC Profiler plugin developed is compatible with the open resource digital image analysis software, ImageJ, which creates a pixel-by-pixel analysis profile of a digital IHC image and further assigns a score in a four tier system. A comparison study between manual pathological analysis and IHC Profiler resolved in a match of 88.6% (P<0.0001, CI = 95%). This new tool developed for clinical histopathological sample analysis can be adopted globally for scoring most protein targets where the marker protein expression is of cytoplasmic and/or nuclear type. We foresee that this method will minimize the problem of inter-observer variations across labs and further help in

  4. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  5. Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images.

    Science.gov (United States)

    Hassan, Bilal; Raja, Gulistan; Hassan, Taimur; Usman Akram, M

    2016-04-01

    Macular edema (ME) and central serous retinopathy (CSR) are two macular diseases that affect the central vision of a person if they are left untreated. Optical coherence tomography (OCT) imaging is the latest eye examination technique that shows a cross-sectional region of the retinal layers and that can be used to detect many retinal disorders in an early stage. Many researchers have done clinical studies on ME and CSR and reported significant findings in macular OCT scans. However, this paper proposes an automated method for the classification of ME and CSR from OCT images using a support vector machine (SVM) classifier. Five distinct features (three based on the thickness profiles of the sub-retinal layers and two based on cyst fluids within the sub-retinal layers) are extracted from 30 labeled images (10 ME, 10 CSR, and 10 healthy), and SVM is trained on these. We applied our proposed algorithm on 90 time-domain OCT (TD-OCT) images (30 ME, 30 CSR, 30 healthy) of 73 patients. Our algorithm correctly classified 88 out of 90 subjects with accuracy, sensitivity, and specificity of 97.77%, 100%, and 93.33%, respectively. PMID:27140751

  6. Semi-automated 3D leaf reconstruction and analysis of trichome patterning from light microscopic images.

    Directory of Open Access Journals (Sweden)

    Henrik Failmezger

    2013-04-01

    Full Text Available Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons.

  7. HEIDI: An Automated Process for the Identification and Extraction of Photometric Light Curves from Astronomical Images

    CERN Document Server

    Todd, M; Tanga, P; Coward, D M; Zadnik, M G

    2014-01-01

    The production of photometric light curves from astronomical images is a very time-consuming task. Larger data sets improve the resolution of the light curve, however, the time requirement scales with data volume. The data analysis is often made more difficult by factors such as a lack of suitable calibration sources and the need to correct for variations in observing conditions from one image to another. Often these variations are unpredictable and corrections are based on experience and intuition. The High Efficiency Image Detection & Identification (HEIDI) pipeline software rapidly processes sets of astronomical images. HEIDI automatically selects multiple sources for calibrating the images using an algorithm that provides a reliable means of correcting for variations between images in a time series. The algorithm takes into account that some sources may intrinsically vary on short time scales and excludes these from being used as calibration sources. HEIDI processes a set of images from an entire nigh...

  8. Quantum Dot Platform for Single-Cell Molecular Profiling

    Science.gov (United States)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  9. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    Science.gov (United States)

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong

    2016-04-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.

  10. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadian, Alireza; Ay, Mohammad R.; Sarkar, Saeed [Medical Sciences/University of Tehran, Research Center for Science and Technology in Medicine, Tehran (Iran); Medical Sciences/University of Tehran, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran (Iran); Bidgoli, Javad H. [Medical Sciences/University of Tehran, Research Center for Science and Technology in Medicine, Tehran (Iran); East Tehran Azad University, Department of Electrical and Computer Engineering, Tehran (Iran); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine, Geneva (Switzerland)

    2008-10-15

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map ({mu}map), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated {mu}maps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique

  11. Screening of subfertile men for testicular carcinoma in situ by an automated image analysis-based cytological test of the ejaculate

    DEFF Research Database (Denmark)

    Almstrup, K; Lippert, Marianne; Mogensen, Hanne O;

    2011-01-01

    and detected in ejaculates with specific CIS markers. We have built a high throughput framework involving automated immunocytochemical staining, scanning microscopy and in silico image analysis allowing automated detection and grading of CIS-like stained objects in semen samples. In this study, 1175 ejaculates...... from 765 subfertile men were tested using this framework. In 5/765 (0.65%) cases, CIS-like cells were identified in the ejaculate. Three of these had bilateral testicular biopsies performed and CIS was histologically confirmed in two. In total, 63 bilateral testicular biopsy were performed...... a slightly lower sensitivity (0.51), possibly because of obstruction. We conclude that this novel non-invasive test combining automated immunocytochemistry and advanced image analysis allows identification of TC at the CIS stage with a high specificity, but a negative test does not completely exclude CIS...

