WorldWideScience

Sample records for automated personal dosimetry

  1. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  2. Automation at NRCN Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Running a dosimetric service based on TLD technology such as at the Nuclear Research Centre Negev (NRCN) requires a large group of workers to carry out simple mechanical actions such as opening and closing TLD badges, placing and removal of TLD cards from the badges and operating the TLD reader. These actions can be automated to free human resources for other assignments and to improve the quality assurance. At NRCN a project was undertaken to design and build a robotic system based on a manipulator arm. The design was based on the experience achieved with an earlier prototype (1,2). The system stores the TLD badges in special designed boxes, which are transported and stored in computer defined bins. The robotic arm loads and unloads TLD cards to the badges, and loads/unloads the cards to a magazine for the TLD reader. At the Nuclear Research Center Negev (NRCN) each badge is assigned to a specific worker and bears a sticker containing the worker's personal details, also in a machine readable form (barcode). In order to establish a proper QA check, a barcode reader records the information on the badge and on the TLD card placed in this badge and checks their compatibility with the information contained in the main database. Besides the TLD cards loading/unloading station, there is a contamination check station, a cards cleaning station and a UV irradiation box used to reduce the history dependent residual dose. The system was installed at the NRCN dosimetry laboratory It was successfully tested for several hundreds of cycles and will become operational in the first quarter of 2014. As far as we know, there is no similar product available for automatic handling in a TLD laboratory

  3. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  4. Dose modulated computed tomography automated dosimetry

    International Nuclear Information System (INIS)

    the appropriate factors as they vary with position scanned through the patient. The ImPACT CT Patient Dosimetry Calculator program is called on a minimum number of times to reduce the time required to perform a dosimetry study. The results are presented in a similar format to the ImPACT CT Patient Dosimetry Calculator worksheet to enable comparisons and to assist use. This automated dose modulated CT dosimetry program has been successfully implemented to perform calculations which would otherwise be too onerous to attempt and has been used in the comparison of patient dose from CT studies submitted as part of a tender evaluation process. It is reliant on the use of the ImPACT CT Patient Dosimetry Calculator, which also utilises Excel. The program requires images to be within a single folder and in dicom format. This program has become an essential tool for performing CT dosimetry, required on scanners capable of dose modulation, in a time effective manner. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  5. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  6. Algorithm Verification for A TLD Personal Dosimetry System

    International Nuclear Information System (INIS)

    Dose algorithms are used in thermoluminescence personnel dosimetry for the interpretation of the dosimeter response in terms of equivalent dose. In the present study an Automated Harshaw 6600 reader was rigorously tested prior to use for dose calculation algorithm according to the standard established by the US Department of Energy Laboratory Accreditation Program (DOELAP). Also, manual Harshaw 4500 reader was used along with the ICRU slab phantom and the RANDO phantom in experimentally determining the photon personal doses in terms of deep dose, Hp(10), shallow dose, Hp(0.07), and eye lens dose, Hp(3),. Also, a Monte Carlo simulation program (VMC-dc) free code was used to simulate RANDO phantom irradiation process. The accuracy of the automated system lies well within DOELAP tolerance limits in all test categories

  7. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry . Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al2O3:C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  8. The personal dosimetry in Mexico; La dosimetria personal en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A. [Proxtronics/ Asesoria Integral en Dosimetria Termoluminiscente S.A. de C.V., Canal de Miramontes 2030-14, Col. Educacion, 04400 Mexico D.F. (Mexico)]. e-mail: aidtsa@avantel.net

    2006-07-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  9. Personal dosimetry for external radiation exposure in Europe

    International Nuclear Information System (INIS)

    This article summarizes a report on harmonisation and dosimetric quality assurance in individual monitoring for external radiation, published by the European Radiation Dosimetry Group (EURADOS). The report comprises three parts: (1) procedures and regulations in countries of the European Union and Switzerland with respect to personal dosimetry; (2) a catalogue with descriptions of dosimetry systems in the fore-mentioned countries; and (3) performance testing of dosimetric services in EU Member States and Switzerland. 17 refs

  10. Personal Dosimetry Enhancement for Underground Workplaces

    Directory of Open Access Journals (Sweden)

    L. Thinová

    2005-01-01

    Full Text Available Personal dosimetry for underground workers mainly concerns measurement of the concentration of radon (and its daughters and the correct application of the data in dose calculation, using a biokinetic model for lung dosimetry. A conservative approach for estimating the potential dose in caves (or underground is based on solid state alpha track detector measurements. The obtained dataset is converted into an annual effective dose in agreement with the ICRP recommendations using the “cave factor”, the value of which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached and the attached fraction and on the equilibrium factor. The main difference between apartments and caves is the absence of aerosol sources, high humidity, low ventilation rate and the uneven surface in caves. A more precisely determined dose value would have a significant impact on radon remedies or on restricting the time workers stay underground. In order to determine  how the effective dose is calculated, it is necessary to divide these areas into distinct categories by the following measuring procedures: continual radon measurement (to capture the differences in EERC between working hours and night-time, and also between daily and seasonal radon concentration variations; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoils and in water inside/outside, a study of the radon sources in the cave; aerosol particle-size spectrum measurements to determine the free fraction; monitoring the behaviour of guides and workers to record the actual time spent in the cave, in relation to the continuously monitored levels of Rn concentration. 

  11. Eurados trial performance test for neutron personal dosimetry

    DEFF Research Database (Denmark)

    Bordy, J.M.; Stadtmann, H.; Ambrosi, P.;

    2001-01-01

    measured, but particular problems were noted in the determination of intermediate energy fields and large incident angles, demonstrating the difficulties of neutron personal dosimetry. Of particular concern from a radiological protection point of view was the large number of results underestimating...... personal dose equivalent. A considerable over-response was noted in a few cases....

  12. System of data management in 'Dosis' personal dosimetry

    International Nuclear Information System (INIS)

    The storage and control of the data of a service of personal dosimetry is a task that requires specify care in data handling and manipulation. This activity becomes more annoying of making manually when the volume of users of the service is significant. The External Dosimetric Laboratory of the Center for Radiation Protection and Hygiene has developed a system of administration of data that allows the storage, control and analysis of the data generated by the Service of Personal Dosimetry in an efficient and reliable way. This paper describes the characteristics of the System for Administration of Data in Personal Dosimetry 'Dosis', as well as their design and programming. The importance of this System for the laboratory and the advantages of their application are described. The characteristics of the different modules are also described. (author)

  13. New web interface for Personal dosimetry VF, a.s

    International Nuclear Information System (INIS)

    The lecture will introduce new functions and graphic design WebSOD - web interface Personal dosimetry Service VF. a.s. which will be updated in November 2014. The new interface will have a new graphic design, intuitive control system and will be providing a range of new functions: - Personal doses - display of personal doses from personal, extremity and neutron dosimeters including graphs, annual and electronic listings of doses; - Collective doses - display of group doses for selected periods of time; Reference levels - setting and display of three reference levels; - Evidence - enables administration of monitored individuals - beginning, ending of monitoring, or editing the data of monitored persons and centers. (author)

  14. Trends of personal dosimetry at atomic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Seini [Fuji Electric Co. Ltd., Tokyo Factory, Radiation Equipment Department, Tokyo (Japan)

    1998-12-31

    The individual dosimetry at the atomic power station is sorted for monthly dosimetry, daily dosimetry and special job dosimetry in high dose circumstance. Film badge (passive dosimeter) can measure gamma dose, beta dose and neutron dose respectively lower than about 0.1 mSv. While workers are in the radiation controlled area, they have to wear the dosimeters and the individual dose is accumulated for every one month. Recently the Silicon semiconductors detecting beta ray and neutron have been developed. With microcircuit technology and these new sensors, new multiple function dosimeter of the card size had been put to practical use. The result of dose measurement obtained by the electronic dosimeter is consistent well with the measurement of usual film badge and new dosimeter can determine the dose as low as 0.01 mSv. The result is stored in the non-volatile memory in the electronic personal dosimeter and held for more than one year without the power supply. The function to read data directly from the memory improves the reliability of the data protection. The realization of the unified radiation control system that uses the electronic personal dosimeter for monthly dosimetry is expected. (J.P.N.)

  15. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO4:Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  16. Education and training activities on personal dosimetry service in Turkey

    International Nuclear Information System (INIS)

    A personal dosimetry service that evaluates the occupational doses for external and internal radiation of the radiation workers is one of the main components of radiation protection programme. The education and training (E and T) activities in this field are basic aspects of the optimisation of all exposures to radiation. The E and T activities in the field of occupational radiation protection at the national and international level are of main interest and implemented by the Ankara Nuclear Research and Training Center. This study describes the Turkish experience in E and T of the staff of dosimetry services, postgraduate students and medical physics experts. In Turkey, the first individual monitoring training course was conducted in 2012. The aim of this study is to provide a structured description of postgraduate courses that are addressed to qualified experts and medical physics experts, and the modules are mainly dedicated to individual monitoring. (authors)

  17. Automation of the particle dosimetry and the dose application for radiobiological experiments at a vertical proton beam

    CERN Document Server

    Moertel, H; Eyrich, W; Fritsch, M; Distel, L

    2002-01-01

    A facility with a vertical beam for radiobiological experiments with low-energy protons has been setup at the Tandem accelerator at Erlangen. This energy region is optimal to investigate the biological effects of the linear energy transfer in the Bragg region under physiological conditions. A new automated data acquisition system for dosimetry and monitoring based on a personal computer was developed and optimized for this setup. A specially designed sample holder offers possibilities of cooling or changing of atmosphere during irradiation. First irradiations of biological samples have shown the functionality of the setup.

  18. Personal radon dosimetry from eyeglass lenses.

    Science.gov (United States)

    Fleischer, R L; Meyer, N R; Hadley, S A; MacDonald, J; Cavallo, A

    2001-01-01

    Eyeglass lenses are commonly composed of allyl-diglycol carbonate (CR-39), an alpha-particle detecting plastic, thus making such lenses personal radon dosemeters. Samples of such lenses have been obtained, etched to reveal that radon and radon progeny alpha tracks can be seen in abundance, and sensitivities have been calibrated in radon chambers as a primary calibration, and with a uranium-based source of alpha particles as a convenient secondary standard. With one exception natural, environmental (fossil) track densities ranged from less than 3,000 to nearly 70,000 per cm2 for eyeglasses that had been worn for various times from one to nearly five years. Average radon concentrations to which those wearers were exposed are inferred to be in the range 14 to 130 Bq x m(-3) (0.4 to 3.5 pCi x l(-1)). A protocol for consistent, meaningful readout is derived and used. In the exceptional case the fossil track density was 1,780,000 cm(-2) and the inferred (24 h) average radon concentration was 6500 Bq x m(-3) (175 pCi x l(-1)) for a worker at an inactive uranium mine that is used for therapy.

  19. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    Energy Technology Data Exchange (ETDEWEB)

    Hubner, S., E-mail: stephan.huebner@helmholtz-muenchen.de [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-80219, Munich (Georgia)

    2014-08-15

    The personal monitoring service named Auswertungsstelle is part of the Helmholtz Zentrum Munchen, a non-profit-making research center in Germany. As one of the four monitoring services in Germany, we have been a reliable partner in radiation protection for more than 60 years. With about 1.9 million dose assessments per year, we are the largest monitoring service in Europe. For dozens of years, our main dosimeter used in whole-body dosimetry has been a film dosimeter. Although its dosimetric properties are still up to date, film dosimetry won.t be a sustainable technique for the use in monitoring services. Therefore, a project with the objective of investigating alternative dosimetric materials and methods was launched in the late 1990 at the Helmholtz Zentrum Munchen. Based on this research work, the use of Be O as an OSL dosimeter was studied by the radiation physics group of the Tu Dresden, by order and on account of the Auswertungsstelle at the Helmholtz Zentrum Munchen. It was shown, that ceramic Be O features promising dosimetric properties, making Be O detectors particularly suitable for being used in all applications in whole-body dosimetry measuring photons. Ceramic Be O material has an excellent resistance to environmental influences. The Be O chips are almost tissue equivalent. Therefore, these detectors show low photon energy dependence. A new personal dosimetry system based on the OSL dosimetry of Be O was developed. Applying this system, the Auswertungsstelle offers OSL-dosimeters for official monitoring of the Personal Dose Equivalent Hp(10) since 2011. This OSL-System is accredited according to DIN IEC 62387 and we obtained the corresponding type approval by the Ptb, the national metrology institute in Germany. Sophisticated logistics was developed and installed. High degree of automation was achieved by robots for dosimeter assembly and machines for packing, labelling and unpacking of the dosimeters. To become a sustainable dosimetry system not only

  20. An automated dosimetry system for testing whole-body ultraviolet phototherapy cabinets

    International Nuclear Information System (INIS)

    A new technique is described for automated ultraviolet dosimetry within whole-body phototherapy cabinets. A dual-head detector system has been designed, permitting simultaneous assessment of irradiance levels and radiant intensities from individual lamps. One detector is used in combination with a diffuser/filter system for the measurement of irradiance and the other is mounted at the end of a slit collimator to provide a measurement which can be related to the radiant intensities of the individual lamps. These quantities are derived from 800 separate measurements made during rotation of the detector head around a 360 deg. circle at a fixed height and position within the cabinet under remote computer software control. The device has advantages compared with standard techniques, enabling measurements to be made without the need for a person to be present in the cabinet. A full set of measurements is made with minimal switching of the power supply to the lamps. This simplifies the assessment and reduces the uncertainty from variation in output after the lamps are switched on. Variations in irradiance with orientation for the smaller phototherapy cabinets are clearly demonstrated. Plots of data from the collimated detector show peaks corresponding to the lamps and the surrounding reflectors. The plots enable failed lamps to be detected and peak values can be related to radiant intensities of individual lamps. (author)

  1. Optimization of radiation protection in nuclear medicine: from reference dosimetry to personalized dosimetry

    International Nuclear Information System (INIS)

    In nuclear medicine, radiopharmaceuticals are distributed in the body through biokinetic processes. Thus, each organ can become a source of radiation delivering a fraction of emitted energy in tissues. Therefore, dose calculations must be assessed accurately and realistically to ensure the patient radiation protection. Absorbed doses were until now based on mathematical standard models and electron transport approximations. The International Commission on Radiological Protection (ICRP) has recently adopted voxel phantoms as a more realistic representation of the reference adult. The main goal of this thesis was to study the influence of the use of the new reference models and Monte Carlo methods on the major dosimetric quantities. In addition, the contribution of patients? specific geometry to the absorbed dose was compared to a standard geometry, enabling the evaluation of uncertainties arising from the reference values. Particular attention was paid to the bone marrow which is characterized by a high radiosensitivity and a complex microscopic structure. An accurate alpha dosimetry was assessed for bone marrow using microscopic images of several trabecular bone sites. The results showed variations in the absorbed fractions as a function of the particles? energy, the skeletal site and the amount of fat within marrow cavities, three parameters which are not taken into account in the values published by the ICRP. Finally, the heterogeneous activity distribution of the radiopharmaceuticals was considered within the framework of the treatment of a hepato-cellular carcinoma with selective internal radiotherapy using Yttrium-90 through the analysis of dose-volume histograms. The developments made in this thesis show the importance and the feasibility of performing a personalized dosimetry for nuclear medicine patients. (author)

  2. General guidance for laboratories providing personal dosimetry services

    International Nuclear Information System (INIS)

    This guidance is recommended to all dosimetry services in the interests of good radiation protection practice. For dosimetry services who seek approval under the Ionising Radiation Regulations 1985, the Health and Safety Executive (HSE) would invoke compliance with this guidance, in broad terms, as well as other published guidance. The recommendations include sections concerning laboratory organizations and staff, documentation of procedures, laboratory accommodation and services, equipment, calibration and traceability, housekeeping, dosimetric capability, laboratory records. (Author)

  3. A new card holder for personal X and gamma dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Francesco [S.O.D. Fisica Sanitaria, Azienda Ospedaliero - Universitaria Careggi, Firenze (Italy)], E-mail: rossif@aou-careggi.toscana.it; Arilli, Chiara [Dipartimento di Fisica, Universita degli Studi di Firenze, Firenze (Italy); Falivene, Annamaria; Gori, Cesare [S.O.D. Fisica Sanitaria, Azienda Ospedaliero - Universitaria Careggi, Firenze (Italy)

    2008-02-15

    The aim of this work is the description of the new card holder developed at the Dosimetry Service of the University Hospital in Firenze, specifically designed for medical occupational exposure measurements. The basic dosimeter (card), already in use at the Dosimetry Service, contains two LiF100 detectors, the second one being filtered to get energy response correction. The rationale for a new holder was both the agreement to the statements of the Italian law promoted after to the BSS Directive [Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation.] and the practical need of dosimeter which is easy to handle. Therefore, robustness, ease of sliding in and pulling out the card, feasibility of applying a personal identification label, etc. were goals to achieve, as well as increasing the efficiency of the service. The work describes the response of the whole dosimeter (card and holder) to the incident radiation. The Italian National law, derived from BSS European Directive [Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation.], states that individual dosimeters must measure H{sub p}(10) for the monitoring of occupationally exposed workers, so the main goal of our work was to reach optimum response in terms of H{sub p}(10). However, the dosimeter was also designed to allow the measurement of H{sub p}(3), for monitoring eye lens doses, and of H{sub p}(0.07), to measure weakly penetrating radiation fields. The test procedure was performed according to international ISO standard [ISO 4037-1, ISO 4037-2, ISO 4037-3, 1996. - X and gamma reference radiation for calibrating dosimeters and dose-rate meters and for determining their response as a function of photon energy.]. We also

  4. Personal dosimetry statistics and specifics of low dose evaluation

    International Nuclear Information System (INIS)

    The dose statistics of a personal dosimetry service, considering 35,000+ readings, display a sharp peak at low dose (below 0.5 mSv) with skewness to higher values. A measure of the dispersion is that approximately 65% of the doses fall below the average plus 2 standard deviations, an observation which may prove helpful to radiation protection agencies. Categorizing the doses by the concomitant use of a finger ring dosimeter, that skewness is larger in the whole body, and ring dosimeters. The use of Harshaw 5500 readers at high gain leads to frequent values of the glow curve that are judged to be spurious, i.e. values not belonging to the roughly normal noise over the curve. A statistical criterion is shown for identifying those anomalous values, and replacing them with the local behavior, as fit by a cubic polynomial. As a result, the doses above 0.05 mSv which are affected by more than 2% comprise over 10% of the data base. The low dose peak of the statistics, above, has focused our attention on the evaluation of LiF(Mg,Ti) dosimeters exposed at low dose, and read with Harshaw 5500 readers. The standard linear procedure, via an overall reader calibration factor, is observed to fail at low dose, in detailed calibrations from 0.02 mSv to 1 Sv. A significant improvement is achieved by a piecewise polynomials calibration curve. A cubic, at low dose is matched, at ∼10 mSv, in value and first derivative, to a linear dependence at higher doses. This improvement is particularly noticeable below 2 mSv, where over 60% of the evaluated dosimeters are found. (author)

  5. Ten years of personal neutron dosimetry with albedo dosemeters in The Netherlands.

    Science.gov (United States)

    Draaisma, F S; Verhagen, H W

    2002-01-01

    Since 1987, the dosimetry service of the Netherlands Energy Research Foundation (ECN) has been certified by the Dutch government to perform personal dosimetry, using thermoluminescence dosemeters (TLDs). Performing neutron personal dosimetry requires a rather large investment in readers, TLDs and personnel to operate the service. About 800 persons are subjected to routine neutron monitoring in The Netherlands and their annual neutron doses are a relatively small fraction (less than 10%) of the annual Hp(10). In general, the measured neutron dose values are low (on average 93% of the users receive an annual neutron dose neutron) dose has tended to decrease since 1992, but incidentally high doses have been observed. Leaving these incidents out, the average collective annual neutron doses for the different users of neutron sources are about the same. PMID:12382755

  6. BeOSL system for personal dosimetry : dosimetric characteristics and practical application; Sistema BeOSL para dosimetria personal : caracteristicas dosimetricas y la aplicacion practica

    Energy Technology Data Exchange (ETDEWEB)

    Mende, E. [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Working Group Engineering, D-85764 Neuherberg (Germany)

    2015-10-15

    Full text: BeOSL system of Dosimetric s is very easy to use, assimilate and maintain. Our dosimeter defines a milestone in the supervision of personal equivalent dose of Hp (10) and Hp (0.07) it covers the range of total energy of 16 KeV to 10 MeV. For this energy range is exceptional in its energy dependence for official personal dosimetry. The BeOSL system consists of two modules, one of them is the BeOSL reader that measures the radiation exposure using the latest technology, optically stimulated luminescence (OSL). The reading is extremely fast; it does not require consumables such as nitrogen or other. The detector material is beryllium oxide (Be O); this is an OSL material tissue equivalent and therefore is ideal for personal dosimetry. The BeOSL technology allows multiple readings of the dosimeter (re-read) to verify the dose or archive the dosimeter. One of the biggest advantages of BeOSL system is its modular concept allows the system to run as a manual solution or as a complete automated robotic system, which can be filled with up to 5,000 dosimeters as bulk cargo. (Author)

  7. The reliability of the systems of personal dosimetry

    International Nuclear Information System (INIS)

    The dosimeters of companies and institutions have been irradiated at various energy and dose equivalent levels. Systematic and coincident errors in measurement are presented. The results show that relatively large systematic errors can be made by both the thermoluminescent and film systems. Various techniques to judging the quality of the dosimetry are discussed. (G.B.)

  8. DOSIMETRY

    CERN Multimedia

    2001-01-01

    From the month of May on, the neutron dosimeter will be worn in an extra package distinct from the usual film-badge. We will give you more ample information in Weekly Bulletin No. 18/2001 of April 30, 2001. In the week following Easter (17 - 20. 4. 2001) the Individual Dosimetry Service will be opened in the mornings from 8:30 to 11:30 h only. The Service will be closed on April 30.

  9. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia

    International Nuclear Information System (INIS)

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  10. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Price A.; Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Beauregard, Jean-Mathieu [Department of Radiology, Université Laval, Quebec City G1V 0A6 (Canada); Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J. [Department of Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  11. A method for automating calibration and records management for instrumentation and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr. [Atlan-Tech, Inc., Roswell, GA (United States)

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  12. DOSIMETRIC QUALITY ASSURANCE INTERPRETED FOR ISO 17025 IN PUBLIC HEALTH ENGLAND'S PERSONAL DOSIMETRY SERVICE.

    Science.gov (United States)

    Gilvin, P J; Gibbens, N J; Baker, S T

    2016-09-01

    Many individual monitoring services (IMSs) have long experience in delivering high-quality dosimetry, and many follow rigorous quality assurance (QA) procedures. Typically, these procedures have been developed through experience and are highly effective in maintaining high-quality dose measurements. However, it is not always clear how the range of QA procedures normally followed by IMSs maps on to the various requirements of ISO 17025. The Personal Dosimetry Service of Public Health England has interpreted its QA procedures both in operating existing services and in developing a new one. PMID:27150516

  13. Quality assurance in personal dosimetry of external radiation: present situation and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, N. [Malaysian Institue For Nuclear Technology Research (MINT), Bangi, Selangor (Malaysia)

    2006-07-01

    Whole body personal dosimetry is well established for the individual monitoring of radiation workers. High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The mandate has been given to the Personal Dosimetry, (secondary standard dosimetry laboratories) S.S.D.L., (Malaysian institute for nuclear energy research) M.I.N.T. to assure the individual monitoring for radiation workers in Malaysia. In 2005, the S.S.D.L;-M.I.N.T. supply, process and read out of personal dosemeters of nearly 13,000 dosimeters monthly, whereby. 12,000 are films and 1,000 are T.L.D.s. The objective of individual monitoring is not limited to the measurement of doses delivered to individuals, but it should demonstrate that limits of exposure have not been exceeded and that working conditions have not unexpectedly deteriorated. Dosimetry measurements are an important component of radiation protection programs and must be of high quality. The exposure of workers to radiation must be controlled and monitored in order to comply with regulatory requirements. S.S.D.L.-M.I.N.T; demonstrates that its performance is at an acceptable level by implementing overall system performance, as evidenced by the ISO 9001 certification of the Personal Dosimetry Service in 2002 and ISO/I.E.C. 17025 accreditation to the calibration laboratory in 2004. The certification and accreditation processes achieved the goal by formalizing the recognition of satisfactory performance, and providing evidence of this performance. Overall performances are assessed, personnel operating the system will be trained and are well qualified and all actions will be documented. The paper describes the overview of the Q.M.S. carried out at the S.S. D.L.-M.I.N.T.. During the implementation of Q.M.S. a few areas has been identified for future consideration. These include performance specification and type testing of dosemeters, which provide a

  14. Recent trends in radioprotection dosimetry: Promising solutions for personal neutron dosimetry

    International Nuclear Information System (INIS)

    In this paper new detecting methods will be described, which are very sensitive to fast neutrons and are completely insensitive to gamma radiations. These new detectors are based on the same properties of highly ionizing particles which determine their high biological effectiveness, namely the high deposition of energy at microscopic and submicroscopic distances from the particle trajectory in solid materials. Another important characteristic, common to these new detecting methods, is the exploitation of the high-energy deposition in the vicinity of the track to initiate avalanche-type of processes, which can be easily detected. These new registration techniques are respectively the electrochemically etched damage track detectors and the bubble damage polymer detectors. The simplicity, low cost and small size of these new detecting systems, together with their high sensitivity and their ability to discriminate against large fluxes of sparsely ionizing radiations make it possible to tackle some of the most difficult problems yet to be solved in radioprotection monitoring, such as personnel neutron dosimetry. (orig./HSI)

  15. Gaining competitive advantage in personal dosimetry services through ISO 9001 certification

    International Nuclear Information System (INIS)

    Full text: In Malaysia, the harmonization of dose monitoring for almost 12,000 radiation workers is assigned to the Secondary Standard Dosimetry Laboratory of Malaysian Institute for Nuclear Technology Research, SSDL-MINT. Established in 1980, SSDL-MINT is responsible for improving personal and workplace safety by providing high quality personal dosimetry services. It is important to demonstrate that the performance of personal dosimetry meets recognized standards, to ensure radiation doses to individual workers are within the safe limits and to verify compliance with dose limits. Concern on the quality of personal dosimetry service began to be expressed in 2000. The concern led to the ISO certification, which brought an unprecedented effort characterized by high degree coordination, proper documentation and well trained of personal dosimetry operators. These huge efforts resulted with certification ISO 9002:1994 by the SIRIM International QAS Sdn. Bhd. in January 2002. The adoption of these requirements for the ISO 9002 standard makes routine handling of the process easier, and increases the reliability and effectiveness of the services. This helps to increase the quality and uniformity of personal dosimetry. The revision of the ISO 9002:1994 to ISO 9001:2000 necessitated SSDL-MINT revising its quality management system. The work began in middle 2002, and by May 2003, SSDL-MINT has been upgraded to ISO 9001:2000. Certification to the ISO 9001:2000 demonstrates our ability to consistency provide service that meets the requirements of the customer and the regulatory authority. These includes: improved consistency of service / product performance and therefore higher customer satisfaction levels; uniformity in work processes across organizations; simplified and more uniform structure for quality documents; improved customer perception of the organizations image, culture and performance; reduced number of product and process non-conformances; greater employee

  16. Calibration of a tertiary standard in N-ISO qualities for radioprotection and personal dosimetry

    International Nuclear Information System (INIS)

    Dosimetric calibration of radiation monitors and personal dosimeters in different radiological quantities are performed in order to obtain accurate measurements, for this reason the SSDL calculates the dosimetry calibration factor and its associated uncertainty, for each range of use. The calibration factor is performed using the known radiation field method and its uncertainty is calculated according to the ISO recommendations. The SSDL calculates the expanded uncertainty (Uc) with a coverage factor that provides a level of not less than 95 % of confidence. (authors).

  17. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry

    International Nuclear Information System (INIS)

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  18. Evolution and current status of personal dosimetry in the Slovak NPPS

    International Nuclear Information System (INIS)

    In the archives of the Public Health Office, there are a lot of documents which demonstrate that since the beginning of design of the fir=st NPP in Slovakia, there has been considerable attention dedicated to personal dosimetry. But only few facts will be mentioned here. The external exposure was monitored by national (Czechoslovak) dosimetry service in Prague until 1977. NPPs have had their own services since then. Film detectors have been used for legal purposes since the beginning. The structure of the film detector allows measurements of beta and gamma radiation, assessment of main direction and energy of radiation, identification of surface contamination. Exposed films are kept in the archive. The operational dosimetry has been developed significantly, from simple pen detectors with ionisation chamber to electronic dosimeters. The internal contamination has been monitored by medical service (under Health Ministry) which was established in NPP Bohunice until 19,7. Since then the internal dosimetry services have been operated by the NPPs. The whole body counters and laboratories for analysis of biological samples have been available on both nuclear sites of Slovakia. The measurement system, the rules and the methodology were regularly improved. Quick body monitors and monitors for thyroid monitoring are available also on both sites at present. (authors)

  19. PeDaB - the personal dosimetry database at the research centre Juelich

    International Nuclear Information System (INIS)

    In May, 1997 the mainframe based registration, processing and archiving of personal monitoring data at the research centre Juelich (FZJ) was transferred to a client server system. A complex database application was developed. The client user interface is a Windows based Microsoft ACCESS application which is connected to an ORACLE database via ODBC and TCP/IP. The conversion covered all areas of personal dosimetry including internal and external exposition as well as administrative areas. A higher degree of flexibility, data security and integrity was achieved. (orig.)

  20. Statistical results of the personal dosimetry service at the GSF

    International Nuclear Information System (INIS)

    The first aim of the project is to indicate the trends in personal and collective doses on the available database and to correlate it to the state structure of the Federal Republic of Germany and professional groups. The second aim is to assess individual life time doses in view of the already implemented limits for the effective life time dose in the FRG. (R.P.) 2 figs

  1. Electronic neutron personal dosimetry with superheated drop detectors

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, F.; Apfel, R.E.; Curzio, G.; Nath, R

    2001-07-01

    The prototype of an electronic personal neutron dosemeter based on superheated drop detectors is presented. This battery operated device comprises a neutron sensor, bubble-counting electronics and a temperature controller ensuring an optimal dose equivalent response. The neutron sensor is a 12 ml detector vial containing an emulsion of about 50,000 halocarbon-12 droplets of 100 {mu}m diameter. The temperature controller is a low-power, solid-state device stabilising the emulsion at 31.5 deg. C by means of an etched foil heater. The microprocessor-controlled counting electronics relies on a double piezo-electric transducer configuration to record bubble formation acoustically via a comparative pulse-shape analysis of ambient noise and detector signals. The performance of the dosemeter was analysed in terms of the requirements presently developed for neutron personal dosemeters. The detection threshold is about 1 {mu}Sv, while the personal dose equivalent response to neutrons in the thermal to 62 MeV range falls within a factor 1.6 of 13 bubbles per {mu}Sv. (author)

  2. First intercomparison exercise in the frame of the coordinated investigation program of the IAEA on regional intercomparison of personal dosimetry

    International Nuclear Information System (INIS)

    During the days 7 and 11 of October of 1996 took place in Buenos Aires, Argentina, the first Meeting of the Coordinated Investigation program of the IAEA on Regional Intercomparison of Personal Dosimetry for Latin American. In this meeting participated nine representatives of reference laboratories and of personal dosimetry of the region. Fundamental aspect of personal dosimetry relates with the quantity personal dose equivalent Hp application and the implementation of intercomparison exercise in order to improve the quality of the dose estimation have been discussed. Also lectures carried out by the specialist on Hp and practical aspects of it implementation; answer and calibration according to the ISO 4037; intercomparison methods: procedures and organizations. It was carried out the first intercomparison exercise where the participants collaborated in the preparations and irradiations of personal dosemeters they have brought. (author)

  3. Current status of personal dosimetry in industry, research and medicine in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Morkunas, G.; Griciene, B.; Jankauskiene, D

    2001-07-01

    The personal dosimetry service of the Radiation Protection Centre performs individual monitoring for all the industrial, medical and research radiation workers. The Rados and DTU TLD systems are used for monitoring of doses. The DTU TLD system is used for measurements of doses to extremities and for measurements of public external exposure. Finger ring TLDs are used in therapy which uses radiopharmaceuticals. The Rados system is also used for evaluation of patients' doses in selected hospitals. The dosimetry service recently provided individual monitoring of approximately 3000 workers. The average occupational dose was about 1.06 mSv for medical workers and 3.2 mSv for industrial radiography workers in 1999. Detailed analysis of doses received by different categories of workers is performed. A system for urgent review of work conditions in the case of increased dose has been set up. (author)

  4. Current status of personal dosimetry in industry, research and medicine in Lithuania

    International Nuclear Information System (INIS)

    The personal dosimetry service of the Radiation Protection Centre performs individual monitoring for all the industrial, medical and research radiation workers. The Rados and DTU TLD systems are used for monitoring of doses. The DTU TLD system is used for measurements of doses to extremities and for measurements of public external exposure. Finger ring TLDs are used in therapy which uses radiopharmaceuticals. The Rados system is also used for evaluation of patients' doses in selected hospitals. The dosimetry service recently provided individual monitoring of approximately 3000 workers. The average occupational dose was about 1.06 mSv for medical workers and 3.2 mSv for industrial radiography workers in 1999. Detailed analysis of doses received by different categories of workers is performed. A system for urgent review of work conditions in the case of increased dose has been set up. (author)

  5. An automated neutron dosimetry system based on the chemical etch of CR-39

    International Nuclear Information System (INIS)

    The dosimetric characteristics of two types of personal neutron dosemeter have recently been extensively assessed. The effects of exposure to various extreme environments have also been studied. Both types of dosemeter utilise chemically etched elements which are read in an automated reader, the Autoscan 60, which uses an edge illumination system to increase the pit image size. One type of dosemeter contains three elements in a pyramid structure. The other uses one or two elements in a planar structure. The results indicate that both types of dosemeter can be used to assess accurately the personal dose from neutrons in a range of harsh environments. Formal approval for the operational use of the system has been received. (author)

  6. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    Energy Technology Data Exchange (ETDEWEB)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-07-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  7. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  8. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  9. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  10. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia; Dosimetria personal TLD 110 en medicos ortopedistas expuestos a radiacion ionizante en Bogota - Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Sierra C, B. Y.; Jimenez, Y. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Fisica Medica, Carrera 45 No. 26-85, Bogota (Colombia); Plazas, M. C. [Hospital Universitario Fundacion Santa Fe de Bogota, Instituto de Oncologia Carlos Ardila Lulle, Calle 119, No. 7-90, 220246 Bogota (Colombia); Eslava S, J. [Universidad Nacional de Colombia, Instituto de Investigaciones Clinicas, Grupo Equidad en Salud, Carrera 45 No. 26-85, Bogota (Colombia); Groot R, H., E-mail: brigith.sierra@gmail.com [Universidad de los Andes, Laboratorio de Genetica Humana, Carrera 1 No. 18A -12, Bogota (Colombia)

    2014-08-15

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  11. Cosmic-radiation dosimetry using electronic personal dosemeter (EPD) at commercial aircraft altitude

    International Nuclear Information System (INIS)

    Electronic Personal Dosemeter (EPD) was examined for effectiveness in cosmic radiation dosimetry at aircraft altitude through the measurements in a Japan-US round trip. The EPD value (Hepd) of individual dose equivalent, penetrating, Hp(10), was considered to be almost equal the deep absorbed dose attributed to electrons at the aircraft altitude. By assuming the fractions and the effective quality factors for other components (muons, protons, and neutrons) based on model-calculation data, an empirical equation to estimate a conservative deep dose-equivalent at 5 cm-tissue depth, H(50), was given as H(50)=3.1 x Hepd. Estimated H(50) values in the international flights were 4.9 μSv h-1 from Tokyo to New York and 3.6 μSv h-1 from Los Angeles to Tokyo. These values agreed well with the predicted values presented by NCRP. (author)

  12. Optimization of radiation protection in nuclear medicine: from reference dosimetry to personalized dosimetry; Optimisation de la radioprotection en medecine nucleaire: de la dosimetrie de reference a la dosimetrie personnalisee

    Energy Technology Data Exchange (ETDEWEB)

    Hadid, Lama

    2011-09-09

    In nuclear medicine, radiopharmaceuticals are distributed in the body through biokinetic processes. Thus, each organ can become a source of radiation delivering a fraction of emitted energy in tissues. Therefore, dose calculations must be assessed accurately and realistically to ensure the patient radiation protection. Absorbed doses were until now based on mathematical standard models and electron transport approximations. The International Commission on Radiological Protection (ICRP) has recently adopted voxel phantoms as a more realistic representation of the reference adult. The main goal of this thesis was to study the influence of the use of the new reference models and Monte Carlo methods on the major dosimetric quantities. In addition, the contribution of patients? specific geometry to the absorbed dose was compared to a standard geometry, enabling the evaluation of uncertainties arising from the reference values. Particular attention was paid to the bone marrow which is characterized by a high radiosensitivity and a complex microscopic structure. An accurate alpha dosimetry was assessed for bone marrow using microscopic images of several trabecular bone sites. The results showed variations in the absorbed fractions as a function of the particles? energy, the skeletal site and the amount of fat within marrow cavities, three parameters which are not taken into account in the values published by the ICRP. Finally, the heterogeneous activity distribution of the radiopharmaceuticals was considered within the framework of the treatment of a hepato-cellular carcinoma with selective internal radiotherapy using Yttrium-90 through the analysis of dose-volume histograms. The developments made in this thesis show the importance and the feasibility of performing a personalized dosimetry for nuclear medicine patients. (author)

  13. Accreditation of a personal dosimetry service in Switzerland: practical experience and transition from EN 45004 to ISO 17025.

    Science.gov (United States)

    Boschung, M; Wernli, C

    2001-01-01

    In compliance with the Swiss legislation on radiological protection, the Paul Scherrer Institute (PSI) operates a dosimetry service that is approved by the Swiss Federal Nuclear Safety Inspectorate. In 1997, the dosimetry service was also accredited by the Swiss Federal Office of Metrology and Accreditation as an inspection body for legal personal and environmental dosimetry, according to EN 45004. The accreditation covers determination of personal dose equivalent for photon, neutron and beta radiation, and ambient dose equivalent for photon and neutron radiation, by means of thermoluminescence and solid state track detection techniques. Within this formal accreditation it was confirmed that the relevant requirements of ISO 9002 are also fulfilled. The first re-accreditation will take place in 2001 and work is going on to achieve the transition from EN 45004 to ISO 17025. Accreditation is a feasible, practicable and acceptable way to achieve harmonisation in the field of dosimetry. However, before starting on the path to formal accreditation, a careful analysis should be made, taking into consideration not only cost-benefit aspects but also national legal requirements. PMID:11586715

  14. Accreditation of a personal dosimetry service in Switzerland: Practical experience and transition from EN 45004 to ISO 17025

    Energy Technology Data Exchange (ETDEWEB)

    Boschung, M.; Wernli, C

    2001-07-01

    In compliance with the Swiss legislation on radiological protection, the Paul Scherrer Institute (PSI) operates a dosimetry service that is approved by the Swiss Federal Nuclear Safety Inspectorate. In 1997, the dosimetry service was also accredited by the Swiss Federal Office of Metrology and Accreditation as an inspection body for legal personal and environmental dosimetry, according to EN 45004. The accreditation covers determination of personal dose equivalent for photon, neutron and beta radiation, and ambient dose equivalent for photon and neutron radiation, by means of thermoluminescence and solid state track detection techniques. Within this formal accreditation it was confirmed that the relevant requirements of ISO 9002 are also fulfilled. The first re-accreditation will take place in 2001 and work is going on to achieve the transition from EN 45004 to ISO 17025. Accreditation is a feasible, practicable and acceptable way to achieve harmonisation in the field of dosimetry. However, before starting on the path to formal accreditation, a careful analysis should be made, taking into consideration not only cost-benefit aspects but also national legal requirements. (author)

  15. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  16. Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry

    Science.gov (United States)

    Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.

    2015-09-01

    Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.

  17. New tool for biological dosimetry: Reevaluation and automation of the gold standard method following telomere and centromere staining

    Energy Technology Data Exchange (ETDEWEB)

    M’kacher, Radhia [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Maalouf, Elie E.L. [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Laboratoire MIPS – Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse (France); Ricoul, Michelle [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Heidingsfelder, Leonhard [MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim (Germany); Laplagne, Eric [Pole Concept, 61 Rue Erlanger, 75016 Paris (France); Cuceu, Corina; Hempel, William M. [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Colicchio, Bruno; Dieterlen, Alain [Laboratoire MIPS – Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse (France); Sabatier, Laure, E-mail: laure.sabatier@cea.fr [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France)

    2014-12-15

    Graphical abstract: - Highlights: • We have applied telomere and centromere (TC) staining to the scoring of dicentrics. • TC staining renders the scoring of dicentrics more rapid and robust. • TC staining allows the scoring of not only dicentrics but all chromosomal anomalies. • TC staining has led to a reevaluation of the radiation dose–response curve. • TC staining allows automation of the scoring of chromosomal aberations. • Automated scoring of dicentrics after TC staining was as efficient as manual scoring. - Abstract: Purpose: The dicentric chromosome (dicentric) assay is the international gold-standard method for biological dosimetry and classification of genotoxic agents. The introduction of telomere and centromere (TC) staining offers the potential to render dicentric scoring more efficient and robust. In this study, we improved the detection of dicentrics and all unstable chromosomal aberrations (CA) leading to a significant reevaluation of the dose–effect curve and developed an automated approach following TC staining. Material and methods: Blood samples from 16 healthy donors were exposed to {sup 137}Cs at 8 doses from 0.1 to 6 Gy. CA were manually and automatically scored following uniform (Giemsa) or TC staining. The detection of centromeric regions and telomeric sequences using PNA probes allowed the detection of all unstable CA: dicentrics, centric and acentric rings, and all acentric fragments (with 2, 4 or no telomeres) leading to the precise quantification of estimated double strand breaks (DSB). Results: Manual scoring following TC staining revealed a significantly higher frequency of dicentrics (p < 10{sup −3}) (up to 30%) and estimated DSB (p < 10{sup −4}) compared to uniform staining due to improved detection of dicentrics with centromeres juxtaposed with other centromeres or telomeres. This improvement permitted the development of the software, TCScore, that detected 95% of manually scored dicentrics compared to 50% for

  18. Statistical analysis of personal dosimetry of exposed workers; Analisis estadistico de la dosimetria personal de trabajadores expuestos

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Munoz, F. J.; Alejo Luque, L.; Mas Munoz, I.; Serrada Hierro, A.

    2013-07-01

    The dosimetry centers accredited by the Nuclear Safety Council (CSN) normally report overcoming legal limits, or some fraction thereof, but do not provide comparative dosimetric criteria indicating if assigned to a given dose is large TPE or small relative to that of their peers. In order to help to resolve the difficulties mentioned ds, it has developed an application that statistically processes the dosimetric data provided by the National Dosimetry Center. (Author)

  19. A new TL finger ring dosimetry system with automated ring identification

    International Nuclear Information System (INIS)

    TL finger ring dosemeters, particularly if used during surgery, etc., have to be small, convenient to wear and suitable for cold sterilisation. This makes automated ring identification difficult to achieve. A new approach is described, based on a circular TLD chip mounted with Kapton foil on a small aluminium disc containing a miniaturised circular bar code (radial 6 digit ITF) and a six digit number. The ring is inserted into a disposable plastic finger ring and protected by a circular cover plate. This ring design is convenient to wear, fits all finger sizes and can be cold sterilised for multiple use in surgery. For readout the ring is opened by a semi-automated device and up to four bar coded discs inserted into a modified standard TLD card for automatic processing by Harshaw readers models 6600 or 8800. The reader contains a video bar code identification system based on a minaturised CCD camera and image processing by special PC software. The circular bar codes are mathematically linearised and decoded directly from the enhanced grey scale picture obtained with optimised illumination by power LEDs. The system described (Patent No. A 398005/1994) is a fast and economic solution for fully (or semi-) automated evaluation of TLD finger rings in larger personnel monitoring services. (author)

  20. An application of artificial neural intelligence for personal dose assessment using a multi-area OSL dosimetry system

    International Nuclear Information System (INIS)

    Significant advances have been made in recent years to improve measurement technology and performance of phosphor materials in the fields of optically stimulated luminescence (OSL) dosimetry. Pulsed and continuous wave OSL studies recently carried out on α-Al2O3 : C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of the study is to propose a new personal dosimetry system using α-Al2O3 : C by taking advantage of its optical properties and energy dependencies. In the process of the study, a new dose assessment algorithm was developed using artificial neural networks in hopes of achieving a higher degree of accuracy and precision in personal OSL dosimetry system. The original hypothesis of this work is that the spectral information of an X- and γ-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feedforward neural network using the error back-propagation method with Bayesian optimization was applied for the response unfolding procedure. The validation of the proposed algorithm was investigated by unfolding the 10 measured responses of α-Al2O3 : C for arbitrarily mixed photon fields which range from 20 to 662 keV

  1. Dosimetry for ion-beam therapy using fluorescent nuclear track detectors and an automated reader

    CERN Document Server

    Greilich, Steffen; Klimpki, Grischa M; Kouwenberg, Jasper J M; Neuholz, Alexander; Pfeiler, Tina; Rahmanian, Shirin; Stadler, Alexander; Ulrich, Leonie

    2016-01-01

    For the assessment of effects of clinical ion-beams, dosimetry has to be complemented by information on particle-energy distribution or related quantities. Fluorescence nuclear track detectors made from C,Mg-doped alumina single crystals allow for the quantification of ion track density and energy loss on a single-track basis. In this study, their feasibility and accuracy to quantify fluence, linear-energy-transfer (LET) distributions, and eventually dose for a spread-out carbon ion Bragg peak was investigated. We found that while for the primary ions track densities agreed within a percent range with the reference data generated by Monte-Carlo radiation transport, the number of low-LET fragments in the beam was largely underestimated by approximately a factor three - the effect was most pronounced for protons where the measured fluence deviates at least an order of magnitude. Nevertheless, due to the dose major contribution of carbon ions, the determination of the individual detector sensitivity could be ide...

  2. Individual Differences in Response to Automation: The Five Factor Model of Personality

    Science.gov (United States)

    Szalma, James L.; Taylor, Grant S.

    2011-01-01

    This study examined the relationship of operator personality (Five Factor Model) and characteristics of the task and of adaptive automation (reliability and adaptiveness--whether the automation was well-matched to changes in task demand) to operator performance, workload, stress, and coping. This represents the first investigation of how the Five…

  3. Application of numerical analysis in personal dosimetry by thermoluminescent; Aplicacion de metodos de analisis numerico en un sistema de dosimetria personal por termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J. M.; Delgado, A.; Fantuzzi, E.

    2003-07-01

    The main features of the methods for computerised glow curve analysis are presented in this communication together with a description of their advantages for TLD in replacement of standard procedures. A protocol for the employment of different kinds of computerised methods for personal dosimetry is proposed. The new results now presented demonstrate the possibility, using a very simple computerised analysis, of working with LiF GR-200 without any pre-heat or annealing simplifying the working procedures, now reduced to the simplest possible: a single step readout up to 240 degree celsius. (Author) 7 refs.

  4. In-situ fluorescence hybridization applied to biological dosimetry: contribution of automation to the counting of radio-induced chromosome aberrations

    International Nuclear Information System (INIS)

    The frequency of chromosome aberrations on peripheral blood lymphocytes is a dose indicator in the case of ionizing radiations over-exposure. Stable chromosome aberrations (translocations, insertions) are visualized after labelling of some chromosomes using the fluorescence in-situ hybridization (FISH). The study of the use of the FISH technique in biological dosimetry is done with dose-effect curves. It seems that a bias is introduced during the observation of chromosome aberrations involving only 3 pairs of chromosomes. In order to avoid this bias, it would be useful to test the feasibility of using the multi-FISH technique in biological dosimetry. Moreover, this type of chromosome aberration changes with the type of irradiation. It is thus important to define the aberrations to be considered when the FISH technique is used. In order to reduce the time of image analysis, the CYTOGEN system, developed by IMSTAR company (Paris, France) has been adapted to the needs of biological dosimetry. This system allows to localize automatically the metaphases on the slide, which reduces the observation time by 2 or 4. An automatic detection protocol for chromosome aberrations has been implemented. It comprises the image capture, the contours detection and the classification of some chromosome aberrations. The different steps of this protocol have been tested in order to check that no bias is introduced by the automation. However, because radio-induced aberrations are rare events, it seems that a totally automatic system is not foreseeable. A semi-automatic analysis is more suitable. The use of the Slit-Scan technology (Laboratory of applied physics, Heidelberg, Germany) in biological dosimetry has been studied too. This technique allows to analyze rapidly a huge number of chromosomes. A good correlation has been observed between the dicentric frequency measured automatically and by manual counting. The system is under development and should be adapted to the detection of

  5. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  6. Report of results of the tests of evaluation of the operation of service of personal dosimetry of the CNLV

    International Nuclear Information System (INIS)

    The ININ realized the evaluation of the service of personal dosimetry in the CNLV, in the categories: IV.- (Photons of high energy of 137Cs) and the VA.- (Particles beta of 90Sr/90Y); in the category IV the test was satisfactory, however in the chart 1 has an underestimation a the American Standard HP over the value true conventional of a 9%; for this irregularity it is recommended to revise the procedures of evaluation of the process and the determination of the chart 1 of the HP. In the category VA, the test is also satisfactory, however the results contrasted with the chart 2 and the HP, the values were overestimated in 29% of the true conventional value, and for that problem is recommended to revise the evaluation procedures in contrast with the values determined by the standard HP. (Author)

  7. Establishment of ANSI N13.11 X-ray radiation fields for personal dosimetry performance test by computation and experiment.

    OpenAIRE

    Kim, J L; Kim, B. H.(Seoul National University, 151-742, Seoul, South Korea); Chang, S Y; J. K. Lee

    1997-01-01

    This paper describes establishment by computational and experimental methods of the American National Standard Institute (ANSI) N13.11 X-ray radiation fields by the Korea Atomic Energy Research Institute (KAERI). These fields were used in the standard irradiations of various personal dosimeters for the personal dosimetry performance test program performed by the Ministry of Science and Technology of Korea in the autumn of 1995. Theoretical X-ray spectra produced from two KAERI X-ray generator...

  8. Fiber remote and real time optoelectronic dosimetry based on the optically stimulated luminescence phenomenon: Development of sensors based on aluminium oxide doped with carbon for applications in personal dosimetry

    International Nuclear Information System (INIS)

    An optical fiber sensor based on the use of classical technologies (optoelectronic, laser, optical fibers,...) can be connected to the Optically Stimulated Luminescence properties (or OSL) of the aluminium oxide doped with carbon in order to provide several new capabilities compared to usual dosimeters: remote dose measurements, quasi 'real time' dose measurements, applied to personal dosimetry thanks to a low fading level at room temperature. This thesis work shows the studies about: 1)the state of the art about dosimetry based on the aluminium oxide doped with carbon and its OSL properties (emission and stimulation spectra, glow curves, trap and recombination energy levels,...), 2)the state of the art about international standardization, not only, with regard to personal dosimetry (IEC 61066 Standard) but also to the description of operational quantities called personal dose equivalent Hp(10) and Hp(0,07), 3)the experimental development of a new sensor device based on aluminium oxide crystals (design, realization, tests,...), 4)the application of statistical Monte Carlo calculation methods (code MCNP4B) to the simulation of the sensor head in accordance with the IEC Standard 61066 with regard to the energy and angular response Hp(10). (author)

  9. Results of the ninth exercise of intercomparison in services of personal dosimetry in Argentina Republic in the year of 2011; Resultados del noveno ejercicio de intercomparacion de servicios de dosimetria personal realizado en la Republica Argentina en el ano 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ferrufino, G.A.; Discacciatti, P.A.; Lopez, F.O., E-mail: gferrufino@am.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aies (Argentina)

    2013-10-01

    In this paper we present the results of the ninth intercomparison exercise personal dosimetry services, conducted by the Nuclear Regulatory Authority in 2011. The exercise was designed to evaluate the performance of laboratories providing personal dosimetry services in Argentina , for X-rays and gamma radiation fields . This exercise was organized by the Nuclear Regulatory Authority with the Ministry of Health of the Nation and the Regional Reference Laboratory Centre for Dosimetry of the National Atomic Energy Commission . The irradiations were carried out in full accordance with ISO 4037-3 . Participates all private companies in Argentina serving all personal dosimetry laboratories and agencies, provincial and national. Furthermore, the Laboratories from Cuba, Brazil and Uruguay also participate. The performance of a laboratory is considered acceptable if it meets the criteria established in the IRAM- ISO 14146 , which states: 'It is recognized that at most, one-tenth of dosimeters irradiated to exceed the limits'. Of all of the laboratories that participated , 68% reported their results within the acceptance criteria above. The primary objective of this intercomparison exercise is to provide an objective tool to evaluate the ability of personnel dosimetry services. (author)

  10. Dosimetry service removal

    CERN Multimedia

    Safety Commission

    2010-01-01

    Dear personal dosimeter user, Please note that the Dosimetry service has moved in building 55, the service is now located in the main floor: 55-R-004. Main floor instead of second floor. On your right hand when accessing in the building. Thank you Dosimetry Service

  11. Database to manage personal dosimetry Hospital Universitario de La Ribera; Base de datos para gestionar la dosimetria personal del Hospital Universitario de La Ribera

    Energy Technology Data Exchange (ETDEWEB)

    Melchor, M.; Martinez, D.; Asensio, M.; Candela, F.; Camara, A.

    2011-07-01

    For the management of professionally exposed personnel dosimetry, da La are required for the use and return of dosimeters. in the Department of Radio Physics and Radiation Protection have designed and implemented a database management staff dosimetry Hospital and Area Health Centers. The specific objectives were easily import data from the National Center dosimetric dosimetry, consulting records in a simple dosimetry, dosimeters allow rotary handle, and also get reports from different periods of time to know the return data for users, services, etc.

  12. [Long-term follow-up cytogenetic survey and biological dosimetry in persons evacuated from 30-km Chernobyl NPP zone].

    Science.gov (United States)

    Maznik, N A

    2004-01-01

    The paper presents the results of the follow-up cytogenetic survey and biological dosimetry carried out in inhabitants of Pripiat' town and nearby villages, who were departured from the Chernobyl NPP 30-km exclusive zone during first days after the Chernobyl catastrophe. The unstable chromosome aberration level in inhabitants were significantly increased above control in terms up to 1 year after evacuation and declined gardually during next 14 years. In early period the cytogenetic damage frequency in evacuees showed no dependence on gender. The chromosome type aberration level appeared to be lower in young persons comparing with adults. The dicentrics plus centric rings yield had a positive correlation with duration of staying at Chernobyl zone. The average doses of protracted exposure were calculated from the dicentrics and centric rings yields; the dose estimations appeared to be 1.4 times higher in persons evacuated 3-11 days after the accident than that of in persons with shorter departure time. Uing the Bayesian analysis the probabilistic distribution of biological doses was constructed for the studied evacuees group. This distribution was characterized by a mean dose of 360 mGy, the modal doses of 200-450 mGy and 80% of probability density within the dose range 0-1000 mGy, that seems to be sufficient for considering the increased risk of late somatic radiation effects for this cohort. PMID:15571047

  13. Comparison groups on bills: Automated, personalized energy information

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili; Kempton, Willett; Payne, Christopher

    2006-07-01

    A program called ``Innovative Billing?? has been developed to provide individualized energy information for a mass audience?the entireresidential customer base of an electric or gas utility. Customers receive a graph on the bill that compares that customer?s consumption with othersimilar customers for the same month. The program aims to stimulate customers to make ef?ciency improvements. To group as many as severalmillion customers into small ``comparison groups??, an automated method must be developed drawing solely from the data available to the utility.This paper develops and applies methods to compare the quality of resulting comparison groups.A data base of 114,000 customers from a utility billing system was used to evaluate Innovative Billing comparison groups, comparing fouralternative criteria: house characteristics (?oor area, housing type, and heating fuel); street; meter read route; billing cycle. Also, customers wereinterviewed to see what forms of comparison graphs made most sense and led to fewest errors of interpretation. We ?nd that good qualitycomparison groups result from using street name, meter book, or multiple house characteristics. Other criteria we tested, such as entire cycle, entiremeter book, or single house characteristics such as ?oor area, resulted in poor quality comparison groups. This analysis provides a basis forchoosing comparison groups based on extensive user testing and statistical analysis. The result is a practical set of guidelines that can be used toimplement realistic, inexpensive innovative billing for the entire customer base of an electric or gas utility.

  14. Occupational dosimetry commissioning of a PET-CT: learning curve and staff participation; Dosimetria ocupacional en la puesta en funcionamiento de un PET-TC curva de aprendizaje y participacion del personal

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Diaz, F.; Hurtado Sanchez, A.; Gomez Cortes, M. S.; Gonzalez Ruiz, C.; Gago Gomez, P.; Ruiz Galan, G.; Lopez Bote, M. A.

    2011-07-01

    The Nuclear Medicine Department, Hospital General Universitario Gregorio Maranon has been in clinical use PET-CT equipment at the end of 2009. The Dosimetry and Radiation Protection Service has been conducting surveillance at the facility and individual environmental dosimetry. Following the obligations contained in the performance specifications of the authorization granted by the Nuclear Safety Council (CSN), during the first year of the PET-CT has been tracking personal dosimetry of the professionals involved. As a novelty, had to take the ring dosimetry to control the dose equivalent in the hands instead of the normal wrist.

  15. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  16. 12''th International Conference on Solid State Dosimetry Casa del Cordon. Conference Center (Caja de Burgos), July 5''th-10''th, 1998, Burgos Spain: Programme and Abstracts

    International Nuclear Information System (INIS)

    The 12 International Conference on Solid State Dosimetry celebrate in Burgos (Spain) during July on 1998. 1.- Basic Physical Processes 2.- Materials characteristics 3.- Instrumentation 4.- Personal Dosimetry 5.- Clinical Dosimetry 6.- Environmental Dosimetry 7.- Dating retrospective dosimetry 8.- Miscellaneous

  17. Personal and environmental dosimetry of neutrons in a storage facility and humidity probes soil density; Dosimetria personal y ambiental de neutrones en una instalacion de almacenamiento de sondas de densidad y humedad de suelos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fuste, M. J.; Amgarou, K.; Dan Pedro, M. de; Garcia-Orellana, J.; Domingo, C.

    2011-07-01

    The equipment operators are professionally exposed to radiation and the premises where stored are considered controlled areas. Although control of the personal doses of gamma radiation received by the operators during the operation, maintenance and storage of the probes is required and is performed by dosimetry services officially approved, the control of personal and environmental doses due to neutrons generally omitted, since they are small in comparison to the gamma dose.

  18. A Cooperative Personal Automated Transport System - A CityMobil Demonstration in Rocquencourt

    OpenAIRE

    Resende, Paulo; Nashashibi, Fawzi; Charlot, François; Holguin, Carlos; Bouraoui, Laurent; Parent, Michel

    2012-01-01

    International audience This article tackles the problem of the autonomous navigation and coordination of multiple driverless vehicles for the transport of persons or goods in outdoor environments. The system composed of fully automated road vehicles, capable of providing an effective transportation service, was recently tested at the city of La Rochelle. This same system was further improved, and a new demonstration was performed at Inria Rocquencourt, in order to demonstrate the validity ...

  19. Conversion coefficients from air kerma to personal dose equivalent Hp(3) fir eye-lens dosimetry

    International Nuclear Information System (INIS)

    This work has been performed within the frame of the European Union ORAMED project (Optimization of Radiation protection for Medical staff). The main goal of the project is to improve standards of protection for medical staff for procedure resulting in potentially high exposures and to develop methodologies for better assessing and for reducing exposures to medical staff. The Work Package WP2 is involved in the development of practical eye lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP code of the conversion factors related to the operational quantity Hp(3). A set of energy and angular dependent conversion coefficients Hp(3)/Kair in the new proposed square cylindrical phantom of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE. The Hp(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At low photon energy, up to 1 MeV, the two sets of conversion coefficients are consistent. Nevertheless, the differences increase at higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the code MCNP published by ENEA, agree with the kerma approximation calculations with PENELOPE. They are coherent with previous calculations in phantoms different in shape. But above 1 MeV, differences between conversion coefficient values calculated with the absorbed dose and with kerma approximation are significantly increasing, especially at low incidence angles. At those energies the electron transport has to be simulated. (author)

  20. Personal neutron dosimetry in nuclear power plants using etched track and albedo thermoluminescence dosemeters

    International Nuclear Information System (INIS)

    Measurement of the personal dose equivalent rates for neutrons is a difficult task because available dosemeters do not provide the required energy response and sensitivity. Furthermore, the available wide calibration spectra recommended by the International Standard Organisation does not reproduce adequately the spectra encountered in practical situations of the nuclear industry. There is a real necessity to characterise the radiation field, in which workers can be exposed, and to calibrate personal dosemeters in order to determine the dose equivalent in these installations. For this reason, we measure the neutron spectrum with our Bonner sphere system and we fold this spectrum with energy-dependent fluence-to-dose conversion coefficients to obtain the reference dose equivalent rate. This reference value is then compared with the personal dosemeter reading to determine a field-specific correction factor. In this paper, we present the values of this field-specific correction factor for etched track and albedo thermoluminescence dosemeters at three measurement locations inside the containment building of the Vandellos II nuclear power plant. We have found that assigning to each personal dosemeter the mean value of the field-specific correction factors of the three measurement locations, allows the evaluation of neutron personal dose equivalent rate with a relative uncertainty of∼25 and 15% for the PADC and albedo dosemeters, respectively. (authors)

  1. Personal neutron dosimetry in nuclear power plants using etched track and albedo thermoluminescence dosemeters.

    Science.gov (United States)

    Fernández, F; Bakali, M; Amgarou, K; Nourreddine, A; Mouhssine, D

    2004-01-01

    Measurement of the personal dose equivalent rates for neutrons is a difficult task because available dosemeters do not provide the required energy response and sensitivity. Furthermore, the available wide calibration spectra recommended by the International Standard Organisation does not reproduce adequately the spectra encountered in practical situations of the nuclear industry. There is a real necessity to characterise the radiation field, in which workers can be exposed, and to calibrate personal dosemeters in order to determine the dose equivalent in these installations. For this reason, we measure the neutron spectrum with our Bonner sphere system and we fold this spectrum with energy-dependent fluence-to-dose conversion coefficients to obtain the reference dose equivalent rate. This reference value is then compared with the personal dosemeter reading to determine a field-specific correction factor. In this paper, we present the values of this field-specific correction factor for etched track and albedo thermoluminescence dosemeters at three measurement locations inside the containment building of the Vandellòs II nuclear power plant. We have found that assigning to each personal dosemeter the mean value of the field-specific correction factors of the three measurement locations, allows the evaluation of neutron personal dose equivalent rate with a relative uncertainty of approximately 25 and 15% for the PADC and albedo dosemeters, respectively. PMID:15353734

  2. Improving the Success Rate of Delivering Annual Occupational Dosimetry Reports to Persons Issued Temporary External Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, Michael Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-09

    Workers who are not routinely monitored for occupational radiation exposure at LANL may be issued temporary dosimeters in the field. Per 10CFR835 and DOE O 231.1A, the Laboratory's radiation protection program is responsible for reporting these results to the worker at the end of the year. To do so, the identity of the worker and their mailing address must be recorded by the delegated person at the time the dosimeter is issued. Historically, this data has not been consistently captured. A new online application was developed to record the issue of temporary dosimeters. The process flow of the application was structured such that: 1) the worker must be uniquely identified in the Lab's HR database, and 2) the mailing address of record is verified live time via a commercial web service, for the transaction to be completed. A COPQ savings (Type B1) of $96K/year is demonstrated for the new application.