  12. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and

  13. A fully automated multi-modal computer aided diagnosis approach to coronary calcium scoring of MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-03-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.

  14. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images.

    Science.gov (United States)

    Berdouses, Elias D; Koutsouri, Georgia D; Tripoliti, Evanthia E; Matsopoulos, George K; Oulis, Constantine J; Fotiadis, Dimitrios I

    2015-07-01

    The aim of this work is to present a computer-aided automated methodology for the assessment of carious lesions, according to the International Caries Detection and Assessment System (ICDAS II), which are located on the occlusal surfaces of posterior permanent teeth from photographic color tooth images. The proposed methodology consists of two stages: (a) the detection of regions of interest and (b) the classification of the detected regions according to ICDAS ΙΙ. In the first stage, pre-processing, segmentation and post-processing mechanisms were employed. For each pixel of the detected regions, a 15×15 neighborhood is used and a set of intensity-based and texture-based features were extracted. A correlation based technique was applied to select a subset of 36 features which were given as input into the classification stage, where five classifiers (J48, Random Tree, Random Forests, Support Vector Machines and Naïve Bayes) were compared to conclude to the best one, in our case, to Random Forests. The methodology was evaluated on a set of 103 digital color images where 425 regions of interest from occlusal surfaces of extracted permanent teeth were manually segmented and classified, based on visual assessments by two experts. The methodology correctly detected 337 out of 340 regions in the detection stage with accuracy of detection 80%. For the classification stage an overall accuracy 83% is achieved. The proposed methodology provides an objective and fully automated caries diagnostic system for occlusal carious lesions with similar or better performance of a trained dentist taking into consideration the available medical knowledge. PMID:25932969

  15. High Res at High Speed: Automated Delivery of High-Resolution Images from Digital Library Collections

    Science.gov (United States)

    Westbrook, R. Niccole; Watkins, Sean

    2012-01-01

    As primary source materials in the library are digitized and made available online, the focus of related library services is shifting to include new and innovative methods of digital delivery via social media, digital storytelling, and community-based and consortial image repositories. Most images on the Web are not of sufficient quality for most…

  16. Creating a virtual slide map from sputum smear images for region-of-interest localisation in automated microscopy.

    Science.gov (United States)

    Patel, Bhavin; Douglas, Tania S

    2012-10-01

    We address the location of regions-of-interest in previously scanned sputum smear slides requiring re-examination in automated microscopy for tuberculosis (TB) detection. We focus on the core component of microscope auto-positioning, which is to find a point of reference, position and orientation, on the slide so that it can be used to automatically bring desired fields to the field-of-view of the microscope. We use virtual slide maps together with geometric hashing to localise a query image, which then acts as the point of reference. The true positive rate achieved by the algorithm was above 88% even for noisy query images captured at slide orientations up to 26°. The image registration error, computed as the average mean square error, was less than 14 pixel² (corresponding to 1.02 μm²). The algorithm is inherently robust to changes in slide orientation and placement and showed high tolerance to illumination changes and robustness to noise.

  17. Automated identification of brain tumours from single MR images based on segmentation with refined patient-specific priors

    Directory of Open Access Journals (Sweden)

    Ana eSanjuán

    2013-12-01

    Full Text Available Brain tumours can have different shapes or locations, making their identification very challenging. In functional MRI, it is not unusual that patients have only one anatomical image due to time and financial constraints. Here, we provide a modified automatic lesion identification (ALI procedure which enables brain tumour identification from single MR images. Our method rests on (A a modified segmentation-normalisation procedure with an explicit extra prior for the tumour and (B an outlier detection procedure for abnormal voxel (i.e. tumour classification. To minimise tissue misclassification, the segmentation-normalisation procedure requires prior information of the tumour location and extent. We therefore propose that ALI is run iteratively so that the output of Step B is used as a patient-specific prior in Step A. We test this procedure on real T1-weighted images from 18 patients, and the results were validated in comparison to two independent observers’ manual tracings. The automated procedure identified the tumours successfully with an excellent agreement with the manual segmentation (area under the ROC curve = 0.97 ± 0.03. The proposed procedure increases the flexibility and robustness of the ALI tool and will be particularly useful for lesion-behaviour mapping studies, or when lesion identification and/or spatial normalisation are problematic.

  18. Automated segmentation of mammary gland regions in non-contrast torso CT images based on probabilistic atlas

    Science.gov (United States)

    Zhou, X.; Kan, M.; Hara, T.; Fujita, H.; Sugisaki, K.; Yokoyama, R.; Lee, G.; Hoshi, H.

    2007-03-01

    The identification of mammary gland regions is a necessary processing step during the anatomical structure recognition of human body and can be expected to provide the useful information for breast tumor diagnosis. This paper proposes a fully-automated scheme for segmenting the mammary gland regions in non-contrast torso CT images. This scheme calculates the probability for each voxel belonging to the mammary gland or other regions (for example pectoralis major muscles) in CT images and decides the mammary gland regions automatically. The probability is estimated from the location of the mammary gland and pectoralis major muscles in CT images. The location (named as a probabilistic atlas) is investigated from the pre-segmentation results in a number of different CT scans and the CT number distribution is approximated using a Gaussian function. We applied this scheme to 66 patient cases (female, age: 40-80) and evaluated the accuracy by using the coincidence rate between the segmented result and gold standard that is generated manually by a radiologist for each CT case. The mean value of the coincidence rate was 0.82 with the standard deviation of 0.09 for 66 CT cases.

  19. Single cell deposition and patterning with a robotic system.

    Directory of Open Access Journals (Sweden)

    Zhe Lu

    Full Text Available Integrating single-cell manipulation techniques in traditional and emerging biological culture systems is challenging. Microfabricated devices for single cell studies in particular often require cells to be spatially positioned at specific culture sites on the device surface. This paper presents a robotic micromanipulation system for pick-and-place positioning of single cells. By integrating computer vision and motion control algorithms, the system visually tracks a cell in real time and controls multiple positioning devices simultaneously to accurately pick up a single cell, transfer it to a desired substrate, and deposit it at a specified location. A traditional glass micropipette is used, and whole- and partial-cell aspiration techniques are investigated to manipulate single cells. Partially aspirating cells resulted in an operation speed of 15 seconds per cell and a 95% success rate. In contrast, the whole-cell aspiration method required 30 seconds per cell and achieved a success rate of 80%. The broad applicability of this robotic manipulation technique is demonstrated using multiple cell types on traditional substrates and on open-top microfabricated devices, without requiring modifications to device designs. Furthermore, we used this serial deposition process in conjunction with an established parallel cell manipulation technique to improve the efficiency of single cell capture from ∼80% to 100%. Using a robotic micromanipulation system to position single cells on a substrate is demonstrated as an effective stand-alone or bolstering technology for single-cell studies, eliminating some of the drawbacks associated with standard single-cell handling and manipulation techniques.

  20. Analyzing the relevance of shape descriptors in automated recognition of facial gestures in 3D images

    Science.gov (United States)

    Rodriguez A., Julian S.; Prieto, Flavio

    2013-03-01

    The present document shows and explains the results from analyzing shape descriptors (DESIRE and Spherical Spin Image) for facial recognition of 3D images. DESIRE is a descriptor made of depth images, silhouettes and rays extended from a polygonal mesh; whereas the Spherical Spin Image (SSI) associated to a polygonal mesh point, is a 2D histogram built from neighboring points by using the position information that captures features of the local shape. The database used contains images of facial expressions which in average were recognized 88.16% using a neuronal network and 91.11% with a Bayesian classifier in the case of the first descriptor; in contrast, the second descriptor only recognizes in average 32% and 23,6% using the same mentioned classifiers respectively.

  1. A preliminary study for fully automated quantification of psoriasis severity using image mapping

    Science.gov (United States)