  3. Guidance on the use of protective lead aprons in medical radiology protection efficiency and correction factors for personal dosimetry

    International Nuclear Information System (INIS)

    Workers in clinical radiology wear lead aprons when standing in the vicinity of a patient being exposed to x-rays. A lead apron protects the person's trunk against radiation scattered rom the patient. Our research is focused on two main issues: 1. How much protection does a lead apron provide, and what are the main factors that determine the protection efficiency 2. How can measured badge dose be translated into a realistic estimate of the effective dose, and how does this depend on dosemeter placement Using a model for x-ray shielding and dosimetry we calculated equivalent organ doses and personal depth dose HP(10) for various exposure conditions, x-ray energies and types of aprons that occur in clinical practice. We concluded that apron model and fit are often more important than lead thickness. In others, increasing lead thickness of a badly chosen apron will not provide better protection. For many fluoroscopy applications an apron of good model and fit need not be thicker than 0.5 mm of lead (equivalent). In case of intensive and frequent interventional work lead we advise higher lead thickness (0.35 mm), and preferably additional neck shielding for protection of the oesophagus and thyroid. A well chosen lead apron reduces effective dose by 75%up to 90%. We also concluded that the dosemeter badge should always be worn outside the apron, at mid front of collar or chest. In our view this dosemeter position enables reliable evaluation of effective dose from badge readings. As a standard practice we recommend translating measured badge dose to effective dose by dividing by a factor of five, provide that the worker wears a suitable lead apron. Finally, some research was done on the subject of the protective effect of lead aprons for the uterus, and the relation of uterus dose and badge dose. Use of a lead apron is found to reduce uterus dose by a factor of 5 to 10. Our study shows that in case of worker pregnancy, exposure of the unborn child may de adequately

  4. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  5. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  6. Internal dosimetry for occupationally exposed personnel in nuclear medicine; Dosimetria interna para personal ocupacionalmente expuesto en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.T.; Alfaro, L.M.M.; Angeles, C.A., E-mail: teodoro.garcia@inin.gob.mx, E-mail: mercedes.alfaro@inin.gob.mx, E-mail: arturo.angeles@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares Carrelera Mexico-Toluca, Ocoyoacac, MX (Mexico)

    2013-10-01

    Internal dosimetry plays an important role in nuclear medicine dosimetry control of personnel occupationally exposed, and that in recent years there has been a large increase in the use of radionuclides both in medical diagnosis as radiotherapy. But currently, in Mexico and in many parts of the world, this internal dosimetry control is not performed. The Instituto Nacional de lnvestigaciones Nucleares de Mexico (ININ) together with the Centro Oncologico de Toluca (ISEMMYM) have developed a simple and feasible methodology for monitoring of personnel working in these facilities. It was aimed to carry out the dosimetry of the personnel, due to the incorporation of I-131, using the spectrometric devices that the hospital has, a gamma camera. The first step in this methodology was to make a thyroid phantom to meet the specifications of the ninth ANSI. This phantom is compared under controlled conditions with RMC- II phantom used for system calibration of the ININ internal dosimetry (ACCUSCAN - Ll), and with another phantom developed in Brazil with ANSI specifications, in order to determine the variations in measurements due to the density of the material of each of the phantoms and adjust to the system ACCUSCAN, already certificate. Furthermore, necessary counts were performed with the gamma camera of the phantom developed at ININ, with a standard source of {sup 133}Ba which simulates the energy of {sup 131}I. With these data, were determined the counting efficiencies for a distance of 15 to 20 cm between the surface of the phantom and the the plate of the detectors. Another important aspect was to determine the lower limit of detection (LLD). In this paper we present the results obtained from the detectors calibration of the gamma camera of the hospital.

  7. Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study

    Directory of Open Access Journals (Sweden)

    von Kries Rüdiger

    2008-11-01

    Full Text Available Abstract Background Despite the increase of mobile phone use in the last decade and the growing concern whether mobile telecommunication networks adversely affect health and well-being, only few studies have been published that focussed on children and adolescents. Especially children and adolescents are important in the discussion of adverse health effects because of their possibly higher vulnerability to radio frequency electromagnetic fields. Methods We investigated a possible association between exposure to mobile telecommunication networks and well-being in children and adolescents using personal dosimetry. A population-based sample of 1.498 children and 1.524 adolescents was assembled for the study (response 52%. Participants were randomly selected from the population registries of four Bavarian (South of Germany cities and towns with different population sizes. During a Computer Assisted Personal Interview data on participants' well-being, socio-demographic characteristics and potential confounder were collected. Acute symptoms were assessed three times during the study day (morning, noon, evening. Using a dosimeter (ESM-140 Maschek Electronics, we obtained an exposure profile over 24 hours for three mobile phone frequency ranges (measurement interval 1 second, limit of determination 0.05 V/m for each of the participants. Exposure levels over waking hours were summed up and expressed as mean percentage of the ICNIRP (International Commission on Non-Ionizing Radiation Protection reference level. Results In comparison to non-participants, parents and adolescents with a higher level of education who possessed a mobile phone and were interested in the topic of possible adverse health effects caused by mobile telecommunication network frequencies were more willing to participate in the study. The median exposure to radio frequency electromagnetic fields of children and adolescents was 0.18% and 0.19% of the ICNIRP reference level respectively

  8. Personalized Monte Carlo dosimetry for the planning and evaluation of internal radiotherapy treatments: development and application to selective internal radiotherapy (SIRT)

    International Nuclear Information System (INIS)

    Medical techniques in full expansion arousing high therapeutic expectations, targeted radionuclide therapies (TRT) consist of administering a radiopharmaceutical to selectively treat tumors. Nowadays, the activity injected to the patient is generally standardized. However, in order to establish robust dose-effect relationships and to optimize treatments while sparing healthy tissues at best, a personalized dosimetry must be performed, just like actual clinical practice in external beam radiotherapy. In that context, this PhD main objective was to develop, using the OEDIPE software, a methodology for personalized dosimetry based on direct Monte Carlo calculations. The developed method enables to calculate the tridimensional distribution of absorbed doses depending on the patient anatomy, defined from CT or MRI data, and on the patient-specific activity biodistribution, defined from SPECT or PET data. Radiobiological aspects, such as differences in radiosensitivities and repair time constants between tumoral and healthy tissues, have also been integrated through the linear-quadratic model. This methodology has been applied to the selective internal radiation therapy (SIRT) which consists in the injection of 90Y-microspheres to selectively treat unresectable hepatic cancers. Distributions of absorbed doses and biologically effective doses (BED) along with the equivalent uniform biologically effective doses (EUD) to hepatic lesions have been calculated from 99mTc-MAA activity distributions obtained during the evaluation step for 18 patients treated at Hopital Europeen Georges Pompidou. Those results have been compared to classical methods used in clinics and the interest of accurate and personalized dosimetry for treatment planning has been investigated. On the one hand, the possibility to increase the activity in a personalized way has been highlighted with the calculation of the maximal activity that could be injected to the patient while meeting tolerance criteria

  9. Accreditation of the Personal Dosimetry internal Service Tecnatom by the National Entity (ENAC); Acreditacion del Servicio de Dosimetria Personal Interna de Tecnatom por la Entidad Nacional de Acreditacion (ENAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Marchena, P.

    2014-07-01

    The service of personal Dosimetry internal Tecnatom has made the process of adapting its methodology and quality assurance, requirements technical and management will be required to obtain accreditation from the National Accreditation Entity according to ISO / IEC 170251 standard {sup G}eneral Requirements competence of testing and calibration laboratories. To carry out this process, the laboratory has defined quality criteria set out in their test procedures, based on ISO Standards 27048: 2011; ISO 20553: 2005 and ISO 28218: 2010. This paper describes what has been the methodology used to implement the requirements of different ISO test methods of SDPI Tecnatom. (Author)

  10. Dosimetry of extremities in health personnel of interventionist radiology and nuclear medicine; Dosimetria de extremidades en personal sanitario de radiologia intervencionista y medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ginjaume, M.; Perez, S.; Carnicer, A.; Ortega, X.; Tormo, M.L.; Amor, I.; Rodriguez, M.

    2011-07-01

    Monitoring of workers constitutes an important part of any radiological protection program. In some medical applications of radiation, such as nuclear medicine and interventional radiology, there is a high risk of receiving locally high exposures in the hands. This paper presents the main results of a measurement campaign of extremely dosimetry. The results confirm the need to introduce routine extremely monitoring. In addition it is shown that on general basis, the ring dosemeter is preferred to the wrist dosemeter, in particular for nuclear medicine. In the field of interventional radiology, the surgeon located at distances closer to the beam is the person who receives higher doses. Biliary drainage is the type of intervention for which higher values were recorded. Among the analyzed nuclear medicine procedures, the preparation of PET radiopharmaceuticals was found to be one which entailed higher skin equivalent dose per unit of handled activity. (Author). 9 refs.

  11. ESR Dosimetry

    International Nuclear Information System (INIS)

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  12. Computational dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  13. Establishment of ANSI N13.11 X-ray radiation fields for personal dosimetry performance test by computation and experiment.

    Science.gov (United States)

    Kim, J L; Kim, B H; Chang, S Y; Lee, J K

    1997-01-01

    This paper describes establishment by computational and experimental methods of the American National Standard Institute (ANSI) N13.11 X-ray radiation fields by the Korea Atomic Energy Research Institute (KAERI). These fields were used in the standard irradiations of various personal dosimeters for the personal dosimetry performance test program performed by the Ministry of Science and Technology of Korea in the autumn of 1995. Theoretical X-ray spectra produced from two KAERI X-ray generators were estimated using a modified Kramers' theory with target attenuation and backscatter correction and their spectral distributions experimentally measured by a high-purity germanium semiconductor detector through proper corrections for measured pulse height distributions with photopeak efficiency, Compton fraction, and K-escape fraction. The average energies and conversion coefficients obtained from the computation and experimental methods, when compared with ANSI N13.11 and the recently published National Institute of Standards and Technology X-ray beams, appeared to be in good agreement--(+/-)3% between corresponding values--and thus, could be satisfactorily applied in the performance test of personal dosimeters. PMID:9467054

  14. Establishment of ANSI N13.11 X-ray radiation fields for personal dosimetry performance test by computation and experiment.

    Science.gov (United States)

    Kim, J L; Kim, B H; Chang, S Y; Lee, J K

    1997-12-01

    This paper describes establishment by computational and experimental methods of the American National Standard Institute (ANSI) N13.11 X-ray radiation fields by the Korea Atomic Energy Research Institute (KAERI). These fields were used in the standard irradiations of various personal dosimeters for the personal dosimetry performance test program performed by the Ministry of Science and Technology of Korea in the autumn of 1995. Theoretical X-ray spectra produced from two KAERI X-ray generators were estimated using a modified Kramers' theory with target attenuation and backscatter correction and their spectral distributions experimentally measured by a high-purity germanium semiconductor detector through proper corrections for measured pulse height distributions with photopeak efficiency, Compton fraction, and K-escape fraction. The average energies and conversion coefficients obtained from the computation and experimental methods, when compared with ANSI N13.11 and the recently published National Institute of Standards and Technology X-ray beams, appeared to be in good agreement--(+/-)3% between corresponding values--and thus, could be satisfactorily applied in the performance test of personal dosimeters. PMID:9467054

  15. Development of an automated speech recognition interface for personal emergency response systems

    Directory of Open Access Journals (Sweden)

    Mihailidis Alex

    2009-07-01

    Full Text Available Abstract Background Demands on long-term-care facilities are predicted to increase at an unprecedented rate as the baby boomer generation reaches retirement age. Aging-in-place (i.e. aging at home is the desire of most seniors and is also a good option to reduce the burden on an over-stretched long-term-care system. Personal Emergency Response Systems (PERSs help enable older adults to age-in-place by providing them with immediate access to emergency assistance. Traditionally they operate with push-button activators that connect the occupant via speaker-phone to a live emergency call-centre operator. If occupants do not wear the push button or cannot access the button, then the system is useless in the event of a fall or emergency. Additionally, a false alarm or failure to check-in at a regular interval will trigger a connection to a live operator, which can be unwanted and intrusive to the occupant. This paper describes the development and testing of an automated, hands-free, dialogue-based PERS prototype. Methods The prototype system was built using a ceiling mounted microphone array, an open-source automatic speech recognition engine, and a 'yes' and 'no' response dialog modelled after an existing call-centre protocol. Testing compared a single microphone versus a microphone array with nine adults in both noisy and quiet conditions. Dialogue testing was completed with four adults. Results and discussion The microphone array demonstrated improvement over the single microphone. In all cases, dialog testing resulted in the system reaching the correct decision about the kind of assistance the user was requesting. Further testing is required with elderly voices and under different noise conditions to ensure the appropriateness of the technology. Future developments include integration of the system with an emergency detection method as well as communication enhancement using features such as barge-in capability. Conclusion The use of an automated

  16. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  17. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  18. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  19. 'Au.Raex': An Automated, Long Lasting Exposimeter for Monitoring Persons with Increased Radon-Exposure

    International Nuclear Information System (INIS)

    Within this framework, the automated radon exposimeter 'au.raex' improves the long-established method of radon exposure measurements using nuclear track detectors in a decisive method. Unlike conventional nuclear track exposimeters this radon measurement is switchable. By movement recognition the exposition is constrained automatically to the period in which it is actually worn, the exposition time is captured automatically. Despite these advantages, it is comfortable to wear au.raex. It has roughly the dimensions of a cigarette box. Used as a time-controlled ambient exposimeter it captures only the radon expositions during relevant and defined periods. The timing control has been implemented in form of a complete calendar. Thus, the on-and off separately for each weekday, as well as public holidays and holiday periods are defined, in which the detector, against the rule, remains completely closed. Data evaluation and programming are performed using the USB port and software on a computer. The switchability of the measurement is achieved by a movable slide at a small distance above the detector film. Both movement- and time-depended control of the closure are optimized for low electronic energy consumption. The 'au.raex' is applicable for measuring campaigns lasting about several years, without the need to charge the device or further maintenance. Calibration as well as the practical testing of 'au.raex' were made by the Radon Laboratory of Karlsruhe Institute of Technology KIT using their own nuclear track films and evaluation process. To validate the operation of the instrument, measurements are to be performed on persons with known increased radon exposure.(author)

  20. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.;

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  1. Report of results of the tests of evaluation of the operation of service of personal dosimetry of the CNLV; Informe de resultados de las pruebas de evaluacion del funcionamiento de servicio de dosimetria personal de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T.; Tovar M, V.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-11-15

    The ININ realized the evaluation of the service of personal dosimetry in the CNLV, in the categories: IV.- (Photons of high energy of {sup 137}Cs) and the VA.- (Particles beta of {sup 90}Sr/{sup 90}Y); in the category IV the test was satisfactory, however in the chart 1 has an underestimation a the American Standard HP over the value true conventional of a 9%; for this irregularity it is recommended to revise the procedures of evaluation of the process and the determination of the chart 1 of the HP. In the category VA, the test is also satisfactory, however the results contrasted with the chart 2 and the HP, the values were overestimated in 29% of the true conventional value, and for that problem is recommended to revise the evaluation procedures in contrast with the values determined by the standard HP. (Author)

  2. For information: Individual dosimetry service

    CERN Document Server

    2004-01-01

    The service has noticed that there are dosimeter holders who have changed their activities and thus have no longer need of dosimeter as a permanent basis in their work (persons who go rarely to the controlled areas). The reduction of persons in the regular distribution list of dosimeters will lighten the work of the service (distribution, evaluation and consolidation of doses) as well as the work of the distributors, needless to say the economical input this would have for CERN. For the persons who only need a dosimeter temporarily we would like to remind that there is a quick and simple procedure to have one immediately from the Individual Dosimetry Service. Please contact the service (dosimetry.service@cern.ch) if you do not need a dosimeter regularly. Thank you for your cooperation. http://cern.ch/rp-dosimetry

  3. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry; Pruebas tipo al sistema de dosimetria termoluminiscente automatico adquirido por el CPHR para dosimetria personal

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R.; Martinez G, A. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), Calle 20 No. 4113 e/41 y 47. Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba)

    2006-07-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  4. Dosimetry standards

    International Nuclear Information System (INIS)

    The following leaflets are contained in this folder concerning the National Physical Laboratory's measurement services available in relation to dosimetry standards: Primary standards of X-ray exposure and X-ray irradiation facilities, X-ray dosimetry at therapy levels, Protection-level X-ray calibrations, Therapy-level gamma-ray facility, Fricke dosemeter reference service, Low-dose-rate gamma-ray facility, Penetrameter and kV meter calibration, Measurement services for radiation processing, Dichromate dosemeter reference service, Electron linear accelerator. (U.K.)

  5. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  6. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    Science.gov (United States)

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  7. European Crew Personal Active Dosimeter (EuCPAD), a novel dosimetry system utilizing operational and scientific synergies for the benefit of humans in space

    Science.gov (United States)

    Straube, Ulrich; Berger, Thomas

    A significant expansion of Human presence in space can be recognized over the last decade. Not only the frequency of human space mission did rise, but also time in space, mission duration with extended flights lasting half a year or more are becoming "standard". Despite the challenges to human health and well-being are still significant, or may even increase with mission length and work density. Also radiation exposure in space remains one of the inevitable and dominating factors relevant to crew- health, -safety and therefore mission success. The radiation environment that the space crews are exposed to differs significantly as compared to earth. Exposure in flight exceed doses that are usually received by terrestrial radiation workers on ground. Expanding "medical" demands are not a solely characteristics of current and current and upcoming mission scenarios. Likewise the margins for what is understood as "efficient utilization" for the fully operational science platform ISS, are immense. Understanding, accepting and approaching these challenges ESA-HSO did choose a particular pass of implementation for one of their current developments. Exploiting synergies of research, science and medical operational aspects, the "European Crew Personal Active Dosimeter for Astronauts (EuCPAD)" development exactly addresses these circumstances. It becomes novel part of ESA Radiation Protection Initiative for astronauts. The EuCPAD project aims at the development and manufacturing of an active (powered) dosimeter system to measure astronaut's exposures, support risk assessment dose management by providing a differentiated data set. Final goal is the verification of the system capabilities for medical monitoring at highest standards. The EuCPAD consists of several small portable Personal Active Dosimeters (MU = Mobile Unitas) and a rack mounted docking station “Personal Storage Device (PSD)” for MU storage, data read out and telemetry. The PSD furthermore contains a Tissue

  8. An on-demand personal automated transport system: The CityMobil demonstration in La Rochelle

    OpenAIRE

    Bouraoui, Laurent; Boussard, Clément; Charlot, François; Holguin, Carlos; Nashashibi, Fawzi; Parent, Michel; Resende, Paulo

    2011-01-01

    International audience The objective of the CityMobil project is to achieve a more effective organisation of urban transport, resulting in a more rational use of motorised traffic with less congestion and pollution, safer driving, a higher quality of living and an enhanced integration with spatial development. This objective is brought closer by developing integrated traffic solutions: advanced concepts for innovative autonomous and automated road vehicles for passengers and goods, embedde...

  9. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  10. NOTE FROM THE DOSIMETRY SERVICE

    CERN Multimedia

    2002-01-01

    During March, the Dosimetry Service will be opened from 8h30 to 12h in the morning and closed every afternoon.   We have established that many people, who are provided regularly with a personal dosimeter (film badge), have changed their activity and do not need it anymore, because they do not, or only exceptionally, enter controlled areas. If you are one of these persons, please contact the Personal Dosimeter Service (tel: 72155). There is a simplified procedure for obtaining a dosimeter if you have an immediate need for short-term visits in controlled areas. A reduction of the number of persons on the regular distribution list of dosimeters would decrease our and the distributors workload. It would also contribute to significant savings in the dosimetry, and thus CERN, budget. We thank you in advance for your understanding and for your collaboration.

  11. Radio-analysis. Applications: biological dosimetry; Radioanalyse. Applications: dosage biologique

    Energy Technology Data Exchange (ETDEWEB)

    Bourrel, F. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Courriere, Ph. [UFR de Pharmacie, 31 - Toulouse (France)

    2003-06-01

    Radioisotopes have revolutionized the medical biology. Radio-immunology remains the reference measurement of the infinitely small in biology. Constant efforts have been performed to improve the simpleness, detectability and fastness of the method thanks to an increasing automation. This paper presents: 1 - the advantages of compounds labelling and the isotopic dilution; 2 - the antigen-antibody system: properties, determination of the affinity constant using the Scatchard method; 3 - radio-immunologic dosimetry: competitive dosimetry (radioimmunoassay), calibration curve and mathematical data processing, application to the free thyroxine dosimetry, immunoradiometric dosimetry (immunoradiometric assay), evaluation of the analytical efficiency of a radioimmunoassay; 4 - detection of the radioactive signal (solid and liquid scintillation). (J.S.)

  12. Present Status and Prospects for Biological Dosimetry using Chromosome Aberration Analysis (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Jin, C.Z.; Liu, X.L.; Zhang, Z.Y.; Luo, Y.S

    1998-07-01

    Biological dosimetry of radiation exposures was performed in 21 persons who received an overexposure to radiation in several radiation accidents during 1980-1996 in China. Based on the frequencies of dicentrics and rings the individual dose was estimated. Long-term follow-up studies have been carried out on five of the moderate and high dose exposed victims. The automated karyotype analysis system and the FISH technique have been established. The application of FISH for a dose-response relationship for translocations after irradiation with {sup 60}Co {gamma} rays has been performed. (author)

  13. Using Personal Health Records for Automated Clinical Trials Recruitment: the ePaIRing Model

    OpenAIRE

    Wilcox, Adam; Natarajan, Karthik; Weng, Chunhua

    2009-01-01

    We describe the development of a model describing the use of patient information to improve patient recruitment in clinical trials. This model, named ePaIRing (electronic Participant Identification and Recruitment Model) describes variations in how information flows between stakeholders, and how personal health records can specifically facilitate patient recruitment.

  14. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  15. Robust Text Extraction for Automated Processing of Multi-Lingual Personal Identity Documents

    Directory of Open Access Journals (Sweden)

    Pushpa B R

    2016-04-01

    Full Text Available Text extraction is a technique to extract the textual portion from non-textual background like images. It plays an important role in deciphering valuable information from images. Variation in text size, font, orientation, alignment, contrast etc. makes the task of text extraction challenging. Existing text extraction methods focus on certain regions of interest and address characteristics like noise, blur, distortion and variations in fonts makes text extraction difficult. This paper proposes a technique to extract textual characters from scanned personal identity document images. Current procedures keep track of user records manually and thus give way to inefficient practices and need for abundant time and human resources. The proposed methodology digitizes personal identity documents and eliminates the need for a large portion of the manual work involved in existing data entry and verification procedures. The proposed method has been experimented extensively with large datasets of varying sizes and image qualities. The results obtained indicate high accuracy in the extraction of important textual features from the document images.

  16. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  17. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  18. Neutron dosimetry - A review

    International Nuclear Information System (INIS)

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  19. Medical dosimetry in Hungary

    Science.gov (United States)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  20. The Vinca dosimetry experiment

    International Nuclear Information System (INIS)

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  1. TLD personnel dosimetry and its relationship with the radiodiagnostic training; Dosimetria personal TLD y su relacion con la capacitacion en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [DEHA, Universidad Autonoma Metropolitana-Xochimilco, Mexico D.F. (Mexico); Gaona C, E. [Universidad Tecnologica de Mexico, Mexico D.F. (Mexico)

    2002-07-01

    The personnel dosimetry and the training in radiological protection in radiodiagnostic in Mexico before 1997 were almost nonexistent except few services of public and private radiology, we can to say that the personnel dosimetry and the obligatory training was born in the year 1997, together with the present Mexican Official Standards in radiology. This study has the purpose to make an evaluation of the personnel dosimetry of 110 radiology services distributed in the Mexican Republic for the year 2001 and to estimate the annual and bimonthly mean doses, as well as its trust intervals and its relationships with the personnel training in radiological protection by means of a sampling that was realized in two stages (1997 and 2000) in the metropolitan area of Mexico City. The results show that the received doses by the medical and technical personnel in the participating radiology services are in the 0.03 mSv and 0.94 mSv interval and the mean is 0.25 mSv. The estimated annual personnel dose would be in the 0.18 mSv to 5.64 mSv interval, which are values very lower to the annual dose limit that is 50 mSv and its magnitude is similar to the effective annual dose by natural background radiation. In the first stage in training was found that there is not a significant difference in the response frequencies among the medical and technical personnel with a p < 0.05. The 52% of the occupational exposure personnel of radiology uses dosemeter, but only 17% of them know the dose reports. the 15.8% of personnel considers that dosemeter protects against radiation and only 16.5% knows the annual maximum permissible dose for stochastic effects. The second stage, the results shown that there is a significant difference in the response of frequencies among medical and technical personnel, the same results which are obtained for members and non members of a professional association with a p < 0.05. The 38% has personnel dosimetry, the 19% knows the principles of radiological

  2. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  3. Statistical results 1988-1990 of the Official Personal Dosimetry Service and data compilation 1980-1990; Statistische Ergebnisse aus der amtlichen Personendosisueberwachung 1988-1990 und Zusammenfassung 1980-1990

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, E.; Drexler, G.; Scheibe, D.; Schraube, H.

    1994-08-01

    The report consists of a summary of relevant statistical data in the official personal dosimetry in 1988-1990 for the Federal States of Bavaria, Hesse, Schleswig-Holstein, and since 1989, Baden-Wuerttemberg. The data are based on the survey of more than 8000 institutions with over 100000 occupational exposed persons and are derived from more than one million single measurements. The report covers informations on the institutions, on the persons as well as dosimetric values. The measuring method is described briefly with respect to dosimeters used, their range and the interpretation of values. Information on notional doses and the interpolation of values nearby the detection limits are given. (HP) [Deutsch] Der Bericht enthaelt eine Zusammenfassung der wichtigsten statistischen Ergebnisse der Personendosisbewachung fuer die Bundeslaender Bayern, Hessen, Schleswig-Holstein und seit 1989, Baden-Wuerttemberg. Die Daten basieren auf ueber 8000 ueberwachten Betrieben mit mehr als 100000 Personen, d.h. mehr als 1 Million Einzelmessungen. Es werden betriebs- und personenspezifische Daten und dosimetrische Daten erfasst. Bei letzteren werden neben Dosimetereigenschaften wie Anwendungsbereich, Messbereich usw. auch allgemeine Verfahren wie Festlegung von Ersatzdosen und die Rundung der Messwerte, besonders im Bereich der unteren Messgrenze, dargestellt. (HP)

  4. Albedo neutron dosimetry in Germany: regulations and performance.

    Science.gov (United States)

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. PMID:24639589

  5. Type tests to the automatic system of thermoluminescent dosimetry acquired by the CPHR for personnel dosimetry; Pruebas tipo al sistema de dosimetria termoluminiscente automatico adquirido por el CPHR para dosimetria personal

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), Calle 20, No. 4113 e/ 41 y 47, Miramar, Ciudad de la Habana (Cuba)]. e-mail: daniel@cphr.edu.cu

    2005-07-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF: Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  6. Implementation of a dosimetry service for the occupationally exposed personnel of the ESFM-IPN; Implementacion de un servicio de dosimetria para el personal ocupacionalmente expuesto de la ESFM-IPN

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, Y. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Sanchez R, A. A. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico); Ceron R, P. V.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia y Tecnologia Avanzada, Unidad Legaria, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico); Vega C, H. R., E-mail: yamani.hernandez@cnsns.gob.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    Because the ionizing radiations handling implies a risk for the health, is necessary to take a control of the radiation quantity that the occupationally exposed personnel receives during their daily work with ionizing radiations. For this purpose there are several types of dosimetry and companies that provide the service, but taking advantage that the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN) possesses a thermoluminescence equipment (Tl) was decided to develop a personnel dosimetry service for gammas, with thermoluminescent glasses of type TLD-100. First one carries out a glasses characterization, for which the glasses were washed with a methyl alcohol solution, without rubbing them for not damaging them; after the drying, they were subjected to a temperature of 400 C during one hour and later on 100 grades C for two hours in order to erasing them the bottom information that they could have. 200 glasses were exposed to gamma radiation coming from a Cobalt 60 source property of ESFM-IPN in order to selecting the glasses that had a response whose precision was inside a standard deviation. Of this characterization 80 dosimeters were selected that had better response according to the obtained readings as well as of their shine curves. These selected TLD-100 glasses were irradiated to different dose of gamma radiation and with those readings it was built a dose response curve in m R against readings of electric load in pick Coulombs (pCou). The response curve was a direct line or calibration curve. As final exercise some glasses of this selected lot were subjected to irradiation dose not known by the person that carried out the readings and this way was proven that the results were appropriate with the calibration curve. Finally these dosimeters were placed in port-dosimeters and erased guides of dosimeters, of equipment use and dosimeters lecture were also elaborated. (Author)

  7. Measurement assurance in dosimetry

    International Nuclear Information System (INIS)

    The uses of radiation in medicine and industry are today wide in scope and diversity and there is a need for reliable dosimetry in most applications. In particular, high accuracy in dosimetry is required in the therapeutic use of radiation. Consequently, calibration procedures for radiotherapy generally meet also the accuracy requirements for applications in other fields, such as diagnostic radiology, radiation protection and industrial radiation processing. The emphasis at this symposium was therefore mainly or radiotherapy dosimetry, but the meeting also included one session devoted to dosimetry in diagnostic radiology. Refs, fig and tabs

  8. Personality.

    Science.gov (United States)

    Funder, D C

    2001-01-01

    Personality psychology is as active today as at any point in its history. The classic psychoanalytic and trait paradigms are active areas of research, the behaviorist paradigm has evolved into a new social-cognitive paradigm, and the humanistic paradigm is a basis of current work on cross-cultural psychology. Biology and evolutionary theory have also attained the status of new paradigms for personality. Three challenges for the next generation of research are to integrate these disparate approaches to personality (particularly the trait and social-cognitive paradigms), to remedy the imbalance in the person-situation-behavior triad by conceptualizing the basic properties of situations and behaviors, and to add to personality psychology's thin inventory of basic facts concerning the relations between personality and behavior.