    Mukai, Kazuhiro; Iyatomi, Hitoshi

    2014-03-01

    Psoriasis is a common chronic skin disease and it detracts patients' QoL seriously. Since there is no known permanent cure so far, controlling appropriate disease condition is necessary and therefore quantification of its severity is important. In clinical, psoriasis area and severity index (PASI) is commonly used for abovementioned purpose, however it is often subjective and troublesome. A fully automatic computer-assisted area and severity index (CASI) was proposed to make an objective quantification of skin disease. It investigates the size and density of erythema based on digital image analysis, however it does not consider various inadequate effects caused by different geometrical conditions under clinical follow-up (i.e. variability in direction and distance between camera and patient). In this study, we proposed an image alignment method for clinical images and investigated to quantify the severity of psoriasis under clinical follow-up combined with the idea of CASI. The proposed method finds geometrical same points in patient's body (ROI) between images with Scale Invariant Feature Transform (SIFT) and performs the Affine transform to map the pixel value to the other. In this study, clinical images from 7 patients with psoriasis lesions on their trunk under clinical follow-up were used. In each series, our image alignment algorithm align images to the geometry of their first image. Our proposed method aligned images appropriately on visual assessment and confirmed that psoriasis areas were properly extracted using the approach of CASI. Although we cannot evaluate PASI and CASI directly due to their different definition of ROI, we confirmed that there is a large correlation between those scores with our image quantification method.

  2. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2016-07-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.   Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.   This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.   Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, Google DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  3. An algorithm for automated ROI definition in water or epoxy-filled NEMA NU-2 image quality phantoms.

    Science.gov (United States)

    Pierce Ii, Larry A; Byrd, Darrin W; Elston, Brian F; Karp, Joel S; Sunderland, John J; Kinahan, Paul E

    2016-01-08

    Drawing regions of interest (ROIs) in positron emission tomography/computed tomography (PET/CT) scans of the National Electrical Manufacturers Association (NEMA) NU-2 Image Quality (IQ) phantom is a time-consuming process that allows for interuser variability in the measurements. In order to reduce operator effort and allow batch processing of IQ phantom images, we propose a fast, robust, automated algorithm for performing IQ phantom sphere localization and analysis. The algorithm is easily altered to accommodate different configurations of the IQ phantom. The proposed algorithm uses information from both the PET and CT image volumes in order to overcome the challenges of detecting the smallest spheres in the PET volume. This algorithm has been released as an open-source plug-in to the Osirix medical image viewing software package. We test the algorithm under various noise conditions, positions within the scanner, air bubbles in the phantom spheres, and scanner misalignment conditions. The proposed algorithm shows run-times between 3 and 4 min and has proven to be robust under all tested conditions, with expected sphere localization deviations of less than 0.2 mm and variations of PET ROI mean and maximum values on the order of 0.5% and 2%, respectively, over multiple PET acquisitions. We conclude that the proposed algorithm is stable when challenged with a variety of physical and imaging anomalies, and that the algorithm can be a valuable tool for those who use the NEMA NU-2 IQ phantom for PET/CT scanner acceptance testing and QA/QC.

  4. Single-cell Transcriptome Study as Big Data.

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-02-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  5. Single-cell Transcriptome Study as Big Data

    Institute of Scientific and Technical Information of China (English)

    Pingjian Yu; Wei Lin

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteris-tics of scRNA-seq data and primary objectives of single-cell studies.

  6. Single-cell Transcriptome Study as Big Data

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  7. Automated image segmentation and registration of vessel wall MRI for quantitative assessment of carotid artery vessel wall dimensions and plaque composition

    NARCIS (Netherlands)

    Klooster, Ronald van 't

    2014-01-01

    The main goal of this thesis was to develop methods for automated segmentation, registration and classification of the carotid artery vessel wall and plaque components using multi-sequence MR vessel wall images to assess atherosclerosis. First, a general introduction into atherosclerosis and differe

  8. Detection of DNA Aneuploidy in Exfoliated Airway Epithelia Cells of Sputum Specimens by the Automated Image Cytometry and Its Clinical Value in the Identification of Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    杨健; 周宜开

    2004-01-01

    To evaluate the value of detecton of DNA aneuploidy in exfoliated airway epithelia cells of sputum specimens by the automated image cytometry for the identification of lung cancer, 100patients were divided into patient group (50 patients with lung cancer)and control group (30 patients with tuberculosis and 20 healthy people). Sputum was obtained for the quantitative analysis of DNA content of exfoliated airway epithelial cells with the automated image cytometry, together with the examinations of brush cytology and conventional sputum cytology. Our results showed that DNA aneuploidy (DI>2.5 or 5c) was found in 20 out of 50 sputum samples of lung cancer, 1 out of 30 sputum samples from tuberculosis patients, and none of 20 sputum samples from healthy people. The positive rates of conventional sputum cytology and brush cytology were 16 % and 32 %,which was lower than that of DNA aneuploidy detection by the automated image cytometry (P<0.01 ,P>0.05). Our study showed that automated image cytometry, which uses DNA aneuploidy as a marker for tumor, can detect the malignant cells in sputum samples of lung cancer and it is a sensitive and specific method serving as a complement for the diagnosis of lung cancer.

  9. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  10. An automated image-based tool for pupil plane characterization of EUVL tools

    Science.gov (United States)

    Levinson, Zac; Smith, Jack S.; Fenger, Germain; Smith, Bruce W.

    2016-03-01

    Pupil plane characterization will play a critical role in image process optimization for EUV lithography (EUVL), as it has for several lithography generations. In EUVL systems there is additional importance placed on understanding the ways that thermally-induced system drift affect pupil variation during operation. In-situ full pupil characterization is therefore essential for these tools. To this end we have developed Quick Inverse Pupil (QUIP)—a software suite developed for rapid characterization of pupil plane behavior based on images formed by that system. The software consists of three main components: 1) an image viewer, 2) the model builder, and 3) the wavefront analyzer. The image viewer analyzes CDSEM micrographs or actinic mask micrographs to measure either CDs or through-focus intensity volumes. The software is capable of rotation correction and image registration with subpixel accuracy. The second component pre-builds a model for a particular imaging system to enable rapid pupil characterization. Finally, the third component analyzes the results from the image viewer and uses the optional pre-built model for inverse solutions of pupil plane behavior. Both pupil amplitude and phase variation can be extracted using this software. Inverse solutions are obtained through a model based algorithm which is built on top of commercial rigorous full-vector simulation software.

  11. AUTOMATED DETECTION OF HARD EXUDATES IN FUNDUS IMAGES USING IMPROVED OTSU THRESHOLDING AND SVM

    Directory of Open Access Journals (Sweden)

    Weiwei Gao

    2016-02-01

    Full Text Available One common cause of visual impairment among people of working age in the industrialized countries is Diabetic Retinopathy (DR. Automatic recognition of hard exudates (EXs which is one of DR lesions in fundus images can contribute to the diagnosis and screening of DR.The aim of this paper was to automatically detect those lesions from fundus images. At first,green channel of each original fundus image was segmented by improved Otsu thresholding based on minimum inner-cluster variance, and candidate regions of EXs were obtained. Then, we extracted features of candidate regions and selected a subset which best discriminates EXs from the retinal background by means of logistic regression (LR. The selected features were subsequently used as inputs to a SVM to get a final segmentation result of EXs in the image. Our database was composed of 120 images with variable color, brightness, and quality. 70 of them were used to train the SVM and the remaining 50 to assess the performance of the method. Using a lesion based criterion, we achieved a mean sensitivity of 95.05% and a mean positive predictive value of 95.37%. With an image-based criterion, our approach reached a 100% mean sensitivity, 90.9% mean specificity and 96.0% mean accuracy. Furthermore, the average time cost in processing an image is 8.31 seconds. These results suggest that the proposed method could be a diagnostic aid for ophthalmologists in the screening for DR.

  12. MO-G-BRE-03: Automated Continuous Monitoring of Patient Setup with Second-Check Independent Image Registration

    International Nuclear Information System (INIS)

    Purpose: To create a non-supervised quality assurance program to monitor image-based patient setup. The system acts a secondary check by independently computing shifts and rotations and interfaces with Varian's database to verify therapist's work and warn against sub-optimal setups. Methods: Temporary digitally-reconstructed radiographs (DRRs) and OBI radiographic image files created by Varian's treatment console during patient setup are intercepted and used as input in an independent registration module customized for accuracy that determines the optimal rotations and shifts. To deal with the poor quality of OBI images, a histogram equalization of the live images to the DDR counterparts is performed as a pre-processing step. A search for the most sensitive metric was performed by plotting search spaces subject to various translations and convergence analysis was applied to ensure the optimizer finds the global minima. Final system configuration uses the NCC metric with 150 histogram bins and a one plus one optimizer running for 2000 iterations with customized scales for translations and rotations in a multi-stage optimization setup that first corrects and translations and subsequently rotations. Results: The system was installed clinically to monitor and provide almost real-time feedback on patient positioning. On a 2 month-basis uncorrected pitch values were of a mean 0.016° with standard deviation of 1.692°, and couch rotations of − 0.090°± 1.547°. The couch shifts were −0.157°±0.466° cm for the vertical, 0.045°±0.286 laterally and 0.084°± 0.501° longitudinally. Uncorrected pitch angles were the most common source of discrepancies. Large variations in the pitch angles were correlated with patient motion inside the mask. Conclusion: A system for automated quality assurance of therapist's registration was designed and tested in clinical practice. The approach complements the clinical software's automated registration in

  13. An Automated System for Detecting Sigmoids in Solar X-ray Images

    Science.gov (United States)

    LaBonte, B. J.; Rust, D. M.; Bernasconi, P. N.