  9. Dosimetry in process control

    International Nuclear Information System (INIS)

    Measurement of absorbed dose and dose distribution in irradiated medical products relies on the use of quality dosimetry systems, trained personnel and a thorough understanding of the energy deposition process. The interrelationship of these factors will be discussed with emphasis on the current and future practices of process control dosimetry. (author)

  10. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  11. On-Board TL Dosimetry: Possibilities and Limitations

    International Nuclear Information System (INIS)

    Full text: The paper shortly deals with application of TLDs for dosimetry of ISS, e.g. personal dosimetry, phantom measurements, mapping, monitoring and neutron dosimetry. The main characteristics of the on-board and ground evaluation are compared. The main advantages and disadvantages of the on-board evaluation are summarised. Finally the planned future improvements of the Pille system are discussed like development of an RS485 interface for alternative data transfer, introduction of smaller dosimeters (capsules), use of a more use-friendly display (80 characters), application of internal memory instead of memory card and improvement of the dosimeter evaluation (glow curve fit, background subtraction). (author)

  12. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  13. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual DosimetryWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MAY/JUNE will be available from their usual dispatchers on Tuesday 2 May.Please have your films changed before the 12 May.The colour of the dosimeter valid in is MAY/JUNE is YELLOW.Individual Dosimetry Service will be closed on Friday 28 April.

  14. Reconstructive dosimetry for cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  15. Status of radiation processing dosimetry

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been...... or are being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in qualification...

  16. Dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures.

  17. Ion storage dosimetry

    Science.gov (United States)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  18. Dosimetry in diagnostic radiology.

    Science.gov (United States)

    Meghzifene, Ahmed; Dance, David R; McLean, Donald; Kramer, Hans-Michael

    2010-10-01

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures. PMID:20655679

  19. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  20. Speculation on improving personal dosimetry in mammography

    International Nuclear Information System (INIS)

    The increasing importance of radiation protection of the patient in diagnostic radiology has created an interest in the dose individuals receive from X-ray mammography, although this is an area where the most important aspect of protection is based on the inter comparison of machines using phantoms and standard conditions. In 1987 the ICRP established the critical quantity as being the average absorbed dose to the glandular tissue of the breast, and identified a composition of 50% adipose; 50% glandular tissue as a reference. Several authors have published experimental and monte carlo simulation resuluts to enable the determination of this quantity from output, beam quality and compressed breast thickness. Many centres, including ourselves, have studied the distribution of radiation dose on this basis. The result is however dependant on the assumption made about tissue composition. It is apparently common knowledge among pathologists and frequently mentioned in general anatomy texts, that the amount of glandular tissue is independent of breast size; that is larger breasts will have a higher adipose:glandular tissue ratio. Such a systematic variation would lead to an overestimate of the dose being received by women with larger breasts. I will review the availabe pathology and demonstrate the effect of applying the assumed breast composition on our own data. (author)

  1. Quality control and quality assurance philosophy introduced in national personnel dosimetry service

    International Nuclear Information System (INIS)

    There in National Personnel Dosimetry Service (NPDS) the implementation of the control system to guarantee the credibility of the measured personal dose equivalents results was given on the basis of the international recommendations published by the European Commission and the IAEA and in particular of the decree of the SUJB No. 132/2008 Coll. The quality control and the quality assurance are carried out in all three personal dosimetry services introduced in NPDS: in the film badge, thermoluminescent (TL) and neutron dosimetry. (authors)

  2. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    Science.gov (United States)

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. PMID:26567323

  3. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  4. In vivo dosimetry for IMRT

    Science.gov (United States)

    Vial, Philip

    2011-05-01

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  5. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  6. Ambiguities in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    On one hand, thermoluminescence dosimetry is one of most reliable, rugged and economical system of passive dosimetry but on the other hand there are several ambiguities, which need attention. The PTTL is a complex phenomenon and it is difficult to identify the source for the transfer of the charge carrier to repopulate the traps related to the glow peaks. For the photon energy dependence it is difficult to explain the change in the response for 662 keV gamma rays of 137Cs as compared to the response for 1.25 MeV gamma rays of 60Co. The increase in the response of a TLD with increasing heating rate poses another ambiguity and so is the case with the observations of the supra linearity of different glow peaks. To over come the ambiguities, efforts have to continue to enhance the understanding and to harmonize the protocol for reliable experimental data

  7. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  8. Quantitative imaging for clinical dosimetry

    Science.gov (United States)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  9. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  10. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors)

  11. Personnel radiation dosimetry

    International Nuclear Information System (INIS)

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  12. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    1999-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry ServiceWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period JANUARY/FEBRUARY will be available from their usual dispatchers on Monday the third of January 2000.Please have your films changed:before the 12 January.The colour of the dosimeter valid in JANUARY/FEBRUARY is WHITE.

  13. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry Service.We inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MARCH/APRIL will be available from their usual dispatchers on the third of March 2000.Please have your films changed before the 13th of March.The colour of the dosimeter valid in MARCH/APRIL is BLUE.

  14. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  15. Eurados trial performance test for photon dosimetry

    DEFF Research Database (Denmark)

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.;

    2001-01-01

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered. This...... paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...

  16. New modalities (setting, fractionation) of radioimmunotherapy by 90Y-ibritumomab tiuxetan (90Y zevalin) in first line treatment of follicular type non Hodgkin malignant lymphomas: efficiency, toxicity and personalized dosimetry approach

    International Nuclear Information System (INIS)

    Rationale: radioimmunotherapy (R.I.T.) with 90Y-ibritumomab tiuxetan ([90Y] Zevalin ) is a new treatment option for patients with relapsed/refractory non Hodgkin follicular lymphoma (F.L.). Efficacy increases when Zevalin is used earlier in the disease course. Currently, Zevalin dosage is based on weight and not dosimetry. This most likely results in a wide range of absorbed dose to critical organs and tumor, which in turn translates in unpredictable efficacy and toxicity. Optimizing R.I.T. with [90Y] Zevalin will require its use as part of first-line therapy and implementation of patient-specific dosimetry methods in clinical trials. Objectives and methods: we have consecutively studied 2 new modalities of using Zevalin in first line therapy of F.L.. First, we conducted an international, randomized, phase 3 trial to evaluate the efficacy and safety of consolidation with Zevalin(15 MBq/Kg) in patients with advanced-stage F.L. achieving at least a partial response after induction immuno chemotherapy. A second approach consisted of evaluating a fractionated schedule with 2 doses of Zevalin (11.1 MBq/kg each), 9 to 13 weeks apart, as front line therapy in F.L. patients with high tumor burden. As part of this second approach, we designed a refined imaging-based (planar and 3-dimensional) dosimetry protocol to improve prediction of dose efficacy and toxicity after each dose of zevalin. Data acquisition was performed in 3 centers (Lille, Nantes and Manchester) while data treatment and specific dose calculations for major organ, tumor masses and bone marrow were centralized. Conclusion: Consolidation of first remission with 90Y-ibritumomab tiuxetan in advanced-stage follicular lymphoma is highly effective with no unexpected toxicities, prolonging P.F.S. by 2 years and resulting in high P.R.-to-C.R. conversion rates regardless of type of first-line induction treatment. Preliminary data show the feasibility of front line fractionated R.I.T. with Zevalin in patient with high

  17. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  18. The micronucleus test in biological dosimetry

    International Nuclear Information System (INIS)

    The determination of micronuclei in lymphocytes on the basis of the Cytochalasine B method may already be regarded as a most useful tool following short-term wholebody exposure to doses in the range between approx. 0.3 and 7 Gy and thus offers a genuine alternative to the conventional analysis of chromosomes. Further efforts in the research on micronuclei as a biological system of dosimetry should primarily be made in the field of radiosensitive subpopulations and, additionally, the field of automated evaluation procedures. It is to be expected that this will permit the limit of detection to be lowered to doses of even less than approx. 0.2 - 0.3 Gy. (orig.)

  19. Dosimetry of the patient and occupational in interventional procedures

    International Nuclear Information System (INIS)

    The big necessity to estimate the entrance doses in skin that the patients receive when are exposed to interventional procedures and the personal dosimetry of the professionals that work in these procedures in operating room, has taken to the analysis of different possibilities that allow to carry out these estimates. The objective of this work was to analyze the possibility of using Optically Stimulated Luminescence dosimeters; comparing the results with ionizing cameras and electronic personal dosimeters. To carry out these estimates, we work with a X-ray equipment Phillips Allure, acrylic phantoms, a dosimetry system formed by ionization camera and dosimeter UNIDOS E, OSL (Nano dots) dosimeters and electronic lavalieres Aloka brand, PDM 117 models. To estimate the doses that the patients receive, entrance dose was measured in skin and in personal dosimetry inside places where the medical professionals are habitually located in different situations among 5 and 60 irradiation min. In the case of direct radiation, the OSL (Nano dots) present reliable readings and only were dispersed values for the measurements of secondary radiation. The measured values and the linking among them were also analyzed. The OSL (Nano dot) dosimetry behaves reliable way when is located in the ranges of more dose to 0,1 mGy, according to the maker indications and fundamentally for direct beams of the hemodynamics equipment being ideal for the measurement of entrance dose in skin. For the Nano dots use in personal dosimetry the results should be read carefully for values major to 0,1 mGy and being completely inappropriate for minor values. (Author)

  20. Research needs related to internal dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-1)

    International Nuclear Information System (INIS)

    There are several important techniques of internal dosimetry for use with uranium mine and mill workers: personal radon daughter dosimetry, uranium content of urine, whole body counter to evaluate the uranium in lung burden, and assay of uranium in biopsy or autopsy tissue samples. There are problems with each of these techniques and further research is required in internal dosimetry (as well as the alternative of monitoring exposure levels). This research should be aimed at improved or supplementary dosimetry techniques, enhanced theoretical interpretation of dosimetry results and fundamental research not directly related to the techniques mentioned above. Proposals for research as presented by the working group in this report should be considered by funding organizations concerned with internal dosimetry as it relates to the uranium mining industry, and, since this report was first presented. AECB has proceeded with related projects. (author)

  1. Fast neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  2. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual Dosimetry ServiceWe inform all staffs and users under regular dosimetric control that the dosimeters for the monitoring period JULY/AUGUST are available from their usual dispatchers.Please have your films changed before the 10th of July.The colour of the dosimeter valid in JULY/AUGUST is PINK.

  3. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  4. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  5. Internal Dosimetry. Chapter 18

    International Nuclear Information System (INIS)

    The Committee on Medical Internal Radiation Dose (MIRD) is a committee within the Society of Nuclear Medicine. The MIRD Committee was formed in 1965 with the mission to standardize internal dosimetry calculations, improve the published emission data for radionuclides and enhance the data on pharmacokinetics for radiopharmaceuticals [18.1]. A unified approach to internal dosimetry was published by the MIRD Committee in 1968, MIRD Pamphlet No. 1 [18.2], which was updated several times thereafter. Currently, the most well known version is the MIRD Primer from 1991 [18.3]. The latest publication on the formalism was published in 2009 in MIRD Pamphlet No. 21 [18.4], which provides a notation meant to bridge the differences in the formalism used by the MIRD Committee and the International Commission on Radiological Protection (ICRP) [18.5]. The formalism presented in MIRD Pamphlet No. 21 [18.4] will be used here, although some references to the quantities and parameters used in the MIRD primer [18.3] will be made. All symbols, quantities and units are presented

  6. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  7. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  8. Radioembolization Dosimetry: The Road Ahead

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Maarten L. J., E-mail: m.l.j.smits-3@umcutrecht.nl; Elschot, Mattijs [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Sze, Daniel Y. [Stanford University School of Medicine, Division of Interventional Radiology (United States); Kao, Yung H. [Austin Hospital, Department of Nuclear Medicine (Australia); Nijsen, Johannes F. W. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Iagaru, Andre H. [Stanford University School of Medicine, Division of Nuclear Medicine and Molecular Imaging (United States); Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  9. Time reduction and automation of routine planning activities through the use of macros

    International Nuclear Information System (INIS)

    The use of macros in scheduler automates Adac Pinnacle3 much of the routine activities in the planning process, from the display options and placement of beams, to, among other possibilities, systematic naming them and export of the physical and clinical dosimetry. This automation allows reduction of the times associated with the planning process and an error reduction.

  10. Dosimetry of iodoantipyrine

    International Nuclear Information System (INIS)

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96±0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 0.7 μGray, 0.5 μGray and 2.9 μGray per MBq of 123I, 123I, and 131I administered respectively. (orig.)

  11. Strahlungsmessung und Dosimetrie

    CERN Document Server

    Krieger, Hanno

    2013-01-01

    „Strahlungsquellen und Dosimetrie“ ist Teil einer Lehrbuchreihe zur Strahlungsphysik und zum Strahlenschutz. Der erste Teil befasst sich mit den physikalischen Grundlagen der Strahlungsdetektoren und der Strahlungsmessung. Im zweiten Teil werden die Konzepte und Verfahren der klinischen Dosimetrie dargestellt. Der dritte Abschnitt erläutert ausführlich die Dosisverteilungen der klinisch angewendeten Strahlungsarten. Im vierten Teil werden weitere Messaufgaben der Strahlungsphysik einschließlich der Messsysteme für die Bildgebung mit Röntgenstrahlung dargestellt. Neben den grundlegenden Ausführungen enthält dieser Band im laufenden Text zahlreiche Tabellen und Grafiken zur technischen und medizinischen Radiologie, die bei der praktischen Arbeit sehr hilfreich sein können und 199 Übungsaufgaben mit Lösungen zur Vertiefung der Inhalte. Für die zweite Auflage wurden die Darstellungen der Elektronen- und der Protonendosimetrie sowie der bildgebenden Verfahren mit Computertomografen deutlich erweit...

  12. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  13. Fifth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  14. Hanford internal dosimetry program manual

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  15. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β-emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  16. Dosimetry in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  17. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  18. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226Ra, 228Ra, and 224Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  19. Dosimetry, instrumentation and exposure chambers for dc magnetic field studies

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1979-03-01

    The principal objective of this report is to describe in detail an exposure chamber that was developed at the Lawrence Berkeley Laboratory for automated, noninvasive studies of rodent physiology during exposure to high DC magnetic fields. A second objective is to discuss some of the unique instrumentation problems that must be overcome in order to record bioelectric signals from laboratory animals in the presence of a magnetic field. Finally, a description will be given of the various dosimetry techniques that can be employed for quantitation of magnetic field strength.

  20. Dosimetry, instrumentation and exposure chambers for dc magnetic field studies

    International Nuclear Information System (INIS)

    The principal objective of this report is to describe in detail an exposure chamber that was developed at the Lawrence Berkeley Laboratory for automated, noninvasive studies of rodent physiology during exposure to high DC magnetic fields. A second objective is to discuss some of the unique instrumentation problems that must be overcome in order to record bioelectric signals from laboratory animals in the presence of a magnetic field. Finally, a description will be given of the various dosimetry techniques that can be employed for quantitation of magnetic field strength

  1. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

    OpenAIRE

    Erdely, Aaron; Dahm, Matthew; Chen, Bean T.; Zeidler-Erdely, Patti C.; Fernback, Joseph E.; Birch, M. Eileen; Evans, Douglas E.; Kashon, Michael L; Deddens, James A.; Hulderman, Tracy; Bilgesu, Suzan A; Battelli, Lori; Schwegler-Berry, Diane; Leonard, Howard D.; McKinney, Walter

    2013-01-01

    Background Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. Results Upon analysis, an inhalable elemental carbon mass concentration ar...

  2. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684

    International Nuclear Information System (INIS)

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  3. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T.M.; Prud' homme-Lalonde, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E. [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S.; Mullins, D. [JERA Consulting (Canada); Qutob, S. [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D.

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  4. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  5. Dosimetry requirements derived from the sterilization standards

    DEFF Research Database (Denmark)

    Miller, A.

    1998-01-01

    The main standards for radiation sterilization, ISO 11137 and EN 552, rest the documentation for the properly executed sterilization process on dosimetry. Both standards describe general requirements to the dosimetry system: The dose measurements must be traceable to national standards...

  6. Integration of external and internal dosimetry in Switzerland

    International Nuclear Information System (INIS)

    Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as Hp(10) and Hp(0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E50. The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose Hp(10) and the internal dose E50 as well as the total effective dose E = Hp(10) + E50. Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposure. (authors)

  7. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  8. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  9. Biological dosimetry; Dosimetria biologica

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C., E-mail: citlali.guerrero@inin.gob.m [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the Instituto Nacional de Investigaciones Nucleares (ININ) the works to establish a laboratory of biological dosimetry were initiated in 1998, with the purpose that could assist any situation with respect to the exposition to radiation, so much of the occupational exposed personnel as of individuals not related with the handling of radio-active material. The first activity that was realized was to develop the corresponding curves in vitro of dose response for different qualities and radiation types. In the year 2000 the curve corresponding to the gamma radiation of {sup 60}Co was published and up to 2002 the curve corresponding to the X rays of 58 KeV, 120 and 250 kVp. In all the cases, the curves contain the requirements to be used in the determination of the exposition dose. At the present time the curves dose-response are developing for neutrons take place in the reactor Triga Mark III of ININ. Additionally to these activities, cases of suspicion of accidental exposition to radiation have been assisted, using in a beginning the curves published by the IAEA and, from the year 2000, the curves developed in the ININ. (Author)

  10. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  11. Nuclear accident dosimetry intercomparison studies.

    Science.gov (United States)

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  12. Initial radiation dosimetry at Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed

  13. Internal Dosimetry for Nuclear Power Program

    International Nuclear Information System (INIS)

    Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipment's and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. (author)

  14. Applied internal dosimetry staff exposed to Uranium

    International Nuclear Information System (INIS)

    Dosimetric calculations are performed in order to estimate the quantity of a radionuclide that is incorporated by a worker. Urine determinations of activity and mass of uranium are made in the laboratory of Personal and Area Dosimetry. The paper presents reference values concerning the activity excreted in urine due to the incorporation of uranium compounds. The compounds analyzed are natural uranium and uranium enriched to 20 %, both soluble and insoluble. According to the limits allowed for the incorporation of uranium compounds of Type F and M, we verify that the times of monitoring and the detection limits of the equipment used to determine the activity are appropriate. On the other hand, the S-type compounds determination in urine is useful in cases of accidental incorporations (above the ALI) as a first and quick estimate; MDA (0.017 Bq / L) does not allow detection in routine monitoring; measurement in lungs, and faeces should be included. (author)

  15. Skin dosimetry with new MOSFET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, I.S.; Rosenfeld, A.B. [Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave., Wollongong (Australia); Qi, Z.Y. [Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave., Wollongong (Australia); Radiation Oncology Department, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wilkinson, D.; Lerch, M.L.F. [Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave., Wollongong (Australia); Cutajar, D.L. [Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave., Wollongong (Australia)], E-mail: deanc@uow.edu.au; Safavi-Naeni, M. [Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave., Wollongong (Australia); Butson, M. [Illawarra Cancer Care Centre, Wollongong Hospital, Crown Street, Wollongong (Australia); Bucci, J.A.; Chin, Y. [St. George Cancer Care Centre, St. George Hospital, Kogarah (Australia); Perevertaylo, V.L. [SPA BIT (Ukraine)

    2008-02-15

    The MOSkin, a new MOSFET-based detector designed by the Centre for Radiation Physics, was engineered to provide accurate measurements of skin doses in radiotherapy and personal monitoring. The International Commission on Radiological Protection (ICRP) estimates the radiosensitive basal layer to be at an average depth of 0.070 mm. Current commercially available MOSFETs utilize an epoxy bubble encapsulation, making measurements at equivalent depths of 0.070 mm difficult. The MOSkin utilizes a novel packaging design that allows the measurement of doses at this equivalent depth. The MOSkin has shown excellent agreement with the Attix chamber for surface measurements in a 6 MV photon beam of various field sizes and has minimal angular dependence due to the encapsulation. The new design will diversify the use of MOSFETs for dosimetry in radiotherapy and radiation protection.

  16. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: In June: Every morning from 8:30 to 12:00 In July: Mondays, Wednesdays and Fridays from 8:30 to 11:30 Closed all day on Tuesdays and Thursdays From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  17. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  18. Process automation

    International Nuclear Information System (INIS)

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  19. A Test of Reliability of the Personnel Dosimetry Services Authorized by CSN using Photon Beams; Control de los servicios de dosimetria personal autorizados por el CSN, usando haces de fotones

    Energy Technology Data Exchange (ETDEWEB)

    Brosed, A.; Delgado, A.; Granados, C. E.; Lopez Ortiz, G.

    1987-07-01

    In 1987 the Consejo de Seguridad Nuclear (CSN) had eight Personnel Dosimetry Services (PDS) authorized to asses the equivalent doses to the spanish occupationally exposed workers, by means of the readings from the dosemeters wear by them. An audit was carried on the PDS on behalf of CSN under the control of CIEMAT. Batches of dosemeters from each one of the PDS were irradiated to dose equivalent values which were well established by CIEMAT but kept hidden from the PDS. By comparing the true values with those obtained by the PDS, it was possible to evaluate the Services according to the analysis of the quantity Q= I B I -I- S where B is the average of the individual deviations between the dosemeters belonging to the same group and the true value as established by CIEMAT, whereas S is the standard deviation of the values inside of this same group. The results of the evaluation, which was made using the new ICRU quantities for personnel monitoring, are presented. (Author) 8 refs.

  20. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico

    International Nuclear Information System (INIS)

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of clinical dosemeters. In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the dosimetry of the ionizing

  1. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  2. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  3. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  4. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 - 12.00, and closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  5. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 to 12.00 and is closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  6. Automation of the method gamma of comparison dosimetry images

    International Nuclear Information System (INIS)

    The objective of this work was the development of JJGAMMA application analysis software, which enables this task systematically, minimizing intervention specialist and therefore the variability due to the observer. Both benefits, allow comparison of images is done in practice with the required frequency and objectivity. (Author)

  7. Automating dicentric chromosome detection from cytogenetic bio-dosimetry data

    International Nuclear Information System (INIS)

    We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was re-coded in C++/OpenCV; image processing was accelerated by data and task parallelization with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. (authors)

  8. Conversion coefficients from air kerma to personal dose equivalent H{sub p}(3) fir eye-lens dosimetry; Coeficients de conversion du kerma dans l'air a l'equivalent de dose individuel H{sub p}(3) pour la dosimetrie du cristalin

    Energy Technology Data Exchange (ETDEWEB)

    Daures, J.; Gouriou, J.; Bordy, J.M

    2009-07-01

    This work has been performed within the frame of the European Union ORAMED project (Optimization of Radiation protection for Medical staff). The main goal of the project is to improve standards of protection for medical staff for procedure resulting in potentially high exposures and to develop methodologies for better assessing and for reducing exposures to medical staff. The Work Package WP2 is involved in the development of practical eye lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP code of the conversion factors related to the operational quantity H{sub p}(3). A set of energy and angular dependent conversion coefficients H{sub p}(3)/K{sub air} in the new proposed square cylindrical phantom of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE. The H{sub p}(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At low photon energy, up to 1 MeV, the two sets of conversion coefficients are consistent. Nevertheless, the differences increase at higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the code MCNP published by ENEA, agree with the kerma approximation calculations with PENELOPE. They are coherent with previous calculations in phantoms different in shape. But above 1 MeV, differences between conversion coefficient values calculated with the absorbed dose and with kerma approximation are significantly increasing, especially at low incidence angles. At those energies the electron transport has to be simulated. (author)

  9. In aqua vivo EPID dosimetry

    NARCIS (Netherlands)

    Wendling, M.; McDermott, L.N.; Mans, A.; Olaciregui-Ruiz, I.; Pecharroman-Gallego, R.; Sonke, J.J.; Stroom, J.; Herk, M. van; Mijnheer, B.J.

    2012-01-01

    PURPOSE: At the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because t

  10. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  11. Plutonium worker dosimetry.

    Science.gov (United States)

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  12. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies

    International Nuclear Information System (INIS)

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade.

  13. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Russian Edition)

    International Nuclear Information System (INIS)

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  14. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Spanish Edition)

    International Nuclear Information System (INIS)

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual’s working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  15. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (French Edition)

    International Nuclear Information System (INIS)

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  16. ESR dosimetry: achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Baffa, O., E-mail: baffa@usp.br [Universidade de Sao Paulo, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  17. The EURADOS/CONRAD activities on radiation protection dosimetry in medicine

    International Nuclear Information System (INIS)

    Full text: This presentation gives an overview on the research activities that EURADOS coordinates in the field of radiation protection dosimetry in medicine. EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. EURADOS operates by setting up Working Groups dealing with particular topics. Currently funded through the CONRAD project of the 6th EU Framework Programme, EURADOS has working groups on Computational Dosimetry, Internal Dosimetry, Complex mixed radiation fields at workplaces, and Radiation protection dosimetry of medical staff. The latter working group coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated by sub-groups covering three specific areas: 1: Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2: Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons, especially to determine personal doses to cardiologists during cardiac catheterisation, but also in CT-fluoroscopy and some nuclear medicine developments (e.g. use of Re-188); and 3: Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (author)

  18. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  19. Dosimetry by ESR spectroscopy of alanine

    International Nuclear Information System (INIS)

    Dosimetry based on electron spin resonance analysis of radiation-induced free radicals in amino acids (e.g. L-alanine) is relevant to biological dosimetry applications. Typical features are a wide dose range covering more than 5 decades (1-105Gy), energy independent response for photons above 100 keV, long-term stability of the ESR signal, and fast straightforward readout technique. Typical dosimeter samples, consisting of small pellets of microcrystalline amino acids in paraffin, are rugged, non-toxic, and insensitive to surface contaminations. Moreover, they are prepared homogeneously and inexpensively in large batches and can be evaluated repeatedly and supply archival dosimetry data. They have proven to be highly useful in various applications of radiation processing and sterilization dosimetry, food irradiation, quality control, radiation dosimetry, radiation therapy measurements, and as a reference system for dosimetry mailing intercomparisons. (author)

  20. Metabolic dosimetry: how to reduce arbitrary?; Dosimetrie metabolique: comment reduire l'arbitraire

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Unite INSERM 463

    1999-10-01

    The dosimetry in the case of diagnosis is in the field of radiation protection, it is a question of making sure of being under the acceptable limits for the patients. In the case of therapy, it is necessary to know the radiation dose susceptible to be delivered to the patient. this dose must predict the potential efficiency of the treatment. three methods are used actually. By order of increasing precision, we have the calculations with anthropomorphic phantoms, the techniques of convolutions of kernel-points and the methods of direct calculation by Monte-Carlo simulation. The first one is faster than the others ones but it is not personalized as the second ones are. Different techniques of images processing, SPECT, PET are reviewed to see their advantages and disadvantages. Others techniques such counting of eliminated activity by urines and or faeces allow to raise the activity present in the body by simple substraction. (N.C.)

  1. Dosimetry in radiotherapy. V.2

    International Nuclear Information System (INIS)

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  2. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  3. MISTI Shielding and Dosimetry Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable on-orbit dosimetry is necessary for understanding effects of space radiation environments on spacecraft microelectronics performance and comparison of...

  4. Automating Finance

    Science.gov (United States)

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  5. Characterisation of OSL and OSLN droplets for dosimetry.

    Science.gov (United States)

    Nascimento, L F; D'Agostino, E; Vaniqui, A C S; Saldarriaga, C; Vanhavere, F; De Deene, Y

    2014-10-01

    In spite of considerable progress in neutron dosimetry, there is no dosemeter that is capable of measuring neutron doses independently of the neutron spectrum with good accuracy. Carbon-doped aluminium oxide (Al2O3:C) is a sensitive material for ionising radiation (beta-ray, X ray and electron) and has been used for applications in personal and medical dosimetry as an optically stimulated luminescence (OSL) dosemeter. Al2O3:C has a low sensitivity to neutron radiation; this prevents its application to neutron fields, representing a disadvantage of Al2O3:C-OSL when compared with LiF, which is used as a thermoluminescent detector. Recently an improvement for neutron dosimetry (Passmore and Kirr. Neutron response characterisation of an OSL neutron dosemeter. Radiat. Prot. Dosim. 2011; 144: 155-60) uses Al2O3:C coated with (6)Li2CO3 (OSLN),which gives the high-sensitive response as known for Al2O3:C with the advantage of being also sensitive to thermal neutrons. In this article, the authors compare small-size detectors (droplets) of Al2O3:C (OSL) and of Al2O3:C+(6)Li2CO3 (OSLN) and discuss the advantages and drawbacks of both materials, regarding size vs. response.

  6. Characterisation of OSL and OSLN droplets for dosimetry.

    Science.gov (United States)

    Nascimento, L F; D'Agostino, E; Vaniqui, A C S; Saldarriaga, C; Vanhavere, F; De Deene, Y

    2014-10-01

    In spite of considerable progress in neutron dosimetry, there is no dosemeter that is capable of measuring neutron doses independently of the neutron spectrum with good accuracy. Carbon-doped aluminium oxide (Al2O3:C) is a sensitive material for ionising radiation (beta-ray, X ray and electron) and has been used for applications in personal and medical dosimetry as an optically stimulated luminescence (OSL) dosemeter. Al2O3:C has a low sensitivity to neutron radiation; this prevents its application to neutron fields, representing a disadvantage of Al2O3:C-OSL when compared with LiF, which is used as a thermoluminescent detector. Recently an improvement for neutron dosimetry (Passmore and Kirr. Neutron response characterisation of an OSL neutron dosemeter. Radiat. Prot. Dosim. 2011; 144: 155-60) uses Al2O3:C coated with (6)Li2CO3 (OSLN),which gives the high-sensitive response as known for Al2O3:C with the advantage of being also sensitive to thermal neutrons. In this article, the authors compare small-size detectors (droplets) of Al2O3:C (OSL) and of Al2O3:C+(6)Li2CO3 (OSLN) and discuss the advantages and drawbacks of both materials, regarding size vs. response. PMID:24381203

  7. Topical Review: Polymer gel dosimetry

    OpenAIRE

    Baldock, C; De Deene, Y; Doran, S.; Ibbott, G; Jirasek, A.; Lepage, M.; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose ...