    2003-05-01

    The probability of a coronal mass ejection (CME) occurring is linked to the appearance of structures, called sigmoids, in satellite X-ray images of the sun. By examination of near real time images, we can detect sigmoids visually and estimate the probability of a CME and the probability that it will cause a major geomagnetic storm. We have devised a pattern recognition system to detect the sigmoids in Yohkoh SXT and GOES SXI X-ray images automatically. When implemented in a near real time environment, this system should allow long term, 3 - 7 day, forecasts of CMEs and their potential for causing major geomagnetic storms.

  14. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    Science.gov (United States)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  15. Automated Detection of Healthy and Diseased Aortae from Images Obtained by Contrast-Enhanced CT Scan

    Directory of Open Access Journals (Sweden)

    Michael Gayhart

    2013-01-01

    Full Text Available Purpose. We developed the next stage of our computer assisted diagnosis (CAD system to aid radiologists in evaluating CT images for aortic disease by removing innocuous images and highlighting signs of aortic disease. Materials and Methods. Segmented data of patient’s contrast-enhanced CT scan was analyzed for aortic dissection and penetrating aortic ulcer (PAU. Aortic dissection was detected by checking for an abnormal shape of the aorta using edge oriented methods. PAU was recognized through abnormally high intensities with interest point operators. Results. The aortic dissection detection process had a sensitivity of 0.8218 and a specificity of 0.9907. The PAU detection process scored a sensitivity of 0.7587 and a specificity of 0.9700. Conclusion. The aortic dissection detection process and the PAU detection process were successful in removing innocuous images, but additional methods are necessary for improving recognition of images with aortic disease.

  16. Automated identification of diploid reference cells in cervical smears using image analysis.

    NARCIS (Netherlands)

    Laak, J.A.W.M. van der; Siebers, A.G.; Cuijpers, V.M.J.I.; Pahlplatz, M.M.M.; Wilde, P.C.M. de; Hanselaar, A.G.J.M.

    2002-01-01

    BACKGROUND: Acquisition of DNA ploidy histograms by image analysis may yield important information regarding the behavior of premalignant cervical lesions. Accurate selection of nuclei for DNA measurement is an important prerequisite for obtaining reliable data. Traditionally, manual selection of nu

  17. An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

    OpenAIRE

    Amiri, S.; Movahedi, M M; Kazemi, K; Parsaei, H

    2013-01-01

    Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image artifacts such as noise, low contrast and intensity non-uniformity, there are some classification errors...

  18. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    Science.gov (United States)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  19. Statistical colour models: an automated digital image analysis method for quantification of histological biomarkers

    OpenAIRE

    Shu, Jie; Dolman, G. E.; Duan, Jiang; Qiu, Guoping; Ilyas, Mohammad

    2016-01-01

    Background Colour is the most important feature used in quantitative immunohistochemistry (IHC) image analysis; IHC is used to provide information relating to aetiology and to confirm malignancy. Methods Statistical modelling is a technique widely used for colour detection in computer vision. We have developed a statistical model of colour detection applicable to detection of stain colour in digital IHC images. Model was first trained by massive colour pixels collected semi-automatically. To ...

  20. Renal Graft Fibrosis and Inflammation Quantification by an Automated Fourier-Transform Infrared Imaging Technique.

    Science.gov (United States)

    Vuiblet, Vincent; Fere, Michael; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-08-01

    Renal interstitial fibrosis and interstitial active inflammation are the main histologic features of renal allograft biopsy specimens. Fibrosis is currently assessed by semiquantitative subjective analysis, and color image analysis has been developed to improve the reliability and repeatability of this evaluation. However, these techniques fail to distinguish fibrosis from constitutive collagen or active inflammation. We developed an automatic, reproducible Fourier-transform infrared (FTIR) imaging-based technique for simultaneous quantification of fibrosis and inflammation in renal allograft biopsy specimens. We generated and validated a classification model using 49 renal biopsy specimens and subsequently tested the robustness of this classification algorithm on 166 renal grafts. Finally, we explored the clinical relevance of fibrosis quantification using FTIR imaging by comparing results with renal function at 3 months after transplantation (M3) and the variation of renal function between M3 and M12. We showed excellent robustness for fibrosis and inflammation classification, with >90% of renal biopsy specimens adequately classified by FTIR imaging. Finally, fibrosis quantification by FTIR imaging correlated with renal function at M3, and the variation in fibrosis between M3 and M12 correlated well with the variation in renal function over the same period. This study shows that FTIR-based analysis of renal graft biopsy specimens is a reproducible and reliable label-free technique for quantifying fibrosis and active inflammation. This technique seems to be more relevant than digital image analysis and promising for both research studies and routine clinical practice.

  1. Offset-sparsity decomposition for automated enhancement of color microscopic image of stained specimen in histopathology

    Science.gov (United States)

    Kopriva, Ivica; Hadžija, Marijana Popović; Hadžija, Mirko; Aralica, Gorana

    2015-07-01

    We propose an offset-sparsity decomposition method for the enhancement of a color microscopic image of a stained specimen. The method decomposes vectorized spectral images into offset terms and sparse terms. A sparse term represents an enhanced image, and an offset term represents a "shadow." The related optimization problem is solved by computational improvement of the accelerated proximal gradient method used initially to solve the related rank-sparsity decomposition problem. Removal of an image-adapted color offset yields an enhanced image with improved colorimetric differences among the histological structures. This is verified by a no-reference colorfulness measure estimated from 35 specimens of the human liver, 1 specimen of the mouse liver stained with hematoxylin and eosin, 6 specimens of the mouse liver stained with Sudan III, and 3 specimens of the human liver stained with the anti-CD34 monoclonal antibody. The colorimetric difference improves on average by 43.86% with a 99% confidence interval (CI) of [35.35%, 51.62%]. Furthermore, according to the mean opinion score, estimated on the basis of the evaluations of five pathologists, images enhanced by the proposed method exhibit an average quality improvement of 16.60% with a 99% CI of [10.46%, 22.73%].

  2. Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, G [Department of Oncological and Surgical Sciences, University of Padova, via Gattamelata 64, 35128 Padova (Italy); Ferro, F [Department of Oncological and Surgical Sciences, University of Padova, via Gattamelata 64, 35128 Padova (Italy); Contento, G [Cyberqual S.r.l., Gorizia (Italy); Fornasin, F [Cyberqual S.r.l., Gorizia (Italy); Di Maggio, C [Department of Oncological and Surgical Sciences, University of Padova, via Gattamelata 64, 35128 Padova (Italy)

    2007-03-07

    The performance of an automatic software package was evaluated with phantom images acquired by a full-field digital mammography unit. After the validation, the software was used, together with a Leeds TORMAS test object, to model the image acquisition process. Process modelling results were used to evaluate the sensitivity of the method in detecting changes of exposure parameters from routine image quality measurements in digital mammography, which is the ultimate purpose of long-term reproducibility tests. Image quality indices measured by the software included the mean pixel value and standard deviation of circular details and surrounding background, contrast-to-noise ratio and relative contrast; detail counts were also collected. The validation procedure demonstrated that the software localizes the phantom details correctly and the difference between automatic and manual measurements was within few grey levels. Quantitative analysis showed sufficient sensitivity to relate fluctuations in exposure parameters (kV{sub p} or mAs) to variations in image quality indices. In comparison, detail counts were found less sensitive in detecting image quality changes, even when limitations due to observer subjectivity were overcome by automatic analysis. In conclusion, long-term reproducibility tests provided by the Leeds TORMAS phantom with quantitative analysis of multiple IQ indices have been demonstrated to be effective in predicting causes of deviation from standard operating conditions and can be used to monitor stability in full-field digital mammography.