  8. Dosimetry of total body irradiation

    International Nuclear Information System (INIS)

    In the treatment of disseminated malignancies an improvement in the curability and reduction of complication rates require high precision total body irradiation (TBI) and correct reporting of relevant treatment parameters. Optimal TBI dosimetry is the basis. Radiooncological and radiobiological requirements as well as the special physical situation have to be considered. To review the efforts of medical physicists, highlights from TBI workshops and publications are summarized. Additionally, dosimetric data from 34 European radiooncological centres contributing to the recent ESTRO inquiry on TBI are analysed. The topics are: absorbed dose and dose monitor calibration, determination of absolute and relative doses, dose ratios, attenuation data and heterogeneity corrections; TBI dose calculation methods regarding patient position, beam incidence, body shape and thickness, lung size and density; methods of TBI treatment planning including calculated dose modification and of TBI quality assurance. In conclusion, the following recommendations can be given: TBI dosimetry shall be performed under TBI conditions, close to the real treatment situation. The absorbed dose to water must be determined. The dose monitor should be calibrated against dose measurements at the centre of a water equivalent phantom of TBI equivalent size and typical thickness. Photon fluence profiles have to be measured with small phantoms. Influences on the local dose must be investigated systematically. A reproducible AP/PA TBI technique should be used. The TBI dose shall be specified to mid-abdomen and reported in units of gray. The single and total dose and the dose rate to the lungs, the number of fractions and the treatment time schedule must be stated. In vivo dosimetry is required if non-reliable TBI techniques are used. An international TBI dosimetry intercomparison could assist these efforts to improve the treatment of acute leukaemia. (author). 89 refs, 3 figs, 13 tabs

  9. Fourth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose

  10. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  11. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    amount of bias also varies greatly between person-years. Second, the addition of pocket-meter information reduces uncertainty for some person-years, while increasing it for others. Together, these results suggest that detailed pocket-meter and film dosimetry information is required to obtain unbiased and reliable dosimetry data for use in epidemiologic studies of workers at ORNL.

  12. Dose Estimation from Daily and Weekly Dosimetry Data

    International Nuclear Information System (INIS)

    greatly between person-years. Second, the addition of pocket-meter information reduces uncertainty for some person-years, while increasing it for others. Together, these results suggest that detailed pocket-meter and film dosimetry information is required to obtain unbiased and reliable dosimetry data for use in epidemiologic studies of workers at ORNL

  13. Energy response improvement for photon dosimetry using pulse analysis

    Science.gov (United States)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  14. Report on the Personnel Dosimetry at AB Atomenergi during 1962

    International Nuclear Information System (INIS)

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1962. No doses exceeding the recommendations of ICRP have been reported. The sum of the reported external total body doses (≥ 100 mrem/quarter) is for the whole of AB Atomenergi during this year 74. 2 manrem corresponding to about 50 mrem/year and person or 1 % of the maximum permissible dose. 32500 gamma films and 6200 neutron films have been evaluated. The total number of urine analyses is 2700 and of whole body measurements 10

  15. Report on the Personnel Dosimetry at AB Atomenergi during 1962

    International Nuclear Information System (INIS)

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1963. No doses exceeding the recommendations of ICRP have been reported. The sum of the reported external total body doses during the year is for AB Atomenergi 64.2 manrem which, distributed over the whole company personnel, corresponds to about 40 mrem per year and person or about 1 % of the maximum permissible dose. 37800 gamma films and 6700 neutron films have been evaluated. The total number of urine analyses is 3603 and of whole body measurements 211

  16. Automation Security

    OpenAIRE

    Mirzoev, Dr. Timur

    2014-01-01

    Web-based Automated Process Control systems are a new type of applications that use the Internet to control industrial processes with the access to the real-time data. Supervisory control and data acquisition (SCADA) networks contain computers and applications that perform key functions in providing essential services and commodities (e.g., electricity, natural gas, gasoline, water, waste treatment, transportation) to all Americans. As such, they are part of the nation s critical infrastructu...

  17. Patient dosimetry and protection in diagnostic radiology

    International Nuclear Information System (INIS)

    The paper discussed the following subjects: x-ray in medicine as they represent by far the largest man-made sources of population exposure to ionizing radiation, methods of patient dosimetry, entrance surface dose per radiograph, dose-area product per examination, dosimetry for assessing risk, potential of dose reduction

  18. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  19. Artificial neural networks in neutron dosimetry

    International Nuclear Information System (INIS)

    An artificial neural network (ANN) has been designed to obtain neutron doses using only the count rates of a Bonner spheres spectrometer (BSS). Ambient, personal and effective neutron doses were included. One hundred and eighty-one neutron spectra were utilised to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in the BSS and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing were carried out in the MATLABR environment. The impact of uncertainties in BSS count rates upon the dose quantities calculated with the ANN was investigated by modifying by ±5% the BSS count rates used in the training set. The use of ANNs in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem. (authors)

  20. Characterization of a thermoluminiscence personnel dosimetry system

    International Nuclear Information System (INIS)

    Various tests carried out to characterize a Thermoluminiscence Personnel Dosimetry Automatic System, based on the optical heating of a multielement dosemeter are presented. The dosemeter consists of Lithium Borate (Copper) and Calcium Sulphate (Thallium) phosphors. The Dosimetric System shows some outstanding features, such as its simplicity (no aditional annealing procedures are required), its short reading cycle (160 TLD per hour and its data handling capabilities (RS-232C and Parallel Printer digital ports and four analigic outputs for Glow Curve Adquisition). The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI: N13.11-1983; IEC:Draft 45B-1987, ISO:DP 8034-1984) The new radiological quantities (I.C.R.U.-19855) have been used for calibration. The results obtained (linearity, repeatibility, detection threshold, residue, stability of stored information, etc) show the optimum performance of this dosimetric system in its aplication to routine personnel dose monitoring. Based on the dosemeter energy discriminating response, an algorithm for dose assesment has been developed. The method allows personal dose calculations within 10% and gives valuable information on the quality and energy of incident radiation, for photons from 30 to 2000 keV and for Beta penetrating radiation (Sr/Y, U). (Author)

  1. Artificial neural networks in neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2005-07-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  2. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    Science.gov (United States)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  3. ESR dosimetry using eggshells and tooth enamel for accidental dosimetry

    International Nuclear Information System (INIS)

    The CO2- signal of eggshells showed a good dose linearity and was appropriate in the wide dose range from 1 to 10 kGy, while ESR signal of CO2- in sea and fresh water shells were saturated at a dose od below 10 kGy. The minimum detectable dose and G-value of CO2- in eggshells were estimated 0.3 Gy and 0.28, respectively. The lifetime of CO2- in eggshells could not be determined exactly because of overlapping organic signals, however it is still sufficiently long for practical use as ESR dosimeter materials. Various bird's or reptile's eggshells would be available as natural retrospective ESR dosimeter materials after nuclear accidents. Eggshells will be useful for the food irradiation dosimetry in the dose range of about a few kGy. Tooth enamel is one of the most useful dosimeter materials in public at a accident because of its high sensitivity. ESR dosimetry will replace TLD in near future if the cost of an ESR reader is further reduced . (author)

  4. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources (60Co and 137Cs) and a reference source system with six gamma ray sources (60Co and 137Cs). In addition a set of calibrated beta ray sources are provided (147Pm, 204Tl and 90Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137Cs and 60Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  5. Air Force neutron dosimetry program

    International Nuclear Information System (INIS)

    Approximately 1000 Air Force personnel are monitored for neutron radiation resulting from various sources at more than thirty worldwide locations. Neutron radiation spanning several orders of magnitude in energy is encountered. The Air Force currently uses albedo thermoluminescent neutron dosimeters for personnel monitoring. The energy dependence of the albedo neutron dosimeter is a current problem and the development of site specific correction factors is ongoing. A summary of data on the energy dependence is presented as well as efforts to develop algorithms for the dosimeter. An overview of current Air Force neutron dosimetry users and needs is also presented

  6. Radiation dosimetry by potassium feldspar

    Indian Academy of Sciences (India)

    Arun Pandya; S G Vaijapurkar; P K Bhatnagar

    2000-04-01

    The thermoluminescence (TL) properties of raw and annealed feldspar have been studied for their use in gamma dosimetry. The raw gamma exposed feldspar shows glow peaks at 120°C and 319°C. Gamma dose beyond 500 cGy can be measured without any significant fading even after 40 days of termination of exposure. The annealed feldspar shows a glow peak at 120°C after gamma exposure. This peak can be used to measure gamma doses beyond 25 cGy when the TL is measured after 24 h from termination of exposure.

  7. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Progress in the dosimetry of internally deposited radionuclides since World War II is reviewed. The Permissible Doses Conference held at Chalk River in 1949 defined the Standard Man and a biokinetic lung model, setting maximum permissible body burdens (MPBB), maximum permissible concentrations in air (MPCA), and maximum permissible concentrations in water (MPCW) for selected radionuclides. ICRP publications 2, 6 and 9 followed, focusing on setting MPCs. The use of the power function to describe radionuclide retention in the human body was discussed in Publication 2, but not recommended for use until Publication 6. Publication 2 defined the term effective energy. The integration time for internal exposures became 50 years, and the committed dose was defined. ICRP publications 10, 10A and 54 provided guidance for the calculation of doses from measured activity in vivo or in excreta. In 1979 ICRP publication 30 replaced publication 2 as the handbook for internal dosimetry. There will be a major revision of Publication 30 following the release of the new ICRP recommendations. A future publication will give doses to patients who have been administered radiopharmaceuticals. New computer tools will allow the development of more realistic metabolic models, and new dosimetric models that calculate doses to cells will be developed. The availability of high resolution solid state detectors has resulted in improvement in measurements of radionuclides in vivo, and some improvement in radiochemical analyses of excreta. However, poor sensitivity to actinides leaves something to be desired in vitro measurements and air monitoring

  8. Dosimetry effects of film packing

    International Nuclear Information System (INIS)

    Full text: Dosimetric artefacts in film based dosimetry have been addressed by a number of authors. We have investigated the influence on film dose results, of a number of materials that are commonly packed against the film including, solid water, paper, air and plastic. The results indicate that variations in optical density occur due to the character and relative quantity of the packing material as well as the film itself. Kodak X-omat V and GAFChromic film samples were placed in a solid water cassette with packing sheets of various materials placed in contact with the film. Photon and electron exposures were carried out with various film orientation and beam qualities. Results have been obtained for solid water, paper and air. An example of the relative change in film density as a function of depth due to four paper sheets packed adjacent to a film aligned with the central axis of a 6MV photon beam is shown. Other results indicate dose variation can be attributed to Cerenkov radiation. Packing materials in contact or in close proximity with dosimetric film, contribute to optical density variations of the order of several percent. Careful consideration of these effects is necessary when using film in high accuracy dosimetry. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  9. Fast neutron dosimetry: Progress summary

    International Nuclear Information System (INIS)

    The purpose was to investigate the radiological physics and biology of very low energy photons derived from a 1-GeV electron synchrotron storage ring. An extensive beam line and irradiation apparatus was designed, developed, and constructed. Dosimetry measurements required invention and testing of a miniature absolute calorimeter and a cell irradiation fixture suitable for scanning exposures under computer control. Measurements of the kerma factors of oxygen, aluminum and silicon for 14-20 MeV neutrons. Custom designed miniature proportional counters of cylindrical symmetry were employed in these determinations. The oxygen kerma factor was found significantly lower than values calculated from microscopic cross sections. We also tested Mg and Fe walled conventional spherical counters. The direct neutron-counting gas interaction is significant enough for these counters that a correction is needed. We also investigated the application of Nuclear Magnetic Resonance spectroscopy to radiation dosimetry. Our purpose was to take advantage of recent development of very high-field magnets, complex RF-pulse techniques for solvent suppression, and improved spectral analysis techniques

  10. CT dosimetry and risk estimates

    International Nuclear Information System (INIS)

    Conventional approaches to CT dosimetry are inadequate because they fail to evaluate the risk to the patient. A risk related approach to CT dosimetry is developed which explicitly takes into account the non-uniform dose distribution in the body and the relative sensitivities of different organs and tissues. The principal radiological risks to patients undergoing CT examinations are the stochastic processes of carcinogenesis and genetic effects. Radiation risk estimates have been obtained for an EMI 5005 CT scanner by measuring the mean organ doses in a Rando phantom for CT studies on the head, chest, abdomen and pelvis. The application of these risk estimates to the population served by this CT scanner indicates that during the lifetime of the CT scanner, approximately 50,000 patients will undergo CT scanning and 60% will result in a positive diagnosis. The radiation detriment is estimated to be about 1 induced cancer and a negligible genetic effect. The radiation detriment is considerably smaller than the total detriment associated with contrast material used in 76% of the CT studies. (author)

  11. Health physics research reactor reference dosimetry

    International Nuclear Information System (INIS)

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs

  12. Improvement and calibration of a SSNT personal dosemeter and study of importance of albedo factor for dose calculation

    International Nuclear Information System (INIS)

    The Neutriran albedo neutron dosemeter has been improved and calibrated for neutron personal dosimetry. The Monte Carlo code MCNP4b was used to calculate the thermal neutrons backscattered from the body (albedo factor). Backscattering from the wall, ceiling and floor in calibration room was considered also via simulation by MCNP4C. A semi automated counting system applying a high-resolution scanner was used for counting of tracks. An 241Am source was used to produce similar alpha particles from 10B (n,α) 7Li reaction for the optimisation of scanner parameters to distinguish and separate the tracks in SSNTD, which lead to a better distinction between etched alpha tracks and, consequently, a higher linear region of dose characteristic. (authors)

  13. Electron paramagnetic resonance technique for radiation dosimetry: emerging trends for laboratory and accidental dosimetry

    International Nuclear Information System (INIS)

    The applications of Electron Paramagnetic Resonance (EPR) for radiation dosimetry are briefly reviewed. In particular, EPR-alanine dosimetry and accidental dosimetry using EPR signals from human tooth enamel have been discussed. The alanine dosimetry was found to be useful from low doses such as 1 Gy to high doses such as 100 kGy. The signals from tooth enamel are found to be invaluable in assessing the absorbed dose of people exposed to radiation accidents and also survivors of atomic bomb explosions. New emerging trends using EPR signals from bones exposed to radiation have also been briefly reviewed. (author)

  14. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  15. System of automated map design

    International Nuclear Information System (INIS)

    Preprint 'System of automated map design' contains information about the program shell for construction of territory map, performing level line drawing of arbitrary two-dimension field (in particular, the radionuclide concentration field). The work schedule and data structures are supplied, as well as data on system performance. The preprint can become useful for experts in radioecology and for all persons involved in territory pollution mapping or multi-purpose geochemical mapping. (author)

  16. Interim status report of the TMI personnel-dosimetry project

    International Nuclear Information System (INIS)

    The current 2-chip TLD personnel dosimeter in use at Three Mile Island (TMI) has been shown inadequate for the anticipated high beta/gamma fields during TMI recovery operations in some areas. This project surveyed the available dosimeter systems, set up an Idaho National Engineering Laboratory (INEL) prototype system, and compared this system with those commercial systems that could be made immediately available for comparison. Of the systems tested, the new INEL personnel dosimeter was found to produce the most accurate results for use in recovery operations at TMI-2. The other multiple-chip or multiple-filter systems were found less desirable at present. The most prominent deficiencies in the INEL dosimeter stem from the fact that it lacks a completely automated reader and its x-ray and thermal neutron responses require additional development. A automated prototype reader system may be in operation by the end of CY-1981. Three alternatives for operational dosimetry are discussed. A combination of a modified version of the presently used Harshaw 2-chip dosimeter and the INEL dosimeter is recommended

  17. Biological dosimetry - Dose estimation method using biomakers

    International Nuclear Information System (INIS)

    The individual radiation dose estimation is an important step in the radiation risk assessment. In case of radiation incident or radiation accident, sometime, physical dosimetry method can not be used for calculating the individual radiation dose, the other complement method such as biological dosimetry is very necessary. This method is based on the quantitative specific biomarkers induced by ionizing radiation, such as dicentric chromosomes, translocations, micronuclei... in human peripheral blood lymphocytes. The basis of the biological dosimetry method is the close relationship between the biomarkers and absorbed dose or dose rate; the effects of in vitro and in vivo are similar, so it is able to generate the calibration dose-effect curve in vitro for in vivo assessment. Possibilities and perspectives for performing biological dosimetry method in radiation protection area are presented in this report. (author)

  18. Alanine - ESR dosimetry, feasibility and possible applications

    International Nuclear Information System (INIS)

    Alanine ESR dosimetry presents a great interest for quality controls in radiotherapy. This new developed water equivalent alanine dosimeter allows a reproducible dose measurement, by a non-destructive readout technique in a large dose range. In this paper the stability of the dosimeter response has been shown but also its independence with the energy or the dose rate of the absorbed radiation. Through this different studies, one can broaden the application field of alanine / ESR dosimetry especially for in-vivo dosimetry. The results of the experiments and the intra operative treatment, indicate that this kind of dosimetry seems to be a promising technique for in-vivo quality controls in electron beam, γ ray or X ray radiotherapy. (authors)

  19. High-level exposure: Progress in dosimetry

    International Nuclear Information System (INIS)

    In the event of people being accidentally exposed to unusually high levels of radiation, it becomes important to obtain as quickly as possible a reasonably accurate indication of the dose which each individual may have received. This serves in the first place to show which, if any, of the persons who may have been involved should receive medical treatment or be kept under observation. In the second place the information supplements clinical observation as a guide to treatment. A symposium in Vienna, held from 8 to 12 March 1965, discussed the assessment of doses received by persons who have been accidentally irradiated, by exposure to external radiation fields, by the intake of radioactive materials, or by radioactive contamination being deposited on the surface of the body. The symposium, organised jointly by IAEA and the World Health Organisation, was entitled Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation. There were 179 participants from 34 countries and five international organisations. This was a specialized conference, fairly narrow in scope, since it formed one in a succession of meetings on kindred subjects. For example, a symposium held in May 1964 dealt with general methods of assessing radioactive body burdens in man; a joint IAEA/WHO meeting in October 1960, and another in October 1962, dealt with medical aspects of radiation injury and of radioactive poisoning. About half the proceedings were devoted to discussion of measurement techniques for external radiation, with detailed discussion of various kinds of warning and recording devices, monitors and personal dosimeters. From these the meeting passed on to consider supplementary methods such as estimation of neutron dosage by analysis of blood or hair, and experiments conducted by means of polyethylene phantoms to establish the dose likely to be received under particular circumstances. Other sessions dealt with the determination of internal contamination, and

  20. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  1. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  2. Development of radiation biological dosimetry

    International Nuclear Information System (INIS)

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay

  3. Audits for advanced treatment dosimetry

    International Nuclear Information System (INIS)

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits

  4. Application of radiation damage effects in dosimetry

    International Nuclear Information System (INIS)

    some general aspects of radiation dosimetry are outlined. The techniques of radiophotoluminescence, radiothermoluminescence and exo-electron emission are discussed individually. It is thought that the trend in personnel dosimetry is such that thermoluminescence will steadily replace film and photoluminescence techniques over the next decade, and that more unusual techniques, such as exo-electron emission, will make inroads only for special purposes. (B.R.H.)

  5. Developments in Patient Dosimetry for Unsealed Sources

    International Nuclear Information System (INIS)

    In molecular radiotherapy, treatment planning essentially is the determination of the activity to administer to optimize safety and efficacy of a treatment. Individualization is possible, for example, by using quantitative imaging modalities, external counting and blood sampling for pre-therapeutic biokinetics measurements. Patient specific dosimetry can be performed as in radiation therapy. Over- or under treatment of patients can be avoided. Here, the standard methods and the expected advances in performing individualized dosimetry are discussed. (author)

  6. Study on personal dosimetric method using OSL dosimeter

    International Nuclear Information System (INIS)

    Ionization radiation measurement using Optically Stimulated Luminescence (OSL) technology has been researched and developed for more than 50 years in several advanced countries in the world as USA, Japan, etc. OSL has many advantages as high sensitivity, faster readout process, convenient and simple procedure,etc. This technology is widely used in many applications. Recently, for the purpose of applying more various approaches on personal dosimetry, Radiation Dosimetry Laboratory belong to Center for Radiation Protection/ INST has researched OSL technology for personal dosimetry purpose, in this study we present OSL principle and experiments to determine characteristics of OSL personal dosimeters using Al2O3:C material and procedure to evaluate personal dose using OSL InLight dosimeters and Microstar system for photon radiation. (author)

  7. Recall of Personal Dosimeters Not Presently in Use

    CERN Multimedia

    SC Unit

    2008-01-01

    The Dosimetry Service requests all persons who do not require access to radiation areas in the foreseeable future to return their personal dosimeter to the Dosimetry Service. This concerns, for example, experimental physicists whose beam time is over until 2009, or persons whose work profile has changed and therefore no longer need regular access to radiation areas. When regular access to radiation areas is needed again at a later date, a new dosimeter can be attributed if the prerequisites (medical fitness certificate, RP course) are met. This recall will allow personal dosimeters to be attributed to personnel who will soon be working in newly created radiation areas at the LHC. Thank you for your understanding and collaboration. Thomas Otto on behalf of the Dosimetry Service Radiation Protection Group

  8. AUTOMATION OF INVENTORY PROCESS OF PERSONAL COMPUTERS

    Directory of Open Access Journals (Sweden)

    A. I. Zaharenko

    2013-01-01

    Full Text Available The modern information infrastructure of a large or medium-sized enterprise is inconceivable without an effective system of the computer equipment and fictitious assets inventory. An example of creation of such system which is simple for implementation and has low cost of possession is considered in this article.

  9. Educational and training activities in personal dosimetry in Greece

    International Nuclear Information System (INIS)

    An individual monitoring programme is one of the main components of any radiation protection programme since it constitutes the mean for assessing and thus optimising the doses of occupationally exposed workers. The Greek Atomic Energy Commission (GAEC) is the competent authority for radiation protection and nuclear safety in Greece. GAEC's educational and training activities in the field of occupational radiation protection at the national and regional (Eastern Europe) level are presented, along with the relevant activities of the Univ. of Ioannina in the region of North-West Greece, as an example of a local education and training programme. The curricula of two postgraduate courses addressed to qualified experts and medical physics experts and mainly the modules dedicated to individual monitoring are discussed as well. (authors)

  10. Application of computerised glow curve analysis in a TLD based personnel dosimetry service

    International Nuclear Information System (INIS)

    The methods and techniques of computerised Glow Curve Analysis (GCA) have clearly a potential for improvement of the thermoluminescence dosimetry (TLD) performance still to be exploited for practical work. Particularly personal dosimetry, whose results must comply with specific quality criteria, can be benefited from the more accurate handling of the usually complex glow curves, including several peaks with different properties and also different interest for dosimetry, notably their different intensity and thermal stability. Most of the so called standard procedures for TLD were proposed in the 70s aiming to obtain a sufficiently stable response for the usual integration periods, one to three months, in personal or environmental dosimetry. Mostly these procedures consisted in more or less complex annealing procedures applied before or after irradiation but having a common objective: the modification of the natural glow curve structure trying to eliminate the unstable low temperature peaks favouring the presence of high temperature peaks with better long term stability. In these initial stages of the employment of TLD, the physics behind the thermally activated light emissions in the materials employed for dosimetry was not properly understood and so these standard procedures were mainly of phenomenological nature, presenting important differences among laboratories. Since these early times and in parallel with an impressive increase of the practical use of TLD, an important research effort has been developed that have clarified many of the features of the TL physical processes in dosimetric materials, particularly LiF(Mg,Ti) and more recently also LiF(Mg,Cu,P). On the light of the accumulated knowledge, the old standard procedures should be revised and simplified. If achieved, this simplification will be excellent for TLD routine measurements

  11. Dosimetry of upper extremities of personnel in nuclear medicine hot labs

    OpenAIRE

    Παπαδόγιαννης, Παναγιώτης

    2012-01-01

    The specific nature of work in nuclear medicine departments involves the use of isotopes and handling procedures, which contribute to the considerable value of the equivalent dose received, in particular, by the fingertips. Workers of nuclear medicine units who label radiopharmaceuticals are exposed to ionizing radiation. The doses of nuclear medicine workers determined by individual dosimeters, which supply data on the magnitude of personal dose equivalent. The dosimetry pointing to a con...

  12. Occupational dosimetry in real time. Benefits for interventional radiology

    International Nuclear Information System (INIS)

    Occupational dosimetry is still a challenge in fluoroscopy-guided procedures. Personal dosimeters are not regularly used by many professionals. Most of the dosimeters used are worn under the lead apron and it is difficult to estimate radiation doses to the unprotected organs and tissues. New electronic dosimeters make it possible to know staff doses and dose rates in real time, inside interventional laboratories. A system using solid-state detectors and equipped with a wireless connection (DoseAware distributed by Philips) that sends the scatter dose rate and cumulative scatter dose readings to a base station, inside the catheterization room, has been evaluated. The initial test was carried out over a period of 4 months in two laboratories (a cardiology one and a second one dedicated to general interventional procedures). In addition to the educational value of the dosimetry system, other benefits have been identified such as the detailed information on occupational dose rate during the procedures, the possibility of comparing occupational doses registered among different staff during the procedures, the capability of establishing correlations between occupational and patient doses, and correlations between staff doses and geometry and radiographic factors used during the procedures. From all this information, it is possible to derive criteria for optimization of occupational radiation protection.

  13. Time reduction and automation of routine planning activities through the use of macros; Reduccion de tiempo y automatizacion de las actividades rutinarias de planificacion mediante el uso de macros

    Energy Technology Data Exchange (ETDEWEB)

    Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, C. del; Osorio, J. L.; Almansa, J.

    2011-07-01

    The use of macros in scheduler automates Adac Pinnacle3 much of the routine activities in the planning process, from the display options and placement of beams, to, among other possibilities, systematic naming them and export of the physical and clinical dosimetry. This automation allows reduction of the times associated with the planning process and an error reduction.

  14. Imaging based, patient specific dosimetry

    International Nuclear Information System (INIS)

    Full text: The prognosis of achieving longtime remission for disseminated cancer disease is in many cases poor. A systemic treatment is required and therefore external beam radiation therapy is less suited. Treatment with radiolabeled pharmaceuticals, so called radionuclide therapy is such a systemic treatment. In radionuclide therapy, the absorbed dose is delivered by administration of radionuclides that emit electrons or alpha particles. It is here assumed that the released kinetic energy is transferred by interactions to sensitive parts of the cells activating cell death, and thus an accurate dosimetry is important. However, absorbed dose planning for radionuclide therapy is a real challenge in that the source cannot be turned on or off (as in external beam therapy) but decays exponentially with characteristics depending on the biokinetics and the radionuclide half-life. On a small-scale, the radiopharmaceutical is also heterogeneously distributed which means that the energy deposition is generally nonuniform. The biokinetics may also change over time which means that activity measurements need to be made at several time points to estimate the total amount of released energy in an organ or tumour. Practical issues regarding the number of measurements and patient mobility may therefore limit the accuracy in this calculation. The dose-rate for radionuclide therapy is also much lower than in external beam therapy. Since the treatment is systemic, circulating activity may result in absorbed doses to normal organs and tissues. Often this poses a problem and puts a limit on the amount of activity to can be administered. This is one of the major reasons for the requirement of an accurate patient-specific dosimetry. One of the major problems is that the biokinetics varies between patients and the activity uptake and clearance should therefore be measured for each individual patient in order to estimate the total number of decays in a particular organ/tissue. The way

  15. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  16. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...

  17. State of the art of solid state dosimetry; Estado da arte em dosimetria do estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Susana O., E-mail: sosouza@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Yamamoto, Takayoshi [Radioisotope Research Center, Osaka University (Japan); D' Errico, Francesco, E-mail: francesco.derrico@yale.edu [Yale University, School of Medicine, CT (United States)

    2014-07-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed.

  18. Person, personality, responsibility

    OpenAIRE

    GHEORGHE MIHAI; EMILIA MIHAI

    2005-01-01

    Modern times consider as a person the individual man being endowed with reason and conscience; this man cannot be but person because he shows so many persons. According to the positive law the human individual is considered a person: natural person in civil relations; criminal in criminal relations; public officer in administrative relations, etc. “Natural person”, “criminal”, “public officer” are terms from legal terminology of different branches of law that define the individual in the law,...

  19. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    International Nuclear Information System (INIS)

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  20. Personnel neutron dosimetry at Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  1. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  2. Experimental verification of internal dosimetry calculations. Annual progress report

    International Nuclear Information System (INIS)

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee

  3. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  4. Automation of a fixed-bed continuous–flow reactor

    OpenAIRE

    Alcántara, R.; Canoira, L.; R. Conde; Fernández-Sánchez, J. M.; Navarro, A.

    1994-01-01

    This paper describes the design and operation of a laboratory plant with a fixed-bed continuous-flow reactor, fully automated and controlled from a personal computer. The automated variables include two gas flows, one liquid flow, six temperatures, two pressures, one circulation of a cooling liquid, and 10 electrovalves. An adaptive-predictive control system was used. The chemical process chosen to run the automated reactor was the conversion of methanol to gasoline over a ZSM-5 catalyst. Thi...

  5. Sixth personnel dosimetry intercomparison study

    International Nuclear Information System (INIS)

    The Sixth Personnel Dosimetry Intercomparison Study was conducted March 25 to 27, 1980, at the Oak Ridge National Laboratory. Dosimeters from 28 participating agencies were mounted on anthropomorphic phantoms and exposed to a range of low-level dose equivalents (1.8 to 11.5 mSv neutron, 0.1 to 1.1 mSv gamma) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor (HPRR) operated in the steady-state mode served as the source of radiation for six separate exposures. Lucite and concrete shields along with the unshielded reactor were used to provide three different neutron and gamma spectra. Results reported by the participating agencies showed that TLD-albedo and TLD-700 dosimeters generally provided the most accurate measurements of neutron and gamma dose equivalents, respectively. Film was found to be unsatisfactory for measuring neutron doses produced by HPRR spectra in that measured dose equivalents were much lower than reference values. The TLD-100 dosimeters yielded gamma doses which were much too high indicating that this dosimeter type is generally unsuitable for use in mixed radiation fields similar to those encountered in this study without the use of large correction factors. Although the overall reported results exhibited improvement in performance relative to previous intercomparison studies, the composite measured data showed variations of more than a factor of 2 between measurements of the same exposure made by different agencies

  6. Radiosynoviorthesis. Clinical and preclinical dosimetry

    International Nuclear Information System (INIS)

    Accurate calculation of internal dose estimates in the Radiosynoviorthesis treatment requires several steps of analysis. The use of animal models (rabbits) to predict human kinetics and dosimetry is an essential first step in the evaluation of new radiocolloids, but involves many uncertainties. There is no gold standard method for extrapolating animal data to humans. Nonetheless, human dose estimates based on animal data are considered to be reasonable approximations to be used for proceeding with dose estimates based on human data, which are ultimately used to assess the safety and efficacy evaluations of radiopharmaceuticals, and continues to be an important element in the radiopharmaceutical approval process. The obtained absorbed dose profiles versus synovial tissue, bone and articular cartilage depth will permit the specialist to prescribe the adequate dose of radionuclide to treat rheumatoid arthritis in medium and large joints without expose the healthy structures of the synovial joint to an excessive and unnecessary irradiation risk, eliminating the fixed dose and fixed radionuclides for each joints (Author)

  7. Dosimetry in radiation processing- Indian scenario

    International Nuclear Information System (INIS)

    Radiation processing is a method for producing chemical, physical, and microbiological changes in substances by exposing to ionizing radiation. Availability of high intensity cobalt-60 gamma ray sources and high power electron beam accelerators has led to a continuous growth of radiation processing industry in India. Commercial viability and safe operation of these radiation-processing plants depends on accurate dosimetry. Depending on the purpose to be achieved, a widespread dose range, from few grays to few hundred kilo grays, is encountered in radiation processing technology and this necessitates the use of different dosimetry systems. In the present paper, current status of radiation processing facilities in India has been reviewed. Various indigenously developed dosimetry systems such as Alanine/glutamine (Spectrophotometric readout), FBX and ceric-cerous (potentiometry) are being used for quality assurance and routine plant dosimetry. Fricke dosimeter is used as a reference standard for calibrating other dosimetry systems. Glutamine (Spectrophotometric read out) dosimeter, used as transfer standard for Q.A. has traceability to NPL, UK and has shown an agreement within ±2% during dose intercomparisons carried out with various international standards laboratories. Performance of these dosimeters was found to be better than ±10% during dose measurements in radiation sterilization and food irradiation plants. (author)

  8. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  9. Dosimetry methods for fuels, cladding and structural materials

    International Nuclear Information System (INIS)

    This volume of the proceedings of the symposium on reactor dosimetry covers the following topics: the metallurgy and dosimetry interface, radiation damage correlations of structural materials and damage analyses techniques, dosimetry for fusion materials, light water reactor pressure vessel surveillance in practice and irradiation experiments, fast reactor and reseach reactor characterization

  10. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  11. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  12. Model selection for radiochromic film dosimetry

    CERN Document Server

    Méndez, Ignasi

    2015-01-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to...