  3. A learning-based approach for automated quality assessment of computer-rendered images

    Science.gov (United States)

    Zhang, Xi; Agam, Gady

    2012-01-01

    Computer generated images are common in numerous computer graphics applications such as games, modeling, and simulation. There is normally a tradeoff between the time allocated to the generation of each image frame and and the quality of the image, where better quality images require more processing time. Specifically, in the rendering of 3D objects, the surfaces of objects may be manipulated by subdividing them into smaller triangular patches and/or smoothing them so as to produce better looking renderings. Since unnecessary subdivision results in increased rendering time and unnecessary smoothing results in reduced details, there is a need to automatically determine the amount of necessary processing for producing good quality rendered images. In this paper we propose a novel supervised learning based methodology for automatically predicting the quality of rendered images of 3D objects. To perform the prediction we train on a data set which is labeled by human observers for quality. We are then able to predict the quality of renderings (not used in the training) with an average prediction error of roughly 20%. The proposed approach is compared to known techniques and is shown to produce better results.

  4. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  5. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  6. Visualizing Wnt Palmitoylation in Single Cells.

    Science.gov (United States)

    Gao, Xinxin; Hannoush, Rami N

    2016-01-01

    Wnt palmitoylation regulates its secretion and signaling activity in cells. Methods to monitor cellular Wnt palmitoylation are instrumental in investigating Wnt activity, secretion, and its interaction with cellular membrane compartments. This protocol describes a method we have recently developed to detect cellular Wnt palmitoylation. The method, combining click chemistry, bio-orthogonal fatty acid probes, and proximity ligation assay (PLA), provides high sensitivity and subcellular resolution for detection of Wnt palmitoylation. It is also compatible with multiple imaging platforms, and is applicable to detecting palmitoylated forms of other fatty acylated proteins. PMID:27590146

  7. Recent Trends on Micro/Nanofluidic Single Cell Electroporation

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Santra

    2013-09-01

    Full Text Available The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to external stimuli and intracellular reaction. Thus, single cell level research is becoming a pioneering research area that unveils the interaction details in high temporal and spatial resolution among cells. To analyze the cellular function, single cell electroporation can be conducted by employing a miniaturized device, whose dimension should be similar to that of a single cell. Micro/nanofluidic devices can fulfill this requirement for single cell electroporation. This device is not only useful for cell lysis, cell to cell fusion or separation, insertion of drug, DNA and antibodies inside single cell, but also it can control biochemical, electrical and mechanical parameters using electroporation technique. This device provides better performance such as high transfection efficiency, high cell viability, lower Joule heating effect, less sample contamination, lower toxicity during electroporation experiment when compared to bulk electroporation process. In addition, single organelles within a cell can be analyzed selectively by reducing the electrode size and gap at nanoscale level. This advanced technique can deliver (in/out biomolecules precisely through a small membrane area (micro to nanoscale area of the single cell, known as localized single cell membrane electroporation (LSCMEP. These articles emphasize the recent progress in micro/nanofluidic single cell electroporation, which is potentially beneficial for high-efficient therapeutic and delivery applications or understanding cell to cell interaction.

  8. High resolution array-CGH analysis of single cells

    OpenAIRE

    Fiegler, Heike; Geigl, Jochen B.; Langer, Sabine; Rigler, Diane; Porter, Keith; Unger, Kristian; Carter, Nigel P; Speicher, Michael R.

    2006-01-01

    Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been developed in an attempt to achieve unbiased amplification. Many of these approaches are suitable for subsequent cytogenetic analyses usin...

  9. LANDSAT image differencing as an automated land cover change detection technique

    Science.gov (United States)

    Stauffer, M. L.; Mckinney, R. L.

    1978-01-01

    Image differencing was investigated as a technique for use with LANDSAT digital data to delineate areas of land cover change in an urban environment. LANDSAT data collected in April 1973 and April 1975 for Austin, Texas, were geometrically corrected and precisely registered to United States Geological Survey 7.5-minute quadrangle maps. At each pixel location reflectance values for the corresponding bands were subtracted to produce four difference images. Areas of major reflectance differences are isolated by thresholding each of the difference images. The resulting images are combined to obtain an image data set to total change. These areas of reflectance differences were found, in general, to correspond to areas of land cover change. Information on areas of land cover change was incorporated into a procedure to mask out all nonchange areas and perform an unsupervised classification only for data in the change areas. This procedure identified three broad categories: (1) areas of high reflectance (construction or extractive), (2) changes in agricultural areas, and (3) areas of confusion between agricultural and other areas.

  10. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features

    Science.gov (United States)

    Yu, Kun-Hsing; Zhang, Ce; Berry, Gerald J.; Altman, Russ B.; Ré, Christopher; Rubin, Daniel L.; Snyder, Michael

    2016-01-01

    Lung cancer is the most prevalent cancer worldwide, and histopathological assessmen