  13. Reference dosimetry and measurement quality assurance

    International Nuclear Information System (INIS)

    Measurements of absorbed dose made by a reference dosimetry system, such as alanine, have been suggested for achieving quality assurance through traceability to primary standards. Such traceability can assist users of radiation worldwide in enhancing quality control in medicine, agriculture, and industry. International and national standards of absorbed dose are still needed for applications of γ-ray and electron dosimetry at high doses (e.g. radiation therapy, food irradiation and industrial radiation processing). Reference systems, such as ferrous sulfate dosimeters measured by spectrophotometry and alanine measured by electron spin resonance spectrometry are already well established. Another useful reference system for high doses is supplied as dichromate solutions measured by spectrophotometry. Reference dosimetry, particularly for electron beams, can be accomplished with thin alanine or radiochromic dye film dosemeters. (author)

  14. Dosimetry procedures for an industrial irradiation plant

    Science.gov (United States)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  15. A dynamic dosimetry system for prostate brachytherapy

    Science.gov (United States)

    Kuo, Nathanael; Dehghan, Ehsan; Deguet, Anton; Song, Danny Y.; Prince, Jerry L.; Lee, Junghoon

    2013-03-01

    The lack of dynamic dosimetry tools for permanent prostate brachytherapy causes otherwise avoidable problems in prostate cancer patient care. The goal of this work is to satisfy this need in a readily adoptable manner. Using the ubiquitous ultrasound scanner and mobile non-isocentric C-arm, we show that dynamic dosimetry is now possible with only the addition of an arbitrarily configured marker-based fiducial. Not only is the system easily configured from accessible hardware, but it is also simple and convenient, requiring little training from technicians. Furthermore, the proposed system is built upon robust algorithms of seed segmentation, fiducial detection, seed reconstruction, and image registration. All individual steps of the pipeline have been thoroughly tested, and the system as a whole has been validated on a study of 25 patients. The system has shown excellent results of accurately computing dose, and does so with minimal manual intervention, therefore showing promise for widespread adoption of dynamic dosimetry.

  16. Radiation dosimetry activities in the Netherlands

    International Nuclear Information System (INIS)

    The Netherlands Commission for Radiation Dosimetry (NCS) was officially established on 3 September 1982 with the aim of promoting the appropriate use of dosimetry of ionizing radiation both for scientific research and practical applications. The present report provides a compilation of the dosimetry acitivities and expertise available in the Netherlands, based on the replies to a questionnaire mailed under the auspices of the NCS and might suffer from some incompleteness in specific details. The addresses of the Dutch groups with the names of the scientists are given. Individual scientists, not connected with a scientific group, hospital or organization have not been included in this list. Also the names of commercial firms producing dosimetric systems have been omitted. (Auth.)

  17. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  18. Instrumentation for the individual dosimetry of workers

    CERN Document Server

    Thévenin, J C

    2003-01-01

    The control of the radiation dose exposure of workers and personnel exposed to ionizing radiations (nuclear industry, nuclear medicine, army, university laboratories etc..) is ensured by individual dosemeters. This dosimetry is mandatory for all workers susceptible to be exposed to more than 30% of the regulatory dose limit. dosemeters are worn on the chest and in some particular cases, on the finger (dosemeter rings) or on the wrist. Passive dosemeters allow to measure the dose a posteriori, while electronic dosemeters allow a direct reading and recording of the dose. This article presents successively: 1 - the general principles of individual dosimetry: situations of exposure, radiation detection, operational data, standardization, calibration and quality assurance, measurement uncertainties; 2 - goals and regulatory framework of individual dosimetry: regulation and recommendations, optimization, respect of dose limits, accidental situations; 3 - passive dosemeters: film, thermoluminescent, radio-photolumin...

  19. Dosimetry of the patient and occupational in interventional procedures; Dosimetria del paciente y ocupacional en procedimientos intervencionistas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Bourel, V.; Schmidt, L.; Fernandez, N., E-mail: dandisco@fmed.uba.ar [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina)

    2014-08-15

    The big necessity to estimate the entrance doses in skin that the patients receive when are exposed to interventional procedures and the personal dosimetry of the professionals that work in these procedures in operating room, has taken to the analysis of different possibilities that allow to carry out these estimates. The objective of this work was to analyze the possibility of using Optically Stimulated Luminescence dosimeters; comparing the results with ionizing cameras and electronic personal dosimeters. To carry out these estimates, we work with a X-ray equipment Phillips Allure, acrylic phantoms, a dosimetry system formed by ionization camera and dosimeter UNIDOS E, OSL (Nano dots) dosimeters and electronic lavalieres Aloka brand, PDM 117 models. To estimate the doses that the patients receive, entrance dose was measured in skin and in personal dosimetry inside places where the medical professionals are habitually located in different situations among 5 and 60 irradiation min. In the case of direct radiation, the OSL (Nano dots) present reliable readings and only were dispersed values for the measurements of secondary radiation. The measured values and the linking among them were also analyzed. The OSL (Nano dot) dosimetry behaves reliable way when is located in the ranges of more dose to 0,1 mGy, according to the maker indications and fundamentally for direct beams of the hemodynamics equipment being ideal for the measurement of entrance dose in skin. For the Nano dots use in personal dosimetry the results should be read carefully for values major to 0,1 mGy and being completely inappropriate for minor values. (Author)

  20. HSE performance tests for dosimetry services

    International Nuclear Information System (INIS)

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. (author)

  1. Smart Home Automation Based On 555 Timer

    Directory of Open Access Journals (Sweden)

    Krishna Sarath Chandra Kotcherlakota

    2016-05-01

    Full Text Available Technology is growing rapidly and gone are the days when we had to wake up in the middle of the night to adjust our fan speed or times when we had to turn on the light each time we walk into a room and turn them off whenever we walk out. These works are no longer done by humans instead performed by machines through automation, which is one of the popular trends in the world of technology. Automation used for home appliances is referred as HOME AUTOMATION. This paper describes a system for efficient home automation without programming by using a 555 timer. It turns on electrical lights and fan whenever a person enters a room using PIR sensor and adjusts the speed of the fan according to room temperature.

  2. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  3. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  4. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  5. Role of dosimetry in quality control

    International Nuclear Information System (INIS)

    Dosimetry plays an important role in the quality control of radiation processing. Increasingly, quality control systems are based on the standards in the 9000 series from the International Organization for Standardization, ISO. This is true not only in radiation sterilization but also in food treatment, polymer modification and other uses of radiation. It is required that all measurements - including radiation measurements -are traceable to national standards, and the uncertainty of the measurements must be stated with appropriate confidence limits. The paper discusses the significance of dosimetry, the evaluation of uncertainty, and the way in which traceability may be obtained. (author). 11 refs, 2 tabs

  6. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (58Co, 60Co, 54Mn, and 59Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  7. Third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  8. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  9. Kinetics model for lutate dosimetry

    International Nuclear Information System (INIS)

    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp®. The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  10. Configuration Management Automation (CMA)

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  11. Risk communication practice after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station accident. Awareness of Fukushima residents in internal dosimetry

    International Nuclear Information System (INIS)

    This paper describes an analysis result of the opinion surveys that was carried out in internal dosimetry using whole body counters (WBC) in Japan Atomic Energy Agency (JAEA) Tokai Research and Development Center. At the request of Fukushima prefecture, JAEA has conducted the internal dosimetry for residents of Fukushima prefecture since July 2011. As of March 2013, JAEA screened approximately 22,000 residents. JAEA staffs do not only explained the examination results of WBC to the residents in private booths, but also provided necessary advice for them. We carried out the opinion surveys before the internal dosimetry and after personal dialogue. The purpose of these surveys was grasp of the views of residents on the nuclear accidents before the internal dosimetry and investigation of attitude change of the examinee after the personal dialogue. The survey before the internal dosimetry showed that residents' anxiety about radioactive exposure, hereditary influence on next generation, damage for primary industries by harmful rumor, and so on. In the survey after the personal dialogue, more than 90% examinee express reduction of uneasiness for the radiation damage by the dialogue with JAEA staffs. This analysis result elucidates validity of the direct dialogue with professional stuffs on the decrease of anxiety about radioactive problem. (author)

  12. Workflow automation architecture standard

    Energy Technology Data Exchange (ETDEWEB)

    Moshofsky, R.P.; Rohen, W.T. [Boeing Computer Services Co., Richland, WA (United States)

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  13. Space Station Initial Operational Concept (IOC) operations and safety view - Automation and robotics for Space Station

    Science.gov (United States)

    Bates, William V., Jr.

    1989-01-01

    The automation and robotics requirements for the Space Station Initial Operational Concept (IOC) are discussed. The amount of tasks to be performed by an eight-person crew, the need for an automated or directed fault analysis capability, and ground support requirements are considered. Issues important in determining the role of automation for the IOC are listed.

  14. Protocol for emergency dosimetry based on phaners using EPR spectrometry

    International Nuclear Information System (INIS)

    In the case of a radiological accident due to an external overexposure involving a limited number of persons from the public or workers without dosemeters, dosimetry by Electronic Paramagnetic Resonance (EPR) spectrometry on tooth enamel, among other techniques such as biological dosimetry, can be an efficient tool. However, for an accident involving a large number of victims, most of dosimetric techniques are limited by the necessary short delay of the answer. Indeed, in this specific case, it is very important in a first time and as quick as possible to sort population according to the severity of the exposure and, in a second time, to assess the dose more accurately, especially for the most irradiated victims in order to define the best therapeutic strategy. As a matter of fact, EPR dosimetry on tooth enamel due to the invasive sampling cannot be used for emergency dosimetry. Nevertheless, EPR dosimetry on materials easily sampled on the victims or in their vicinity may be a pertinent tool. In this context, the objective of this work was to study the dosimetric properties of phaners and to provide operational guidelines describing the sampling, the storage conditions, the sample preparation and the EPR signal measurement for fast triage of population and dose assessment.We studied the dosimetric properties of fingernails and different types of hair. After having optimized the recording parameters, the analysis of EPR signal was carried out according to specific criteria, such as anisotropy, temporal fading, influence of external parameters and dose response.The important fading of the radio-induced signal may be diminished with an appropriate storage at low temperature, allowing measurements up to several weeks after irradiation. The signal intensity was found linear with the received dose at least until 50 Gy for studied materials. Detection limits were respectively estimated equal to 2 Gy f or fingernails and about 3 Gy for hairs. Concerning hair, a strong

  15. Second meeting of competent persons in radiation protection

    International Nuclear Information System (INIS)

    This conference treats the subjects interesting the competent persons in radiation protection. It is divided in four sessions. The first one concerns the regulatory bases for the action of competent persons and includes three articles, the second one is about the operational dosimetry and includes six articles, the third session is devoted to the sources and waste management and represents two texts, the last and fourth session concerns the competent person in radiation protection and gives evidence. (N.C.)

  16. Occupational exposure to ionizing radiation with thermoluminescence dosimetry system in Turkey, In 2003

    International Nuclear Information System (INIS)

    The individual annual dose information on classified workers who are occupationally exposed to extended radiation sources by using thermoluminescence dosimetry system, in Turkey, was assessed and analysed by the Ankara Nuclear Research and Training Centre (ANAEM) dosimetry service at the Turkish Atomic Energy Authority (TAEK) for the year 2003. A total of 3721 persons were monitored with TLD and the data presented in this report were obtained by using TLD technology in 2003. The annual mean effective doses received from external radiation in different fields of activities and the distribution of the annual effective dose by dose intervals are presented. The collective annual dose by field of activity is estimated and the contribution to the total annual collective dose is determined. (authors)

  17. Dosimetry implant for treating restenosis and hyperplasia

    Science.gov (United States)

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  18. A history of medical internal dosimetry

    International Nuclear Information System (INIS)

    This paper presents a short history of the development of medical dosimetry. It reviews the evaluation of the equations and discusses the development of various mathematical models used to improve radiation absorbed dose estimates. The contributions of Leonides Marinelli, Edith Qulmby, William Mayneord, Robert Loevinger, Walter Snyder, and others are emphasized. (author), 74 Refs., 7 Figs., 3 Tabs

  19. Dosimetry for the MR-linac

    NARCIS (Netherlands)

    Smit, K.

    2015-01-01

    The purpose of this thesis is to investigate the inuence of the MR scanner on dosimetry for the radiation modality, and to investigate the possible solutions for the dosimetric measurements discussed in section 1.7. Chapter 2 investigates the feasibility to use a standardized national reference dosi

  20. Secondary standard dosimetry laboratories: Development and trends

    International Nuclear Information System (INIS)

    This publication describes the work of the IAEA and the WHO in the establishment of a network of Secondary Standard Dosimetry Laboratories. Membership in the SSDL network has now risen to about 50 laboratories, of which 36 are in developing countries

  1. The United Kingdom's radiotherapy dosimetry audit network

    International Nuclear Information System (INIS)

    The first comprehensive national dosimetry intercomparison in the United Kingdom involving all UK radiotherapy centres was carried out in the late 1980s. Out of this a regular radiotherapy dosimetry audit network evolved in the early 1990s. The network is co-ordinated by the Institute of Physics and Engineering in Medicine and comprises eight co-operative regional groups. Audits are based on site visits using ionization chambers and epoxy resin water substitute phantoms. The basic audit methodology and phantom design follows that of the original national intercomparison exercise. However, most of the groups have evolved more complex methods, to extend the audit scope to include other parameters, other parts of the radiotherapy process and other treatment modalities. A number of the groups have developed phantoms to simulate various clinical treatment situations, enabling the sharing of phantoms and expertise between groups, but retaining a common base. Besides megavoltage external beam photon dosimetry, a number of the groups have also included the audit of kilovoltage X ray beams, electron beams and brachytherapy dosimetry. The National Physical Laboratory is involved in the network and carries out basic beam calibration audits to link the groups. The network is described and the methods and results are illustrated using the Scottish+ group as an example. (author)

  2. Computational Techniques of Electromagnetic Dosimetry for Humans

    Science.gov (United States)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to electromagnetic fields. This paper reviews the rationale of international safety guidelines for human protection against electromagnetic fields. Then, this paper also presents computational techniques to conduct dosimetry in anatomically-based human body models. Computational examples and remaining problems are also described briefly.

  3. New dosimetry of atomic bomb radiations.

    Science.gov (United States)

    Fry, R J; Sinclair, W K

    1987-10-10

    The reassessment of the radiation dosimetry from the Hiroshima and Nagasaki atomic bombs is almost complete. Since atomic bomb survivors provide a major source of data for estimates of risk of cancer induction by radiation the impact of the new dosimetry on risk estimates and radiation protection standards is important. The changes include an increase of about 20% in the estimated yield of the Hiroshima bomb and a reduction in the estimated doses from neutrons in both cities. The estimated neutron dose for Hiroshima is about 10% of the previous estimate. The neutron doses are now so small that direct estimates of neutron relative biological effectiveness may be precluded or be much more difficult. There is little change in most of the gamma ray organ doses because various changes in the new estimates tend to cancel each other out. The new estimate of the attenuation of the free-in-air kerma by the walls of the homes is about twice that used in the previous dosimetry. But the transmission of gamma radiation to the deep organs such as bone marrow is significantly greater than earlier estimates. Probably future risk estimates for radiogenic cancer will be somewhat higher because of both the new dosimetry and the new cancer mortality data. New risk estimates should be available in 1988. PMID:2889042

  4. Personnel radiation dosimetry symposium: program and abstracts

    International Nuclear Information System (INIS)

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry

  5. Dosimetry and control of radiation processing

    International Nuclear Information System (INIS)

    Eight invited papers on the general theme of 'Dosimetry and Control of Radiation Processing', presented at a one day symposium held at the National Physical Laboratory, are collected together in this document. Seven of the papers are selected and indexed separately. (author)

  6. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  7. Methods of biological dosimetry employing chromosome-specific staining

    Science.gov (United States)

    Gray, Joe W.; Pinkel, Daniel

    2000-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  8. Shoe-String Automation

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M.L.

    2001-07-30

    Faced with a downsizing organization, serious budget reductions and retirement of key metrology personnel, maintaining capabilities to provide necessary services to our customers was becoming increasingly difficult. It appeared that the only solution was to automate some of our more personnel-intensive processes; however, it was crucial that the most personnel-intensive candidate process be automated, at the lowest price possible and with the lowest risk of failure. This discussion relates factors in the selection of the Standard Leak Calibration System for automation, the methods of automation used to provide the lowest-cost solution and the benefits realized as a result of the automation.

  9. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  10. 3-dimensional polymer gel dosimetry

    International Nuclear Information System (INIS)

    was observed. Polymer gel dosimetry system used in this study proved that it is reliable system for dose distribution measurement with error less than 5 % for doses higher than 3 Gy. (author)

  11. Radiation dosimetry in radiotherapy with internal emitters

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, Michael G. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-12-31

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  12. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  13. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  14. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose; Intercomparacion de lecturas de radiacion dispersa entre dosimetria film, electronica y OSL con rayos X para dosis bajas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Blanco, S. [CONICET, Saavedra 15, C1083ACA Buenos Aires (Argentina); Bourel, V.; Schmidt, L. [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina); Di Risio, C., E-mail: dandisco@fmed.uba.ar [Universidad de Belgrano, Facultad de Ingenieria, Zabala 1837, C1426DQG, Buenos Aires (Argentina)

    2014-08-15

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  15. Power, speed & automation with Adobe Photoshop

    CERN Document Server

    Scott, Geoff

    2012-01-01

    This is a must for the serious Photoshop user! Power, Speed & Automation explores how to customize and automate Photoshop to increase your speed and productivity.  With numerous step-by-step instructions, the authors-two of Adobe's own software developers!- walk you through the steps to best tailor Photoshop's interface to your personal workflow; write and apply Actions; and use batching and scripts to process large numbers of images quickly and automatically.  You will learn how to build your own dialogs and panels to improve your production workflows in Photoshop, the secrets of changing

  16. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  17. Small Field Dosimetry Using Optical-Fiber Radioluminescence and Radpos Dosimetry Systems

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.;

    2012-01-01

    to the small dimensions of the Al2O3 crystal, the system may have applications in small field dosimetry. The second system is the RADPOS system (Med Phys, 36, 167279, 2009), a novel 4D dosimetry system available from BEST Medical Canada. RADPOS probe consists of 2 sensors: a small antenna......Purpose/Objective: We have investigated the use of two new dosimetry systems for small field dosimetry. The first system is based on Al2O3:C radioluminescence (RL) (Radiat Meas, 46 (10), 109098, 2011). The main part of the RL dosimetry system is a small (2x0.5x0.5 mm3) Al2O3:C crystal (Landauer...... as an electromagnetic positioning sensor and a μMOSFET for dose measurement. Materials and Methods: Relative output factors (ROF) for Cyberknife cones ranging from 5 to 60 mm were measured using RL and RADPOS systems. For comparison, measurements were also carried out using a mobileMOSFET system (BEST Medical Canada...

  18. Evaluation of personal integrating dosimeters

    International Nuclear Information System (INIS)

    The objective of this work is to analyze the different types of dosimeters present in the international market that are used to provide personal dose monitoring, specifically for external gamma and beta radiation, Hp(10) and Hp (0,07), as well as to add comments of advances in the field of passive and operative dosimetry, and the changes that are being produced in the regulating policy in other countries regarding the use of this devices. The technical specification of each dosimeter has been extracted of different catalogues of products. To conclude, the importance has been stressed in a proper selection of dosimeters with its advantages and disadvantages before its use. (author)

  19. Technical basis document for internal dosimetry

    CERN Document Server

    Hickman, D P

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosi...

  20. Eleventh DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ''The 1990 Recommendations of the ICRP and their Biological Background.'' The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers

  1. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  2. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    International Nuclear Information System (INIS)

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  3. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Anthony [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Lo, Anthony T., E-mail: tonyho22003@yahoo.com [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chang, Steve G.; Adler, John R. [Department of Neurosurgery, Stanford University, Stanford, CA (United States)

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  5. Quality assurance programme in the external dosimetry laboratory of the center for radiation protection of Cuba

    International Nuclear Information System (INIS)

    Full text: The External Dosimetry Laboratory (LDE) of the Center for Radiation Protection and Hygiene (CPHR) is the central dosimetry service of the country, which assures the individual monitoring on a monthly basis of about 5500 workers in 1000 establishments and maintains the National Dose Registry System. A project for upgrading the personal dosimetry service was started in 2000. In March 2001 film dosimeters began to gradually replaced by TLDs, the latter becoming the only official dosimeter a year later. In order to maintain quality and ensure compliance with regulations and international recommendations, a quality assurance culture has been introduced into the laboratory and quality requirements have been developed and implemented in the daily work through the establishment of a quality assurance (QA) programme. The design of the QA programme is based on the criteria contained in the ISO, on the recommendations of the IEC, and IAEA, as well as on regulations of the National Accreditation Council. The present study deals with the structure of the Laboratory's QA programme and includes documentation, organizational and managerial aspects as well as the procedures that are implemented. The experience gained during the years of the use of the QA programme is also described. (author)

  6. Utilization of photodiodes for ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    The behaviour of silicon photodiodes as detector, for gama and x-ray dosimetry is discussed. Measurements were realized with photodiodes operating in the photovoltaic mode, the current produzed was detected in the eletrometer constructed in the DEN/UFPE. The results obtained showed that the photodiode response is linear with the dose and that variation of 40 degrees in the incidence angule of the radiation caused a variation of 5% in the dose determination. (author)

  7. Current status of internal dosimetry in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Griciene, B.; Ladygiene, R.; Morkunas, G.; Pilkyte, L

    2003-07-01

    After Lithuania regained independence, the legal basis for existing radiation protection was modified radically according to the IAEA, ICRP recommendations and the requirements of legislation of the European Community. The legal basis for internal dosimetry and a functioning system of assessment of exposure to intake of radionuclides have been created in the Radiation Protection Centre (regulatory authority in radiation protection). Direct and indirect measurements of concentrations of radionuclides are used for the assessment of internal doses of workers and the public. (author)

  8. Current status of internal dosimetry in Lithuania

    International Nuclear Information System (INIS)

    After Lithuania regained independence, the legal basis for existing radiation protection was modified radically according to the IAEA, ICRP recommendations and the requirements of legislation of the European Community. The legal basis for internal dosimetry and a functioning system of assessment of exposure to intake of radionuclides have been created in the Radiation Protection Centre (regulatory authority in radiation protection). Direct and indirect measurements of concentrations of radionuclides are used for the assessment of internal doses of workers and the public. (author)

  9. a Generalized Program for Internal Radionuclide Dosimetry

    Science.gov (United States)

    Johnson, Timothy Karl

    The development of monoclonal antibodies specific for tumor surface antigens promises a highly specific carrier medium for delivering a tumorcidal radiation dose. Dosimetry calculations of monoclonal antibodies are made difficult, however, precisely because the focus of radioactivity is targeted for a nonstandard volume in a nonstandard geometry. This precludes straightforward application of the formalism developed for internal radionuclide dosimetry by the Medical Internal Radiation Dose Committee. A software program was written to account for the perturbations introduced by the inclusion of a tumor mass as an additional source of, and target for, radiation. The program allows the interactive development of a mathematical model to account for observed biodistribution data. The model describes the time dependence of radioactivity in each organ system that retains radiolabeled antibody, including tumor. Integration of these "time-activity" curves yield cumulative activity for each organ system identified as a 'source' of radioactivity. A Monte Carlo simulation of photon transport is then executed for each source organ to obtain the fraction of radiation energy absorbed by various 'target' organs. When combined with the cumulative activity, this absorbed fraction allows an estimate of dose to be made for each target organ. The program has been validated against ten analytic models designed to span a range of common input data types. Additionally, a performance benchmark has been defined to assess the practicality of implementing the program on different computing hardware platforms. Sources of error in the computation are elaborated on, and future directions and improvements discussed. The software presents an integrated modeling/dosimetry environment particularly suited for performing Monoclonal Antibody dosimetry. It offers a viable methodology for performing prospective treatment planning, based on extrapolation of tracer kinetic data to therapeutic levels.

  10. Dosimetry intercomparisons between fast neutron radiotherapy facilities

    International Nuclear Information System (INIS)

    Neutron dosimetry intercomparisons have been made between M.D. Anderson Hospital and Tumor Institute, Naval Research Laboratory, University of Washington Hospital, and Hammersmith Hospital. The parameters that are measured during these visits are: tissue kerma in air, tissue dose at depth of dose maximum, depth dose, beam profiles, neutron/gamma ratios and photon calibrations of ionization chambers. A preliminary report of these intercomparisons will be given including a comparison of the calculation and statement of tumor doses for each institution

  11. Applications of alanine-based dosimetry

    International Nuclear Information System (INIS)

    Alanine-based radiation dosimetry and related dosimeters developed at the Istituto Superiore di Sanita, Rome, Italy, and capable of providing high accuracy absorbed dose determination by ESR are presented. Overall uncertainty is shown to be +-3.9% in the 10 Gy to 3 kGy range. Possible applications to radiotherapy and industry are discussed. Percentage depth dose values and dose profiles measured with alanine dosimeters in phantom are presented. (author)

  12. Calliope. A pedagogic tool for internal dosimetry

    International Nuclear Information System (INIS)

    The Calliope CD-Rom brings together all principal data published in the documents of the international commission of radiation protection (ICRP) since 1990. Calliope is a support devoted to the training of professionals and future actors of radioprotection (doctors, biologists, radiation protection services, teachers etc..). It provides some useful help for the enforcement and the respect of new dosimetry standards as defined in the European directive 96/29. (J.S.)

  13. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  14. Radiotherapy Based On α Emitting Radionuclides: Geant4 For Dosimetry And Micro-/Nano-Dosimetry

    International Nuclear Information System (INIS)

    Possible physics approaches to evaluate the efficacy of TAT are dosimetry, microdosimetry and nanodosimetry. Dosimetry is adequate when mean absorbed dose to a macroscopic target volume is important to understand the biological effect of radiation. General purpose Monte Carlo (MC) codes, based on condensed history approach, are a very useful, cost effective tool to solve dosimetric problems. The condensed history approach is based on the use of multiple scattering theories to calculate the energy losses and angular changes in the direction of the particle. The short α particle range and high LET make the microdosimetric approach more suitable than dosimetry to study TAT from first physics principles, as this approach takes into account the stochastic nature of energy deposition at cellular level

  15. Technical basis document for internal dosimetry

    International Nuclear Information System (INIS)

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosimetry program in accordance with expected Department of Energy Laboratory Accreditation Program (DOELAP) requirements for the selected radionuclides provided in this document, including uranium mill tailing mixtures. Additions and modifications to this document and procedures derived FR-om this document are expected in the future according to changes in standards and changes in programmatic mission

  16. EPR dosimetry with tooth enamel: A review.

    Science.gov (United States)

    Fattibene, Paola; Callens, Freddy

    2010-11-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  17. EPR dosimetry with tooth enamel: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fattibene, Paola, E-mail: paola.fattibene@iss.i [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00161 Rome (Italy); Callens, Freddy, E-mail: freddy.callens@ugent.b [Ghent University, Department of Solid State Sciences, Krijgslaan 281-S1, B-9000 Gent (Belgium)

    2010-11-15

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  18. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  19. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  20. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  1. Current work on dosimetry standards in Japan

    International Nuclear Information System (INIS)

    Basic concepts on standardization of radiation dosimetry are reviewed. The present situation regarding primary standards in the Electrotechnical Laboratory, the primary standard dosimetry laboratory in Japan, is presented, considering the following; (i) Established dosimetric standards of exposure for soft and medium-energy X-rays and gamma rays. This section includes methods of their standardization, and discusses accuracies of instruments operating as environmental-level, protection-level, inspection-level, therapy-level, and processing-level measuring systems. The results of international comparisons between ETL and other, foreign primary standard dosimetry laboratories are presented; (ii) Other established radiation standards related to derivation of radiation absorbed dose. These primary standards include those for the neutron emission rates, thermal and fast neutron flux densities, energy fluences for high-energy photons and electrons, and activities of several kinds of radioactive material. The accuracies and results of international comparisons relating to them are also presented; (iii) Research being carried out at ETL. The current status of the dissemination of radiation standards is presented considering in particular: (i) The calibration services available at ETL, the categories of these services, energy and dose rate ranges, methods, accuracies, etc.; (ii) The calibration services available in certain other organizations considered as SSDLs in Japan, the categories of such work, methods, accuracies etc.; (iii) Present endeavours towards establishing a systematic and effective dissemination system (a so-called Traceability System) in Japan

  2. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  3. Bayesian Methods for Radiation Detection and Dosimetry

    International Nuclear Information System (INIS)

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  4. Quality assurance in radiotherapy dosimetry in China

    International Nuclear Information System (INIS)

    In 1995, the SSDL in the Laboratory of Industrial Hygiene cooperated with Beijing Cancer Hospital, Chinese Academy of Medical science joined the IAEA Co-ordinated Research Programme (NO.8769/RO). According to the requirements of the project, an External Audit Group (EAG) in China was established in 1996 with the responsibilities of operating TLD-based quality audit for radiotherapy dosimetry. Since then. The national TLD dose quality audit services have been carried out in 7 provinces in China. Besides this, the national programmes for brachytherapy and stereostatic radiosurgery (SRS) treatment dosimetry were initiated in 2001. The activity measurement intercomparison between the SSDL and some hospitals for Ir-192 HDR brachytherapy sources has been performed using a HDR well-type ionization chamber (Model HDR 1000 plus) and CDX-2000A Charge Digitizer, which were calibrated in Accredited Dosimetry Calibration Laboratory, University of Wisconsin, USA. The preliminary results indicated that the agreement between SSDL measured activity and hospital stated activity was within ±5% for more than 80% of total participants

  5. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  6. Overview on Solid State Dosimetry Research in Frame of the Hungarian-Croatian Cooperation (1979-2008)

    International Nuclear Information System (INIS)

    The thermoluminescence (TL) method for various dosimetry purposes was introduced in the Institute of Isotopes (IoI) and in the Rudjer Boskovic Institute (IRB) in the 70's, i.e. at about the same time as in well developed countries. In both institutes much effort were devoted to coordinating research activities on solid state dosimetry and on radiation protection. The history of our collaboration and the exchange visits (2-2 weeks/year) started 28 years ago within the scope of the scientific cooperation project between the Croatian Academy of Sciences and Arts and the Hungarian Academy of Sciences. It has to be mentioned that IRB had many years cooperation with the Central Research Institute for Physics, Budapest as well as with the Institute of Nuclear Research, Debrecen also in the field of solid state dosimetry. However, in this paper the survey of the scientific cooperation between IoI and IRB will be given. The main field of our scientific research work was the solid state thermoluminescent dosimetry and its applications. The most interesting research fields during our 'working together' were as follows: The study of the dosimetric characteristics of different TL phosphors for general personal dosimetry purposes using different dosimetry systems; To develop new TL systems for mixed neutron-gamma field dosimetry; To assess the self-induced TL properties of aluminium oxide TL dosimeters and to propose this new method to measure the gamma and the neutron dose of mixed fields separately by the same dosimeter; To examine the photo induced and photo transfer properties of various TL dosimeters to explain the connection of this properties and the crystal structure and defects in TL materials and to perform the re-evaluation of TL dosimeters by photo transfer effect; To investigate the TL sensitivity of dosimeters to low LET (gamma) and to high LET (alpha, neutron, proton) radiations; Comparative investigations on the newly developed TL dosimeters available on the

  7. The IAEA/WHO thermoluminescent dosimetry intercomparison used for the improvement of clinical dosimetry

    International Nuclear Information System (INIS)

    Results of thermoluminescent dosimetry collected over 5 years in the Eastern Mediterranean region of WHO were analyzed in an attempt to improve clinical dosimetry. Data for 16 radiotherapy departments showed considerable inconsistencies. It was found that the clinical dosemeters used by 3 of the departments were not working properly. The remainder of the departments had one or more dosemeters in perfect working order but the procedure for measuring machine output was inadequate or the correction factors (pressure, temperature) were wrongly applied due to lack of reliable instruments for such measurements. Problems encountered in the sending and returning of TLD dosemeters for assessment are discussed

  8. Albedo neutron dosimetry and monitoring around the RECH-1 reactor neutron radiographic beam

    International Nuclear Information System (INIS)

    This paper describes the neutrons and gamma monitoring and albedo neutron dosimetry in a field around the RECH-1 neutron beam. Two kind of albedo dosimeters were used: Hankins and KfK Alnor. The calibration procedures and comparison of these albedo dosimeters performance were done. The dose equivalent results agree between 28%. The neutron dose distribution for person working near the beam, was obtained by routine monitoring with albedo dosimeter developed by Hankins. A monthly neutron dose with a maximum of 0,8 mSv and arithmetic mean of 0,4 mSv were found. The beam's gamma energy spectrum and its related dose were also studied. (author)

  9. Developments in Neutron Spectrometry and Dosimetry in Support of the U.K. Naval Nuclear Propulsion Program

    Energy Technology Data Exchange (ETDEWEB)

    P. A. Beeley; N. M. Spyrou; J. M. Brushwood; A. M. Williams

    2000-11-12

    The Defence Radiological Protection Service (DRPS) is tasked with providing the approved dosimetry service to the Naval Nuclear Propulsion Program (NNPP). Within this requirement, DRPS operates a track-etch system for whole-body neutron dosimetry, using the well-known material polyally dyglycol carbonate as the sensitive element. These dosimeters have a number of limitations, including a high limit of detection (typically 200 microsieverts), insensitivity to low-energy neutrons, and a strong angular dependence. Such limitations, along with the incorporation of the recommendations of the International Commission on Radiological Protection (ICRP) 60 into the revised U.K. Ionizing Radiation Regulations 1999, have provided the opportunity to reconsider spectrometric and dosimetric research in support of the NNPP. Area neutron dosimetry is most usually performed using a Leake-type spherical survey meter. In both the case of area and, more significantly, personal dosimetry, the differences in the energy spectra between the calibration and the operational fields require a location correction factor (LCF) to be applied. To determine these LCFs, it is necessary to accurately characterize the operational energy spectra. This characterization is undertaken using the transportable neutron spectrometer (TNS) developed by the U.K. Atomic Energy Establishment at Winfrith in the 1980s. Our research has focused on two areas, the development of an improved TNS system and a complimentary program to design a new area survey meter.

  10. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  11. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and support

  12. Work and Programmable Automation.

    Science.gov (United States)

    DeVore, Paul W.

    A new industrial era based on electronics and the microprocessor has arrived, an era that is being called intelligent automation. Intelligent automation, in the form of robots, replaces workers, and the new products, using microelectronic devices, require significantly less labor to produce than the goods they replace. The microprocessor thus…

  13. Library Automation Style Guide.

    Science.gov (United States)

    Gaylord Bros., Liverpool, NY.

    This library automation style guide lists specific terms and names often used in the library automation industry. The terms and/or acronyms are listed alphabetically and each is followed by a brief definition. The guide refers to the "Chicago Manual of Style" for general rules, and a notes section is included for the convenience of individual…

  14. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  15. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  16. Automation in immunohematology.

    Science.gov (United States)

    Bajpai, Meenu; Kaur, Ravneet; Gupta, Ekta

    2012-07-01

    There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  17. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  18. Automation in immunohematology.

    Science.gov (United States)

    Bajpai, Meenu; Kaur, Ravneet; Gupta, Ekta

    2012-07-01

    There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process. PMID:22988378

  19. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  20. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  1. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  2. Development of OSL Dosimetry Reader

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Young; Chung, Ki Soo [Dept. of Physics, Gyeongsnag National University, Jinju (Korea, Republic of); Lee, Jong Duk [Dept. of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); Chang, In Su; Lee, Jung IL; Kim, Jang Yul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Design and performance test results of a newly developed optically stimulated luminescence (OSL) measurement system are presented in this paper. Generally, different types of optical filters are used in OSL reader system to minimize the interference of the stimulation light in the OSL signal. For optically stimulation of Al{sub 2}O{sub 3}:C, we have arrived at an optimal combination of the filters, i.e., GG420 filter for filtering the stimulating light source, and a combined UG11 and BG39 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optically stimulation. By using various control boards, the OSL reader device was successfully interfaced with a personal computer. A software was developed to deliver required commands to operate the OSL reader by using the LabView program (National Instruments, Inc.). In order to evaluate the reliability and the reproducibility of newly designed-OSL reader. Performance testing of the OSL reader was carried out for OSL efficiency, OSL decay curve and signal to noise ratio of the standard Al{sub 2}O{sub 3}:C OSL material. It was found to be comparable with that of commercial Riso reader system.

  3. COMPARATIVE STUDY OF TEST AUTOMATION ROI

    Directory of Open Access Journals (Sweden)

    S.K. Muthusundar

    2011-09-01

    Full Text Available Need of enhancing the potential benefits of a project by robust strategies that reduces the execution time of testing cycle and maintenance effort result in increased productivity by additional test cases within a given schedule this objective can be met the organist ions with the help of test Automation framework. Return oninvestment (ROI can also be achieved through test automation. It reduced the maintenance effort and script development result will help increase the speed of test execution and provides maximum number of resources. In this paper we will discuss the importance of using testing automation to achieve high return on investment on the basis of time and cost benefits. The ROI formula is very normally very “Basic”. Costs are fairly easy to quantify, but the value of potential benefits is far more difficult to nail down. ROI approaches often oversimplify many elements of test automation leading to inaccurate results. These inaccuracies then lead to unrealisticexpectations on the part of management for test automation, and this can lead to failure (personal, team, and sometimes project.

  4. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  5. Methods and procedures for internal radiation dosimetry at ORNL

    International Nuclear Information System (INIS)

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, internal radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability

  6. Radiation chemical dosimetry by means of nitrate-nitrite

    International Nuclear Information System (INIS)

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolysis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (Author) 22 refs

  7. Dosimetry computer module of the gamma irradiator of ININ

    International Nuclear Information System (INIS)

    This work present the technical specifications for the upgrade of the dosimetry module of the computer system of the gamma irradiator of the Instituto Nacional de Investigaciones Nucleares (ININ) whose result allows the integration and consultation of information in industrial dosimetry subject under an outline client-server. (Author)

  8. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  9. Present status and expected progress in radiation processing dosimetry

    DEFF Research Database (Denmark)

    Kovács, A.; Miller, A.

    2004-01-01

    The paper describes the present status of radiation processing dosimetry including the methods used most widely in gamma- and electron processing as well as the new methods under development or introduction. The recent trends with respect to calibrationof routine dosimetry systems as well as stan...

  10. Starting Over: The Automated Payment Transaction Tax

    OpenAIRE

    Feige, Edgar L.

    2001-01-01

    This paper proposes a 21st century global fiscal architecture to replace the present system of personal and corporate income, sales, excise, capital gains, import and export duties, gift and estate taxes with a single comprehensive revenue neutral Automated Payment Transaction (APT) tax. In its simplest form, the APT tax consists of a flat tax levied on all transactions. The tax is automatically assessed and collected when transactions are settled through the electronic technology of the ban...

  11. Fluence-based dosimetry of proton and heavier ion beams using single track detectors

    Science.gov (United States)

    Klimpki, G.; Mescher, H.; Akselrod, M. S.; Jäkel, O.; Greilich, S.

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u-1 carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference.

  12. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  13. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  14. Temperature coefficients for in vivo RL and OSL dosimetry using Al2O3 : C

    DEFF Research Database (Denmark)

    Andersen, C.E.; Edmund, Jens Morgenthaler; Damkjaer, S.M.S.;

    2008-01-01

    A radiotherapy dosimetry system based on radiolurninescence (RL) and optically stimulated luminescence (OSL) from small carbon-doped aluminum oxide (Al2O3:C) crystals attached to optical-fiber cables has been developed. To quantify the influence of temperature variations on clinical RL and OSL...... measurement results, we conducted an automated laboratory experiment involving threefold randomization of (1) irradiation temperature (10-45 degrees C), (2) stimulation temperature (10-45 degrees C), and (3) irradiation dose (0-4 Gy; 50 kV X-rays). We derived linear RL and OSL temperature coefficients using...... a simple statistical model fitted to all data (N = 909). The study shows that the temperature coefficients are independent of dose and other variables studied. In agreement with an earlier investigation, we found that the RL signal changes only with irradiation temperature whereas the OSL response changes...

  15. Dosimetry Methods of Fast Neutron Using the Semiconductor Diodes

    Science.gov (United States)

    H. Zaki, Dizaji; Kakavand, T.; F. Abbasi, Davani

    2014-01-01

    Semiconductor detectors based on a silicon pin diode are frequently used in the detection of different nuclear radiations. For the detection and dosimetry of fast neutrons, these silicon detectors are coupled with a fast neutron converter. Incident neutrons interact with the converter and produce charged particles that can deposit their energy in the detectors and produce a signal. In this study, three methods are introduced for fast neutron dosimetry by using the silicon detectors, which are: recoil proton spectroscopy, similarity of detector response function with conversion function, and a discriminator layer. Monte Carlo simulation is used to calculate the response of dosimetry systems based on these methods. In the different doses of an 241Am-Be neutron source, dosimetry responses are evaluated. The error values of measured data for dosimetry by these methods are in the range of 15-25%. We find fairly good agreement in the 241Am-Be neutron sources.

  16. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    International Nuclear Information System (INIS)

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS web site (www.eurados.org). (authors)

  17. Performing personnel dosimetry investigations and records quality assurance

    International Nuclear Information System (INIS)

    Radiation Safety Officers (RSOs) sometimes face situations in which personnel dosimetry estimates are required after dosimeters issued to radiation workers (film or TLD badges, extremity dosimeters, etc.) are lost or damaged before processing. This article was prepared to help those involved with personnel dosimetry investigations became aquatinted with this process. A factor that contributes to the anxiety of those unfamiliar with dosimetry investigations is the lack of published guidance available in this subject. More printed resources are needed to help radiation safety professionals familiarize themselves and understand personnel dosimetry investigations. Topics discussed in this presentation include the justification of performing dosimetry investigations, recommendations on how to perform them and the advantages of performing such investigations

  18. Dosimetry on the radiological risks prevention in radiotherapy

    International Nuclear Information System (INIS)

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  19. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    Science.gov (United States)

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  20. Is dosimetry still a necessity in current dental practice?

    Science.gov (United States)

    Reddy, S S; Rakesh, N; Chauhan, Pallavi; Clint, Joseph Ben; Sharma, Shivani

    2015-12-01

    Today, dentists have a wide range of imaging modalities to choose from, the film based techniques, digital techniques, and the recent introduction of 3D volumetric or cone beam computed tomography (CBCT). The inherent design features of the new generation dental x-ray equipment has significantly improved over the years with no evidence of substandard x-ray units in operation. In dental facilities radiological workload is comparatively low, newer radiation equipments and accessories follow safety guidelines and employ better radiation protection measures for the patient and the operator. Dentists' knowledge and expertise in radiation protection measures is good, enabling them to carry out riskfree radiation procedures in their practice. Therefore, the present study is aimed at assessing the need for dosimeters in current dental scenario. 'Is there currently a significant risk from dental radiography to merit the use of personal dosimetery in dental practice. 'Dental health professionals (Oral radiologists) and radiographic assistants of fourteen dental colleges in Karnataka state participated in this questionnaire study. The questionnaire consisted of the following questions--the make, type, year of manufacture of radiographic machines used in their setup, number of radiographs made per day in the institution, type of receptors used, number of personnel at risk for radiation exposure, radiation protection measures used, regular monitoring by personal dosimeters, equivalent dosage readings for the past 12 months and whether the reading of thermoluminescent dosimeters (TLD) for any personnel had exceeded the recommended exposure value in the last 3 years. Dosimetry records of the radiology staff in the last three years shows doses no more than 1.50 mSv per year. The various institutions' dose (person mSv) was in the range of 3.70 mSv-3.90 mSv. Personal monitoring for Dentists can be omitted in the dental colleges since the estimated dose of oral radiologists

  1. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic; Sistema de gerenciamento da dosimetria pessoal baseado na ISO 9001:2008 para radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner, E-mail: brasilrad@brasilrad.com.br [Brasilrad Consultoria em Radioprotecao, Florianopolis, SC (Brazil)

    2013-07-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers.

  2. Optimisation of an EPR dosimetry system for robust and high precision dosimetry

    International Nuclear Information System (INIS)

    Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements. - Highlights: • A lithium formate dosimetry system was optimized for accurate dose determinations. • Smaller-sized dosimeters for measurements in dose gradient regions was developed. • Individual sensitivity calibration was introduced for EPR dosimetry. • Measurement precision versus measurement time was evaluated

  3. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  4. Internal dosimetry for uranium fuel manufacture at BNFL

    International Nuclear Information System (INIS)

    At its Springfields Works, near Preston, UK BNFL manufactures uranium fuels and fuel intermediates, in a range of chemical and metallurgical processes. Uranium ore concentrate is converted to uranium metal for the Magnox reactors, uranium hexafluoride (UF6) to uranium dioxide (UO2) for AGR and other oxide reactors, and various intermediate products are produced to meet customer requirements. Thus, uranium compounds with biological retention periods ranging from days (UF6) to years (UO2) are handled on multi-hundred, or thousand, tonne per year scales. Control and minimisation of workforce exposure is exercised primarily by engineered methods (e.g. total enclosures and high integrity plant), backed up by use of respiratory and other protective equipment. A high profile is given to good standards of housekeeping. Assessment of intake is by methods approved by HSE (NII) in the Approved Laboratory Statement on internal dosimetry. The principal method is assessment by use of continuous air sampling combined with occupancy. This is back up by routine personal air sampling (PAS) in selected relevant areas in which ceramic UO2 is handled. Further assurance is provided by programmed PAS in other areas and by systematic, and routine, urinalysis and whole-body monitoring of all relevant members of the workforce. The results of the above are presented in detail. (Author)

  5. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  6. Dosimetry in radiation fields around high-energy proton accelerators

    CERN Document Server

    Agosteo, S; Silari, M; Theis, C

    2008-01-01

    Radiation dosimetry at high-energy proton accelerators is a difficult task because of the complexity of the stray radiation field. A good knowledge of this mixed radiation field is very important to be able to select the type of detectors (active and/or passive) to be employed for routine area monitoring and to choose the personal dosimeter legally required for estimating the effective dose received by individuals. At the same time, the response function of the detectors to the mixed field must be thoroughly understood. A proper calibration of a device, which may involve a complex series of measurements in various reference fields, is needed. Monte Carlo simulations provide a complementary – and sometimes the principal – mean of determining the response function. The ambient dose equivalent rates during operation range from a few hundreds of μSv per year to a few mSv per year. To measure such rates one needs detectors of high sensitivity and/or capable of integrating over long periods. The main challenge...

  7. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  8. Dosimetry and process control for food irradiation

    International Nuclear Information System (INIS)

    Whatever a radiation process is designed to achieve, dosimetry is fundamental to it, either as a necessary control, or to establish the process, or for research and development studies. Dosimetry provides the quantitative baseline against which the biological or chemical changes induced by radiation can be measured. In the case of irradiation of food, a minimum dose will be required to achieve the technological objective. A maximum dose will be defined by the onset of the loss of acceptable quality of the food, but upper dose limits will usually be prescribed by regulatory bodies. There is no accurate way of assessing the dose once the food has left the irradiation plant. Therefore the dose must be properly applied and verified during processing. The dose is measured using dosimeters. There are many different types of dosimeters for different applications, dose ranges and conditions of use. All dosimeters must be calibrated, with a measurement traceability chain to a national or international primary standard. This paper describes the classification of dosimeters and gives examples and their applications. Calibration and use of a typical dosimetry system used for food irradiation is then discussed, including the effects of environmental influence factors such as dose rate and temperature, and how measurement traceability can be established. Before routine processing of a product can occur, process qualification must be carried out to ensure the irradiation process produces acceptable results. An example of a dose mapping study is given, followed by discussion of some practical considerations of process control, including measurement uncertainty and how this relates to the setting of process limits

  9. Verification of IMRT fields by film dosimetry

    International Nuclear Information System (INIS)

    In intensity modulated radiation therapy (IMRT) the aim of an accurate conformal dose distribution is obtained through a complex process. This ranges from the calculation of the optimal distribution of fluence by the treatment planning system (TPS), to the dose delivery through a multilamellar collimator (MLC), with several segments per beam in the step and shoot approach. The above-mentioned consideration makes mandatory an accurate dosimetric verification of the IM beams. A high resolution and integrating dosimeter, like the radiographic film, permits one to simultaneously measure the dose in a matrix of points, providing a good means of obtaining dose distributions. The intrinsic limitation of film dosimetry is the sensitivity dependence on the field size and on the measurement depth. However, the introduction of a scattered radiation filter permits the use of a single calibration curve for all field sizes and measurement depths. In this paper the quality control procedure developed for dosimetric verification of IMRT technique is reported. In particular a system of film dosimetry for the verification of a 6 MV photon beam has been implemented, with the introduction of the scattered radiation filter in the clinical practice that permits one to achieve an absolute dose determination with a global uncertainty within 3.4% (1 s.d.). The film has been calibrated to be used both in perpendicular and parallel configurations. The work also includes the characterization of the Elekta MLC. Ionimetric independent detectors have been used to check single point doses. The film dosimetry procedure has been applied to compare the measured absolute dose distributions with the ones calculated by the TPS, both for test and clinical plans. The agreement, quantified by the gamma index that seldom reaches the 1.5 value, is satisfying considering that the comparison is performed between absolute doses

  10. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy

    International Nuclear Information System (INIS)

    Molecular radiotherapy (MRT) has demonstrated unique therapeutic advantages in the treatment of an increasing number of cancers. As with other treatment modalities, there is related toxicity to a number of organs at risk. Despite the large number of clinical trials over the past several decades, considerable uncertainties still remain regarding the optimization of this therapeutic approach and one of the vital issues to be answered is whether an absorbed radiation dose-response exists that could be used to guide personalized treatment. There are only limited and sporadic data investigating MRT dosimetry. The determination of dose-effect relationships for MRT has yet to be the explicit aim of a clinical trial. The aim of this article was to collate and discuss the available evidence for an absorbed radiation dose-effect relationships in MRT through a review of published data. Based on a PubMed search, 92 papers were found. Out of 79 studies investigating dosimetry, an absorbed dose-effect correlation was found in 48. The application of radiobiological modelling to clinical data is of increasing importance and the limited published data on absorbed dose-effect relationships based on these models are also reviewed. Based on National Cancer Institute guideline definition, the studies had a moderate or low rate of clinical relevance due to the limited number of studies investigating overall survival and absorbed dose. Nevertheless, the evidence strongly implies a correlation between the absorbed doses delivered and the response and toxicity, indicating that dosimetry-based personalized treatments would improve outcome and increase survival. (orig.)

  11. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  12. The next decade in external dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  13. Characterization of new materials for fiberoptic dosimetry

    Science.gov (United States)

    Molina, P.; Santiago, M.; Marcassó, J.; Caselli, E.; Prokic, M.; Khaidukov, N.; Furetta, C.

    2011-09-01

    In this work we have investigated the radioluminescence (RL) characteristics of three materials (Mg2SiO4:Tb, CsY2F7:Tb and KMgF3:Sm) in order to determine whether they can be used as real time dosimeters in the the framework the fiberoptic dosimetry (FOD) technique. This technique is based on the use of scintillating materials coupled to the end of an optical fiber, which collects the light emitted by the scintillator during irradiation. Since usually the intensity of the emitted light is proportional to the dose-rate, the technique provides a reliable measuring method, which can be employed in radiotherapy treatments.

  14. The UK radiotherapy dosimetry audit network

    International Nuclear Information System (INIS)

    Full text: Radiotherapy dosimetry intercomparison in the UK has been carried out in limited studies since the 1960s. However the first national dosimetry intercomparison involving all radiotherapy centres was conducted in the late 1980s. This was based on visits to each centre, using ionisation chamber dosimetry. It audited megavoltage photon beam calibration and other single field parameters. It also measured doses in a three-field 'treatment' in a trapezoidal phantom constructed from epoxy-resin water-equivalent material and compared these to locally planned doses. This included off-axis points, oblique incidence, inhomogeneities, etc. The study found mean measured beam calibration doses close to stated values (ratio 1.003), with a standard deviation (sd) of the distribution of 1.5% and 97% of doses within the pro-set 3% tolerance. For the planned multi-field irradiations, mean dose ratios (measured/stated) were 1.01 (sd 3%, 90% of results within 5%). A number of discrepancies were identified, leading to improved practice. A follow up study (mid-1990s) for electron beam audit also repeated the megavoltage photon calibration audit. For photons, an improvement was noted (mean ratio 1.003, sd 1.0%, 100% within 3%), whilst for electron beams, the mean ratio of measured/stated dose was 0.994 (sd 1.8%, 94% within 3%, 99% within 5%). In parallel with - and growing out of - this, a national audit network began to develop in 1991/2. It utilised similar methodology to the intercomparison and a network approach to allow parallel developments of the scope of the system. The network has eight regional groups, each with up to 10 radiotherapy centres, serving average populations of 7-8 million. Each group organises audits of its own centres and has developed at its own pace. Most have piloted methodology, phantoms, etc. for new audits which can then be used by other groups. All 65 UK centres are included. The network is co-ordinated by an IPEM Steering Committee (current chair

  15. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  16. Monte Carlo simulations for heavy ion dosimetry

    OpenAIRE

    Geithner, Oksana

    2006-01-01

    Water-to-air stopping power ratio ( ) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variabl...

  17. High sensitivity MOSFET-based neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Fragopoulou, M.; Konstantakos, V. [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece); Zamani, M., E-mail: zamani@physics.auth.g [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece); Siskos, S.; Laopoulos, T. [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece); Sarrabayrouse, G. [CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse (France)

    2010-09-21

    A new dosemeter based on a metal-oxide-semiconductor field effect transistor sensitive to both neutrons and gamma radiation was manufactured at LAAS-CNRS Laboratory, Toulouse, France. In order to be used for neutron dosimetry, a thin film of lithium fluoride was deposited on the surface of the gate of the device. The characteristics of the dosemeter, such as the dependence of its response to neutron dose and dose rate, were investigated. The studied dosemeter was very sensitive to gamma rays compared to other dosemeters proposed in the literature. Its response in thermal neutrons was found to be much higher than in fast neutrons and gamma rays.

  18. Neutron dosimetry for low dose rate Cf-252 AT sources and adherence to recent clinical dosimetry protocol for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Radiation Oncology; Martin, R.C. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-01

    In 1995, the American Association of Physicists in Medicine Task Group 43 (AAPM TG-43) published a protocol obsoleting all mixed-field radiation dosimetry for Cf-252. Recommendations for a new brachytherapy dosimetry formalism made by this Task Group favor quantification of source strength in terms of air kerma rather than apparent Curies or other radiation units. Additionally, representation of this dosimetry data in terms of radial dose functions, anisotropy functions, geometric factors, and dose rate constants are in an angular and radial (spherical) coordinate system as recommended, rather than the along-away dosimetry data (Cartesian coordinate system) currently available. This paper presents the initial results of calculated neutron dosimetry in a water phantom for a Cf-252 applicator tube (AT) type medical source soon available from Oak Ridge National Laboratory (ORNL).

  19. I-94 Automation FAQs

    Data.gov (United States)

    Department of Homeland Security — In order to increase efficiency, reduce operating costs and streamline the admissions process, U.S. Customs and Border Protection has automated Form I-94 at air and...

  20. Hydrometeorological Automated Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Hydrologic Development of the National Weather Service operates HADS, the Hydrometeorological Automated Data System. This data set contains the last...

  1. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  2. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  3. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  4. Instant Sikuli test automation

    CERN Document Server

    Lau, Ben

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A concise guide written in an easy-to follow style using the Starter guide approach.This book is aimed at automation and testing professionals who want to use Sikuli to automate GUI. Some Python programming experience is assumed.

  5. Automated security management

    CERN Document Server

    Al-Shaer, Ehab; Xie, Geoffrey

    2013-01-01

    In this contributed volume, leading international researchers explore configuration modeling and checking, vulnerability and risk assessment, configuration analysis, and diagnostics and discovery. The authors equip readers to understand automated security management systems and techniques that increase overall network assurability and usability. These constantly changing networks defend against cyber attacks by integrating hundreds of security devices such as firewalls, IPSec gateways, IDS/IPS, authentication servers, authorization/RBAC servers, and crypto systems. Automated Security Managemen

  6. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  7. X and gamma rays irradiation tests for evaluating performances of Italian dosimetry services

    International Nuclear Information System (INIS)

    The ENEA (Italian Agency for New Technologies, Energy and the Environment)-EDP Group (Personal Dosimetry Experts) has already evaluated the reliability of more than 50% of the 70 Italian personal dosimetry services, which agreed to test their dosimeters through X and gamma irradiation in air. Film,TL and both film and TL are used as detectors. The X and gamma rays energy ranges from 30 keV to 1.250 keV (beam defined by ISO 4037). Exposures range from 5.2 10-6 C/kg to 1.3 10-3 C/kg. Some dosimeters have been irradiated with a single energy level and others with two energy levels. For each one of the nearly 4.000 dosimeters already tested, the ratio R has been calculated: R = Xv/Xa where: Xv is the exposure evaluated by the service, Xa is the actual exposure. The R distributions have been analysed for the dosimeters using film or TL as detectors, as a function of irradiation energy and as a function of exposure values. The results obtained by all tested services are commented. Separate comments deal also with possible reasons of the failures to pass the tests

  8. Individual monitoring of medical staff working in interventional radiology in Switzerland using double dosimetry

    International Nuclear Information System (INIS)

    Physicians who frequently perform fluoroscopic examinations are exposed to high intensity radiation fields. The exposure monitoring is performed with a regular personal dosimeter under the apron in order to estimate the effective dose. However, large parts of the body are not protected by the apron (e.g. arms, head). Therefore, it is recommended to wear a supplemental dosimeter over the apron to obtain a better representative estimate of the effective dose. The over-apron dosimeter can also be used to estimate the eye lens dose. The goal of this study was to investigate the relevance of double dosimetry in interventional radiology. First the calibration procedure of the dosimeters placed over the apron was tested. Then, results of double dosimetry during the last five years were analyzed. We found that the personal dose equivalent measured over a lead apron was underestimated by ∼20% to ∼40% for X-ray beam qualities used in radiology. Measurements made over five-year period confirm that the use of a single under-apron dosimeter is inadequate for personnel monitoring. Relatively high skin dose (>10 mSv/month) would have remained undetected without a second dosimeter placed on the apron.

  9. Eleventh DOE workshop on personnel neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  10. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  11. The importance of 3D dosimetry

    International Nuclear Information System (INIS)

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions

  12. Dosimetry considerations in patients with renal pathology

    International Nuclear Information System (INIS)

    Adult dosimetry is generally performed for normal individuals and these are the absorbed dose calculations sent to FDA and listed on package inserts. However, in a variety of circumstances pathophysiologic state may significantly alter the biodistribution and kinetics of a radiopharmaceutical, and radiation doses calculated for normal individuals may not be appropriate approximations for these patients. In addition, the presence of certain pathophysiologic states often guarantees that the patient will have multiple studies over a period of days, weeks, months, or years. In order to have a true appreciation for the radiation dose commitment to such patients, it is important to examine dose totals from multiple nuclear medicine studies. Dosimetry calculations will be presented for I-123, I-124, I-125, and I-131 labeled hippuran in moderate and severe ATN, acute and chronic near-total obstruction, and renal transplants. In addition, a nuclear medicine examination profile will be presented for patients receiving renal transplants. This profile was constructed by retrospectively examining the records of 20 randomly-chosen transplant patients and recording all nuclear medicine procedures performed up to July, 1985. A total of 172 studies was performed, of which 69 were Tc-99m-DTPA flows, 62 were hippurans, and 22 were indium-111-oxine-platelets. The dosimetric contribution of all studies was assessed. The importance of the hippuran component will be discussed. 8 references, 8 tables

  13. Air density correction in ionization dosimetry

    International Nuclear Information System (INIS)

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described

  14. Radiation Dosimetry Management: Quality Assurance and Investigations

    International Nuclear Information System (INIS)

    Full text: In a litigation-prone society, it is prudent for any business to evaluate its potential exposure to legal action, initiated by either an employee or a member of the general public. This potential is exacerbated when the phobia of radiation exposure and radioactive materials is interjected into the equation. This phobia is fuelled by the perceived risks of radiation exposure, be they fact or fantasy. With the current cancer incidence rate being approximately 1 in every 2.5 individuals (for all types of cancer), it is imperative that all facilities take a proactive look at their business vulnerability. When radiation exposure is the issue, records documentation is a critical factor, and a significant amount of effort should be expended to implement a comprehensive records management system. A comprehensive Radiation Dosimetry Management Program is essential if a business is going to mitigate any regulatory or legal intervention. This lecture will address appropriate Records Quality Assurance, and, the appropriate requirements for investigations of dosimetry results. (author)

  15. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  16. Dosimetry of radium-223 and progeny

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R. [Pacific Northwest National Lab., Richland, WA (United States); Sgouros, G. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  17. Dosimetry methods in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  18. Dosimetry of ionising radiation in modern radiation oncology.

    Science.gov (United States)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B

    2016-07-21

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these. PMID:27351409

  19. Dosimetry of ionising radiation in modern radiation oncology

    Science.gov (United States)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  20. EPR Dosimetry: an update and prospective studies

    International Nuclear Information System (INIS)

    Electron Paramagnetic Resonance (EPR) technique is useful to quantify the paramagnetic species in any matrix. The unpaired electrons present in paramagnetic materials have non - zero spin value, have an associated spin magnetic moment. When such a system is subjected to an external magnetic field, electronic Zeeman splitting of ground level state occurs. On application of suitable stimulant microwave energy, the electrons flip between the Zeeman levels of ground state, result in resonant absorption of the microwave energy. The intensity of resonant absorption signal is proportional to the concentration of the unpaired electrons in the irradiated material, could lead to possible use of such materials in EPR dosimetric applications. New materials were investigated for EPR dosimetry, wherein the radiation induced paramagnetic species retains the radiation signatures, lead to idea on radiation dose. Few of the materials have been identified as prospective EPR dosimeters. The radiation induced radical in Li2CO3 powder material being paramagnetic in nature (signals at g = 2.0036 and at g 2.0006) and radical concentration varying as a function of irradiation dose, led to its identification for possible use in EPR dosimetric applications. Besides, during the neutron irradiations, the reaction 6Li (n,α) 3H, led to the yield of radicals many folds higher compared to that of gamma irradiation. Thus, the commonly available Li2CO3 material has been assessed for the EPR dosimetric response in gamma and neutron environments. EPR investigation of Li2C2O4, Na2C2O4 mixtures was carried out to measure the radiation dose from γ photons and thermal neutrons in a mixed radiation field. A single line spectrum of CO2- radical at g = 2.0045 ± 0.0005 was found on gamma and neutron irradiations. Of all the mixture combinations, the 2:1 mixture was found more sensitive for gamma / thermal neutrons. Intensity of CO2- radical signal was found linear from 6 Gy - 11 kGy for gamma and 40 - 1500

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  2. Real-time dosimetry system in catheterisation laboratory: utility as a learning tool in radiation protection

    International Nuclear Information System (INIS)

    Document available in abstract form only. Full text of publication follows: Workers at the catheter laboratory are among the most exposed to ionising radiation in hospitals. However, it is difficult to be certain of the radiation doses received by the staff, as personal dosemeters are often misused, and thus, the dose history is not reliable. Moreover, the information provided by personal dosemeters corresponds to the monthly accumulated dose, so corrective actions tends to be delayed. The purpose of this work is, on the one hand, to use a real-time dosimetry system to establish the occupational doses per procedure of workers at the catheter laboratories and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. (authors)

  3. A Method for evaluating personal dosemeters in workplace with neutron fields

    International Nuclear Information System (INIS)

    Passive detectors, as albedo or track-etch, still dominate the field of neutron personal dosimetry, mainly due to their low-cost, high-reliability and elevated throughput. However, the recent appearance in the market of electronic personal dosemeters for neutrons presents a new option for personal dosimetry. In addition to passive detectors, electronic personal dosemeters necessitate correction factors, concerning their energy and angular response dependencies. This paper reports on the results of a method to evaluate personal dosemeters for workplace where neutrons are present. The approach here uses few instruments and does not necessitate a large mathematical workload. Qualitative information on the neutron energy spectrum is acquired using a simple spectrometer (Nprobe), reference values for H*(10) are derived from measurements with ambient detectors (Studsvik, Berthold and Harwell) and angular information is measured using personal dosemeters (electronic and bubbles dosemeters) disposed in different orientations on a slab phantom. (authors)

  4. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...... speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes....

  5. Methods and procedures for external radiation dosimetry at ORNL

    International Nuclear Information System (INIS)

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, external radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document provides a description of the methods and procedures for external radiation metering, monitoring, dosimetry, and records which are in effect at ORNL July 1, 1981. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability

  6. a Decade of Dosimetry for Magnox Reactor Plants

    Science.gov (United States)

    Lewis, T. A.; Thornton, D. A.

    2003-06-01

    This paper reviews the reactor dosimetry program that has supported steel pressure vessel integrity assessments for magnox power plants over the last ten years. The dosimetry program has aimed to achieve consistent:. • calculated and measured fast and thermal neutron doses. • data for surveillance specimens and reactor pressure vessels. Throughout the program, the flux measurements on the plants have been judged essential for any doses where a high degree of confidence is required. The work to support operation is now largely complete and the dosimetry is being extended to assess radioactive inventories as part of the decommissioning process.

  7. The significance and impact of dosimetry audits in radiotherapy

    International Nuclear Information System (INIS)

    Overall, dosimetry audit has improved consistency in radiotherapy results and outcomes for patients and provided confidence to clinicians in the dosimetry supporting their practice. Its importance and impact is clearly recognised and its encouragement of and links to other wider radiotherapy audit has been significant. As it is estimated that a large number of the existing radiotherapy facilities world-wide have not yet participated in some level of independent external dose quality audit, the breadth of uptake of audit is to be encouraged. As the complexity of radiotherapy develops, the scope of what can be included in dosimetry and wider radiotherapy quality audits also needs to continue to increase

  8. The Significance and Impact of Dosimetry Audits in Radiotherapy

    International Nuclear Information System (INIS)

    Overall, dosimetry audit has improved consistency in radiotherapy results and outcomes for patients and provided confidence to clinicians in the dosimetry supporting their practice. Its importance and impact is clearly recognised and its encouragement of and links to other wider radiotherapy audit has been significant. As it is estimated that a large number of the existing radiotherapy facilities world-wide have not yet participated in some level of independent external dose quality audit, the breadth of uptake of audit is to be encouraged. As the complexity of radiotherapy develops, the scope of what can be included in dosimetry and wider radiotherapy quality audits also needs to continue to increase

  9. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...... parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes....

  10. Spectrometry and in core dosimetry of neutron radiation. Part I

    International Nuclear Information System (INIS)

    The proceedings contain 8 invited papers discussing current problems of spectrometry and in core neutron dosimetry with regard to applications in nuclear power engineering. The papers deal with the following areas: reactor physics and in core dosimetry; calculations of the spatial and energy distribution of neutrons in the reactor core and shielding; proton-recoil neutron spectrometry; determining neutron spectra with activation detectors; assessment of measurement system used in core dosimetry; in core measurement and monitoring of the reactor radiation field; monitoring the radiation damage to reactor structural materials. (J.P.)

  11. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.;

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications....

  12. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  13. Personality in speech assessment and automatic classification

    CERN Document Server

    Polzehl, Tim

    2015-01-01

    This work combines interdisciplinary knowledge and experience from research fields of psychology, linguistics, audio-processing, machine learning, and computer science. The work systematically explores a novel research topic devoted to automated modeling of personality expression from speech. For this aim, it introduces a novel personality assessment questionnaire and presents the results of extensive labeling sessions to annotate the speech data with personality assessments. It provides estimates of the Big 5 personality traits, i.e. openness, conscientiousness, extroversion, agreeableness, and neuroticism. Based on a database built on the questionnaire, the book presents models to tell apart different personality types or classes from speech automatically.

  14. Dosimetry for computed tomography using Fricke gel dosimetry and magnetic resonance imaging

    International Nuclear Information System (INIS)

    In this work it was determined a new method for the determination of absorbed doses in Computed Tomography (CT) examinations using Fricke gel dosimetry developed at IPEN. Absorbed doses were determined by different methods of analysis, such as optical absorption spectrometry, ionization chambers and magnetic resonance imaging. Lower limit of sensitivity of the Fricke gel solution, the solution repeatability signal Fricke gel and CT equipment, detection sensitivity, among other tests were performed. Different equipment of computed tomography with multiple detectors were used. The Fricke gel solution showed better repeatability than ±5.5% using the technique of optical absorption spectrophotometry and computed tomography equipment showed repeatability better than ±0.2%. The Fricke gel solution features an easy and relatively quick preparation, but it is necessary to be careful not to contaminate and lose the solution. With the results, it was confirmed the application of this type of dosimetry for computed tomography equipment. (author)

  15. Second meeting of competent persons in radiation protection; Deuxiemes rencontres des personnes competentes en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This conference treats the subjects interesting the competent persons in radiation protection. It is divided in four sessions. The first one concerns the regulatory bases for the action of competent persons and includes three articles, the second one is about the operational dosimetry and includes six articles, the third session is devoted to the sources and waste management and represents two texts, the last and fourth session concerns the competent person in radiation protection and gives evidence. (N.C.)

  16. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm3, respectively, much lower than the 159 Gy and 0.65 cm3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or postoperative CT

  17. Permanent Breast Seed Implant Dosimetry Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Brian M., E-mail: Brian.Keller@sunnybrook.ca [Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ravi, Ananth [Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sankreacha, Raxa [Carlo Fidani Regional Cancer Center, Mississauga, ON (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  18. A digital approach to neutron dosimetry and microdosimetry

    International Nuclear Information System (INIS)

    Work has begun in an effort to develop a new, digital approach to neutron dosimetry. In contrast to analogue methods in current use, digital information describes the track of a recoil charged particle produced by a neutron in a gas in terms of the numbers of ions that occur in given volume elements of a detector. It appears that a device based on the time-projection chamber used in particle physics would enable one to measure relevant data for neutron dosimetry. Such an instrument would also furnish data sought in microdosimetry. In this paper we will describe the digital approach to dosimetry and will report on the initial Monte Carlo calculations of the detailed transport of protons and electrons in Ar, CH4, and P-10 gases. These calculations are being used to assess the feasibility of constructing a practical chamber for use in neutron dosimetry and in microdosimetry

  19. External dosimetry in the aftermath of a radiological terrorist event

    International Nuclear Information System (INIS)

    This paper reviews external dosimetry in emergency preparedness planning for a potential terrorist release of radioactive material in a densely populated area. The radiation dose received by response workers and members of the public is needed to understand health risks. The existing framework for dosimetry of routinely occupationally exposed workers is not directly applicable to all emergency workers who would respond to a radiological terrorist event. Emergency preparedness plans incorporate various old and new dosimetry technologies, including quartz fibre electrets, electronic dosemeters, personnel badges and wallet cards. Environmental monitoring and dose calculations are the usual methods for determining public dose. However, during the late-phase response, after removable contamination has been eliminated, it may be easier and more straightforward to provide individual dosimetry for members of the public who may be moving through a city with varying contamination areas. Doing so could allow resumption of normal activities earlier and promote confidence in reusing the site. (authors)

  20. Research on the experimental verification of dosimetry calculations. Progress report

    International Nuclear Information System (INIS)

    This research has been directed toward the development of experimental techniques for the evaluation of internal-dosimetry calculations. There have been three major objectives. The first was the development and refinement of dosimetric techniques necessary to obtain absorbed doses averaged over the entire volume of particular organs. Other major objectives have included the utilization of these dosimetry systems to measure absorbed doses in anthropomorphic phantoms, and the comparison of these experimental results to absorbed dose estimates obtained from Monte Carlo computer calculations. At the present time, only limited data are available for direct comparison. However, more data should be available soon and comparisons will be made before the end of the present contract period. This proposal outlines the current status of our research toward that end. In addition, it is proposed that this contract be renewed to continue investigations into other aspects of dosimetry, for example, dosimetry for the survivors of the bombings of Hiroshima and Nagasaki

  1. Natural dose level determination at Johor State with thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    This paperwork presented the results of using thermoluminescence dosimetry (TLD) method in measuring background dose level, which is done at State of Johor, South Malaysia. The problems faced also discussed

  2. Gamma-ray dosimetry measurements of the Little Boy replica

    Energy Technology Data Exchange (ETDEWEB)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  3. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  4. IAEA Support to National TLD Audit Networks for Radiotherapy Dosimetry

    International Nuclear Information System (INIS)

    For several years, the IAEA has supported the development of methodology and establishment of national quality audit networks for radiotherapy dosimetry. The main objective was to extend the availability of radiotherapy dosimetry audits to as many radiotherapy centres as possible throughout the world. Since 1995, a series of three coordinated research projects (CRPs) has been conducted by the IAEA to assist its Member States to develop such national audit programmes. The first CRP focused on the basic beam calibration audits. The basic programme was extended to audits in non-reference conditions through a second CRP. The third CRP initiated in 2009 is expanding the dosimetry audit tools for more complex techniques used for treatment of cancer patients. The national audit networks participating in these CRPs have incorporated in their programmes procedures for auditing hospital dosimetry for these techniques. (author)

  5. Proceedings of the third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database

  6. Materials Testing and Automation

    Science.gov (United States)

    Cooper, Wayne D.; Zweigoron, Ronald B.

    1980-07-01

    The advent of automation in materials testing has been in large part responsible for recent radical changes in the materials testing field: Tests virtually impossible to perform without a computer have become more straightforward to conduct. In addition, standardized tests may be performed with enhanced efficiency and repeatability. A typical automated system is described in terms of its primary subsystems — an analog station, a digital computer, and a processor interface. The processor interface links the analog functions with the digital computer; it includes data acquisition, command function generation, and test control functions. Features of automated testing are described with emphasis on calculated variable control, control of a variable that is computed by the processor and cannot be read directly from a transducer. Three calculated variable tests are described: a yield surface probe test, a thermomechanical fatigue test, and a constant-stress-intensity range crack-growth test. Future developments are discussed.

  7. Surveillance dosimetry of operating power plants

    International Nuclear Information System (INIS)

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions

  8. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  9. Polymer gel dosimetry system for radiation therapy

    International Nuclear Information System (INIS)

    Purpose/Objective: Recently developed treatment modalities such as stereotactic and conformal radiation therapy produce complex dose distributions which are difficult or impractical to measure with conventional dosimetry instrumentation. Three-dimensional treatment planning systems which purport to calculate these complex dose distributions should be compared to experimental results before being routinely applied to clinical problems. There is a need for a new class of tissue-equivalent dosimeters capable of providing accurate, high resolution, time-integrated and three dimensional dose distributions. The recently developed BANG polymer gel dosimetry system (MGS Research, Inc., Guilford, CT) is ideally suited for the task described above. Physico-chemical principles of the polymer gel dosimetry are presented, together with examples of its application to radiation therapy. Data analysis and display program, written for Macintosh computer, is demonstrated. Materials and Methods: Radiation-induced polymerization of acrylic monomers, which are dispersed in tissue-equivalent gelatin, has been shown to be dependent on the dose, but independent of the dose rate or photon energy. Therefore, the spatial distribution of polymer in the gel is precisely representative of the dose distribution. As the polymeric microparticles reduce the water proton NMR relaxation times in the gel, the dose distribution can be measured with high resolution and accuracy using magnetic resonance imaging. Also, as these microparticles cannot diffuse through the gelatin matrix, their distribution is permanent. An improved formulation of the BANG dosimeter consists of 3% w/v acrylic acid, 3% N,N'-methylene-bis-acrylamide, 1% sodium hydroxide, 5% gelatin, and 88% water. MR images are transferred via a local network to a Macintosh computer, and R2 maps constructed on the basis of multiple TE images, using a non-linear least squares fit based on the Levenberg-Marquardt algorithm. A dose-to-R2

  10. A human head phantom for experimental dosimetry

    International Nuclear Information System (INIS)

    In order to achieve a better understanding of the behavior of nuclear particles in a human head experiment a phantom preserving similar tissues as well as similar anthropomorphic characteristics was used. In this work a biologic equivalent tissue material was developed, maintaining the chemical composition and tissue density, based on enriched PMMA. A humanoid head phantom was built using a human skull as a base, donated by the Morphology Department of the Institute for Biologic Sciences-ICB/UFMG. Muscles were replaced with biologic equivalent tissue material following anatomic precepts. The phantom presents: formalized animal salivary glands, brain and submandibular lymph nodes; human teeth; hair; prosthetic eyes and nose as well as human equivalent skin containing silicone and animal collagen. This phantom present several important conditions as human morphological characteristics, equivalent biological tissue and the head bone structure. It will be used in radiotherapy and brachytherapy studies, dosimetry and quality control of medical diagnostic image. (author)

  11. Radiation protection and dosimetry: basis. 9. ed.

    International Nuclear Information System (INIS)

    A revised book 'Radiation Protection and Dosimetry: Fundamentals, prepared to meet the training courses offered by the Instituto de Radioprotecao e Dosimetria - IRD, Rio de Janeiro, RJ, Brazil and people interested in the subject, is presented. Concepts have been updated, especially the chapter on Radiological Magnitudes, due to upgrade of Standard CNEN-NN-3.01-Basic Guidelines on Radiological Protection, published in the Diario Oficial da Uniao on September 1, 2011. A chapter related to Waste Management, another on the Transport of Radioactive Materials and three annexes on: Standards of CNEN, Ionizing Radiation and Personnel Legislation and Determination of shields in Radiotherapy were included. Were also added several tables for use in radiological protection, to facilitate consultation

  12. The radiation dosimetry of intrathecally administered radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G. [Oak Ridge Inst. for Science and Education, TN (United States); Evans, J.F. [Ohio State Univ., Columbus, OH (United States)

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  13. Dosimetry for radiocolloid therapy of cystic craniopharyngiomas

    CERN Document Server

    Rojas, E L; Lallena, A M; Bodineau, C; Galan, P; Al-Dweri, Feras M.O.; Lallena, Antonio M.; Bodineau, Coral; Galan, Pedro

    2003-01-01

    The dosimetry for radiocolloid therapy of cystic craniopharyngiomas is investigated. Analytical calculations based on the Loevinger and the Berger formulae for electrons and photons, respectively, are compared with Monte Carlo simulations. The role of the material of which the colloid introduced inside the craniopharyngioma is made of as well as that forming the cyst wall is analyzed. It is found that the analytical approaches provide a very good description of the simulated data in the conditions where they can be applied (i.e., in the case of a uniform and infinite homogeneous medium). However, the consideration of the different materials and interfaces produces a strong reduction of the dose delivered to the cyst wall in relation to that predicted by the Loevinger and the Berger formulae.

  14. Modernization of the automated CARS spectrometer system based on an IBM-compatible PC

    Science.gov (United States)

    Anikeev, Boris V.; Chadaev, D. I.

    2001-05-01

    We describe the updated automated system for coherent anti- Stokes Raman spectroscopy (CARS) that includes a laser spectrometer, automatic data processing and control units, based on an IBM-compatible personal computer.

  15. Sci—Thur AM: YIS - 03: irtGPUMCD: a new GPU-calculated dosimetry code for {sup 177}Lu-octreotate radionuclide therapy of neuroendocrine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Montégiani, Jean-François; Gaudin, Émilie; Després, Philippe [Physics, Engineering Physics and Optics, Université Laval, Quebec City, QC (Canada); Jackson, Price A. [Molecular Imaging and Targeted Therapeutics, Peter MacCallum Cancer Centre, Melbourne, VIC (Australia); Beauregard, Jean-Mathieu [Radiology, Université Laval, Quebec City, QC (Canada)

    2014-08-15

    In peptide receptor radionuclide therapy (PRRT), huge inter-patient variability in absorbed radiation doses per administered activity mandates the utilization of individualized dosimetry to evaluate therapeutic efficacy and toxicity. We created a reliable GPU-calculated dosimetry code (irtGPUMCD) and assessed {sup 177}Lu-octreotate renal dosimetry in eight patients (4 cycles of approximately 7.4 GBq). irtGPUMCD was derived from a brachytherapy dosimetry code (bGPUMCD), which was adapted to {sup 177}Lu PRRT dosimetry. Serial quantitative single-photon emission computed tomography (SPECT) images were obtained from three SPECT/CT acquisitions performed at 4, 24 and 72 hours after {sup 177}Lu-octreotate administration, and registered with non-rigid deformation of CT volumes, to obtain {sup 177}Lu-octreotate 4D quantitative biodistribution. Local energy deposition from the β disintegrations was assumed. Using Monte Carlo gamma photon transportation, irtGPUMCD computed dose rate at each time point. Average kidney absorbed dose was obtained from 1-cm{sup 3} VOI dose rate samples on each cortex, subjected to a biexponential curve fit. Integration of the latter time-dose rate curve yielded the renal absorbed dose. The mean renal dose per administered activity was 0.48 ± 0.13 Gy/GBq (range: 0.30–0.71 Gy/GBq). Comparison to another PRRT dosimetry code (VRAK: Voxelized Registration and Kinetics) showed fair accordance with irtGPUMCD (11.4 ± 6.8 %, range: 3.3–26.2%). These results suggest the possibility to use the irtGPUMCD code in order to personalize administered activity in PRRT. This could allow improving clinical outcomes by maximizing per-cycle tumor doses, without exceeding the tolerable renal dose.

  16. Extremity dosimetry at US Department of Energy facilities

    International Nuclear Information System (INIS)

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire

  17. Free form source representation for a VR dosimetry training application

    OpenAIRE

    MOLTO CARACENA Teofilo; Goncalves, Joao; Peerani, Paolo; Vendrell Vidal, Eduardo

    2013-01-01

    A method to model free form nuclear sources in Virtual Reality (VR) based dosimetry applications for training purposes is presented in this paper. A VR based dosimetry application can provide advantages in terms of time, cost and logistics with respect to traditional on-site training courses, representing a valid complement to the traditional ones. In order to benefit from these advantages, methods need to be developed to overcome the requirements such a VR application requires, such as real...

  18. The personnel dosimetry record keeping system at AEE Winfrith

    International Nuclear Information System (INIS)

    Since May 1978 the exposure of personnel to external radiation has been assessed by Thermoluminescent Dosimetry, (TLD). The dosemeter consists of a TLD card similar to that used by the National Radiological Protection Board, held in a plastic badge designed at AEE Winfrith, and used in conjunction with a D A Pitman Ltd Type 605 Automatic Reader. The report describes the dosemeter, the operation of the dosimetry service and the system for maintaining a computerised record keeping system. (author)

  19. Development of TLD audits for radiotherapy dosimetry in Argentina

    International Nuclear Information System (INIS)

    Since 1978 the Regional Reference Center for Dosimetry in Argentina (Secondary Standard Dosimetry Laboratory belonging to the IAEA-WHO SSDLs Network) has been performing a dose intercomparison programme for cobalt 60 therapy units operating in the country. Applied methodology was similar to that of the IAEA TLD audit service and the dose at a reference point on the radiation beam axis was checked by this programme. The results of this audits showed that dose deviations obtained were within the acceptance limits

  20. Why is a high accuracy needed in dosimetry. [Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of ..gamma.. and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control.

  1. Dosimetry needs for the Magnetic Fusion Materials Program

    International Nuclear Information System (INIS)

    The significance of neutron dosimetry within the MFE materials program is discussed. Experimental results demonstrating the current MFE dosimetry methodology is presented for facilities such as RTNS-I and Be(d,n) facilities. Brief descriptions of planned facilities for high intensity neutron sources are given and experimental data needs are stressed. The potential use of nuclear emulsion techniques for these facilities is discussed

  2. In vivo dosimetry during tangential breast treatment

    Energy Technology Data Exchange (ETDEWEB)

    Heukelom, S.; Lanson, J.H.; Tienhoven, G. van; Mijnheer, B.J. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands))

    1991-12-01

    Three-dimensional (3-D) dose distribution as calculated in clinical practice for tangential breast treatment was verified through in vivo dosimetry. Clinical practice at Netherlands Cancer Institute implies use of 8MV X-ray beams, 2-D treatment planning system, collimator rotation and a limited set of patient data for dose calculations. By positioning diodes at the central beam axes as well as in the periphery of the breast the magnitude of dose values at the isocentre and in points situated in high-dose regions behind the lung could be assessed. The position of diodes was verified by means of an on-line portal imaging device. Reproducibility of these in vivo dose measurements was better than 2% (1SD). This study shows that on the average dose delivery at the isocentre is 2% less at the points behind the lung, 5.7% higher with respect to the calculated dose values. Detailed analysis of these in vivo dosimetry results, based on dose measurements performed with a breast shaped phantom, yielded the magnitudes of errors in predicted dose due to several limitations in dose calculation algorithms and dose calculation procedure. These limitations are each introducing an error of several percent but are compensating each other for the dose calculation at the isocentre. It is concluded that dose distribution in patient for this treatment technique and dose calculation procedure can be predicted with a 2-D treatment planning system in an acceptable way. A more accurate prediction of dose distribution can be performed but requires an estimation of the lack of scatter due to missing tissue, the change in the dose distribution due to oblique incident beams and incorporation of the actual output of the treatment machine in the assessment of the number of monitor units. (author). 28 refs.; 3 figs.; 4 tabs.

  3. Neutron spectrometry and dosimetry using NSDAAN

    International Nuclear Information System (INIS)

    The reconstruction of neutron spectra from count rates of a Bonner spheres spectrometric system is performed using various methods such as Monte Carlo methods, the parameterization and iterative methods. The weight of the Bonner spheres spectrometric system, the procedure for the reconstruction of the spectra, the need of an experienced user, the high consumer of time, the need of use a reconstruction code as the BUNKI, SAND, among others, and the resolution of the spectrum are some problems that this system presents. This has motivated the development of complementary procedures such as maximum entropy, genetic algorithms and artificial neural networks. In previous work, has reported a new method called robust design methodology of artificial neural networks, to construct various network topologies capable of solving the problems of neutron spectrometry and dosimetry, however, due to the newness of this technology, be noted that there are not tools to end-user that allow test and validate the designed networks. This paper presents a software for the neutron spectrometry and dosimetry, designed from the information extracted of an artificial neural network designed by robust design methodology of artificial neural networks. This tool has the following characteristics: was designed in a user graphical interface easy to use, requires not knowledge of neural networks or neutron spectrometry by the user; execution speed of the application; unlike the deconvolution codes are not required to select an initial spectrum for the spectrum reconstruction; as an additional element to this tool, besides the spectrum, the calculation is performed simultaneous to H(10), E, Hp,s(10,θ) from just counting rates from a Bonner spheres spectrometric system. (author)

  4. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  5. On flattening filter-free portal dosimetry.

    Science.gov (United States)

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PMID:27455487

  6. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  7. Biological dosimetry for astronauts: a real challenge.

    Science.gov (United States)

    Testard, I; Sabatier, L

    1999-12-01

    Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage. PMID:10631347

  8. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  9. Automating the CMS DAQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  10. Automated phantom assay system

    International Nuclear Information System (INIS)

    This paper describes an automated phantom assay system developed for assaying phantoms spiked with minute quantities of radionuclides. The system includes a computer-controlled linear-translation table that positions the phantom at exact distances from a spectrometer. A multichannel analyzer (MCA) interfaces with a computer to collect gamma spectral data. Signals transmitted between the controller and MCA synchronize data collection and phantom positioning. Measured data are then stored on disk for subsequent analysis. The automated system allows continuous unattended operation and ensures reproducible results

  11. Automated gas chromatography

    Science.gov (United States)

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  12. Review on the characteristics of radiation detectors for dosimetry and imaging

    Science.gov (United States)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  13. An Efficient Automated English to Bengali Script Conversion Mechanism

    OpenAIRE

    Enakshi Mukhopadhyay; Priyanka Mazumder; Saberi Goswami; Romit S Beed

    2014-01-01

    The authors aim at developing an efficient, unequivocal and automated method of generating Bengali language using English alphabets and simple English punctuation notes. Such art of writing Bengali language using English scripts shall be of immense help for those Bengali-speaking persons who cannot write in Bengali, yet can speak well and would require written communication in Bengali for official and personal conversation. Currently, Bengali keyboards are not available in the market, and acc...

  14. Review of the near-earth space radiation dosimetry

    Science.gov (United States)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  15. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    International Nuclear Information System (INIS)

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm2/mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 900. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs

  16. Proceedings of the recent developments in radiation dosimetry

    International Nuclear Information System (INIS)

    Whilst 'Dosimetry' in its original sense deals with methods for a quantitative determination of energy deposited in a given medium by directly or indirectly ionizing radiations, the term is better known as a scientific sub-specialty in the fields of health physics and medical physics, where it is the calculation and assessment of the radiation dose received by the human body. Dosimetry is used extensively for radiation protection and is routinely applied to ensure radiological safety of occupational radiation workers. Internal dosimetry due to the ingestion or inhalation of radioactive materials relies on a variety of physiological or imaging techniques. External dosimetry, due to irradiation from an external source is based on measurements with a dosimeter, or inferred from other radiological protection instruments. Radiation dosimetry is one of the important research areas of Department of Atomic Energy (DAE). This research work is centered on the facilities such as nuclear reactors, reprocessing plants, high energy accelerators (research/industry/medical), radiation standards, food processing, radiation technology development, etc. In each of these facilities, radiation field environment is different and the associated dosimetry concepts are different. Papers relevant to INIS are indexed separately

  17. Electronic personal dosemeter for neutrons: saphydose-n

    International Nuclear Information System (INIS)

    Personal neutron dosimetry represents one of the current difficulties in the field of radiological protection of workers. Since March 1999, the regulatory requirements for 'active' (i.e. operational) dosimetry have been those of ICRP Publication 60, applicable from May 2000, necessitating the introduction of a new generation of neutron dosimeters. Over the last few years, the Institute for Nuclear Safety and Protection (IPSN) has been studying an electronic personal dosimeter for neutrons, capable of meeting the specifications laid down by a neutron dosimetry-working group including members from all the main players in the French nuclear industry. In 1998, the IPSN began transferring technology to the company Saphymo which, by the end of 2000, will be marketing Saphydose-n, the first personal dosimeter for neutrons complying with IEC 1323. This dosimeter is of compact design and can assess the personal dose equivalent Hp(10) in mixed neutron and gamma radiation fields. It will be usable in any nuclear facility without prior knowledge of the average neutron spectrum or the neutron-gamma ratio. It will be possible to connect the Saphydose-n dosimeter to any of the existing gamma dosimeter terminals to read the dose data and recharge the batteries. (author)

  18. IAEA supported national thermoluminescence dosimetry audit networks for radiotherapy dosimetry: Summary of the posters presented in session 12b

    International Nuclear Information System (INIS)

    The IAEA has supported its Member States over many years by providing thermoluminescence dosimetry (TLD) based quality assurance audits for radiotherapy dosimetry. Over recent years it has extended this role by encouraging, supporting and assisting the development of national audit programmes, building on the IAEA's experience of operating a TLD system.Whenever possible, the IAEA establishes links between the national programmes and the IAEA Dosimetry Laboratory. The IAEA disseminates its standardized TLD methodology and provides technical backup to national TLD networks, ensuring at the same time traceability to primary dosimetry standards. Several countries have established TLD programmes to audit radiotherapy beams in hospitals with assistance from the IAEA, and the paper presents an overview of the activities in Algeria, Argentina, Australia, Brazil, China, Colombia, Cuba, India, the Republic of Korea, the Philippines and Poland. (author)

  19. Personality Disorders

    Science.gov (United States)

    Personality disorders are a group of mental illnesses. They involve long-term patterns of thoughts and behaviors that ... serious problems with relationships and work. People with personality disorders have trouble dealing with everyday stresses and problems. ...

  20. Personality Disorders

    Science.gov (United States)

    ... for Building a Healthy Self-Image and Improving Self-Esteem 8 Things You Should Know About Body Dysmorphic ... personality disorder. Personality disorders are usually recognizable by adolescence or earlier, continue throughout adulthood, and become less ...